tri_generate 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/lib/tri_generate.rb +296 -0
- metadata +47 -0
checksums.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
---
|
|
2
|
+
SHA1:
|
|
3
|
+
metadata.gz: 1fe63937b134b28ad5f26748b2a50e58c82f6583
|
|
4
|
+
data.tar.gz: 3c248940d97bf686c281df5cda145bbe051e2bba
|
|
5
|
+
SHA512:
|
|
6
|
+
metadata.gz: a6571e89ffc35fbd041188d8f097ce86791f2b67b1f25ad74b692bfd47ccc6f93a78b7664d57313cf907b47838728b5550af276a3a458582e77d4e784796ea3c
|
|
7
|
+
data.tar.gz: 50d3480078183cb9f12ab4dab7203a00f47b9dde1c9b081d67c93910f0706b346c05312251730899cda48c628697df6487b20150b2698c6b5c97a6edfc7312c4
|
data/lib/tri_generate.rb
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
1
|
+
require "tri_generate/version"
|
|
2
|
+
|
|
3
|
+
module TriGenerate
|
|
4
|
+
S_NAME = ["Tri", "Huynh", "Nguyen", "Hoang", "Le", "Trang", "Tam", "Phuong", "Huong", "Hong", "Linh", "Thang", "Tin", "Khoi",
|
|
5
|
+
"Phan", "Trinh", "Do", "Ho", "Ngo", "Duong", "Ly", "An", "Bach", "Banh", "Chau", "Chu", "Chung", "Diep", "Doan",
|
|
6
|
+
"Giang", "Ha", "Han", "Kieu", "Kim", "Kim", "La", "Lac", "Luong", "Ma", "Nghiem", "Than", "Thao", "To", "Tong",
|
|
7
|
+
"Trang", "Trinh", "Trieu", "Truong", "Vinh", "Vuong", "Vuu", "Wang", "Li", "Chang", "Liu", "Chen", "Yang", "Huang",
|
|
8
|
+
"Wu", "Hsu", "Sun", "Chu", "Zeng", "Leung", "Yuen", "Poon", "Jyu", "Yip", "Zhang", "Wei", "Min", "Xiuying", "Wang",
|
|
9
|
+
"Yuka", "Ren", "Hiroki", "Kana", "Haruka", "Kazuki", "Ayano", "Daiki", "Yamoto", "Daisuke", "Shinji", "Hiroaki",
|
|
10
|
+
"Sayaka", "Tomoko", "Natsuki", "Makoto", "Ayana", "Toshi", "Narumi", "Mika", "Takeshi", "Yoko", "Kyoko", "Takaya",
|
|
11
|
+
"Min-jun", "Ju-won", "Jun-seo", "Ji-hu", "Min-hun", "Ji-min", "Su-bin", "Eun-seo", "Hyeon-u", "U-jin", "Ji-min",
|
|
12
|
+
"Anastasia", "Dima", "Alex", "Maria", "Sergey", "Vlad", "Max", "Egor", "Roman", "Oleg", "Kostya", "Daniel", "Nick",
|
|
13
|
+
"Lena", "Kristina", "Sofia", "Natalia", "Helen", "Andrei", "Victoria", "Kseniya", "Svetlana", "Nikolai", "Sophia",
|
|
14
|
+
"Asya", "Alexander", "Ksenya", "Vova", "Valentina", "Bekhan", "Katherine", "Aleksei", "Michael", "Eugene", "Leonid",
|
|
15
|
+
"James", "David", "Chirstoper", "George", "Ronald", "John", "Richard", "Daniel", "Patrica", "Maria", "Margaret",
|
|
16
|
+
"Elizabeth", "Dorothy", "Betty", "Karen", "Sarah", "Laura", "Michelle", "Donna", "Edward", "Jason", "Jeff", "Mark",
|
|
17
|
+
"Kevin", "Paul", "Nathan", "Fever", "Amy", "George", "Nancy", "Carol", "Susan", "Deborah", "Kimberly", "Joseph",
|
|
18
|
+
"Marie", "Nicolas", "Antoinie", "Lucas", "Athur", "Jodan", "Caroline", "Amelie", "Celine", "Celia", "Sophie", "Elise",
|
|
19
|
+
"Charlotte", "Guillaume", "Pierre", "Pauline", "Oceane", "Justine", "Clara", "Cassandra", "Cindy", "Stepphane",
|
|
20
|
+
"Sylvain", "Gergory", "Christophe", "Phillippe", "Angelique", "Pablo", "Paula", "Lucia", "Alejandro", "Carlos",
|
|
21
|
+
"Javier", "Miguel", "Raquel", "Pedro", "Diego", "Raul", "Alberto", "Gloria", "Jaime", "Marina", "Angela", "Silvia",
|
|
22
|
+
