tri_generate 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (3) hide show
  1. checksums.yaml +7 -0
  2. data/lib/tri_generate.rb +296 -0
  3. metadata +47 -0
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: 1fe63937b134b28ad5f26748b2a50e58c82f6583
4
+ data.tar.gz: 3c248940d97bf686c281df5cda145bbe051e2bba
5
+ SHA512:
6
+ metadata.gz: a6571e89ffc35fbd041188d8f097ce86791f2b67b1f25ad74b692bfd47ccc6f93a78b7664d57313cf907b47838728b5550af276a3a458582e77d4e784796ea3c
7
+ data.tar.gz: 50d3480078183cb9f12ab4dab7203a00f47b9dde1c9b081d67c93910f0706b346c05312251730899cda48c628697df6487b20150b2698c6b5c97a6edfc7312c4
@@ -0,0 +1,296 @@
1
+ require "tri_generate/version"
2
+
3
+ module TriGenerate
4
+ S_NAME = ["Tri", "Huynh", "Nguyen", "Hoang", "Le", "Trang", "Tam", "Phuong", "Huong", "Hong", "Linh", "Thang", "Tin", "Khoi",
5
+ "Phan", "Trinh", "Do", "Ho", "Ngo", "Duong", "Ly", "An", "Bach", "Banh", "Chau", "Chu", "Chung", "Diep", "Doan",
6
+ "Giang", "Ha", "Han", "Kieu", "Kim", "Kim", "La", "Lac", "Luong", "Ma", "Nghiem", "Than", "Thao", "To", "Tong",
7
+ "Trang", "Trinh", "Trieu", "Truong", "Vinh", "Vuong", "Vuu", "Wang", "Li", "Chang", "Liu", "Chen", "Yang", "Huang",
8
+ "Wu", "Hsu", "Sun", "Chu", "Zeng", "Leung", "Yuen", "Poon", "Jyu", "Yip", "Zhang", "Wei", "Min", "Xiuying", "Wang",
9
+ "Yuka", "Ren", "Hiroki", "Kana", "Haruka", "Kazuki", "Ayano", "Daiki", "Yamoto", "Daisuke", "Shinji", "Hiroaki",
10
+ "Sayaka", "Tomoko", "Natsuki", "Makoto", "Ayana", "Toshi", "Narumi", "Mika", "Takeshi", "Yoko", "Kyoko", "Takaya",
11
+ "Min-jun", "Ju-won", "Jun-seo", "Ji-hu", "Min-hun", "Ji-min", "Su-bin", "Eun-seo", "Hyeon-u", "U-jin", "Ji-min",
12
+ "Anastasia", "Dima", "Alex", "Maria", "Sergey", "Vlad", "Max", "Egor", "Roman", "Oleg", "Kostya", "Daniel", "Nick",
13
+ "Lena", "Kristina", "Sofia", "Natalia", "Helen", "Andrei", "Victoria", "Kseniya", "Svetlana", "Nikolai", "Sophia",
14
+ "Asya", "Alexander", "Ksenya", "Vova", "Valentina", "Bekhan", "Katherine", "Aleksei", "Michael", "Eugene", "Leonid",
15
+ "James", "David", "Chirstoper", "George", "Ronald", "John", "Richard", "Daniel", "Patrica", "Maria", "Margaret",
16
+ "Elizabeth", "Dorothy", "Betty", "Karen", "Sarah", "Laura", "Michelle", "Donna", "Edward", "Jason", "Jeff", "Mark",
17
+ "Kevin", "Paul", "Nathan", "Fever", "Amy", "George", "Nancy", "Carol", "Susan", "Deborah", "Kimberly", "Joseph",
18
+ "Marie", "Nicolas", "Antoinie", "Lucas", "Athur", "Jodan", "Caroline", "Amelie", "Celine", "Celia", "Sophie", "Elise",
19
+ "Charlotte", "Guillaume", "Pierre", "Pauline", "Oceane", "Justine", "Clara", "Cassandra", "Cindy", "Stepphane",
20
+ "Sylvain", "Gergory", "Christophe", "Phillippe", "Angelique", "Pablo", "Paula", "Lucia", "Alejandro", "Carlos",
21
+ "Javier", "Miguel", "Raquel", "Pedro", "Diego", "Raul", "Alberto", "Gloria", "Jaime", "Marina", "Angela", "Silvia",
22
+ "Aurora", "Patri", "Yago", "Mario", "Ariadna", "Amin", "Igor", "Nacho", "Rose", "Suri", "Jose miguel", "Ommar",
