tri 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (3) hide show
  1. checksums.yaml +7 -0
  2. data/lib/tri.rb +295 -0
  3. metadata +46 -0
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: 3b2d22cc1b4c3dbc09b7c0ca2065b5247cb1eee7
4
+ data.tar.gz: 7959eb5ad5ed3420ab34e8d8c02efcac1e3145ab
5
+ SHA512:
6
+ metadata.gz: 253ece00dcc4527a90e46c9494490d85c925a9af2ee3e13eaf59fc6566861411d52477862c91c9519d61ebe7759c46a4d350672dad6e3e898c906fd5eaf3e095
7
+ data.tar.gz: 676f37c5b5273e72692cf6eedb06fea0eb7c1f8f32f79cb177bcdac7759c6608e57400ee4416f0f5c97d72b96209038e78dc9aa7e2568989eba5a553f3eca89e
data/lib/tri.rb ADDED
@@ -0,0 +1,295 @@
1
+ module Tri
2
+
3
+ S_NAME = ["Tri", "Huynh", "Nguyen", "Hoang", "Le", "Trang", "Tam", "Phuong", "Huong", "Hong", "Linh", "Thang", "Tin", "Khoi",
4
+ "Phan", "Trinh", "Do", "Ho", "Ngo", "Duong", "Ly", "An", "Bach", "Banh", "Chau", "Chu", "Chung", "Diep", "Doan",
5
+ "Giang", "Ha", "Han", "Kieu", "Kim", "Kim", "La", "Lac", "Luong", "Ma", "Nghiem", "Than", "Thao", "To", "Tong",
6
+ "Trang", "Trinh", "Trieu", "Truong", "Vinh", "Vuong", "Vuu", "Wang", "Li", "Chang", "Liu", "Chen", "Yang", "Huang",
7
+ "Wu", "Hsu", "Sun", "Chu", "Zeng", "Leung", "Yuen", "Poon", "Jyu", "Yip", "Zhang", "Wei", "Min", "Xiuying", "Wang",
8
+ "Yuka", "Ren", "Hiroki", "Kana", "Haruka", "Kazuki", "Ayano", "Daiki", "Yamoto", "Daisuke", "Shinji", "Hiroaki",
9
+ "Sayaka", "Tomoko", "Natsuki", "Makoto", "Ayana", "Toshi", "Narumi", "Mika", "Takeshi", "Yoko", "Kyoko", "Takaya",
10
+ "Min-jun", "Ju-won", "Jun-seo", "Ji-hu", "Min-hun", "Ji-min", "Su-bin", "Eun-seo", "Hyeon-u", "U-jin", "Ji-min",
11
+ "Anastasia", "Dima", "Alex", "Maria", "Sergey", "Vlad", "Max", "Egor", "Roman", "Oleg", "Kostya", "Daniel", "Nick",
12
+ "Lena", "Kristina", "Sofia", "Natalia", "Helen", "Andrei", "Victoria", "Kseniya", "Svetlana", "Nikolai", "Sophia",
13
+ "Asya", "Alexander", "Ksenya", "Vova", "Valentina", "Bekhan", "Katherine", "Aleksei", "Michael", "Eugene", "Leonid",
14
+ "James", "David", "Chirstoper", "George", "Ronald", "John", "Richard", "Daniel", "Patrica", "Maria", "Margaret",
15
+ "Elizabeth", "Dorothy", "Betty", "Karen", "Sarah", "Laura", "Michelle", "Donna", "Edward", "Jason", "Jeff", "Mark",
16
+ "Kevin", "Paul", "Nathan", "Fever", "Amy", "George", "Nancy", "Carol", "Susan", "Deborah", "Kimberly", "Joseph",
17
+ "Marie", "Nicolas", "Antoinie", "Lucas", "Athur", "Jodan", "Caroline", "Amelie", "Celine", "Celia", "Sophie", "Elise",
18
+ "Charlotte", "Guillaume", "Pierre", "Pauline", "Oceane", "Justine", "Clara", "Cassandra", "Cindy", "Stepphane",
19
+ "Sylvain", "Gergory", "Christophe", "Phillippe", "Angelique", "Pablo", "Paula", "Lucia", "Alejandro", "Carlos",
20
+ "Javier", "Miguel", "Raquel", "Pedro", "Diego", "Raul", "Alberto", "Gloria", "Jaime", "Marina", "Angela", "Silvia",
21
+ "Aurora", "Patri", "Yago", "Mario", "Ariadna", "Amin", "Igor", "Nacho", "Rose", "Suri", "Jose miguel", "Ommar",
22