"Aurora", "Patri", "Yago", "Mario", "Ariadna", "Amin", "Igor", "Nacho", "Rose", "Suri", "Jose miguel", "Ommar",
|
|
23
|
+
"Ammar", "Sultan", "Mohamed", "Ahmed", "Nirmmen", "Ghadda", "Shehab", "Enass", "Farah", "Ali", "Ahmed", "Ramzi",
|
|
24
|
+
"Abdoul", "Mustafa", "Yaasir", "Abdul shire", "Khaalid", "Ahakim", "Caleb", "Dominik", "Julia", "Daniel", "Lukas",
|
|
25
|
+
"Melanie", "Dominik", "Annika", "Franzi", "Jannik", "Henry", "Hendrik", "Olaf", "Elisabeth", "Melissa", "Louisa",
|
|
26
|
+
"Rebecca", "Kathrin", "Jakob", "Konrad", "Ludwig", "Matthias", "Lennart", "Natascha", "Tanya", "Rahul", "Divya",
|
|
27
|
+
"Priyanka", "Aishwarya", "Mahese", "Shardul", "Sayem", "Krithika", "Riharika", "Neeraij", "Mayank", "Deepak",
|
|
28
|
+
"Admaris", "Addison", "Ainsley", "Amanda", "Anastasia", "Andrea", "Angela", "Anjancette", "Araminta", "Ashley",
|
|
29
|
+
"Ashton", "Barbara", "Berenice", "Braelyn", "Burgundy", "Camellia", "Cassandra", "Channing", "Chelsea", "Cornelia",
|
|
30
|
+
"Danette", "Demelza", "Dreama", "Earlene", "Ebony", "Edmonda", "Edmonia", "Edwina", "Gaynelle", "Indiana", "Hollis",
|
|
31
|
+
"Isabella", "Lawanda", "Lindsay", "Madison", "Magnolia", "Meadow", "Paisley", "Parker", "Payton", "Priscilla",
|
|
32
|
+
"Regina", "Roseanne", "Scarlett", "Sabrina", "Serena", "Shelley", "Shirley", "Shnshine", "Synnove", "Tanika",
|
|
33
|
+
"Tempest", "Tyler", "Vanessa", "Veronica", "Velvet", "Whitley", "Wilda", "Winifred", "Winnie", "Wynne", "Zola",
|
|
34
|
+
"Princeton", "Ramsey", "Remington", "Rodney", "Rutherford", "Sheldon", "Justice", "Kelsey", "Kamden", "Kamden"]
|
|
35
|
+
|
|
36
|
+
S_CELEBRITY = ["Kim Kardashian", "Kanye West", "Gwyneth Paltrow", "Miley Cyrus", "Angelina Jolie", "Brad Pitt", "Ashlee Simpson",
|
|
37
|
+
"Jay Z", "Reese Witherspoon", "Gwen Stefani", "Nicolas Cage", "Rihanna", "Craig Ferguson", "David Arquette", "Katy Perry",
|
|
38
|
+
"Mila Kunis", "Jason Lee", "Demi Moore", "Chris Martin", "Natalie Portman", "Zoeey Deschanel", "Tom Cruise",
|
|
39
|
+
"Lady Gaga", "Elton John", "Pete Wentz", "Nicole Richie", "Ashton Kutcher", "Madonna", "Sylvester Stallone",
|
|
40
|
+
"Whoopi Goldberg", "Jennifer Aniston", "Ben Affleck", "Victoria Beckham", "Gavin Rossdale", "Kate Hudson", "Jamie Foxx",
|
|
41
|
+
"David Beckham", "Mariah Carey", "Justin Bieber", "Jennifer Garner", "Nicole Kidman", "Jennifer Lopez",
|
|
42
|
+
"Dwayne Johnson", "Will Smith", "Barack Obama", "Vladimir Putin", "Donald Trump", "George W. Bush", "Bill Clinton",
|
|
43
|
+
"Bill Gate", "Warren Buffett", "Kim Jong-un", "Celine Dion", "Arnold Schwarzenegger", "Van Damme", "Jason Statham",
|
|
44
|
+
"Bruce Willis", "Harrison Ford", "Mel Gibson", "Chuck Norris", "James Cameron"]
|
|
45
|
+
|
|
46
|
+
S_PRONOUN = ["colleagues", "friends", "co-workers", "enemies", "foes", "relatives", "in-laws", "classmates", "guildies",
|
|
47
|
+
"neighbors", "supervisors", "managers", "teachers", "professors", "facebook friends", "ex-s", "girl friends",
|
|
48
|
+
"boy friends", "buddies", "auntes", "uncles", "nephews", "cousins", "niece", "sons", "daughters", "staffs",
|
|
49
|
+
"employees", "sibling", "brothers", "sisters", "parents", "grand parents", "closet friends", "kids", "roomates",