23
+ "Ammar", "Sultan", "Mohamed", "Ahmed", "Nirmmen", "Ghadda", "Shehab", "Enass", "Farah", "Ali", "Ahmed", "Ramzi",
24
+ "Abdoul", "Mustafa", "Yaasir", "Abdul shire", "Khaalid", "Ahakim", "Caleb", "Dominik", "Julia", "Daniel", "Lukas",
25
+ "Melanie", "Dominik", "Annika", "Franzi", "Jannik", "Henry", "Hendrik", "Olaf", "Elisabeth", "Melissa", "Louisa",
26
+ "Rebecca", "Kathrin", "Jakob", "Konrad", "Ludwig", "Matthias", "Lennart", "Natascha", "Tanya", "Rahul", "Divya",
27
+ "Priyanka", "Aishwarya", "Mahese", "Shardul", "Sayem", "Krithika", "Riharika", "Neeraij", "Mayank", "Deepak",
28
+ "Admaris", "Addison", "Ainsley", "Amanda", "Anastasia", "Andrea", "Angela", "Anjancette", "Araminta", "Ashley",
29
+ "Ashton", "Barbara", "Berenice", "Braelyn", "Burgundy", "Camellia", "Cassandra", "Channing", "Chelsea", "Cornelia",
30
+ "Danette", "Demelza", "Dreama", "Earlene", "Ebony", "Edmonda", "Edmonia", "Edwina", "Gaynelle", "Indiana", "Hollis",
31
+ "Isabella", "Lawanda", "Lindsay", "Madison", "Magnolia", "Meadow", "Paisley", "Parker", "Payton", "Priscilla",
32
+ "Regina", "Roseanne", "Scarlett", "Sabrina", "Serena", "Shelley", "Shirley", "Shnshine", "Synnove", "Tanika",
33
+ "Tempest", "Tyler", "Vanessa", "Veronica", "Velvet", "Whitley", "Wilda", "Winifred", "Winnie", "Wynne", "Zola",
34
+ "Princeton", "Ramsey", "Remington", "Rodney", "Rutherford", "Sheldon", "Justice", "Kelsey", "Kamden", "Kamden"]
35
+
36
+ S_CELEBRITY = ["Kim Kardashian", "Kanye West", "Gwyneth Paltrow", "Miley Cyrus", "Angelina Jolie", "Brad Pitt", "Ashlee Simpson",
37
+ "Jay Z", "Reese Witherspoon", "Gwen Stefani", "Nicolas Cage", "Rihanna", "Craig Ferguson", "David Arquette", "Katy Perry",
38
+ "Mila Kunis", "Jason Lee", "Demi Moore", "Chris Martin", "Natalie Portman", "Zoeey Deschanel", "Tom Cruise",
39
+ "Lady Gaga", "Elton John", "Pete Wentz", "Nicole Richie", "Ashton Kutcher", "Madonna", "Sylvester Stallone",
40
+ "Whoopi Goldberg", "Jennifer Aniston", "Ben Affleck", "Victoria Beckham", "Gavin Rossdale", "Kate Hudson", "Jamie Foxx",
41
+ "David Beckham", "Mariah Carey", "Justin Bieber", "Jennifer Garner", "Nicole Kidman", "Jennifer Lopez",
42
+ "Dwayne Johnson", "Will Smith", "Barack Obama", "Vladimir Putin", "Donald Trump", "George W. Bush", "Bill Clinton",
43
+ "Bill Gate", "Warren Buffett", "Kim Jong-un", "Celine Dion", "Arnold Schwarzenegger", "Van Damme", "Jason Statham",
44
+ "Bruce Willis", "Harrison Ford", "Mel Gibson", "Chuck Norris", "James Cameron"]
45
+
46
+ S_PRONOUN = ["colleagues", "friends", "co-workers", "enemies", "foes", "relatives", "in-laws", "classmates", "guildies",
47
+ "neighbors", "supervisors", "managers", "teachers", "professors", "facebook friends", "ex-s", "girl friends",
48
+ "boy friends", "buddies", "auntes", "uncles", "nephews", "cousins", "niece", "sons", "daughters", "staffs",
49
+ "employees", "sibling", "brothers", "sisters", "parents", "grand parents", "closet friends", "kids", "roomates",
