tri 0.0.11 → 0.0.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (4) hide show
  1. checksums.yaml +4 -4
  2. data/lib/get.rb +148 -4
  3. data/lib/tri.rb +94 -233
  4. metadata +6 -5
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: f6d2e329e8a1ebd7ce7f22bc84a16799faea013c
4
- data.tar.gz: 741549cce631debd4ed0be13664e2e9c57e62985
3
+ metadata.gz: 3d10bd04fd986808b521f79451d3eebbe6f60db1
4
+ data.tar.gz: ca6c41c551de4c5a1aecf9aa9de9703de37c19f3
5
5
  SHA512:
6
- metadata.gz: 8b3575e36aceee9b4e3b96564bd559d847273cf44aba9c8f71e315ab6839ef7496476483952aadd7a9d104344b065b2bc4603ba51fc48ba877bb2718341b6c27
7
- data.tar.gz: bd18ae4a081b7f9ddb1584cb147b6d699fc8b64e28604271f4e4c725f187f9c28afd8b97e3bb800498b7967eb4a75efdb1c8370e8bf292c910fa83889e207db2
6
+ metadata.gz: 0db21636b36f51b9822529d7e60a8da965be6bdae87834c889479fc8fd9d0986e0f992713588974646cf231d8d7f20aed84976042e57d4ba413def5bd003f0ae
7
+ data.tar.gz: 1d9715e7638aeb294cd4659e2b5f21416d112cf5ad69706933d993ddeea1f7a1dcac4846588bd7ef8c8eb0277e994ab2f3c1ee232aaa98ce5097de87273309c1
data/lib/get.rb CHANGED
@@ -1,6 +1,6 @@
1
1
  module Get
2
2
 
3
- NAME = ["Tri", "Huynh", "Nguyen", "Hoang", "Le", "Trang", "Tam", "Phuong", "Huong", "Hong", "Linh", "Thang", "Tin", "Khoi",
3
+ NAME = ["Tri", "Huynh", "Nguyen", "Hoang", "Le", "Trang", "Tam", "Phuong", "Huong", "Hong", "Linh", "Thang", "Tin", "Khoi",
4
4
  "Phan", "Trinh", "Do", "Ho", "Ngo", "Duong", "Ly", "An", "Bach", "Banh", "Chau", "Chu", "Chung", "Diep", "Doan",
5
5
  "Giang", "Ha", "Han", "Kieu", "Kim", "Kim", "La", "Lac", "Luong", "Ma", "Nghiem", "Than", "Thao", "To", "Tong",
6
6
  "Trang", "Trinh", "Trieu", "Truong", "Vinh", "Vuong", "Vuu", "Wang", "Li", "Chang", "Liu", "Chen", "Yang", "Huang",
@@ -32,7 +32,151 @@ module Get
32
32
  "Tempest", "Tyler", "Vanessa", "Veronica", "Velvet", "Whitley", "Wilda", "Winifred", "Winnie", "Wynne", "Zola",
33
33
  "Princeton", "Ramsey", "Remington", "Rodney", "Rutherford", "Sheldon", "Justice", "Kelsey", "Kamden", "Kamden"]
34
34
 
35
- def Get::wtf
36
-
37
- end
35
+ CELEBRITY = ["Kim Kardashian", "Kanye West", "Gwyneth Paltrow", "Miley Cyrus", "Angelina Jolie", "Brad Pitt", "Ashlee Simpson",
36
+ "Jay Z", "Reese Witherspoon", "Gwen Stefani", "Nicolas Cage", "Rihanna", "Craig Ferguson", "David Arquette", "Katy Perry",
37
+ "Mila Kunis", "Jason Lee", "Demi Moore", "Chris Martin", "Natalie Portman", "Zoeey Deschanel", "Tom Cruise",
38
+ "Lady Gaga", "Elton John", "Pete Wentz", "Nicole Richie", "Ashton Kutcher", "Madonna", "Sylvester Stallone",
39
+ "Whoopi Goldberg", "Jennifer Aniston", "Ben Affleck", "Victoria Beckham", "Gavin Rossdale", "Kate Hudson", "Jamie Foxx",
40
+ "David Beckham", "Mariah Carey", "Justin Bieber", "Jennifer Garner", "Nicole Kidman", "Jennifer Lopez",
41
+ "Dwayne Johnson", "Will Smith", "Barack Obama", "Vladimir Putin", "Donald Trump", "George W. Bush", "Bill Clinton",
42
+ "Bill Gate", "Warren Buffett", "Kim Jong-un", "Celine Dion", "Arnold Schwarzenegger", "Van Damme", "Jason Statham",
43
+ "Bruce Willis", "Harrison Ford", "Mel Gibson", "Chuck Norris", "James Cameron"]
44
+
45
+ PRONOUN = ["colleagues", "friends", "co-workers", "enemies", "foes", "relatives", "in-laws", "classmates", "guildies",
46
+ "neighbors", "supervisors", "managers", "teachers", "professors", "facebook friends", "ex-s", "girl friends",
47
+ "boy friends", "buddies", "auntes", "uncles", "nephews", "cousins", "niece", "sons", "daughters", "staffs",
48
+ "employees", "siblings", "brothers", "sisters", "parents", "grandparents", "closet friends", "kids", "roommates",
49
+ "customers", "fans"]
50
+
51
+ MOVIE = ["Godfather", "Shawshank Redemption", "Schindler's List", "One Flew Over the Cuckoo's Nest", "Gone with the Wind",
52
+ "Wizard of Oz", "Lawrence of Arabia", "Forrest Gump", "Star Wars", "E.T. the Extra-Terrestrial", "2001: A Space Odyssey",
53
+ "The Silence of the Lambs", "Bridge on the River Kwai", "Apocalypse Now", "The Lord of the Rings", "The Hobbits",
54
+ "Gladiator", "From Here to Eternity", "Titanic", "Saving Private Ryan", "Unforgiven", "Raiders of the Lost Ark",
55
+ "To Kill a Mockingbird", "Jaws", "Braveheart", "Dances with Wolves", "Pianist", "Exorcist", "Deer Hunter",
56
+ "French Connection", "City Lights", "Birdman", "Grand Budapest Hotel", "Guardians of the Galaxy", "Interstellar",
57
+ "Transformers: Age of Extinction", "X-Men: Days of Future Past", "Captain America", "The Hunger Games",
58
+ "Dawn of the Planet of the Apes", "Fury", "Big Hero 6", "Frozen", "How to train your dragon", "Mad Max: Fury Road",
59
+ "Martian", "Fast & Furious", "Iron Man", "Ant-Man", "Jurassic World", "Reveanant", "Terminator", "Spectre",
60
+ "Twilight Saga", "Wolf of Wall Street", "Man of Steel", "World War Z", "Despicable Me", "Oblivion", "Pacific Rim"]
61
+
62
+ TVSHOW = ["Sherlock", "Homeland", "Game of Thrones", "Mad Men", "Girls", "The American", "Mr.Robot", "Marvel's Daredevil",
63
+ "Better Call Saul", "Catastrophe", "Deutschland 83", "Jane the Virgin", "Good Wife", "Hannibal", "Orphan Black",
64
+ "Orange if the New Black", "Walking Dead", "Breaking Bad", "Master of Sex", "Sex and City", "Last Kingdom",
65
+ "Family guys", "American Dad", "Simpson", "Ash vs. Evel Dead", "Supergirl", "Fargo", "You're the Worst",
66
+ "Crazy Ex-Girlfriend", "Affair", "Show Me a Hero", "Man in the High Castle", "Shannara Chronicles", "Last Ship",
67
+ "Nova"]
68
+
69
+ SPORT = ["Baseball", "Basketball", "Football", "Hockey", "Soccer", "Volleyball", "Archery", "Golf", "Badminton", "Canoeing",
70
+ "Kayaking", "Cricket", "Cycling", "Gymnastics", "Judo", "Polo", "Rackets", "Rowing", "Boxing", "Softball",
71
+ "Table tennis", "Tennis", "Wrestling", "Weightlifting", "Taekwondo", "Swimming", "Sailing", "Skiing", "Curling",
72
+ "Skating", "Snowboarding"]
73
+
74
+ FOOD = ["Massaman curry", "Neapolitan pizza", "Chocolate cake", "Sushi", "Peking duck", "Hamburger", "Penang assam laksa",
75
+ "Tom yum goong", "Chicken muamba", "Rendang", "Shepherd’s pie", "Corn on the Cob", "Kalua pig", "Egg tart",
76
+ "Kebab", "Brownie and vanilla ice cream", "Lasagna", "Butter garlic crab", "Montreal-style smoked meat",
77