|
|
50
|
+
"customers"]
|
|
51
|
+
|
|
52
|
+
S_MOVIE = ["Godfater", "Shawshank Redemption", "Schindler's List", "One Flew Over the Cuckoo's Nest", "Gone with the Wind",
|
|
53
|
+
"Wizard of Oz", "Lawrence of Arabia", "Forrest Gump", "Star Wars", "E.T. the Extra-Terrestrial", "2001: A Space Odyssey",
|
|
54
|
+
"The Silence of the Lambs", "Bridge on the River Kwai", "Apocalypse Now", "The Lord of the Rings", "The Hobbits",
|
|
55
|
+
"Gladiator", "From Here to Eternity", "Titanic", "Saving Private Ryan", "Unforgiven", "Raiders of the Lost Ark",
|
|
56
|
+
"To Kill a Mockingbird", "Jaws", "Braveheart", "Dances with Wolves", "Pianist", "Exorcist", "Deer Hunter",
|
|
57
|
+
"French Connection", "City Lights", "Birdman", "Grand Budapest Hotel", "Guardians of the Galaxy", "Interstellar",
|
|
58
|
+
"Transformers: Age of Extinction", "X-Men: Days of Future Past", "Captain America", "The Hunger Games",
|
|
59
|
+
"Dawn of the Planet of the Apes", "Fury", "Big Hero 6", "Frozen", "How to train your dragon", "Mad Max: Fury Raod",
|
|
60
|
+
"Martian", "Fast & Furious", "Iron Man", "Ant-Man", "Jurassic World", "Reveanant", "Terminator", "Spectre",
|
|
61
|
+
"Twilight Saga", "Wolf of Wall Street", "Man of Steel", "World War Z", "Despicable Me", "Oblivion", "Pacific Rim"]
|
|
62
|
+
|
|
63
|
+
S_TVSHOW = ["Sherlock", "Homeland", "Game of Thrones", "Mad Men", "Girls", "The American", "Mr.Robot", "Marvel's Daredevil",
|
|
64
|
+
"Better Call Saul", "Catastrophe", "Deutschland 83", "Jane the Virgin", "Good Wife", "Hannibal", "Orphan Black",
|
|
65
|
+
"Orange if the New Black", "Walking Dead", "Breaking Bad", "Master of Sex", "Sex and City", "Last Kingdom",
|
|
66
|
+
"Family guys", "American Dad", "Simpson", "Ash vs. Evel Dead", "Supergirl", "Fargo", "You're the Worst",
|
|
67
|
+
"Crazy Ex-Girlfriend", "Affair", "Show Me a Hero", "Man in the High Castle", "Shannara Chronicles", "Last Ship",
|
|
68
|
+
"Nova"]
|
|
69
|
+
|
|
70
|
+
S_SPORT = ["Baseball", "Basketball", "Football", "Hockey", "Soccer", "Volleyball", "Archery", "Golf", "Badminton", "Canoeing",
|
|
71
|
+
"Kayaking", "Cricket", "Cycling", "Gymnastics", "Judo", "Polo", "Rackets", "Rowing", "Boxing", "Softball",
|
|
72
|
+
"Table tennis", "Tennis", "Wrestling", "Weightlifting", "Taekwondo", "Swimming", "Sailing", "Skiing", "Curling",
|
|
73
|
+
"Skating", "Snowboarding"]
|
|
74
|
+
|
|
75
|
+
S_FOOD = ["Massaman curry", "Neapolitan pizza", "Chocolate cake", "Sushi", "Peking duck", "Hamburger", "Penang assam laksa",
|
|
76
|
+
"Tom yum goong", "Chicken muamba", "Rendang", "Shepherd’s pie", "Corn on the cob", "Kalua pig", "Egg tart",
|
|
77
|
+
"Kebab", "Brownie and vanilla ice cream", "Lasagna", "Butter garlic crab", "Montreal-style smoked meat",
|
|
78
|
+
"Pho's noodle", "Ohmi-gyu beef steak", "Summer roll", "Parma ham", "Fish ‘n’ chips", "Chili crab", "French toast",
|
|
79
|
+
"Stinky tofu", "Seafood paella", "Masala dosa", "Buttered popcorn"]
|
|
80
|
+
|
|
81
|
+
S_TRANSPORT=["ferries", "trains", "metro", "subway", "carpool", "motorbikes", "bikes", "cars", "taxies", "buses", "Uber"]
|
|
82
|
+
|