+ "Ammar", "Sultan", "Mohamed", "Ahmed", "Nirmmen", "Ghadda", "Shehab", "Enass", "Farah", "Ali", "Ahmed", "Ramzi",
23
+ "Abdoul", "Mustafa", "Yaasir", "Abdul shire", "Khaalid", "Ahakim", "Caleb", "Dominik", "Julia", "Daniel", "Lukas",
24
+ "Melanie", "Dominik", "Annika", "Franzi", "Jannik", "Henry", "Hendrik", "Olaf", "Elisabeth", "Melissa", "Louisa",
25
+ "Rebecca", "Kathrin", "Jakob", "Konrad", "Ludwig", "Matthias", "Lennart", "Natascha", "Tanya", "Rahul", "Divya",
26
+ "Priyanka", "Aishwarya", "Mahese", "Shardul", "Sayem", "Krithika", "Riharika", "Neeraij", "Mayank", "Deepak",
27
+ "Admaris", "Addison", "Ainsley", "Amanda", "Anastasia", "Andrea", "Angela", "Anjancette", "Araminta", "Ashley",
28
+ "Ashton", "Barbara", "Berenice", "Braelyn", "Burgundy", "Camellia", "Cassandra", "Channing", "Chelsea", "Cornelia",
29
+ "Danette", "Demelza", "Dreama", "Earlene", "Ebony", "Edmonda", "Edmonia", "Edwina", "Gaynelle", "Indiana", "Hollis",
30
+ "Isabella", "Lawanda", "Lindsay", "Madison", "Magnolia", "Meadow", "Paisley", "Parker", "Payton", "Priscilla",
31
+ "Regina", "Roseanne", "Scarlett", "Sabrina", "Serena", "Shelley", "Shirley", "Shnshine", "Synnove", "Tanika",
32
+ "Tempest", "Tyler", "Vanessa", "Veronica", "Velvet", "Whitley", "Wilda", "Winifred", "Winnie", "Wynne", "Zola",
33
+ "Princeton", "Ramsey", "Remington", "Rodney", "Rutherford", "Sheldon", "Justice", "Kelsey", "Kamden", "Kamden"]
34
+
35
+ S_CELEBRITY = ["Kim Kardashian", "Kanye West", "Gwyneth Paltrow", "Miley Cyrus", "Angelina Jolie", "Brad Pitt", "Ashlee Simpson",
36
+ "Jay Z", "Reese Witherspoon", "Gwen Stefani", "Nicolas Cage", "Rihanna", "Craig Ferguson", "David Arquette", "Katy Perry",
37
+ "Mila Kunis", "Jason Lee", "Demi Moore", "Chris Martin", "Natalie Portman", "Zoeey Deschanel", "Tom Cruise",
38
+ "Lady Gaga", "Elton John", "Pete Wentz", "Nicole Richie", "Ashton Kutcher", "Madonna", "Sylvester Stallone",
39
+ "Whoopi Goldberg", "Jennifer Aniston", "Ben Affleck", "Victoria Beckham", "Gavin Rossdale", "Kate Hudson", "Jamie Foxx",
40
+ "David Beckham", "Mariah Carey", "Justin Bieber", "Jennifer Garner", "Nicole Kidman", "Jennifer Lopez",
41
+ "Dwayne Johnson", "Will Smith", "Barack Obama", "Vladimir Putin", "Donald Trump", "George W. Bush", "Bill Clinton",
42
+ "Bill Gate", "Warren Buffett", "Kim Jong-un", "Celine Dion", "Arnold Schwarzenegger", "Van Damme", "Jason Statham",
43
+ "Bruce Willis", "Harrison Ford", "Mel Gibson", "Chuck Norris", "James Cameron"]
44
+
45
+ S_PRONOUN = ["colleagues", "friends", "co-workers", "enemies", "foes", "relatives", "in-laws", "classmates", "guildies",
46
+ "neighbors", "supervisors", "managers", "teachers", "professors", "facebook friends", "ex-s", "girl friends",
47
+ "boy friends", "buddies", "auntes", "uncles", "nephews", "cousins", "niece", "sons", "daughters", "staffs",
48
+ "employees", "sibling", "brothers", "sisters", "parents", "grand parents", "closet friends", "kids", "roomates",