+ "Pho's noodle", "Ohmi-gyu beef steak", "Summer roll", "Parma ham", "Fish ‘n’ chips", "Chili crab", "French toast",
78
+ "Stinky tofu", "Seafood paella", "Masala dosa", "Buttered popcorn"]
79
+
80
+ TRANSPORT = ["ferries", "trains", "metro", "subway", "carpool", "motorbikes", "bikes", "cars", "taxies", "buses", "Uber"]
81
+
82
+ COLOR = ["red", "green", "blue", "yellow", "orange", "purple", "pink", "brown", "black", "gray", "white", "magenta",
83
+ "cyan", "ebony", "golden", "salmon", "silver", "skyblue", "violet", "navy", "indigo", "aqua", "coral",
84
+ "chocolate", "crimson", "azure", "olive"]
85
+
86
+ CITY = ["Amsterdam", "Ankara", "Athens", "Atlantic", "Baltimore", "Bangkok", "Beijing", "Berlin", "Berne", "Brussels",
87
+ "Budapest", "Buenos Aires", "Cairo", "Canberra", "Cannes", "Cape Town", "Chicago", "Cologne", "Copenhagen", "Damascus",
88
+ "Delhi", "Dubai", "Dublin", "Florence", "Geneve", "Hague", "Hanoi", "Havana", "Helsinki", "Hong Kong", "Honolulu", "Istanbul",
89
+ "Jakarta", "Jerusalem", "Kansas", "Kathmandu", "Kuala Lumpur", "Lisbon", "London", "Los Angeles", "Luxembourg",
90
+ "Madrid", "Manila", "Melbourne", "Mexico", "Milan", "Montreal", "Moscow", "Mumbai", "Munich", "Nazareth", "Nice",
91
+ "Osaka", "Ottawa", "Oslo", "Paris", "Philadelphia", "Phnom Penh", "Prague", "Quito", "Reykjavik", "Rio de Janeiro",
92
+ "San Francisco", "Santa Fe", "Santiago", "Sao Paulo", "Shanghai", "Singapore", "Stockholm", "Saint-Peter", "Sydney",
93
+ "Taipei", "Tokyo", "Toronto", "Venice", "Vienna", "Washington", "Zurich", "Vancouver", "Vatican", "Las Vegas"]
94
+
95
+ COUNTRY = ["Canada", "United States", "Mehico", "Venezuela", "Peru", "Chile", "Argentina", "Brazil", "Iceland", "Ireland",
96
+ "United Kingdom", "France", "Spain", "German", "Poland", "Morocco", "Algeria", "Italia", "Ukranie", "Turkey", "Audi Arabia",
97
+ "Pakistan", "China", "India", "Nepal", "Myanmar", "Thailand", "Vietnam", "Korea", "Japan", "Philipin", "Singapore",
98
+ "Australia", "New Zealand", "Taiwan", "Egypt", "Greece", "Malaysia", "Sweden", "Finland", "Indonesia"]
99
+
100
+ LANDMARK = ["Statue of Liberty", "Eiffel Tower", "St. Basil's Cathedral", "Blue Domed Church", "Great Sphinx", "Pyramids",
101
+ "Little Mermaid", "Neptune and the Palace", "Windmills", "Great Wall", "Taj Mahal", "Machu Picchu", "Big Ben",
102
+ "Burj al Arab Hotel", "Tower of Pisa", "Christ the Redeemer", "Mecca", "Loch Ness", "Mont St. Michel", "Bran Castle",
103
+ "Agia Sophia Castle", "Brandenburg Gate", "Acropolis", "Sagrada Familia", "Neuschwanstein", "Mount Fuji", "Al Aqsa Mosque",
104
+ "Niagra Falls", "Ankor Wat", "Mannken Pis", "Mount Everest", "St. Peter's Cathedral", "Victoria Falls",
105
+ "Grand Canyon", "Trevi Fountain", "Cape of Good Hope", "Chichen Itza", "Table Mountain", "Golden Gate Bridge",
106
+ "Shell Opera House", "Forbidden City", "Colosseum", "Tower Bridge", "Luxor Temple", "Empire State Building",
107
+ "Temple of Besakih", "Holywood Sign", "Lee surrenders to Grant", "Golden Spike", "Gold Rush 1849", "Panama Canal",
108
+ "Stonehenge", "Suez Canal", "Palace of Parliament"]
109
+
110
+ ANIMAL = ["polar bear", "lion", "tiger", "giraffe", "panda", "elephant", "penguin", "wolf", "gorilla", "chimpanzee", "owl",
111
+ "monkey", "kangaroo", "zebra", "moose", "koala", "rhinoceros", "jaguar", "camel", "meerkat", "peacock", "snake",
112
+ "hippopotamus", "platypus", "otter", "badger", "cat", "seal", "dog", "seal", "deer", "skunk", "crocodile",
113
+ "leopard", "bat", "sloth", "lynx", "fox", "sea lion", "cheetah", "tortoise", "buffalo", "cougar", "ostrich", "frog",
114
+ "alligator", "reindeer", "anteater", "walrus", "grizzly bear", "goat", "raccoon", "squirrel", "sheep", "wild board",
115
+ "pig", "horse"]
116
+
117
+ BIRD = ["hummingbird" , "owl", "penguin", "finch", "cockatoo", "crane", "toucan", "swallow", "heron", "cuckoos", "sparrow",
118
+ "flamingo", "albatross", "moa", "stork", "sandpiper", "plover", "kiwis", "woodpecker", "hornbill", "gull", "falconidae",
119
+ "rheas", "swift", "tem", "cormorant", "grouse", "spoonbill", "parrots", "goose", "fowl", "eagle", "accipitriformes",
120
+ "rallidae", "bee-eater", "skua", "pelecaniformes", "bustard", "neognathae", "curlew", "snipe", "shearwater", "shag",
121
+ "raven", "merlin", "stonechat"]
122
+
123
+ FISH = ["guppy", "carp", "shark", "gold", "cat", "arowana", "sunfish", "northen pike", "zander", "oscar", "seabass",
124
+ "trout", "cobia", "snook", "candiru", "salmon", "swordtail", "mahi-mahi", "bream", "salmon", "barramundi", "vetiprovidentiae",
125
+ "striped bass", "neon tetra", "artic char", "bluegill", "escolar", "surgeon", "pumpkinseed", "platy", "grouper",
126
+ "blob", "eel", "naddock", "turbot", "grey mullet", "sea horse", "clown", "snakehead", "beluga", "trumpet", "jellow",
127
+ "moa trunk", "dolphin"]
128
+
129
+ HOBBY = ["reading books", "watching TVs", "speding time with family", "watching movies", "fishing", "playing computer games",
130
+ "gardening", "walking", "listening to music", "window shopping", "sleeping and relaxing", "cooking", "playing golf",
131
+ "socializing", "sewing", "hiking", "eating out", "camping", "working on cars", "writing", "motorcycling", "dancing",
132
+ "painting", "horseback riding", "working volunteer", "chatting"]
133
+
134
+ JOB = ["carpenter", "welder", "plumper", "acter", "actress", "waiter", "waitress", "reporter", "programer",
135
+ "nurse", "doctor", "cleaner", "manager", "cashier", "bartender", "taxi driver", "trucker", "college professer",
136
+ "truck driver", "crane operator", "machine operator", "machinist", "accountant", "consultant", "layer", "judge",
137
+ "politcian", "policeman", "president", "spy", "scecret agent", "astronount", "businessman", "teacher", "veteran",
138
+ "comedian", "doctor", "thief", "robber", "baker", "priminister", "sport professor player", "librarian", "fire fighter",
139
+ "realtor", "bocker", "flight-attendent", "pilot", "ship captain", "singer", "musician", "detective"]
140
+
141
+ EMOTION_GOOD= ["Holycow!", "Holy $#@%@!", "Unbelivable!", "Awesome!", "So lovely!", "Fanstatic!", "WoW!", "Cool!", "Yay!",
142
+ "Hurray!", "Wonderful!", "Excellent!", "Luckily!", "Yippi!", "Good job!", "Ingredible!"]