|
83
|
+
S_COLOR = ["red", "green", "blue", "yellow", "orange", "purple", "pink", "brown", "black", "gray", "white", "magenta",
|
|
84
|
+
"cyan", "ebony", "golden", "salmon", "silver", "skyblue", "violet", "navy", "indigo", "aqua", "coral",
|
|
85
|
+
"chocolate", "crimson", "azure", "olive"]
|
|
86
|
+
|
|
87
|
+
S_CITY = ["Amsterdam", "Ankara", "Athens", "Atlantic", "Baltimore", "Bangkok", "Beijing", "Berlin", "Berne", "Brussels",
|
|
88
|
+
"Budapest", "Buenos Aires", "Cairo", "Canberra", "Cannes", "Cape Town", "Chicago", "Cologne", "Copenhagen", "Damascus",
|
|
89
|
+
"Delhi", "Dubai", "Dublin", "Florence", "Geneve", "Hague", "Hanoi", "Havana", "Helsinki", "Hong Kong", "Honolulu", "Istanbul",
|
|
90
|
+
"Jakarta", "Jerusalem", "Kansas", "Kathmandu", "Kuala Lumpur", "Lisbon", "London", "Los Angeles", "Luxembourg",
|
|
91
|
+
"Madrid", "Manila", "Melbourne", "Mexico", "Milan", "Montreal", "Moscow", "Mumbai", "Munich", "Nazareth", "Nice",
|
|
92
|
+
"Osaka", "Ottawa", "Oslo", "Paris", "Philadelphia", "Phnom Penh", "Prague", "Quito", "Reykjavik", "Rio de Janeiro",
|
|
93
|
+
"San Francisco", "Santa Fe", "Santiago", "Sao Paulo", "Shanghai", "Singapore", "Stockholm", "Saint-Peter", "Sydney",
|
|
94
|
+
"Taipei", "Tokyo", "Toronto", "Venice", "Vienna", "Washington", "Zurich", "Vancouver", "Vatican", "Las Vegas"]
|
|
95
|
+
|
|
96
|
+
S_COUNTRY = ["Canada", "United States", "Mehico", "Venezuela", "Peru", "Chile", "Argentina", "Brazil", "Iceland", "Ireland",
|
|
97
|
+
"United Kingdom", "France", "Spain", "German", "Poland", "Morocco", "Algeria", "Italia", "Ukranie", "Turkey", "Audi Arabia",
|
|
98
|
+
"Pakistan", "China", "India", "Nepal", "Myanmar", "Thailand", "Vietnam", "Korea", "Japan", "Philipin", "Singapore",
|
|
99
|
+
"Australia", "New Zealand", "Taiwan", "Egypt", "Greece", "Malaysia", "Sweden", "Finland", "Indonesia"]
|
|
100
|
+
|
|
101
|
+
S_LANDMARK= ["Statue of Liberty", "Eiffel Tower", "St. Basil's Cathedral", "Blue Domed Church", "Great Sphinx", "Pyramids",
|
|
102
|
+
"Little Mermaid", "Neptune and the Palace", "Windmills", "Great Wall", "Taj Mahal", "Machu Picchu", "Big Ben",
|
|
103
|
+
"Burj al Arab Hotel", "Tower of Pisa", "Christ the Redeemer", "Mecca", "Loch Ness", "Mont St. Michel", "Bran Castle",
|
|
104
|
+
"Agia Sophia Castle", "Brandenburg Gate", "Acropolis", "Sagrada Familia", "Neuschwanstein", "Mount Fuji", "Al Aqsa Mosque",
|
|
105
|
+
"Niagra Falls", "Ankor Wat", "Mannken Pis", "Mount Everest", "St. Peter's Cathedral", "Victoria Falls",
|
|
106
|
+
"Grand Canyon", "Trevi Fountain", "Cape of Good Hope", "Chichen Itza", "Table Mountain", "Golden Gate Bridge",
|
|
107
|
+
"Shell Opera House", "Forbidden City", "Colosseum", "Tower Bridge", "Luxor Temple", "Empire State Building",
|
|
108
|
+
"Temple of Besakih", "Holywood Sign", "Lee surrenders to Grant", "Golden Spike", "Gold Rush 1849", "Panama Canal",
|
|
109
|
+
"Stonehenge", "Suez Canal", "Palace of Parliament"]
|
|
110
|
+
|
|
111
|
+
S_ANIMAL = ["polar bear", "lion", "tiger", "giraffe", "panda", "elephant", "penguin", "wolf", "gorilla", "chimpanzee", "owl",
|
|
112
|
+