49
+ "customers"]
50
+
51
+ S_MOVIE = ["Godfater", "Shawshank Redemption", "Schindler's List", "One Flew Over the Cuckoo's Nest", "Gone with the Wind",
52
+ "Wizard of Oz", "Lawrence of Arabia", "Forrest Gump", "Star Wars", "E.T. the Extra-Terrestrial", "2001: A Space Odyssey",
53
+ "The Silence of the Lambs", "Bridge on the River Kwai", "Apocalypse Now", "The Lord of the Rings", "The Hobbits",
54
+ "Gladiator", "From Here to Eternity", "Titanic", "Saving Private Ryan", "Unforgiven", "Raiders of the Lost Ark",
55
+ "To Kill a Mockingbird", "Jaws", "Braveheart", "Dances with Wolves", "Pianist", "Exorcist", "Deer Hunter",
56
+ "French Connection", "City Lights", "Birdman", "Grand Budapest Hotel", "Guardians of the Galaxy", "Interstellar",
57
+ "Transformers: Age of Extinction", "X-Men: Days of Future Past", "Captain America", "The Hunger Games",
58
+ "Dawn of the Planet of the Apes", "Fury", "Big Hero 6", "Frozen", "How to train your dragon", "Mad Max: Fury Raod",
59
+ "Martian", "Fast & Furious", "Iron Man", "Ant-Man", "Jurassic World", "Reveanant", "Terminator", "Spectre",
60
+ "Twilight Saga", "Wolf of Wall Street", "Man of Steel", "World War Z", "Despicable Me", "Oblivion", "Pacific Rim"]
61
+
62
+ S_TVSHOW = ["Sherlock", "Homeland", "Game of Thrones", "Mad Men", "Girls", "The American", "Mr.Robot", "Marvel's Daredevil",
63
+ "Better Call Saul", "Catastrophe", "Deutschland 83", "Jane the Virgin", "Good Wife", "Hannibal", "Orphan Black",
64
+ "Orange if the New Black", "Walking Dead", "Breaking Bad", "Master of Sex", "Sex and City", "Last Kingdom",
65
+ "Family guys", "American Dad", "Simpson", "Ash vs. Evel Dead", "Supergirl", "Fargo", "You're the Worst",
66
+ "Crazy Ex-Girlfriend", "Affair", "Show Me a Hero", "Man in the High Castle", "Shannara Chronicles", "Last Ship",
67
+ "Nova"]
68
+
69
+ S_SPORT = ["Baseball", "Basketball", "Football", "Hockey", "Soccer", "Volleyball", "Archery", "Golf", "Badminton", "Canoeing",
70
+ "Kayaking", "Cricket", "Cycling", "Gymnastics", "Judo", "Polo", "Rackets", "Rowing", "Boxing", "Softball",
71
+ "Table tennis", "Tennis", "Wrestling", "Weightlifting", "Taekwondo", "Swimming", "Sailing", "Skiing", "Curling",
72
+ "Skating", "Snowboarding"]
73
+
74
+ S_FOOD = ["Massaman curry", "Neapolitan pizza", "Chocolate cake", "Sushi", "Peking duck", "Hamburger", "Penang assam laksa",
75
+ "Tom yum goong", "Chicken muamba", "Rendang", "Shepherd’s pie", "Corn on the cob", "Kalua pig", "Egg tart",
76
+ "Kebab", "Brownie and vanilla ice cream", "Lasagna", "Butter garlic crab", "Montreal-style smoked meat",
77
+ "Pho's noodle", "Ohmi-gyu beef steak", "Summer roll", "Parma ham", "Fish ‘n’ chips", "Chili crab", "French toast",
78
+ "Stinky tofu", "Seafood paella", "Masala dosa", "Buttered popcorn"]
79
+
80
+ S_TRANSPORT=["ferries", "trains", "metro", "subway", "carpool", "motorbikes", "bikes", "cars", "taxies", "buses", "Uber"]
81
+
82