143
+
144
+ NUMBER = ["two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven"]
145
+
146
+ TIME = ["minutes", "hours", "days", "weeks", "months", "years", "decades"]
147
+
148
+ COMPANY = ["Walmart", "Exxon Mobil", "Chevron", "Berkshire Hathaway", "Apple Inc", "General Motors", "General Electric",
149
+ "ATT", "Verizon", "Fannie Mae", "Costco", "Hewlet Packer", "JP Morgan Chase", "Bank of America Corp",
150
+ "Marathon Petroleum", "Boeing", "Citigroup", "Amazon", "Microsoft", "Facebook", "Google", "Home Depot",
151
+ "Target", "Johnson n Johnson", "Freddie Mac", "Comcast", "Netflix", "Fedex", "UPS", "Lowes", "Intel",
152
+ "Walt Disney", "Cisco Systems", "Coca-Cola", "Best Buy", "Goldman Sachs Group", "Oracle", "Safeway",
153
+ "American Express", "Time Warner", "Macy's", "Tech Data", "McDonald's", "eBay"]
154
+
155
+ NEWS = ["BBC", "CNN", "FOX", "ABC", "CTV", "NBC", "CBSN", "LiveTV"]
156
+
157
+ ADJECTIVE = ["lovely", "good", "important", "adorable", "beautiful", "elegant", "fancy", "glamorous", "nice"]
158
+
159
+ EMAIL_SUFFIX= [".biz", ".info", ".work", ".club", ".mobi", ".net", ".co", ".party", ".solutions", ".com", ".org",
160
+ ".guru", ".directory", ".voyage", ".photopraphy", ".photos", ".com.pl", ".expert", ".technology", ".clothing",
161
+ ".training", ".football", ".services", ".media", ".systems", ".education", ".maison", ".rentals", ".fitness",
162
+ ".international", ".parts", ".hockey", ".estate", ".support", ".toys", ".deals", ".properties", ".cards",
163
+ ".direct", ".design", ".futbol", ".xyz"]
164
+
165
+ EMAIL_DOMAIN= ["gmail", "hotmail", "hushmail", "zohomail", "mail", "outlook", "gmxmail", "inbox", "yandex", "shortmail",
166
+ "yahoomail", "rocketmail", "aimmail", "aussimail", "bigstring", "bluebottle", "boarderemail", "canoe",
167
+ "care2", "dcemail", "dbzmail", "didamail", "emailaccount", "faster", "fast", "gawab", "graffiti", "hotpop",
168
+ "icqmail", "inbox", "indiatimes", "inmail24", "jubii", "linuxmail", "lycosmail", "mail2world", "mailsnare",
169
+ "merseymail", "msnhotmail", "muchomail", "myway", "operamail", "outgun", "postmaster", "prontomail",
170
+ "rediff", "runbox", "sacmail", "safe-mail", "ureach", "vfemail", "ziladog", "fuser", "grabmail", "mail2web",
171
+ "myemail", "tamadaa", "techemail", "earthclassmail", "futureme", "hoaxmail", "postful", "shinyletter",
172
+ "dodgeit", "emailias", "gishpyppy", "spam", "spambox", "zoemail", "notaspam", "spamme", "nospam", "spamming"]
173
+
174
+ EMAIL_PREFIX= ["admin", "noreply", "me", "inbox", "mail", "finance", "administrator", "boss", "staff", "service", "helpdesk",
175
+ "it", "itdepart", "pr", "server", "client", "secrectary", "office", "headquater", "hr", "humanresource", "security",
176
+ "important", "about", "aboutus", "contact", "shouldreply", "spam", "subcrible", "unsubcrible", "infor", "warning",
177
+ "danger", "vip", "members", "notice", "fail-delivery", "delivery"]
178
+
179
+ ALPHABET = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s",
180
+ "t", "u", "v", "w", "x", "y", "z"]
181
+
38
182
  end
data/lib/tri.rb CHANGED
@@ -1,159 +1,12 @@
1
1
  require_relative 'get.rb'
2
2
 
3
3
  module Tri
4
-
5
- S_CELEBRITY = ["Kim Kardashian", "Kanye West", "Gwyneth Paltrow", "Miley Cyrus", "Angelina Jolie", "Brad Pitt", "Ashlee Simpson",
6
- "Jay Z", "Reese Witherspoon", "Gwen Stefani", "Nicolas Cage", "Rihanna", "Craig Ferguson", "David Arquette", "Katy Perry",
7
- "Mila Kunis", "Jason Lee", "Demi Moore", "Chris Martin", "Natalie Portman", "Zoeey Deschanel", "Tom Cruise",
8
- "Lady Gaga", "Elton John", "Pete Wentz", "Nicole Richie", "Ashton Kutcher", "Madonna", "Sylvester Stallone",
9
- "Whoopi Goldberg", "Jennifer Aniston", "Ben Affleck", "Victoria Beckham", "Gavin Rossdale", "Kate Hudson", "Jamie Foxx",
10
- "David Beckham", "Mariah Carey", "Justin Bieber", "Jennifer Garner", "Nicole Kidman", "Jennifer Lopez",
11
- "Dwayne Johnson", "Will Smith", "Barack Obama", "Vladimir Putin", "Donald Trump", "George W. Bush", "Bill Clinton",
12
- "Bill Gate", "Warren Buffett", "Kim Jong-un", "Celine Dion", "Arnold Schwarzenegger", "Van Damme", "Jason Statham",
13
- "Bruce Willis", "Harrison Ford", "Mel Gibson", "Chuck Norris", "James Cameron"]
14
-
15
- S_PRONOUN = ["colleagues", "friends", "co-workers", "enemies", "foes", "relatives", "in-laws", "classmates", "guildies",
16
- "neighbors", "supervisors", "managers", "teachers", "professors", "facebook friends", "ex-s", "girl friends",
17
- "boy friends", "buddies", "auntes", "uncles", "nephews", "cousins", "niece", "sons", "daughters", "staffs",
18
- "employees", "siblings", "brothers", "sisters", "parents", "grandparents", "closet friends", "kids", "roommates",
19
- "customers", "fans"]
20
4
 
21
- S_MOVIE = ["Godfather", "Shawshank Redemption", "Schindler's List", "One Flew Over the Cuckoo's Nest", "Gone with the Wind",
22
- "Wizard of Oz", "Lawrence of Arabia", "Forrest Gump", "Star Wars", "E.T. the Extra-Terrestrial", "2001: A Space Odyssey",
23
- "The Silence of the Lambs", "Bridge on the River Kwai", "Apocalypse Now", "The Lord of the Rings", "The Hobbits",
24
- "Gladiator", "From Here to Eternity", "Titanic", "Saving Private Ryan", "Unforgiven", "Raiders of the Lost Ark",
25
- "To Kill a Mockingbird", "Jaws", "Braveheart", "Dances with Wolves", "Pianist", "Exorcist", "Deer Hunter",
26
- "French Connection", "City Lights", "Birdman", "Grand Budapest Hotel", "Guardians of the Galaxy", "Interstellar",
27
- "Transformers: Age of Extinction", "X-Men: Days of Future Past", "Captain America", "The Hunger Games",
28
- "Dawn of the Planet of the Apes", "Fury", "Big Hero 6", "Frozen", "How to train your dragon", "Mad Max: Fury Road",
29
- "Martian", "Fast & Furious", "Iron Man", "Ant-Man", "Jurassic World", "Reveanant", "Terminator", "Spectre",
30
- "Twilight Saga", "Wolf of Wall Street", "Man of Steel", "World War Z", "Despicable Me", "Oblivion", "Pacific Rim"]
31
-
32
- S_TVSHOW = ["Sherlock", "Homeland", "Game of Thrones", "Mad Men", "Girls", "The American", "Mr.Robot", "Marvel's Daredevil",
33
- "Better Call Saul", "Catastrophe", "Deutschland 83", "Jane the Virgin", "Good Wife", "Hannibal", "Orphan Black",
34
- "Orange if the New Black", "Walking Dead", "Breaking Bad", "Master of Sex", "Sex and City", "Last Kingdom",
35
- "Family guys", "American Dad", "Simpson", "Ash vs. Evel Dead", "Supergirl", "Fargo", "You're the Worst",
36
- "Crazy Ex-Girlfriend", "Affair", "Show Me a Hero", "Man in the High Castle", "Shannara Chronicles", "Last Ship",
37
- "Nova"]
38
-
39
- S_SPORT = ["Baseball", "Basketball", "Football", "Hockey", "Soccer", "Volleyball", "Archery", "Golf", "Badminton", "Canoeing",
40
- "Kayaking", "Cricket", "Cycling", "Gymnastics", "Judo", "Polo", "Rackets", "Rowing", "Boxing", "Softball",