"monkey", "kangaroo", "zebra", "moose", "koala", "rhinoceros", "jaguar", "camel", "meerkat", "peacock", "snake",
|
|
113
|
+
"hippopotamus", "platypus", "otter", "badger", "cat", "seal", "dog", "seal", "deer", "skunk", "crocodile",
|
|
114
|
+
"leopard", "bat", "sloth", "lynx", "fox", "sea lion", "cheetah", "tortoise", "buffalo", "cougar", "ostrich", "frog",
|
|
115
|
+
"alligator", "reindeer", "anteater", "walrus", "grizzly bear", "goat", "raccoon", "squirrel", "sheep", "wild board",
|
|
116
|
+
"pig", "horse"]
|
|
117
|
+
|
|
118
|
+
S_BIRD = ["hummingbird" , "owl", "penguin", "finch", "cockatoo", "crane", "toucan", "swallow", "heron", "cuckoos", "sparrow",
|
|
119
|
+
"flamingo", "albatross", "moa", "stork", "sandpiper", "plover", "kiwis", "woodpecker", "hornbill", "gull", "falconidae",
|
|
120
|
+
"rheas", "swift", "tem", "cormorant", "grouse", "spoonbill", "parrots", "goose", "fowl", "eagle", "accipitriformes",
|
|
121
|
+
"rallidae", "bee-eater", "skua", "pelecaniformes", "bustard", "neognathae", "curlew", "snipe", "shearwater", "shag",
|
|
122
|
+
"raven", "merlin", "stonechat"]
|
|
123
|
+
|
|
124
|
+
S_FISH = ["guppy", "carp", "shark", "gold", "cat", "arowana", "sunfish", "northen pike", "zander", "oscar", "seabass",
|
|
125
|
+
"trout", "cobia", "snook", "candiru", "salmon", "swordtail", "mahi-mahi", "bream", "salmon", "barramundi", "vetiprovidentiae",
|
|
126
|
+
"striped bass", "neon tetra", "artic char", "bluegill", "escolar", "surgeon", "pumpkinseed", "platy", "grouper",
|
|
127
|
+
"blob", "eel", "naddock", "turbot", "grey mullet", "sea horse", "clown", "snakehead", "beluga", "trumpet", "jellow",
|
|
128
|
+
"moa trunk", "dolphin"]
|
|
129
|
+
|
|
130
|
+
S_HOPPY = ["reading books", "Watching TVs", "spednig time with family", "Watching movies", "fishing", "playing computer games",
|
|
131
|
+
"gardening", "walking", "listening to music", "window shopping", "sleeping and relaxing", "cooking", "playing golf",
|
|
132
|
+
"socializing", "sewing", "hiking", "eating out", "camping", "working on cars", "writing", "motorcycling", "dancing",
|
|
133
|
+
"painting", "horseback riding", "working volunteer", "chatting"]
|
|
134
|
+
|
|
135
|
+
S_JOB = ["carpenter", "welder", "plumper", "acter", "actress", "waiter", "waitress", "reporter", "programer",
|
|
136
|
+
"nurse", "doctor", "cleaner", "manager", "cashier", "bartender", "taxi driver", "trucker", "college professer",
|
|
137
|
+
"truck driver", "crane operator", "machine operator", "machinist", "accountant", "consultant", "layer", "judge",
|
|
138
|
+
"politcian", "policeman", "president", "spy", "scecret agent", "astronount", "businessman", "teacher", "veteran",
|
|
139
|
+
"comedian", "doctor", "thief", "robber", "baker", "priminister", "sport professor player", "librarian", "fire fighter",
|
|
140
|
+
"realtor", "bocker", "flight attendent", "pilot", "ship captain", "singer", "musician", "detective"]
|
|
141
|
+
|
|
142
|
+
S_EMOTION_GOOD = ["Holycow!", "Holy $#@%@!", "Unbelivable!", "Awesome!", "So lovely!", "Fanstatic", "WoW!", "Cool!", "Yay!",
|
|
143
|
+
"Hurray!", "Wonderful!", "Excellent!", "Luckily!", "Yippi!", "Good job!", "Ingredible!"]