50
+ "customers"]
51
+
52
+ S_MOVIE = ["Godfater", "Shawshank Redemption", "Schindler's List", "One Flew Over the Cuckoo's Nest", "Gone with the Wind",
53
+ "Wizard of Oz", "Lawrence of Arabia", "Forrest Gump", "Star Wars", "E.T. the Extra-Terrestrial", "2001: A Space Odyssey",
54
+ "The Silence of the Lambs", "Bridge on the River Kwai", "Apocalypse Now", "The Lord of the Rings", "The Hobbits",
55
+ "Gladiator", "From Here to Eternity", "Titanic", "Saving Private Ryan", "Unforgiven", "Raiders of the Lost Ark",
56
+ "To Kill a Mockingbird", "Jaws", "Braveheart", "Dances with Wolves", "Pianist", "Exorcist", "Deer Hunter",
57
+ "French Connection", "City Lights", "Birdman", "Grand Budapest Hotel", "Guardians of the Galaxy", "Interstellar",
58
+ "Transformers: Age of Extinction", "X-Men: Days of Future Past", "Captain America", "The Hunger Games",
59
+ "Dawn of the Planet of the Apes", "Fury", "Big Hero 6", "Frozen", "How to train your dragon", "Mad Max: Fury Raod",
60
+ "Martian", "Fast & Furious", "Iron Man", "Ant-Man", "Jurassic World", "Reveanant", "Terminator", "Spectre",
61
+ "Twilight Saga", "Wolf of Wall Street", "Man of Steel", "World War Z", "Despicable Me", "Oblivion", "Pacific Rim"]
62
+
63
+ S_TVSHOW = ["Sherlock", "Homeland", "Game of Thrones", "Mad Men", "Girls", "The American", "Mr.Robot", "Marvel's Daredevil",
64
+ "Better Call Saul", "Catastrophe", "Deutschland 83", "Jane the Virgin", "Good Wife", "Hannibal", "Orphan Black",
65
+ "Orange if the New Black", "Walking Dead", "Breaking Bad", "Master of Sex", "Sex and City", "Last Kingdom",
66
+ "Family guys", "American Dad", "Simpson", "Ash vs. Evel Dead", "Supergirl", "Fargo", "You're the Worst",
67
+ "Crazy Ex-Girlfriend", "Affair", "Show Me a Hero", "Man in the High Castle", "Shannara Chronicles", "Last Ship",
68
+ "Nova"]
69
+
70
+ S_SPORT = ["Baseball", "Basketball", "Football", "Hockey", "Soccer", "Volleyball", "Archery", "Golf", "Badminton", "Canoeing",
71
+ "Kayaking", "Cricket", "Cycling", "Gymnastics", "Judo", "Polo", "Rackets", "Rowing", "Boxing", "Softball",
72
+ "Table tennis", "Tennis", "Wrestling", "Weightlifting", "Taekwondo", "Swimming", "Sailing", "Skiing", "Curling",
73
+ "Skating", "Snowboarding"]
74
+
75
+ S_FOOD = ["Massaman curry", "Neapolitan pizza", "Chocolate cake", "Sushi", "Peking duck", "Hamburger", "Penang assam laksa",
76
+ "Tom yum goong", "Chicken muamba", "Rendang", "Shepherd’s pie", "Corn on the cob", "Kalua pig", "Egg tart",
77
+ "Kebab", "Brownie and vanilla ice cream", "Lasagna", "Butter garlic crab", "Montreal-style smoked meat",
78
+ "Pho's noodle", "Ohmi-gyu beef steak", "Summer roll", "Parma ham", "Fish ‘n’ chips", "Chili crab", "French toast",
79
+ "Stinky tofu", "Seafood paella", "Masala dosa", "Buttered popcorn"]
80
+
81
+ S_TRANSPORT=["ferries", "trains", "metro", "subway", "carpool", "motorbikes", "bikes", "cars", "taxies", "buses", "Uber"]
82
+
83