+ S_COLOR = ["red", "green", "blue", "yellow", "orange", "purple", "pink", "brown", "black", "gray", "white", "magenta",
83
+ "cyan", "ebony", "golden", "salmon", "silver", "skyblue", "violet", "navy", "indigo", "aqua", "coral",
84
+ "chocolate", "crimson", "azure", "olive"]
85
+
86
+ S_CITY = ["Amsterdam", "Ankara", "Athens", "Atlantic", "Baltimore", "Bangkok", "Beijing", "Berlin", "Berne", "Brussels",
87
+ "Budapest", "Buenos Aires", "Cairo", "Canberra", "Cannes", "Cape Town", "Chicago", "Cologne", "Copenhagen", "Damascus",
88
+ "Delhi", "Dubai", "Dublin", "Florence", "Geneve", "Hague", "Hanoi", "Havana", "Helsinki", "Hong Kong", "Honolulu", "Istanbul",
89
+ "Jakarta", "Jerusalem", "Kansas", "Kathmandu", "Kuala Lumpur", "Lisbon", "London", "Los Angeles", "Luxembourg",
90
+ "Madrid", "Manila", "Melbourne", "Mexico", "Milan", "Montreal", "Moscow", "Mumbai", "Munich", "Nazareth", "Nice",
91
+ "Osaka", "Ottawa", "Oslo", "Paris", "Philadelphia", "Phnom Penh", "Prague", "Quito", "Reykjavik", "Rio de Janeiro",
92
+ "San Francisco", "Santa Fe", "Santiago", "Sao Paulo", "Shanghai", "Singapore", "Stockholm", "Saint-Peter", "Sydney",
93
+ "Taipei", "Tokyo", "Toronto", "Venice", "Vienna", "Washington", "Zurich", "Vancouver", "Vatican", "Las Vegas"]
94
+
95
+ S_COUNTRY = ["Canada", "United States", "Mehico", "Venezuela", "Peru", "Chile", "Argentina", "Brazil", "Iceland", "Ireland",
96
+ "United Kingdom", "France", "Spain", "German", "Poland", "Morocco", "Algeria", "Italia", "Ukranie", "Turkey", "Audi Arabia",
97
+ "Pakistan", "China", "India", "Nepal", "Myanmar", "Thailand", "Vietnam", "Korea", "Japan", "Philipin", "Singapore",
98
+ "Australia", "New Zealand", "Taiwan", "Egypt", "Greece", "Malaysia", "Sweden", "Finland", "Indonesia"]
99
+
100
+ S_LANDMARK= ["Statue of Liberty", "Eiffel Tower", "St. Basil's Cathedral", "Blue Domed Church", "Great Sphinx", "Pyramids",
101
+ "Little Mermaid", "Neptune and the Palace", "Windmills", "Great Wall", "Taj Mahal", "Machu Picchu", "Big Ben",
102
+ "Burj al Arab Hotel", "Tower of Pisa", "Christ the Redeemer", "Mecca", "Loch Ness", "Mont St. Michel", "Bran Castle",
103
+ "Agia Sophia Castle", "Brandenburg Gate", "Acropolis", "Sagrada Familia", "Neuschwanstein", "Mount Fuji", "Al Aqsa Mosque",
104
+ "Niagra Falls", "Ankor Wat", "Mannken Pis", "Mount Everest", "St. Peter's Cathedral", "Victoria Falls",
105
+ "Grand Canyon", "Trevi Fountain", "Cape of Good Hope", "Chichen Itza", "Table Mountain", "Golden Gate Bridge",
106
+ "Shell Opera House", "Forbidden City", "Colosseum", "Tower Bridge", "Luxor Temple", "Empire State Building",
107
+ "Temple of Besakih", "Holywood Sign", "Lee surrenders to Grant", "Golden Spike", "Gold Rush 1849", "Panama Canal",
108
+ "Stonehenge", "Suez Canal", "Palace of Parliament"]
109
+
110
+ S_ANIMAL = ["polar bear", "lion", "tiger", "giraffe", "panda", "elephant", "penguin", "wolf", "gorilla", "chimpanzee", "owl",
111