41
- "Table tennis", "Tennis", "Wrestling", "Weightlifting", "Taekwondo", "Swimming", "Sailing", "Skiing", "Curling",
42
- "Skating", "Snowboarding"]
43
-
44
- S_FOOD = ["Massaman curry", "Neapolitan pizza", "Chocolate cake", "Sushi", "Peking duck", "Hamburger", "Penang assam laksa",
45
- "Tom yum goong", "Chicken muamba", "Rendang", "Shepherd’s pie", "Corn on the Cob", "Kalua pig", "Egg tart",
46
- "Kebab", "Brownie and vanilla ice cream", "Lasagna", "Butter garlic crab", "Montreal-style smoked meat",
47
- "Pho's noodle", "Ohmi-gyu beef steak", "Summer roll", "Parma ham", "Fish ‘n’ chips", "Chili crab", "French toast",
48
- "Stinky tofu", "Seafood paella", "Masala dosa", "Buttered popcorn"]
49
-
50
- S_TRANSPORT=["ferries", "trains", "metro", "subway", "carpool", "motorbikes", "bikes", "cars", "taxies", "buses", "Uber"]
51
-
52
- S_COLOR = ["red", "green", "blue", "yellow", "orange", "purple", "pink", "brown", "black", "gray", "white", "magenta",
53
- "cyan", "ebony", "golden", "salmon", "silver", "skyblue", "violet", "navy", "indigo", "aqua", "coral",
54
- "chocolate", "crimson", "azure", "olive"]
55
-
56
- S_CITY = ["Amsterdam", "Ankara", "Athens", "Atlantic", "Baltimore", "Bangkok", "Beijing", "Berlin", "Berne", "Brussels",
57
- "Budapest", "Buenos Aires", "Cairo", "Canberra", "Cannes", "Cape Town", "Chicago", "Cologne", "Copenhagen", "Damascus",
58
- "Delhi", "Dubai", "Dublin", "Florence", "Geneve", "Hague", "Hanoi", "Havana", "Helsinki", "Hong Kong", "Honolulu", "Istanbul",
59
- "Jakarta", "Jerusalem", "Kansas", "Kathmandu", "Kuala Lumpur", "Lisbon", "London", "Los Angeles", "Luxembourg",
60
- "Madrid", "Manila", "Melbourne", "Mexico", "Milan", "Montreal", "Moscow", "Mumbai", "Munich", "Nazareth", "Nice",
61
- "Osaka", "Ottawa", "Oslo", "Paris", "Philadelphia", "Phnom Penh", "Prague", "Quito", "Reykjavik", "Rio de Janeiro",
62
- "San Francisco", "Santa Fe", "Santiago", "Sao Paulo", "Shanghai", "Singapore", "Stockholm", "Saint-Peter", "Sydney",
63
- "Taipei", "Tokyo", "Toronto", "Venice", "Vienna", "Washington", "Zurich", "Vancouver", "Vatican", "Las Vegas"]
64
-
65
- S_COUNTRY = ["Canada", "United States", "Mehico", "Venezuela", "Peru", "Chile", "Argentina", "Brazil", "Iceland", "Ireland",
66
- "United Kingdom", "France", "Spain", "German", "Poland", "Morocco", "Algeria", "Italia", "Ukranie", "Turkey", "Audi Arabia",
67
- "Pakistan", "China", "India", "Nepal", "Myanmar", "Thailand", "Vietnam", "Korea", "Japan", "Philipin", "Singapore",
68
- "Australia", "New Zealand", "Taiwan", "Egypt", "Greece", "Malaysia", "Sweden", "Finland", "Indonesia"]
69
-
70
- S_LANDMARK= ["Statue of Liberty", "Eiffel Tower", "St. Basil's Cathedral", "Blue Domed Church", "Great Sphinx", "Pyramids",
71
- "Little Mermaid", "Neptune and the Palace", "Windmills", "Great Wall", "Taj Mahal", "Machu Picchu", "Big Ben",
72
- "Burj al Arab Hotel", "Tower of Pisa", "Christ the Redeemer", "Mecca", "Loch Ness", "Mont St. Michel", "Bran Castle",
73
- "Agia Sophia Castle", "Brandenburg Gate", "Acropolis", "Sagrada Familia", "Neuschwanstein", "Mount Fuji", "Al Aqsa Mosque",
74
- "Niagra Falls", "Ankor Wat", "Mannken Pis", "Mount Everest", "St. Peter's Cathedral", "Victoria Falls",
75
- "Grand Canyon", "Trevi Fountain", "Cape of Good Hope", "Chichen Itza", "Table Mountain", "Golden Gate Bridge",
76
- "Shell Opera House", "Forbidden City", "Colosseum", "Tower Bridge", "Luxor Temple", "Empire State Building",
77
- "Temple of Besakih", "Holywood Sign", "Lee surrenders to Grant", "Golden Spike", "Gold Rush 1849", "Panama Canal",
78
- "Stonehenge", "Suez Canal", "Palace of Parliament"]
79
-
80
- S_ANIMAL = ["polar bear", "lion", "tiger", "giraffe", "panda", "elephant", "penguin", "wolf", "gorilla", "chimpanzee", "owl",
81
- "monkey", "kangaroo", "zebra", "moose", "koala", "rhinoceros", "jaguar", "camel", "meerkat", "peacock", "snake",
82
- "hippopotamus", "platypus", "otter", "badger", "cat", "seal", "dog", "seal", "deer", "skunk", "crocodile",
83
- "leopard", "bat", "sloth", "lynx", "fox", "sea lion", "cheetah", "tortoise", "buffalo", "cougar", "ostrich", "frog",
84
- "alligator", "reindeer", "anteater", "walrus", "grizzly bear", "goat", "raccoon", "squirrel", "sheep", "wild board",
85
- "pig", "horse"]
86
-
87
- S_BIRD = ["hummingbird" , "owl", "penguin", "finch", "cockatoo", "crane", "toucan", "swallow", "heron", "cuckoos", "sparrow",
88
- "flamingo", "albatross", "moa", "stork", "sandpiper", "plover", "kiwis", "woodpecker", "hornbill", "gull", "falconidae",
89
- "rheas", "swift", "tem", "cormorant", "grouse", "spoonbill", "parrots", "goose", "fowl", "eagle", "accipitriformes",
90
- "rallidae", "bee-eater", "skua", "pelecaniformes", "bustard", "neognathae", "curlew", "snipe", "shearwater", "shag",
91
- "raven", "merlin", "stonechat"]
92
-
93
- S_FISH = ["guppy", "carp", "shark", "gold", "cat", "arowana", "sunfish", "northen pike", "zander", "oscar", "seabass",
94
- "trout", "cobia", "snook", "candiru", "salmon", "swordtail", "mahi-mahi", "bream", "salmon", "barramundi", "vetiprovidentiae",
95
- "striped bass", "neon tetra", "artic char", "bluegill", "escolar", "surgeon", "pumpkinseed", "platy", "grouper",
96
- "blob", "eel", "naddock", "turbot", "grey mullet", "sea horse", "clown", "snakehead", "beluga", "trumpet", "jellow",
97
- "moa trunk", "dolphin"]
98
-
99
- S_HOBBY = ["reading books", "watching TVs", "speding time with family", "watching movies", "fishing", "playing computer games",
100
- "gardening", "walking", "listening to music", "window shopping", "sleeping and relaxing", "cooking", "playing golf",
101
- "socializing", "sewing", "hiking", "eating out", "camping", "working on cars", "writing", "motorcycling", "dancing",
102
- "painting", "horseback riding", "working volunteer", "chatting"]
103
-
104
- S_JOB = ["carpenter", "welder", "plumper", "acter", "actress", "waiter", "waitress", "reporter", "programer",
105
- "nurse", "doctor", "cleaner", "manager", "cashier", "bartender", "taxi driver", "trucker", "college professer",
106
- "truck driver", "crane operator", "machine operator", "machinist", "accountant", "consultant", "layer", "judge",
107
- "politcian", "policeman", "president", "spy", "scecret agent", "astronount", "businessman", "teacher", "veteran",
108
- "comedian", "doctor", "thief", "robber", "baker", "priminister", "sport professor player", "librarian", "fire fighter",
109
- "realtor", "bocker", "flight-attendent", "pilot", "ship captain", "singer", "musician", "detective"]
110
-
111
- S_EMOTION_GOOD = ["Holycow!", "Holy $#@%@!", "Unbelivable!", "Awesome!", "So lovely!", "Fanstatic!", "WoW!", "Cool!", "Yay!",
112
- "Hurray!", "Wonderful!", "Excellent!", "Luckily!", "Yippi!", "Good job!", "Ingredible!"]