+ S_COLOR = ["red", "green", "blue", "yellow", "orange", "purple", "pink", "brown", "black", "gray", "white", "magenta",
84
+ "cyan", "ebony", "golden", "salmon", "silver", "skyblue", "violet", "navy", "indigo", "aqua", "coral",
85
+ "chocolate", "crimson", "azure", "olive"]
86
+
87
+ S_CITY = ["Amsterdam", "Ankara", "Athens", "Atlantic", "Baltimore", "Bangkok", "Beijing", "Berlin", "Berne", "Brussels",
88
+ "Budapest", "Buenos Aires", "Cairo", "Canberra", "Cannes", "Cape Town", "Chicago", "Cologne", "Copenhagen", "Damascus",
89
+ "Delhi", "Dubai", "Dublin", "Florence", "Geneve", "Hague", "Hanoi", "Havana", "Helsinki", "Hong Kong", "Honolulu", "Istanbul",
90
+ "Jakarta", "Jerusalem", "Kansas", "Kathmandu", "Kuala Lumpur", "Lisbon", "London", "Los Angeles", "Luxembourg",
91
+ "Madrid", "Manila", "Melbourne", "Mexico", "Milan", "Montreal", "Moscow", "Mumbai", "Munich", "Nazareth", "Nice",
92
+ "Osaka", "Ottawa", "Oslo", "Paris", "Philadelphia", "Phnom Penh", "Prague", "Quito", "Reykjavik", "Rio de Janeiro",
93
+ "San Francisco", "Santa Fe", "Santiago", "Sao Paulo", "Shanghai", "Singapore", "Stockholm", "Saint-Peter", "Sydney",
94
+ "Taipei", "Tokyo", "Toronto", "Venice", "Vienna", "Washington", "Zurich", "Vancouver", "Vatican", "Las Vegas"]
95
+
96
+ S_COUNTRY = ["Canada", "United States", "Mehico", "Venezuela", "Peru", "Chile", "Argentina", "Brazil", "Iceland", "Ireland",
97
+ "United Kingdom", "France", "Spain", "German", "Poland", "Morocco", "Algeria", "Italia", "Ukranie", "Turkey", "Audi Arabia",
98
+ "Pakistan", "China", "India", "Nepal", "Myanmar", "Thailand", "Vietnam", "Korea", "Japan", "Philipin", "Singapore",
99
+ "Australia", "New Zealand", "Taiwan", "Egypt", "Greece", "Malaysia", "Sweden", "Finland", "Indonesia"]
100
+
101
+ S_LANDMARK= ["Statue of Liberty", "Eiffel Tower", "St. Basil's Cathedral", "Blue Domed Church", "Great Sphinx", "Pyramids",
102
+ "Little Mermaid", "Neptune and the Palace", "Windmills", "Great Wall", "Taj Mahal", "Machu Picchu", "Big Ben",
103
+ "Burj al Arab Hotel", "Tower of Pisa", "Christ the Redeemer", "Mecca", "Loch Ness", "Mont St. Michel", "Bran Castle",
104
+ "Agia Sophia Castle", "Brandenburg Gate", "Acropolis", "Sagrada Familia", "Neuschwanstein", "Mount Fuji", "Al Aqsa Mosque",
105
+ "Niagra Falls", "Ankor Wat", "Mannken Pis", "Mount Everest", "St. Peter's Cathedral", "Victoria Falls",
106
+ "Grand Canyon", "Trevi Fountain", "Cape of Good Hope", "Chichen Itza", "Table Mountain", "Golden Gate Bridge",
107
+ "Shell Opera House", "Forbidden City", "Colosseum", "Tower Bridge", "Luxor Temple", "Empire State Building",
108
+ "Temple of Besakih", "Holywood Sign", "Lee surrenders to Grant", "Golden Spike", "Gold Rush 1849", "Panama Canal",
109
+ "Stonehenge", "Suez Canal", "Palace of Parliament"]
110
+
111
+ S_ANIMAL = ["polar bear", "lion", "tiger", "giraffe", "panda", "elephant", "penguin", "wolf", "gorilla", "chimpanzee", "owl",
112