+ "monkey", "kangaroo", "zebra", "moose", "koala", "rhinoceros", "jaguar", "camel", "meerkat", "peacock", "snake",
112
+ "hippopotamus", "platypus", "otter", "badger", "cat", "seal", "dog", "seal", "deer", "skunk", "crocodile",
113
+ "leopard", "bat", "sloth", "lynx", "fox", "sea lion", "cheetah", "tortoise", "buffalo", "cougar", "ostrich", "frog",
114
+ "alligator", "reindeer", "anteater", "walrus", "grizzly bear", "goat", "raccoon", "squirrel", "sheep", "wild board",
115
+ "pig", "horse"]
116
+
117
+ S_BIRD = ["hummingbird" , "owl", "penguin", "finch", "cockatoo", "crane", "toucan", "swallow", "heron", "cuckoos", "sparrow",
118
+ "flamingo", "albatross", "moa", "stork", "sandpiper", "plover", "kiwis", "woodpecker", "hornbill", "gull", "falconidae",
119
+ "rheas", "swift", "tem", "cormorant", "grouse", "spoonbill", "parrots", "goose", "fowl", "eagle", "accipitriformes",
120
+ "rallidae", "bee-eater", "skua", "pelecaniformes", "bustard", "neognathae", "curlew", "snipe", "shearwater", "shag",
121
+ "raven", "merlin", "stonechat"]
122
+
123
+ S_FISH = ["guppy", "carp", "shark", "gold", "cat", "arowana", "sunfish", "northen pike", "zander", "oscar", "seabass",
124
+ "trout", "cobia", "snook", "candiru", "salmon", "swordtail", "mahi-mahi", "bream", "salmon", "barramundi", "vetiprovidentiae",
125
+ "striped bass", "neon tetra", "artic char", "bluegill", "escolar", "surgeon", "pumpkinseed", "platy", "grouper",
126
+ "blob", "eel", "naddock", "turbot", "grey mullet", "sea horse", "clown", "snakehead", "beluga", "trumpet", "jellow",
127
+ "moa trunk", "dolphin"]
128
+
129
+ S_HOPPY = ["reading books", "Watching TVs", "spednig time with family", "Watching movies", "fishing", "playing computer games",
130
+ "gardening", "walking", "listening to music", "window shopping", "sleeping and relaxing", "cooking", "playing golf",
131
+ "socializing", "sewing", "hiking", "eating out", "camping", "working on cars", "writing", "motorcycling", "dancing",
132
+ "painting", "horseback riding", "working volunteer", "chatting"]
133
+
134
+ S_JOB = ["carpenter", "welder", "plumper", "acter", "actress", "waiter", "waitress", "reporter", "programer",
135
+ "nurse", "doctor", "cleaner", "manager", "cashier", "bartender", "taxi driver", "trucker", "college professer",
136
+ "truck driver", "crane operator", "machine operator", "machinist", "accountant", "consultant", "layer", "judge",
137
+ "politcian", "policeman", "president", "spy", "scecret agent", "astronount", "businessman", "teacher", "veteran",
138
+ "comedian", "doctor", "thief", "robber", "baker", "priminister", "sport professor player", "librarian", "fire fighter",
139
+ "realtor", "bocker", "flight attendent", "pilot", "ship captain", "singer", "musician", "detective"]
140
+
141
+ S_EMOTION_GOOD = ["Holycow!", "Holy $#@%@!", "Unbelivable!", "Awesome!", "So lovely!", "Fanstatic", "WoW!", "Cool!", "Yay!",
142
+ "Hurray!", "Wonderful!", "Excellent!", "Luckily!", "Yippi!", "Good job!", "Ingredible!"]