113
-
114
- S_NUMBER = ["two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven"]
115
-
116
- S_TIME = ["minutes", "hours", "days", "weeks", "months", "years", "decades"]
117
-
118
- S_COMPANY = ["Walmart", "Exxon Mobil", "Chevron", "Berkshire Hathaway", "Apple Inc", "General Motors", "General Electric",
119
- "ATT", "Verizon", "Fannie Mae", "Costco", "Hewlet Packer", "JP Morgan Chase", "Bank of America Corp",
120
- "Marathon Petroleum", "Boeing", "Citigroup", "Amazon", "Microsoft", "Facebook", "Google", "Home Depot",
121
- "Target", "Johnson n Johnson", "Freddie Mac", "Comcast", "Netflix", "Fedex", "UPS", "Lowes", "Intel",
122
- "Walt Disney", "Cisco Systems", "Coca-Cola", "Best Buy", "Goldman Sachs Group", "Oracle", "Safeway",
123
- "American Express", "Time Warner", "Macy's", "Tech Data", "McDonald's", "eBay"]
124
-
125
- S_NEWS = ["BBC", "CNN", "FOX", "ABC", "CTV", "NBC", "CBSN", "LiveTV"]
126
-
127
- S_ADJECTIVE= ["lovely", "good", "important", "adorable", "beautiful", "elegant", "fancy", "glamorous", "nice"]
128
-
129
- S_EMAIL_SUFFIX= [".biz", ".info", ".work", ".club", ".mobi", ".net", ".co", ".party", ".solutions", ".com", ".org",
130
- ".guru", ".directory", ".voyage", ".photopraphy", ".photos", ".com.pl", ".expert", ".technology", ".clothing",
131
- ".training", ".football", ".services", ".media", ".systems", ".education", ".maison", ".rentals", ".fitness",
132
- ".international", ".parts", ".hockey", ".estate", ".support", ".toys", ".deals", ".properties", ".cards",
133
- ".direct", ".design", ".futbol", ".xyz"]
134
-
135
- S_EMAIL_DOMAIN= ["gmail", "hotmail", "hushmail", "zohomail", "mail", "outlook", "gmxmail", "inbox", "yandex", "shortmail",
136
- "yahoomail", "rocketmail", "aimmail", "aussimail", "bigstring", "bluebottle", "boarderemail", "canoe",
137
- "care2", "dcemail", "dbzmail", "didamail", "emailaccount", "faster", "fast", "gawab", "graffiti", "hotpop",
138
- "icqmail", "inbox", "indiatimes", "inmail24", "jubii", "linuxmail", "lycosmail", "mail2world", "mailsnare",
139
- "merseymail", "msnhotmail", "muchomail", "myway", "operamail", "outgun", "postmaster", "prontomail",
140
- "rediff", "runbox", "sacmail", "safe-mail", "ureach", "vfemail", "ziladog", "fuser", "grabmail", "mail2web",
141
- "myemail", "tamadaa", "techemail", "earthclassmail", "futureme", "hoaxmail", "postful", "shinyletter",
142
- "dodgeit", "emailias", "gishpyppy", "spam", "spambox", "zoemail", "notaspam", "spamme", "nospam", "spamming"]
143
-
144
- S_EMAIL_PREFIX= ["admin", "noreply", "me", "inbox", "mail", "finance", "administrator", "boss", "staff", "service", "helpdesk",
145
- "it", "itdepart", "pr", "server", "client", "secrectary", "office", "headquater", "hr", "humanresource", "security",
146
- "important", "about", "aboutus", "contact", "shouldreply", "spam", "subcrible", "unsubcrible", "infor", "warning",
147
- "danger", "vip", "members", "notice", "fail-delivery", "delivery"]
148
-
149
- S_ALPHABET = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s",
150
- "t", "u", "v", "w", "x", "y", "z"]
151
-
152
- def Tri::name
5
+ def self::name
153
6
  Get::NAME[rand(Get::NAME.length)]
154
7
  end
155
8
 
156
- def Tri::fullname
9
+ def self::fullname
157
10
  middle = [" II", " III", ", Jr.", ", Sr."]
158
11
  if (rand(100)<80)
159
12
  Get::NAME[rand(Get::NAME.length)] + " " + Get::NAME[rand(Get::NAME.length)]
@@ -166,120 +19,120 @@ module Tri
166
19
  end
167
20
  end
168
21
 
169
- def Tri::sentence
22
+ def self::sentence
170
23
  case rand(57)
171
24
  when 0
172
- "My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
25
+ "My #{Get::PRONOUN[rand(Get::PRONOUN.length)]} love to see the #{Get::ANIMAL[rand(Get::ANIMAL.length)]} in the local zoo."
173
26
  when 1
174
- "Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
27
+ "Our #{Get::PRONOUN[rand(Get::PRONOUN.length)]} love to see the #{Get::ANIMAL[rand(Get::ANIMAL.length)]} in the local zoo."
175
28
  when 2
176
- "#{Get::NAME[rand(Get::NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local zoo because it has the #{S_ANIMAL[rand(S_ANIMAL.length)]}."
29
+ "#{Get::NAME[rand(Get::NAME.length)]}'s #{Get::PRONOUN[rand(Get::PRONOUN.length)]} do not like the local zoo because it has the #{Get::ANIMAL[rand(Get::ANIMAL.length)]}."
177
30
  when 3
178
- "My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
31
+ "My #{Get::PRONOUN[rand(Get::PRONOUN.length)]} love to see the #{Get::FISH[rand(Get::FISH.length)]} in the local aquarium."
179
32
  when 4
180
- "Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
33
+ "Our #{Get::PRONOUN[rand(Get::PRONOUN.length)]} love to see the #{Get::FISH[rand(Get::FISH.length)]} in the local aquarium."
181
34
  when 5
182
- "#{Get::NAME[rand(Get::NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local aquarium because it has the #{S_FISH[rand(S_FISH.length)]}."
35
+ "#{Get::NAME[rand(Get::NAME.length)]}'s #{Get::PRONOUN[rand(Get::PRONOUN.length)]} do not like the local aquarium because it has the #{Get::FISH[rand(Get::FISH.length)]}."
183
36
  when 6
184
- "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} I just meet #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
37
+ "#{Get::EMOTION_GOOD[rand(Get::EMOTION_GOOD.length)]} I just meet #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]}."
185
38
  when 7
186
- "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} My #{S_PRONOUN[rand(S_PRONOUN.length)]} just take a selfie picture with #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
39
+ "#{Get::EMOTION_GOOD[rand(Get::EMOTION_GOOD.length)]} My #{Get::PRONOUN[rand(Get::PRONOUN.length)]} just take a selfie picture with #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]}."
187
40
  when 8
188
- "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} #{S_CELEBRITY[rand(S_CELEBRITY.length)]} adds 'friend' with our #{S_PRONOUN[rand(S_PRONOUN.length)]} on Facbook."
41
+ "#{Get::EMOTION_GOOD[rand(Get::EMOTION_GOOD.length)]} #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]} adds 'friend' with our #{Get::PRONOUN[rand(Get::PRONOUN.length)]} on Facbook."
189
42
  when 9
190
- "Should I watch #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match on TV?"
43
+ "Should I watch #{Get::SPORT[rand(Get::SPORT.length)]} or #{Get::SPORT[rand(Get::SPORT.length)]} match on TV?"
191
44
  when 10
192
- "Should I buy tickets for #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match this weekend?"
45
+ "Should I buy tickets for #{Get::SPORT[rand(Get::SPORT.length)]} or #{Get::SPORT[rand(Get::SPORT.length)]} match this weekend?"
193
46
  when 11
194
- "Should I become a #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} fan of my town team?"
47
+ "Should I become a #{Get::SPORT[rand(Get::SPORT.length)]} or #{Get::SPORT[rand(Get::SPORT.length)]} fan of my town team?"