+ "monkey", "kangaroo", "zebra", "moose", "koala", "rhinoceros", "jaguar", "camel", "meerkat", "peacock", "snake",
113
+ "hippopotamus", "platypus", "otter", "badger", "cat", "seal", "dog", "seal", "deer", "skunk", "crocodile",
114
+ "leopard", "bat", "sloth", "lynx", "fox", "sea lion", "cheetah", "tortoise", "buffalo", "cougar", "ostrich", "frog",
115
+ "alligator", "reindeer", "anteater", "walrus", "grizzly bear", "goat", "raccoon", "squirrel", "sheep", "wild board",
116
+ "pig", "horse"]
117
+
118
+ S_BIRD = ["hummingbird" , "owl", "penguin", "finch", "cockatoo", "crane", "toucan", "swallow", "heron", "cuckoos", "sparrow",
119
+ "flamingo", "albatross", "moa", "stork", "sandpiper", "plover", "kiwis", "woodpecker", "hornbill", "gull", "falconidae",
120
+ "rheas", "swift", "tem", "cormorant", "grouse", "spoonbill", "parrots", "goose", "fowl", "eagle", "accipitriformes",
121
+ "rallidae", "bee-eater", "skua", "pelecaniformes", "bustard", "neognathae", "curlew", "snipe", "shearwater", "shag",
122
+ "raven", "merlin", "stonechat"]
123
+
124
+ S_FISH = ["guppy", "carp", "shark", "gold", "cat", "arowana", "sunfish", "northen pike", "zander", "oscar", "seabass",
125
+ "trout", "cobia", "snook", "candiru", "salmon", "swordtail", "mahi-mahi", "bream", "salmon", "barramundi", "vetiprovidentiae",
126
+ "striped bass", "neon tetra", "artic char", "bluegill", "escolar", "surgeon", "pumpkinseed", "platy", "grouper",
127
+ "blob", "eel", "naddock", "turbot", "grey mullet", "sea horse", "clown", "snakehead", "beluga", "trumpet", "jellow",
128
+ "moa trunk", "dolphin"]
129
+
130
+ S_HOPPY = ["reading books", "Watching TVs", "spednig time with family", "Watching movies", "fishing", "playing computer games",
131
+ "gardening", "walking", "listening to music", "window shopping", "sleeping and relaxing", "cooking", "playing golf",
132
+ "socializing", "sewing", "hiking", "eating out", "camping", "working on cars", "writing", "motorcycling", "dancing",
133
+ "painting", "horseback riding", "working volunteer", "chatting"]
134
+
135
+ S_JOB = ["carpenter", "welder", "plumper", "acter", "actress", "waiter", "waitress", "reporter", "programer",
136
+ "nurse", "doctor", "cleaner", "manager", "cashier", "bartender", "taxi driver", "trucker", "college professer",
137
+ "truck driver", "crane operator", "machine operator", "machinist", "accountant", "consultant", "layer", "judge",
138
+ "politcian", "policeman", "president", "spy", "scecret agent", "astronount", "businessman", "teacher", "veteran",
139
+ "comedian", "doctor", "thief", "robber", "baker", "priminister", "sport professor player", "librarian", "fire fighter",
140
+ "realtor", "bocker", "flight attendent", "pilot", "ship captain", "singer", "musician", "detective"]
141
+
142
+ S_EMOTION_GOOD = ["Holycow!", "Holy $#@%@!", "Unbelivable!", "Awesome!", "So lovely!", "Fanstatic", "WoW!", "Cool!", "Yay!",
143
+ "Hurray!", "Wonderful!", "Excellent!", "Luckily!", "Yippi!", "Good job!", "Ingredible!"]