143
+
144
+ S_NUMBER = ["two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven"]
145
+
146
+ S_TIME = ["minutes", "hours", "days", "weeks", "months", "years", "decades"]
147
+
148
+ S_COMPANY = ["Walmart", "Exxon Mobil", "Chevron", "Berkshire Hathaway", "Apple Inc", "General Motors", "General Electric",
149
+ "AT&T", "Verizon", "Fannie Mae", "Costco", "Hewlet Packer", "JP Morgan Chase", "Bank of America Corp",
150
+ "Marathon Petroleum", "Boeing", "Citigroup", "Amazon", "Microsoft", "Facebook", "Google", "Home Depot",
151
+ "Target", "Johnson & Johnson", "Freddie Mac", "Comcast", "Netflix", "Fedex", "UPS", "Lowe's", "Intel",
152
+ "Walt Disney", "Cisco Systems", "Coca-Cola", "Best Buy", "Goldman Sachs Group", "Oracle", "Safeway",
153
+ "American Express", "Time Warner", "Macy's", "Tech Data", "McDonald's", "eBay"]
154
+
155
+ S_NEWS = ["BBC", "CNN", "FOX", "ABC", "CTV", "NBC", "CBSN", "LiveTV"]
156
+
157
+ S_ADJECTIVE= ["lovely", "good", "important", "adorable", "beautiful", "elegant", "fancy", "glamorous", "nice"]
158
+
159
+ def Tri::name
160
+ S_NAME[rand(S_NAME.length)]
161
+ end
162
+
163
+ def Tri::fullname
164
+ middle = [" II", " III", ", Jr.", ", Sr."]
165
+ if (rand(100)<80)
166
+ S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)]
167
+ else
168
+ if (rand(100)<50)
169
+ S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)][0].upcase + ". " + S_NAME[rand(S_NAME.length)]
170
+ else
171
+ S_NAME[rand(S_NAME.length)] + " " + S_NAME[rand(S_NAME.length)] + middle[rand(middle.length)]
172
+ end
173
+ end
174
+ end
175
+
176
+ def Tri::sentence
177
+ case rand(57)
178
+ when 0
179
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
180
+ when 1
181
+ "Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_ANIMAL[rand(S_ANIMAL.length)]} in the local zoo."
182
+ when 2
183
+ "#{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local zoo because it has the #{S_ANIMAL[rand(S_ANIMAL.length)]}."
184
+ when 3
185
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
186
+ when 4
187
+ "Our #{S_PRONOUN[rand(S_PRONOUN.length)]} love to see the #{S_FISH[rand(S_FISH.length)]} in the local aquarium."
188
+ when 5
189
+ "#{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]} do not like the local aquarium because it has the #{S_FISH[rand(S_FISH.length)]}."
190
+ when 6
191
+ "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} I just meet #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
192
+ when 7
193
+ "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} My #{S_PRONOUN[rand(S_PRONOUN.length)]} just take a selfie picture with #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
194
+ when 8
195
+ "#{S_EMOTION_GOOD[rand(S_EMOTION_GOOD.length)]} #{S_CELEBRITY[rand(S_CELEBRITY.length)]} adds 'friend' with our #{S_PRONOUN[rand(S_PRONOUN.length)]} on Facbook."
196
+ when 9
197
+ "Should I watch #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match on TV?"
198
+ when 10
199
+ "Should I by tickets for #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} match this weekend?"
200
+ when 11
201
+ "Should I become a #{S_SPORT[rand(S_SPORT.length)]} or #{S_SPORT[rand(S_SPORT.length)]} fan of my town team?"
202
+ when 12
203
+ "I usually like #{S_HOPPY[rand(S_HOPPY.length)]} with my leisure time."
204
+ when 13
205
+ "When I have freetime, I love to #{S_HOPPY[rand(S_HOPPY.length)]} with my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
206
+ when 14
207
+ "Is not a good idea to speend time #{S_HOPPY[rand(S_HOPPY.length)]} with #{S_NAME[rand(S_NAME.length)]}'s #{S_PRONOUN[rand(S_PRONOUN.length)]}."
208
+ when 15
209
+ "I just wonder if #{S_CELEBRITY[rand(S_CELEBRITY.length)]} loves #{S_HOPPY[rand(S_HOPPY.length)]} like me?"
210
+ when 16
211
+ "I dont think #{S_CELEBRITY[rand(S_CELEBRITY.length)]} likes #{S_HOPPY[rand(S_HOPPY.length)]}."