195
48
  when 12
196
- "I usually like #{S_HOBBY[rand(S_HOBBY.length)]} with my leisure time."
49
+ "I usually like #{Get::HOBBY[rand(Get::HOBBY.length)]} with my leisure time."
197
50
  when 13
198
- "#{S_HOBBY[rand(S_HOBBY.length)].capitalize} with my #{S_PRONOUN[rand(S_PRONOUN.length)]} whenever I have free time is my favorite hobby."
51
+ "#{Get::HOBBY[rand(Get::HOBBY.length)].capitalize} with my #{Get::PRONOUN[rand(Get::PRONOUN.length)]} whenever I have free time is my favorite hobby."
199
52
  when 14
200
- "Is not a good idea to spend time #{S_HOBBY[rand(S_HOBBY.length)]} with #{Get::NAME[rand(Get::NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]}."
53
+ "Is not a good idea to spend time #{Get::HOBBY[rand(Get::HOBBY.length)]} with #{Get::NAME[rand(Get::NAME.length)]}'s #{Get::PRONOUN[rand(Get::PRONOUN.length)]}."
201
54
  when 15
202
- "I just wonder if #{S_CELEBRITY[rand(S_CELEBRITY.length)]} loves #{S_HOBBY[rand(S_HOBBY.length)]} like me?"
55
+ "I just wonder if #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]} loves #{Get::HOBBY[rand(Get::HOBBY.length)]} like me?"
203
56
  when 16
204
- "I dont think #{S_CELEBRITY[rand(S_CELEBRITY.length)]} likes #{S_HOBBY[rand(S_HOBBY.length)]}."
57
+ "I dont think #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]} likes #{Get::HOBBY[rand(Get::HOBBY.length)]}."
205
58
  when 17
206
- "People say that #{S_HOBBY[rand(S_HOBBY.length)]} is the only hobby of #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
59
+ "People say that #{Get::HOBBY[rand(Get::HOBBY.length)]} is the only hobby of #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]}."
207
60
  when 18
208
- "Finally, #{S_CITY[rand(S_CITY.length)]}, home sweet home!"
61
+ "Finally, #{Get::CITY[rand(Get::CITY.length)]}, home sweet home!"
209
62
  when 19
210
- "Me and my #{S_PRONOUN[rand(S_PRONOUN.length)]} will visit #{S_CITY[rand(S_CITY.length)]} next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
63
+ "Me and my #{Get::PRONOUN[rand(Get::PRONOUN.length)]} will visit #{Get::CITY[rand(Get::CITY.length)]} next #{Get::NUMBER[rand(Get::NUMBER.length)]} #{Get::TIME[rand(Get::TIME.length)]}."
211
64
  when 20
212
- "Next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}, I will move back to #{S_CITY[rand(S_CITY.length)]}."
65
+ "Next #{Get::NUMBER[rand(Get::NUMBER.length)]} #{Get::TIME[rand(Get::TIME.length)]}, I will move back to #{Get::CITY[rand(Get::CITY.length)]}."
213
66
  when 21
214
- "I am going to transit at #{S_CITY[rand(S_CITY.length)]}'s airport for a few hours."
67
+ "I am going to transit at #{Get::CITY[rand(Get::CITY.length)]}'s airport for a few hours."
215
68
  when 22
216
- "My #{S_PRONOUN[rand(S_PRONOUN.length)]} think the #{S_LANDMARK[rand(S_LANDMARK.length)]} belongs to #{S_COUNTRY[rand(S_COUNTRY.length)]}."
69
+ "My #{Get::PRONOUN[rand(Get::PRONOUN.length)]} think the #{Get::LANDMARK[rand(Get::LANDMARK.length)]} belongs to #{Get::COUNTRY[rand(Get::COUNTRY.length)]}."
217
70
  when 23
218
- "Is it true that #{S_LANDMARK[rand(S_LANDMARK.length)]} resides in #{S_COUNTRY[rand(S_COUNTRY.length)]}."
71
+ "Is it true that #{Get::LANDMARK[rand(Get::LANDMARK.length)]} resides in #{Get::COUNTRY[rand(Get::COUNTRY.length)]}."
219
72
  when 24
220
- "The air tickets flying to #{S_LANDMARK[rand(S_LANDMARK.length)]} will be sky high in next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
73
+ "The air tickets flying to #{Get::LANDMARK[rand(Get::LANDMARK.length)]} will be sky high in next #{Get::NUMBER[rand(Get::NUMBER.length)]} #{Get::TIME[rand(Get::TIME.length)]}."
221
74
  when 25
222
- "I used to be a #{S_JOB[rand(S_JOB.length)]} before becoming a #{S_JOB[rand(S_JOB.length)]}."
75
+ "I used to be a #{Get::JOB[rand(Get::JOB.length)]} before becoming a #{Get::JOB[rand(Get::JOB.length)]}."
223
76
  when 26
224
- "#{S_NUMBER[rand(S_NUMBER.length)].capitalize} #{S_TIME[rand(S_TIME.length)]} ago, I still was a #{S_JOB[rand(S_JOB.length)]}."
77
+ "#{Get::NUMBER[rand(Get::NUMBER.length)].capitalize} #{Get::TIME[rand(Get::TIME.length)]} ago, I still was a #{Get::JOB[rand(Get::JOB.length)]}."
225
78
  when 27
226
- "Becoming a #{S_JOB[rand(S_JOB.length)]} is one of my childish dreams!"
79
+ "Becoming a #{Get::JOB[rand(Get::JOB.length)]} is one of my childish dreams!"
227
80
  when 28
228
- "My son wants a #{S_FISH[rand(S_FISH.length)]} fish pet while his sister demands a #{S_ANIMAL[rand(S_ANIMAL.length)]}!"
81
+ "My son wants a #{Get::FISH[rand(Get::FISH.length)]} fish pet while his sister demands a #{Get::ANIMAL[rand(Get::ANIMAL.length)]}!"
229
82
  when 29
230
- "Would you like a #{S_BIRD[rand(S_BIRD.length)]} bird or a #{S_FISH[rand(S_FISH.length)]} fish for your birthday gift?"
83
+ "Would you like a #{Get::BIRD[rand(Get::BIRD.length)]} bird or a #{Get::FISH[rand(Get::FISH.length)]} fish for your birthday gift?"
231
84
  when 30
232
- "My #{S_PRONOUN[rand(S_PRONOUN.length)]} just found a brand new #{S_BIRD[rand(S_BIRD.length)]} bird in #{S_CITY[rand(S_CITY.length)]}."
85
+ "My #{Get::PRONOUN[rand(Get::PRONOUN.length)]} just found a brand new #{Get::BIRD[rand(Get::BIRD.length)]} bird in #{Get::CITY[rand(Get::CITY.length)]}."
233
86
  when 31
234
- "According to the #{S_NEWS[rand(S_NEWS.length)]} news channel, #{S_COMPANY[rand(S_COMPANY.length)]} will expand its business to #{S_COUNTRY[rand(S_COUNTRY.length)]}."
87
+ "According to the #{Get::NEWS[rand(Get::NEWS.length)]} news channel, #{Get::COMPANY[rand(Get::COMPANY.length)]} will expand its business to #{Get::COUNTRY[rand(Get::COUNTRY.length)]}."
235
88
  when 32
236
- "There are alot of rumors about the #{S_COMPANY[rand(S_COMPANY.length)]} corp will be accquiring the #{S_COMPANY[rand(S_COMPANY.length)]} within #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
89
+ "There are alot of rumors about the #{Get::COMPANY[rand(Get::COMPANY.length)]} corp will be accquiring the #{Get::COMPANY[rand(Get::COMPANY.length)]} within #{Get::NUMBER[rand(Get::NUMBER.length)]} #{Get::TIME[rand(Get::TIME.length)]}."
237
90
  when 33
238
- "Wait a minute! Is it true that the #{S_COMPANY[rand(S_COMPANY.length)]} corp is hiring alot of #{S_JOB[rand(S_JOB.length)]} positions?!?!"
91
+ "Wait a minute! Is it true that the #{Get::COMPANY[rand(Get::COMPANY.length)]} corp is hiring alot of #{Get::JOB[rand(Get::JOB.length)]} positions?!?!"
239
92
  when 34
240
- "I am trying to apply for a job in the #{S_COMPANY[rand(S_COMPANY.length)]} company in #{S_CITY[rand(S_CITY.length)]} city."