144
+
145
+ S_NUMBER = ["two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven"]
146
+
147
+ S_TIME = ["minutes", "hours", "days", "weeks", "months", "years", "decades"]
148
+
149
+ S_COMPANY = ["Walmart", "Exxon Mobil", "Chevron", "Berkshire Hathaway", "Apple Inc", "General Motors", "General Electric",
150
+ "AT&T", "Verizon", "Fannie Mae", "Costco", "Hewlet Packer", "JP Morgan Chase", "Bank of America Corp",
151
+ "Marathon Petroleum", "Boeing", "Citigroup", "Amazon", "Microsoft", "Facebook", "Google", "Home Depot",
152
+ "Target", "Johnson & Johnson", "Freddie Mac", "Comcast", "Netflix", "Fedex", "UPS", "Lowe's", "Intel",
153
+ "Walt Disney", "Cisco Systems", "Coca-Cola", "Best Buy", "Goldman Sachs Group", "Oracle", "Safeway",
154
+ "American Express", "Time Warner", "Macy's", "Tech Data", "McDonald's", "eBay"]
155
+
156
+ S_NEWS = ["BBC", "CNN", "FOX", "ABC", "CTV", "NBC", "CBSN", "LiveTV"]
157
+
158
+ S_ADJECTIVE= ["lovely", "good", "important", "adorable", "beautiful", "elegant", "fancy", "glamorous", "nice"]
159
+
160
+ def TriGenerate::name
161
+ S_NAME[rand(S_NAME.length)]
162
+ end
163
+
164
+ def TriGenerate::fullname
165
+ middle = [" II", " III", ", Jr.", ", Sr."]
166
+ if (rand(100)<80)
167
+ S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)]
168
+ else
169
+ if (rand(100)<50)
170
+ S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)][0].upcase + ". " + S_NAME[rand(S_NAME.length)]
171
+ else
172
+ S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)] + middle[rand(middle.length)]
173
+ end
174
+ end
175
+ end
176
+
177
+ def TriGenerate::sentence
178
+ case rand(57)
179
+ when 0
180
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
181
+ when 1
182
+ "Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
183
+ when 2
184
+ "#{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local zoo because it has the #{S_ANIMAL[rand(S_ANIMAL.length)]}."
185
+ when 3
186
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
187
+ when 4
188
+ "Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
189
+ when 5
190
+ "#{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local aquarium because it has the #{S_FISH[rand(S_FISH.length)]}."
191
+ when 6
192
+ "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} I just meet #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
193
+ when 7
194
+ "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} My #{S_PRONOUN[rand(S_PRONOUN.length)]} just take a selfie picture with #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
195
+ when 8
196
+ "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} #{S_CELEBRITY[rand(S_CELEBRITY.length)]} adds 'friend' with our #{S_PRONOUN[rand(S_PRONOUN.length)]} on Facbook."
197
+ when 9
198
+ "Should I watch #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match on TV?"
199
+ when 10
200
+ "Should I by tickets for #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match this weekend?"
201
+ when 11
202
+ "Should I become a #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} fan of my town team?"
203
+ when 12
204
+ "I usually like #{S_HOPPY[rand(S_HOPPY.length)]} with my leisure time."
205
+ when 13
206
+ "When I have freetime, I love to #{S_HOPPY[rand(S_HOPPY.length)]} with my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
207
+ when 14
208
+ "Is not a good idea to speend time #{S_HOPPY[rand(S_HOPPY.length)]} with #{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]}."
209
+ when 15
210
+ "I just wonder if #{S_CELEBRITY[rand(S_CELEBRITY.length)]} loves #{S_HOPPY[rand(S_HOPPY.length)]} like me?"
211
+ when 16
212
+ "I dont think #{S_CELEBRITY[rand(S_CELEBRITY.length)]} likes #{S_HOPPY[rand(S_HOPPY.length)]}."