212
+ when 17
213
+ "People say that #{S_HOPPY[rand(S_HOPPY.length)]} is the only hoppy of #{S_CELEBRITY[rand(S_CELEBRITY.length)]}."
214
+ when 18
215
+ "Finally, #{S_CITY[rand(S_CITY.length)]}, home sweet home!"
216
+ when 19
217
+ "Me and my #{S_PRONOUN[rand(S_PRONOUN.length)]} will visit #{S_CITY[rand(S_CITY.length)]} next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
218
+ when 20
219
+ "Next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}, I will move back to #{S_CITY[rand(S_CITY.length)]}."
220
+ when 21
221
+ "I am going to transit at #{S_CITY[rand(S_CITY.length)]}'s airport for a few hours."
222
+ when 22
223
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} think the #{S_LANDMARK[rand(S_LANDMARK.length)]} belongs to #{S_COUNTRY[rand(S_COUNTRY.length)]}"
224
+ when 23
225
+ "Is it true that #{S_LANDMARK[rand(S_LANDMARK.length)]} is resided at #{S_COUNTRY[rand(S_COUNTRY.length)]}."
226
+ when 24
227
+ "The air tickets flying to #{S_LANDMARK[rand(S_LANDMARK.length)]} will be sky high in next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
228
+ when 25
229
+ "I used to be a #{S_JOB[rand(S_JOB.length)]} before becoming a #{S_JOB[rand(S_JOB.length)]}."
230
+ when 26
231
+ "#{S_NUMBER[rand(S_NUMBER.length)].capitalize} #{S_TIME[rand(S_TIME.length)]} ago, I still was a #{S_JOB[rand(S_JOB.length)]}."
232
+ when 27
233
+ "Becoming a #{S_JOB[rand(S_JOB.length)]} is one of my childish dreams!"
234
+ when 28
235
+ "My son wants a #{S_FISH[rand(S_FISH.length)]} fish pet while his sister demands a #{S_ANIMAL[rand(S_ANIMAL.length)]}!"
236
+ when 29
237
+ "Would you like a #{S_BIRD[rand(S_BIRD.length)]} bird or a #{S_FISH[rand(S_FISH.length)]} fish for your birthday gift?"
238
+ when 30
239
+ "My #{S_PRONOUN[rand(S_PRONOUN.length)]} just found a brand new #{S_BIRD[rand(S_BIRD.length)]} bird in #{S_CITY[rand(S_CITY.length)]}."
240
+ when 31
241
+ "According to the #{S_NEWS[rand(S_NEWS.length)]} news channel, #{S_COMPANY[rand(S_COMPANY.length)]} will expand its business to #{S_COUNTRY[rand(S_COUNTRY.length)]}."
242
+ when 32
243
+ "There are alot of rumors about the #{S_COMPANY[rand(S_COMPANY.length)]} corp will accquired the #{S_COUNTRY[rand(S_COUNTRY.length)]} within #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
244
+ when 33
245
+ "Wait a minute! Is it true that the #{S_COMPANY[rand(S_COMPANY.length)]} coorp is hiring alot of #{S_JOB[rand(S_JOB.length)]} positions?!?!"
246
+ when 34
247
+ "I am trying to apply a job in the #{S_COMPANY[rand(S_COMPANY.length)]} company in #{S_CITY[rand(S_CITY.length)]} city."
248
+ when 35
249
+ "Have you ever try the #{S_FOOD[rand(S_FOOD.length)]} food in #{S_CITY[rand(S_CITY.length)]} city yet?"
250
+ when 36
251
+ "I have heard my #{S_PRONOUN[rand(S_PRONOUN.length)]} said something good about the #{S_FOOD[rand(S_FOOD.length)]} food."
252
+ when 37
253
+ "Somebody say that the #{S_FOOD[rand(S_FOOD.length)]} deli is came from #{S_COUNTRY[rand(S_COUNTRY.length)]}."
254
+ when 38
255
+ "I love to make the #{S_FOOD[rand(S_FOOD.length)]} for my #{S_PRONOUN[rand(S_PRONOUN.length)]}."
256
+ when 40
257
+ "#{S_COLOR[rand(S_COLOR.length)].capitalize} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]} color."