93
+ "I am trying to apply for a job in the #{Get::COMPANY[rand(Get::COMPANY.length)]} company in #{Get::CITY[rand(Get::CITY.length)]} city."
241
94
  when 35
242
- "Have you ever tried the #{S_FOOD[rand(S_FOOD.length)]} food in #{S_CITY[rand(S_CITY.length)]} yet?"
95
+ "Have you ever tried the #{Get::FOOD[rand(Get::FOOD.length)]} food in #{Get::CITY[rand(Get::CITY.length)]} yet?"
243
96
  when 36
244
- "I have heard my #{S_PRONOUN[rand(S_PRONOUN.length)]} say something good about the #{S_FOOD[rand(S_FOOD.length)]} food."
97
+ "I have heard my #{Get::PRONOUN[rand(Get::PRONOUN.length)]} say something good about the #{Get::FOOD[rand(Get::FOOD.length)]} food."
245
98
  when 37
246
- "Somebody say that the #{S_FOOD[rand(S_FOOD.length)]} deli is came from #{S_COUNTRY[rand(S_COUNTRY.length)]}."
99
+ "Somebody say that the #{Get::FOOD[rand(Get::FOOD.length)]} deli is came from #{Get::COUNTRY[rand(Get::COUNTRY.length)]}."
247
100
  when 38
248
- "I love to make the #{S_FOOD[rand(S_FOOD.length)]} for my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
101
+ "I love to make the #{Get::FOOD[rand(Get::FOOD.length)]} for my #{Get::PRONOUN[rand(Get::PRONOUN.length)]}."
249
102
  when 40
250
- "#{S_COLOR[rand(S_COLOR.length)].capitalize} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]} color."
103
+ "#{Get::COLOR[rand(Get::COLOR.length)].capitalize} is a #{Get::ADJECTIVE[rand(Get::ADJECTIVE.length)]} color."
251
104
  when 41
252
- "Althought #{S_COLOR[rand(S_COLOR.length)]} color is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}, its not my favorite."
105
+ "Althought #{Get::COLOR[rand(Get::COLOR.length)]} color is a #{Get::ADJECTIVE[rand(Get::ADJECTIVE.length)]}, its not my favorite."
253
106
  when 42
254
- "I love that #{S_COLOR[rand(S_COLOR.length)]} car, but I buy the #{S_COLOR[rand(S_COLOR.length)]}."
107
+ "I love that #{Get::COLOR[rand(Get::COLOR.length)]} car, but I buy the #{Get::COLOR[rand(Get::COLOR.length)]}."
255
108
  when 43
256
- "I am not really fond of the #{S_TVSHOW[rand(S_TVSHOW.length)]} season #{S_NUMBER[rand(S_NUMBER.length)]}, but my #{S_PRONOUN[rand(S_PRONOUN.length)]} are."
109
+ "I am not really fond of the #{Get::TVSHOW[rand(Get::TVSHOW.length)]} season #{Get::NUMBER[rand(Get::NUMBER.length)]}, but my #{Get::PRONOUN[rand(Get::PRONOUN.length)]} are."
257
110
  when 44
258
- "Hurry up guys! the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be on in any minutes."
111
+ "Hurry up guys! the #{Get::TVSHOW[rand(Get::TVSHOW.length)]} show will be on in any minutes."
259
112
  when 45
260
- "Its been awhile from the last season of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show."
113
+ "Its been awhile from the last season of the #{Get::TVSHOW[rand(Get::TVSHOW.length)]} show."
261
114
  when 46
262
- "We are expecting the realease of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
115
+ "We are expecting the realease of the #{Get::TVSHOW[rand(Get::TVSHOW.length)]} show will be next #{Get::NUMBER[rand(Get::NUMBER.length)]} #{Get::TIME[rand(Get::TIME.length)]}."
263
116
  when 47
264
- "It is hard to understand why all of my #{S_PRONOUN[rand(S_PRONOUN.length)]} can watch the #{S_MOVIE[rand(S_MOVIE.length)]} many times."
117
+ "It is hard to understand why all of my #{Get::PRONOUN[rand(Get::PRONOUN.length)]} can watch the #{Get::MOVIE[rand(Get::MOVIE.length)]} many times."
265
118
  when 48
266
- "The main actress of the #{S_MOVIE[rand(S_MOVIE.length)]} is so #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}."
119
+ "The main actress of the #{Get::MOVIE[rand(Get::MOVIE.length)]} is so #{Get::ADJECTIVE[rand(Get::ADJECTIVE.length)]}."
267
120
  when 49
268
- "The #{S_MOVIE[rand(S_MOVIE.length)]} movie is indeed a good one."
121
+ "The #{Get::MOVIE[rand(Get::MOVIE.length)]} movie is indeed a good one."
269
122
  when 50
270
- "Should I turn this $@$*@ #{S_TVSHOW[rand(S_TVSHOW.length)]} show off to watch the #{S_MOVIE[rand(S_MOVIE.length)]} movie."
123
+ "Should I turn this $@$*@ #{Get::TVSHOW[rand(Get::TVSHOW.length)]} show off to watch the #{Get::MOVIE[rand(Get::MOVIE.length)]} movie."
271
124
  when 51
272
- "We love to use #{S_TRANSPORT[rand(S_TRANSPORT.length)]} around the #{S_CITY[rand(S_CITY.length)]} city."
125
+ "We love to use #{Get::TRANSPORT[rand(Get::TRANSPORT.length)]} around the #{Get::CITY[rand(Get::CITY.length)]} city."
273
126
  when 52
274
- "Now I know why #{S_CELEBRITY[rand(S_CELEBRITY.length)]} never uses freaking #{S_TRANSPORT[rand(S_TRANSPORT.length)]} any more."
127
+ "Now I know why #{Get::CELEBRITY[rand(Get::CELEBRITY.length)]} never uses freaking #{Get::TRANSPORT[rand(Get::TRANSPORT.length)]} any more."
275
128
  when 53
276
- "My favorite movie of all time is the #{S_MOVIE[rand(S_MOVIE.length)]}."
129
+ "My favorite movie of all time is the #{Get::MOVIE[rand(Get::MOVIE.length)]}."
277
130
  when 54
278
- "After I watched the #{S_MOVIE[rand(S_MOVIE.length)]} movie many times, I still dont know the story!"
131
+ "After I watched the #{Get::MOVIE[rand(Get::MOVIE.length)]} movie many times, I still dont know the story!"
279
132
  when 55
280
- "I would rather buy the ticket for the #{S_MOVIE[rand(S_MOVIE.length)]} or the #{S_MOVIE[rand(S_MOVIE.length)]}?"
133
+ "I would rather buy the ticket for the #{Get::MOVIE[rand(Get::MOVIE.length)]} or the #{Get::MOVIE[rand(Get::MOVIE.length)]}?"
281
134
  when 56
282
- "One of my #{S_PRONOUN[rand(S_PRONOUN.length)]} suggests that I should download the #{S_MOVIE[rand(S_MOVIE.length)]} movie right away."
135
+ "One of my #{Get::PRONOUN[rand(Get::PRONOUN.length)]} suggests that I should download the #{Get::MOVIE[rand(Get::MOVIE.length)]} movie right away."
283
136
  else
284
137
  "When I was little I had a car door slammed shut on my hand. I still remember it quite vividly."