213
+ when 17
214
+ "People say that #{S_HOPPY[rand(S_HOPPY.length)]} is the only hoppy of #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
215
+ when 18
216
+ "Finally, #{S_CITY[rand(S_CITY.length)]}, home sweet home!"
217
+ when 19
218
+ "Me and my #{S_PRONOUN[rand(S_PRONOUN.length)]} will visit #{S_CITY[rand(S_CITY.length)]} next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
219
+ when 20
220
+ "Next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}, I will move back to #{S_CITY[rand(S_CITY.length)]}."
221
+ when 21
222
+ "I am going to transit at #{S_CITY[rand(S_CITY.length)]}'s airport for a few hours."
223
+ when 22
224
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} think the #{S_LANDMARK[rand(S_LANDMARK.length)]} belongs to #{S_COUNTRY[rand(S_COUNTRY.length)]}"
225
+ when 23
226
+ "Is it true that #{S_LANDMARK[rand(S_LANDMARK.length)]} is resided at #{S_COUNTRY[rand(S_COUNTRY.length)]}."
227
+ when 24
228
+ "The air tickets flying to #{S_LANDMARK[rand(S_LANDMARK.length)]} will be sky high in next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
229
+ when 25
230
+ "I used to be a #{S_JOB[rand(S_JOB.length)]} before becoming a #{S_JOB[rand(S_JOB.length)]}."
231
+ when 26
232
+ "#{S_NUMBER[rand(S_NUMBER.length)].capitalize} #{S_TIME[rand(S_TIME.length)]} ago, I still was a #{S_JOB[rand(S_JOB.length)]}."
233
+ when 27
234
+ "Becoming a #{S_JOB[rand(S_JOB.length)]} is one of my childish dreams!"
235
+ when 28
236
+ "My son wants a #{S_FISH[rand(S_FISH.length)]} fish pet while his sister demands a #{S_ANIMAL[rand(S_ANIMAL.length)]}!"
237
+ when 29
238
+ "Would you like a #{S_BIRD[rand(S_BIRD.length)]} bird or a #{S_FISH[rand(S_FISH.length)]} fish for your birthday gift?"
239
+ when 30
240
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} just found a brand new #{S_BIRD[rand(S_BIRD.length)]} bird in #{S_CITY[rand(S_CITY.length)]}."
241
+ when 31
242
+ "According to the #{S_NEWS[rand(S_NEWS.length)]} news channel, #{S_COMPANY[rand(S_COMPANY.length)]} will expand its business to #{S_COUNTRY[rand(S_COUNTRY.length)]}."
243
+ when 32
244
+ "There are alot of rumors about the #{S_COMPANY[rand(S_COMPANY.length)]} corp will accquired the #{S_COUNTRY[rand(S_COUNTRY.length)]} within #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
245
+ when 33
246
+ "Wait a minute! Is it true that the #{S_COMPANY[rand(S_COMPANY.length)]} coorp is hiring alot of #{S_JOB[rand(S_JOB.length)]} positions?!?!"
247
+ when 34
248
+ "I am trying to apply a job in the #{S_COMPANY[rand(S_COMPANY.length)]} company in #{S_CITY[rand(S_CITY.length)]} city."
249
+ when 35
250
+ "Have you ever try the #{S_FOOD[rand(S_FOOD.length)]} food in #{S_CITY[rand(S_CITY.length)]} city yet?"
251
+ when 36
252
+ "I have heard my #{S_PRONOUN[rand(S_PRONOUN.length)]} said something good about the #{S_FOOD[rand(S_FOOD.length)]} food."
253
+ when 37
254
+ "Somebody say that the #{S_FOOD[rand(S_FOOD.length)]} deli is came from #{S_COUNTRY[rand(S_COUNTRY.length)]}."
255
+ when 38
256
+ "I love to make the #{S_FOOD[rand(S_FOOD.length)]} for my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
257
+ when 40
258
+ "#{S_COLOR[rand(S_COLOR.length)].capitalize} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]} color."