|
|
144
|
+
|
|
145
|
+
S_NUMBER = ["two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven"]
|
|
146
|
+
|
|
147
|
+
S_TIME = ["minutes", "hours", "days", "weeks", "months", "years", "decades"]
|
|
148
|
+
|
|
149
|
+
S_COMPANY = ["Walmart", "Exxon Mobil", "Chevron", "Berkshire Hathaway", "Apple Inc", "General Motors", "General Electric",
|
|
150
|
+
"AT&T", "Verizon", "Fannie Mae", "Costco", "Hewlet Packer", "JP Morgan Chase", "Bank of America Corp",
|
|
151
|
+
"Marathon Petroleum", "Boeing", "Citigroup", "Amazon", "Microsoft", "Facebook", "Google", "Home Depot",
|
|
152
|
+
"Target", "Johnson & Johnson", "Freddie Mac", "Comcast", "Netflix", "Fedex", "UPS", "Lowe's", "Intel",
|
|
153
|
+
"Walt Disney", "Cisco Systems", "Coca-Cola", "Best Buy", "Goldman Sachs Group", "Oracle", "Safeway",
|
|
154
|
+
"American Express", "Time Warner", "Macy's", "Tech Data", "McDonald's", "eBay"]
|
|
155
|
+
|
|
156
|
+
S_NEWS = ["BBC", "CNN", "FOX", "ABC", "CTV", "NBC", "CBSN", "LiveTV"]
|
|
157
|
+
|
|
158
|
+
S_ADJECTIVE= ["lovely", "good", "important", "adorable", "beautiful", "elegant", "fancy", "glamorous", "nice"]
|
|
159
|
+
|
|
160
|
+
def TriGenerate::name
|
|
161
|
+
S_NAME[rand(S_NAME.length)]
|
|
162
|
+
end
|
|
163
|
+
|
|
164
|
+
def TriGenerate::fullname
|
|
165
|
+
middle = [" II", " III", ", Jr.", ", Sr."]
|
|
166
|
+
if (rand(100)<80)
|
|
167
|
+
S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)]
|
|
168
|
+
else
|
|
169
|
+
if (rand(100)<50)
|
|
170
|
+
S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)][0].upcase + ". " + S_NAME[rand(S_NAME.length)]
|
|
171
|
+
else
|
|
172
|
+
S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)] + middle[rand(middle.length)]
|
|
173
|
+
end
|
|
174
|
+
end
|
|
175
|
+
end
|
|
176
|
+
|
|
177
|
+
def TriGenerate::sentence
|
|
178
|
+
case rand(57)
|
|
179
|
+
when 0
|
|
180
|
+
"My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
|
|
181
|
+
when 1
|
|
182
|
+
"Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
|
|
183
|
+
when 2
|
|
184
|
+
"#{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local zoo because it has the #{S_ANIMAL[rand(S_ANIMAL.length)]}."
|
|
185
|
+
when 3
|
|
186
|
+
"My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
|
|
187
|
+
when 4
|
|
188
|
+
"Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
|
|
189
|
+
when 5
|
|
190
|
+
"#{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local aquarium because it has the #{S_FISH[rand(S_FISH.length)]}."
|
|
191
|
+
when 6
|
|
192
|
+
"#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} I just meet #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
|
|
193
|
+
when 7
|
|
194
|
+
"#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} My #{S_PRONOUN[rand(S_PRONOUN.length)]} just take a selfie picture with #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
|
|
195
|
+
when 8
|
|
196
|
+
"#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} #{S_CELEBRITY[rand(S_CELEBRITY.length)]} adds 'friend' with our #{S_PRONOUN[rand(S_PRONOUN.length)]} on Facbook."
|
|
197
|
+
when 9
|
|
198
|
+
"Should I watch #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match on TV?"
|
|
199
|
+
when 10
|
|
200
|
+
"Should I by tickets for #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match this weekend?"
|
|
201
|
+
when 11
|
|
202
|
+
"Should I become a #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} fan of my town team?"
|
|
203
|
+
when 12
|
|
204
|
+
"I usually like #{S_HOPPY[rand(S_HOPPY.length)]} with my leisure time."
|
|
205
|
+
when 13
|
|
206
|
+
"When I have freetime, I love to #{S_HOPPY[rand(S_HOPPY.length)]} with my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
|
|
207
|
+
when 14
|
|
208
|
+
"Is not a good idea to speend time #{S_HOPPY[rand(S_HOPPY.length)]} with #{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]}."
|
|
209
|
+
when 15
|
|
210
|
+
"I just wonder if #{S_CELEBRITY[rand(S_CELEBRITY.length)]} loves #{S_HOPPY[rand(S_HOPPY.length)]} like me?"
|
|
211
|
+
when 16
|
|
212
|
+
"I dont think #{S_CELEBRITY[rand(S_CELEBRITY.length)]} likes #{S_HOPPY[rand(S_HOPPY.length)]}."
|
|
213
|
+
when 17
|
|
214
|
+
"People say that #{S_HOPPY[rand(S_HOPPY.length)]} is the only hoppy of #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
|
|
215
|
+
when 18
|
|
216
|
+
"Finally, #{S_CITY[rand(S_CITY.length)]}, home sweet home!"
|
|
217
|
+
when 19
|
|
218
|
+
"Me and my #{S_PRONOUN[rand(S_PRONOUN.length)]} will visit #{S_CITY[rand(S_CITY.length)]} next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
|
|
219
|
+
when 20
|
|
220
|
+
"Next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}, I will move back to #{S_CITY[rand(S_CITY.length)]}."