258
+ when 41
259
+ "Althought #{S_COLOR[rand(S_COLOR.length)]} is a #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}, its not my favorite."
260
+ when 42
261
+ "I love that #{S_COLOR[rand(S_COLOR.length)]} car, but I buy the #{S_COLOR[rand(S_COLOR.length)]}."
262
+ when 43
263
+ "I am not really fond of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show, but my #{S_PRONOUN[rand(S_PRONOUN.length)]} are."
264
+ when 44
265
+ "Hurry up guys! the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be on in any minutes."
266
+ when 45
267
+ "Its been awhile from the last season of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show."
268
+ when 46
269
+ "We are expecting the realease of the #{S_TVSHOW[rand(S_TVSHOW.length)]} show will be next #{S_NUMBER[rand(S_NUMBER.length)]} #{S_TIME[rand(S_TIME.length)]}."
270
+ when 47
271
+ "It is hard to understand why all of my #{S_PRONOUN[rand(S_PRONOUN.length)]} can watch the #{S_MOVIE[rand(S_MOVIE.length)]} many times."
272
+ when 48
273
+ "The main actress of the #{S_MOVIE[rand(S_MOVIE.length)]} is so #{S_ADJECTIVE[rand(S_ADJECTIVE.length)]}."
274
+ when 49
275
+ "The #{S_MOVIE[rand(S_MOVIE.length)]} movie is indeed a good one."
276
+ when 50
277
+ "Should I turn this $@$*@ #{S_TVSHOW[rand(S_TVSHOW.length)]} show off to watch the #{S_MOVIE[rand(S_MOVIE.length)]} movie."
278
+ when 51
279
+ "We love to use #{S_TRANSPORT[rand(S_TRANSPORT.length)]} around the #{S_CITY[rand(S_CITY.length)]} city."
280
+ when 52
281
+ "Now I know why #{S_CELEBRITY[rand(S_CELEBRITY.length)]} never uses freaking #{S_TRANSPORT[rand(S_TRANSPORT.length)]} any more."
282
+ when 53
283
+ "My favorite movie of all time is the #{S_MOVIE[rand(S_MOVIE.length)]}."
284
+ when 54
285
+ "After watched the #{S_MOVIE[rand(S_MOVIE.length)]} movie many times, I still dont know the story!"
286
+ when 55
287
+ "I would rather buy the ticket for the #{S_MOVIE[rand(S_MOVIE.length)]} or the #{S_MOVIE[rand(S_MOVIE.length)]}?"
288
+ when 56
289
+ "One of my #{S_PRONOUN[rand(S_PRONOUN.length)]} suggests that I should download the #{S_MOVIE[rand(S_MOVIE.length)]} movie right away."
290
+ else
291
+ "When I was little I had a car door slammed shut on my hand. I still remember it quite vividly."
292
+ end
293
+ end
294
+
295
+ end
metadata ADDED
@@ -0,0 +1,46 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: tri
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - Tri Huynh
8
+ autorequire:
9
+ bindir: bin
10
+ cert_chain: []
11
+ date: 2016-01-17 00:00:00.000000000 Z
12
+ dependencies: []
13
+ description: 'This game will generate some usefull infor mation for your user such
14
+ as: name, full name, sentence: [Tri::name], [Tri::fullname], [Tri::sentence]'
15
+ email: hdtri.expert@gmail.com
16
+ executables: []
17
+ extensions: []
18
+ extra_rdoc_files: []
19
+ files:
20
+ - lib/tri.rb
21
+ homepage: https://trihuynh.herokuapp.com
22
+ licenses:
23
+ - MIT
24
+ metadata: {}
25
+ post_install_message:
26
+ rdoc_options: []
27
+ require_paths:
28
+ - lib
29
+ required_ruby_version: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - ">="
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ required_rubygems_version: !ruby/object:Gem::Requirement
35
+ requirements:
36
+ - - ">="
37
+ - !ruby/object:Gem::Version
38
+ version: '0'
39
+ requirements: []
40
+ rubyforge_project:
41
+ rubygems_version: 2.5.1
42
+ signing_key:
43
+ specification_version: 4
44
+ summary: 'This game will generate some usefull infor mation for your user such as:
45
+ name, full name, sentence'
46
+ test_files: []