259
+ when 41
260
+ "Althought #{S_COLOR[rand(S_COLOR.length)]} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}, its not my favorite."
261
+ when 42
262
+ "I love that #{S_COLOR[rand(S_COLOR.length)]} car, but I buy the #{S_COLOR[rand(S_COLOR.length)]}."
263
+ when 43
264
+ "I am not really fond of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show, but my #{S_PRONOUN[rand(S_PRONOUN.length)]} are."
265
+ when 44
266
+ "Hurry up guys! the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be on in any minutes."
267
+ when 45
268
+ "Its been awhile from the last season of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show."
269
+ when 46
270
+ "We are expecting the realease of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
271
+ when 47
272
+ "It is hard to understand why all of my #{S_PRONOUN[rand(S_PRONOUN.length)]} can watch the #{S_MOVIE[rand(S_MOVIE.length)]} many times."
273
+ when 48
274
+ "The main actress of the #{S_MOVIE[rand(S_MOVIE.length)]} is so #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}."
275
+ when 49
276
+ "The #{S_MOVIE[rand(S_MOVIE.length)]} movie is indeed a good one."
277
+ when 50
278
+ "Should I turn this $@$*@ #{S_TVSHOW[rand(S_TVSHOW.length)]} show off to watch the #{S_MOVIE[rand(S_MOVIE.length)]} movie."
279
+ when 51
280
+ "We love to use #{S_TRANSPORT[rand(S_TRANSPORT.length)]} around the #{S_CITY[rand(S_CITY.length)]} city."
281
+ when 52
282
+ "Now I know why #{S_CELEBRITY[rand(S_CELEBRITY.length)]} never uses freaking #{S_TRANSPORT[rand(S_TRANSPORT.length)]} any more."
283
+ when 53
284
+ "My favorite movie of all time is the #{S_MOVIE[rand(S_MOVIE.length)]}."
285
+ when 54
286
+ "After watched the #{S_MOVIE[rand(S_MOVIE.length)]} movie many times, I still dont know the story!"
287
+ when 55
288
+ "I would rather buy the ticket for the #{S_MOVIE[rand(S_MOVIE.length)]} or the #{S_MOVIE[rand(S_MOVIE.length)]}?"
289
+ when 56
290
+ "One of my #{S_PRONOUN[rand(S_PRONOUN.length)]} suggests that I should download the #{S_MOVIE[rand(S_MOVIE.length)]} movie right away."
291
+ else
292
+ "When I was little I had a car door slammed shut on my hand. I still remember it quite vividly."
293
+ end
294
+ end
295
+
296
+ end
metadata ADDED
@@ -0,0 +1,47 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: tri_generate
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - Tri Huynh
8
+ autorequire:
9
+ bindir:
10
+ - bin
11
+ cert_chain: []
12
+ date: 2016-01-17 00:00:00.000000000 Z
13
+ dependencies: []
14
+ description: '["TriGenerate::name, TriGenerate::fullname, TriGenerate::sentence"]'
15
+ email:
16
+ - hdtri.expert@gmail.com
17
+ executables: []
18
+ extensions: []
19
+ extra_rdoc_files: []
20
+ files:
21
+ - lib/tri_generate.rb
22
+ homepage: https://trihuynh.herokuapp.com
23
+ licenses:
24
+ - MIT
25
+ metadata: {}
26
+ post_install_message:
27
+ rdoc_options: []
28
+ require_paths:
29
+ - lib
30
+ required_ruby_version: !ruby/object:Gem::Requirement
31
+ requirements:
32
+ - - ">="
33
+ - !ruby/object:Gem::Version
34
+ version: '0'
35
+ required_rubygems_version: !ruby/object:Gem::Requirement
36
+ requirements:
37
+ - - ">="
38
+ - !ruby/object:Gem::Version
39
+ version: '0'
40
+ requirements: []
41
+ rubyforge_project:
42
+ rubygems_version: 2.5.1
43
+ signing_key:
44
+ specification_version: 4
45
+ summary: '["This game will generate some usefull infor mation for your user such as:
46
+ name, full name, sentence"]'
47
+ test_files: []