|
|
221
|
+
when 21
|
|
222
|
+
"I am going to transit at #{S_CITY[rand(S_CITY.length)]}'s airport for a few hours."
|
|
223
|
+
when 22
|
|
224
|
+
"My #{S_PRONOUN[rand(S_PRONOUN.length)]} think the #{S_LANDMARK[rand(S_LANDMARK.length)]} belongs to #{S_COUNTRY[rand(S_COUNTRY.length)]}"
|
|
225
|
+
when 23
|
|
226
|
+
"Is it true that #{S_LANDMARK[rand(S_LANDMARK.length)]} is resided at #{S_COUNTRY[rand(S_COUNTRY.length)]}."
|
|
227
|
+
when 24
|
|
228
|
+
"The air tickets flying to #{S_LANDMARK[rand(S_LANDMARK.length)]} will be sky high in next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
|
|
229
|
+
when 25
|
|
230
|
+
"I used to be a #{S_JOB[rand(S_JOB.length)]} before becoming a #{S_JOB[rand(S_JOB.length)]}."
|
|
231
|
+
when 26
|
|
232
|
+
"#{S_NUMBER[rand(S_NUMBER.length)].capitalize} #{S_TIME[rand(S_TIME.length)]} ago, I still was a #{S_JOB[rand(S_JOB.length)]}."
|
|
233
|
+
when 27
|
|
234
|
+
"Becoming a #{S_JOB[rand(S_JOB.length)]} is one of my childish dreams!"
|
|
235
|
+
when 28
|
|
236
|
+
"My son wants a #{S_FISH[rand(S_FISH.length)]} fish pet while his sister demands a #{S_ANIMAL[rand(S_ANIMAL.length)]}!"
|
|
237
|
+
when 29
|
|
238
|
+
"Would you like a #{S_BIRD[rand(S_BIRD.length)]} bird or a #{S_FISH[rand(S_FISH.length)]} fish for your birthday gift?"
|
|
239
|
+
when 30
|
|
240
|
+
"My #{S_PRONOUN[rand(S_PRONOUN.length)]} just found a brand new #{S_BIRD[rand(S_BIRD.length)]} bird in #{S_CITY[rand(S_CITY.length)]}."
|
|
241
|
+
when 31
|
|
242
|
+
"According to the #{S_NEWS[rand(S_NEWS.length)]} news channel, #{S_COMPANY[rand(S_COMPANY.length)]} will expand its business to #{S_COUNTRY[rand(S_COUNTRY.length)]}."
|
|
243
|
+
when 32
|
|
244
|
+
"There are alot of rumors about the #{S_COMPANY[rand(S_COMPANY.length)]} corp will accquired the #{S_COUNTRY[rand(S_COUNTRY.length)]} within #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
|
|
245
|
+
when 33
|
|
246
|
+
"Wait a minute! Is it true that the #{S_COMPANY[rand(S_COMPANY.length)]} coorp is hiring alot of #{S_JOB[rand(S_JOB.length)]} positions?!?!"
|
|
247
|
+
when 34
|
|
248
|
+
"I am trying to apply a job in the #{S_COMPANY[rand(S_COMPANY.length)]} company in #{S_CITY[rand(S_CITY.length)]} city."
|
|
249
|
+
when 35
|
|
250
|
+
"Have you ever try the #{S_FOOD[rand(S_FOOD.length)]} food in #{S_CITY[rand(S_CITY.length)]} city yet?"
|
|
251
|
+
when 36
|
|
252
|
+
"I have heard my #{S_PRONOUN[rand(S_PRONOUN.length)]} said something good about the #{S_FOOD[rand(S_FOOD.length)]} food."
|
|
253
|
+
when 37
|
|
254
|
+
"Somebody say that the #{S_FOOD[rand(S_FOOD.length)]} deli is came from #{S_COUNTRY[rand(S_COUNTRY.length)]}."
|
|
255
|
+
when 38
|
|
256
|
+
"I love to make the #{S_FOOD[rand(S_FOOD.length)]} for my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
|
|
257
|
+
when 40
|
|
258
|
+
"#{S_COLOR[rand(S_COLOR.length)].capitalize} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]} color."
|
|
259
|
+
when 41
|
|
260
|
+
"Althought #{S_COLOR[rand(S_COLOR.length)]} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}, its not my favorite."
|
|
261
|
+
when 42
|
|
262
|
+
"I love that #{S_COLOR[rand(S_COLOR.length)]} car, but I buy the #{S_COLOR[rand(S_COLOR.length)]}."
|
|
263
|
+
when 43
|
|
264
|
+
"I am not really fond of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show, but my #{S_PRONOUN[rand(S_PRONOUN.length)]} are."
|
|
265
|
+
when 44
|
|
266
|
+
"Hurry up guys! the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be on in any minutes."