285
138
  end
@@ -303,6 +156,14 @@ module Tri
303
156
  name.to_s + "@" + generate_email_domain + generate_email_suffix
304
157
  end
305
158
  end
159
+
160
+ def self.url(name = nil)
161
+ if (name == nil)
162
+ "http://" + generate_email_domain + generate_email_suffix
163
+ else
164
+ "http://" + generate_email_domain + generate_email_suffix + "/" + name.to_s + "/"
165
+ end
166
+ end
306
167
 
307
168
  private
308
169
 
@@ -311,12 +172,12 @@ module Tri
311
172
  case rand(3)
312
173
  when 0
313
174
  # generate contry code: .ca, .uk, us
314
- suffix_code += "." + S_ALPHABET.shuffle[0] + S_ALPHABET.shuffle[0]
175
+ suffix_code += "." + Get::ALPHABET.shuffle[0] + Get::ALPHABET.shuffle[0]
315
176
  when 1
316
177
  # generate original code: .com, .net, .org
317
- suffix_code += S_EMAIL_SUFFIX[rand(S_EMAIL_SUFFIX.length)]
178
+ suffix_code += Get::EMAIL_SUFFIX[rand(Get::EMAIL_SUFFIX.length)]
318
179
  else
319
- suffix_code += S_EMAIL_SUFFIX[rand(S_EMAIL_SUFFIX.length)] + "." + S_ALPHABET.shuffle[0] + S_ALPHABET.shuffle[0]
180
+ suffix_code += Get::EMAIL_SUFFIX[rand(Get::EMAIL_SUFFIX.length)] + "." + Get::ALPHABET.shuffle[0] + Get::ALPHABET.shuffle[0]
320
181
  end
321
182
  end
322
183
 
@@ -334,7 +195,7 @@ module Tri
334
195
  when 4
335
196
  prefix_name += Get::NAME[rand(Get::NAME.length)] + "-" + Get::NAME[rand(Get::NAME.length)]
336
197
  else
337
- prefix_name += S_EMAIL_PREFIX[rand(S_EMAIL_PREFIX.length)]
198
+ prefix_name += Get::EMAIL_PREFIX[rand(Get::EMAIL_PREFIX.length)]
338
199
  end
339
200
  prefix_name.downcase
340
201
  end
@@ -343,51 +204,51 @@ module Tri
343
204
  domain_name = ""
344
205
  case rand(25)
345
206
  when 0
346
- domain_name += S_EMAIL_DOMAIN[rand(S_EMAIL_DOMAIN.length)].downcase
207
+ domain_name += Get::EMAIL_DOMAIN[rand(Get::EMAIL_DOMAIN.length)].downcase
347
208
  when 1
348
- domain_name += S_ADJECTIVE[rand(S_ADJECTIVE.length)].downcase
209
+ domain_name += Get::ADJECTIVE[rand(Get::ADJECTIVE.length)].downcase
349
210
  when 2
350
- domain_name += S_NEWS[rand(S_NEWS.length)].downcase
211
+ domain_name += Get::NEWS[rand(Get::NEWS.length)].downcase
351
212
  when 3
352
- domain_name += S_COMPANY[rand(S_COMPANY.length)].downcase.gsub(" ", "-")
213
+ domain_name += Get::COMPANY[rand(Get::COMPANY.length)].downcase.gsub(" ", "-")
353
214
  when 4
354
- domain_name += S_TIME[rand(S_TIME.length)]
215
+ domain_name += Get::TIME[rand(Get::TIME.length)]
355
216
  when 5
356
- domain_name += S_NUMBER[rand(S_NUMBER.length)]
217
+ domain_name += Get::NUMBER[rand(Get::NUMBER.length)]
357
218
  when 6
358
- domain_name += S_JOB[rand(S_JOB.length)].downcase.gsub(" ", "-")
219
+ domain_name += Get::JOB[rand(Get::JOB.length)].downcase.gsub(" ", "-")
359
220
  when 7
360
- domain_name += S_HOBBY[rand(S_HOBBY.length)].downcase.gsub(" ", "-")
221
+ domain_name += Get::HOBBY[rand(Get::HOBBY.length)].downcase.gsub(" ", "-")
361
222
  when 8
362
- domain_name += S_FISH[rand(S_FISH.length)].downcase.gsub(" ", "-")
223
+ domain_name += Get::FISH[rand(Get::FISH.length)].downcase.gsub(" ", "-")
363
224
  when 9
364
- domain_name += S_JOB[rand(S_JOB.length)].downcase.gsub(" ", "-")
225
+ domain_name += Get::JOB[rand(Get::JOB.length)].downcase.gsub(" ", "-")
365
226
  when 10
366
- domain_name += S_BIRD[rand(S_BIRD.length)].downcase.gsub(" ", "-")
227
+ domain_name += Get::BIRD[rand(Get::BIRD.length)].downcase.gsub(" ", "-")
367
228
  when 11
368
- domain_name += S_ANIMAL[rand(S_ANIMAL.length)].downcase.gsub(" ", "-")
229
+ domain_name += Get::ANIMAL[rand(Get::ANIMAL.length)].downcase.gsub(" ", "-")
369
230
  when 12
370
- domain_name += S_LANDMARK[rand(S_LANDMARK.length)].downcase.gsub(" ", "-")
231
+ domain_name += Get::LANDMARK[rand(Get::LANDMARK.length)].downcase.gsub(" ", "-")
371
232
  when 13
372
- domain_name += S_COUNTRY[rand(S_COUNTRY.length)].downcase.gsub(" ", "-")
233
+ domain_name += Get::COUNTRY[rand(Get::COUNTRY.length)].downcase.gsub(" ", "-")
373
234
  when 14
374
- domain_name += S_CITY[rand(S_CITY.length)].downcase.gsub(" ", "-")
235
+ domain_name += Get::CITY[rand(Get::CITY.length)].downcase.gsub(" ", "-")
375
236
  when 15
376
- domain_name += S_COLOR[rand(S_COLOR.length)].downcase.gsub(" ", "-")
237
+ domain_name += Get::COLOR[rand(Get::COLOR.length)].downcase.gsub(" ", "-")
377
238
  when 16
378
- domain_name += S_TRANSPORT[rand(S_TRANSPORT.length)].downcase.gsub(" ", "-")
239
+ domain_name += Get::TRANSPORT[rand(Get::TRANSPORT.length)].downcase.gsub(" ", "-")
379
240
  when 17
380
- domain_name += S_FOOD[rand(S_FOOD.length)].downcase.gsub(" ", "-")
241
+ domain_name += Get::FOOD[rand(Get::FOOD.length)].downcase.gsub(" ", "-")
381
242
  when 18
382
- domain_name += S_SPORT[rand(S_SPORT.length)].downcase.gsub(" ", "-")
243
+ domain_name += Get::SPORT[rand(Get::SPORT.length)].downcase.gsub(" ", "-")
383
244
  when 19
384
- domain_name += S_TVSHOW[rand(S_TVSHOW.length)].downcase.gsub(" ", "-")
245
+ domain_name += Get::TVSHOW[rand(Get::TVSHOW.length)].downcase.gsub(" ", "-")
385
246
  when 20
386
- domain_name += S_MOVIE[rand(S_MOVIE.length)].downcase.gsub(" ", "-")
247
+ domain_name += Get::MOVIE[rand(Get::MOVIE.length)].downcase.gsub(" ", "-")
387
248
  when 21
388
- domain_name += S_PRONOUN[rand(S_PRONOUN.length)].downcase.gsub(" ", "-")
249
+ domain_name += Get::PRONOUN[rand(Get::PRONOUN.length)].downcase.gsub(" ", "-")
389
250
  when 22
390
- domain_name += S_CELEBRITY[rand(S_CELEBRITY.length)].downcase.gsub(" ", "-")
251
+ domain_name += Get::CELEBRITY[rand(Get::CELEBRITY.length)].downcase.gsub(" ", "-")
391
252
  else
392
253
  domain_name += Get::NAME[rand(Get::NAME.length)].downcase.gsub(" ", "-")
393
254
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: tri
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.11
4
+ version: 0.0.12
5
5
  platform: ruby
6
6
  authors:
7
7
  - Tri Huynh
@@ -11,10 +11,11 @@ cert_chain: []
11
11
  date: 2016-01-19 00:00:00.000000000 Z
12
12
  dependencies: []
13
13
  description: "This gem will generate some usefull information for your users such
14
- as: name, full name, sentence, email, email with gravatar ready:\n [Tri::name],
14
+ as: name, full name, sentence, email, email with gravatar ready, url:\n [Tri::name],
15
15
  \n [Tri::fullname], \n [Tri::sentence],
16
- \n [Tri::email] \n [Tri::email(name)]\n
17
- \ [Tri::email_with_gravatar]\n [Tri::email_with_gravatar(number>0)]\n
16
+ \n [Tri::email], \n [Tri::email(name)],\n
17
+ \ [Tri::email_with_gravatar],\n [Tri::email_with_gravatar(number>0)],\n
18
+ \ [Tri::url],\n [Tri::url(name)]\n
18
19
  \ "
19
20
  email: hdtri.expert@gmail.com
20
21
  executables: []
@@ -47,5 +48,5 @@ rubygems_version: 2.5.1
47
48
  signing_key:
48
49
  specification_version: 4
49
50
  summary: 'This gem will generate some usefull information for your users such as:
50
- name, full name, sentence, email, email with gravatar ready.'
51
+ name, full name, sentence, email, email with gravatar ready, url.'
51
52
  test_files: []