|
|
267
|
+
when 45
|
|
268
|
+
"Its been awhile from the last season of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show."
|
|
269
|
+
when 46
|
|
270
|
+
"We are expecting the realease of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
|
|
271
|
+
when 47
|
|
272
|
+
"It is hard to understand why all of my #{S_PRONOUN[rand(S_PRONOUN.length)]} can watch the #{S_MOVIE[rand(S_MOVIE.length)]} many times."
|
|
273
|
+
when 48
|
|
274
|
+
"The main actress of the #{S_MOVIE[rand(S_MOVIE.length)]} is so #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}."
|
|
275
|
+
when 49
|
|
276
|
+
"The #{S_MOVIE[rand(S_MOVIE.length)]} movie is indeed a good one."
|
|
277
|
+
when 50
|
|
278
|
+
"Should I turn this $@$*@ #{S_TVSHOW[rand(S_TVSHOW.length)]} show off to watch the #{S_MOVIE[rand(S_MOVIE.length)]} movie."
|
|
279
|
+
when 51
|
|
280
|
+
"We love to use #{S_TRANSPORT[rand(S_TRANSPORT.length)]} around the #{S_CITY[rand(S_CITY.length)]} city."
|
|
281
|
+
when 52
|
|
282
|
+
"Now I know why #{S_CELEBRITY[rand(S_CELEBRITY.length)]} never uses freaking #{S_TRANSPORT[rand(S_TRANSPORT.length)]} any more."
|
|
283
|
+
when 53
|
|
284
|
+
"My favorite movie of all time is the #{S_MOVIE[rand(S_MOVIE.length)]}."
|
|
285
|
+
when 54
|
|
286
|
+
"After watched the #{S_MOVIE[rand(S_MOVIE.length)]} movie many times, I still dont know the story!"
|
|
287
|
+
when 55
|
|
288
|
+
"I would rather buy the ticket for the #{S_MOVIE[rand(S_MOVIE.length)]} or the #{S_MOVIE[rand(S_MOVIE.length)]}?"
|
|
289
|
+
when 56
|
|
290
|
+
"One of my #{S_PRONOUN[rand(S_PRONOUN.length)]} suggests that I should download the #{S_MOVIE[rand(S_MOVIE.length)]} movie right away."
|
|
291
|
+
else
|
|
292
|
+
"When I was little I had a car door slammed shut on my hand. I still remember it quite vividly."
|
|
293
|
+
end
|
|
294
|
+
end
|
|
295
|
+
|
|
296
|
+
end
|
metadata
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
|
2
|
+
name: tri_generate
|
|
3
|
+
version: !ruby/object:Gem::Version
|
|
4
|
+
version: 0.0.1
|
|
5
|
+
platform: ruby
|
|
6
|
+
authors:
|
|
7
|
+
- Tri Huynh
|
|
8
|
+
autorequire:
|
|
9
|
+
bindir:
|
|
10
|
+
- bin
|
|
11
|
+
cert_chain: []
|
|
12
|
+
date: 2016-01-17 00:00:00.000000000 Z
|
|
13
|
+
dependencies: []
|
|
14
|
+
description: '["TriGenerate::name, TriGenerate::fullname, TriGenerate::sentence"]'
|
|
15
|
+
email:
|
|
16
|
+
- hdtri.expert@gmail.com
|
|
17
|
+
executables: []
|
|
18
|
+
extensions: []
|
|
19
|
+
extra_rdoc_files: []
|
|
20
|
+
files:
|
|
21
|
+
- lib/tri_generate.rb
|
|
22
|
+
homepage: https://trihuynh.herokuapp.com
|
|
23
|
+
licenses:
|
|
24
|
+
- MIT
|
|
25
|
+
metadata: {}
|
|
26
|
+
post_install_message:
|
|
27
|
+
rdoc_options: []
|
|
28
|
+
require_paths:
|
|
29
|
+
- lib
|
|
30
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
|
31
|
+
requirements:
|
|
32
|
+
- - ">="
|
|
33
|
+
- !ruby/object:Gem::Version
|
|
34
|
+
version: '0'
|
|
35
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
|
36
|
+
requirements:
|
|
37
|
+
- - ">="
|
|
38
|
+
- !ruby/object:Gem::Version
|
|
39
|
+
version: '0'
|
|
40
|
+
requirements: []
|
|
41
|
+
rubyforge_project:
|
|
42
|
+
rubygems_version: 2.5.1
|
|
43
|
+
signing_key:
|
|
44
|
+
specification_version: 4
|
|
45
|
+
summary: '["This game will generate some usefull infor mation for your user such as:
|
|
46
|
+
name, full name, sentence"]'
|
|
47
|
+
test_files: []
|