transformers-rb 0.1.1 → 0.1.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -0
- data/README.md +64 -3
- data/lib/transformers/configuration_utils.rb +32 -4
- data/lib/transformers/modeling_utils.rb +10 -3
- data/lib/transformers/models/auto/auto_factory.rb +1 -1
- data/lib/transformers/models/auto/configuration_auto.rb +5 -2
- data/lib/transformers/models/auto/modeling_auto.rb +9 -3
- data/lib/transformers/models/auto/tokenization_auto.rb +5 -2
- data/lib/transformers/models/deberta_v2/configuration_deberta_v2.rb +80 -0
- data/lib/transformers/models/deberta_v2/modeling_deberta_v2.rb +1210 -0
- data/lib/transformers/models/deberta_v2/tokenization_deberta_v2_fast.rb +78 -0
- data/lib/transformers/models/mpnet/configuration_mpnet.rb +61 -0
- data/lib/transformers/models/mpnet/modeling_mpnet.rb +792 -0
- data/lib/transformers/models/mpnet/tokenization_mpnet_fast.rb +106 -0
- data/lib/transformers/models/xlm_roberta/configuration_xlm_roberta.rb +68 -0
- data/lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb +1216 -0
- data/lib/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.rb +68 -0
- data/lib/transformers/pipelines/_init.rb +16 -5
- data/lib/transformers/pipelines/reranking.rb +33 -0
- data/lib/transformers/version.rb +1 -1
- data/lib/transformers.rb +16 -0
- metadata +15 -5
| @@ -0,0 +1,1216 @@ | |
| 1 | 
            +
            # Copyright 2019 Facebook AI Research and the HuggingFace Inc. team.
         | 
| 2 | 
            +
            # Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            module Transformers
         | 
| 17 | 
            +
              module XlmRoberta
         | 
| 18 | 
            +
                class XLMRobertaEmbeddings < Torch::NN::Module
         | 
| 19 | 
            +
                  def initialize(config)
         | 
| 20 | 
            +
                    super()
         | 
| 21 | 
            +
                    @word_embeddings = Torch::NN::Embedding.new(config.vocab_size, config.hidden_size, padding_idx: config.pad_token_id)
         | 
| 22 | 
            +
                    @position_embeddings = Torch::NN::Embedding.new(config.max_position_embeddings, config.hidden_size)
         | 
| 23 | 
            +
                    @token_type_embeddings = Torch::NN::Embedding.new(config.type_vocab_size, config.hidden_size)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         | 
| 26 | 
            +
                    # any TensorFlow checkpoint file
         | 
| 27 | 
            +
                    @LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
         | 
| 28 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
         | 
| 29 | 
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         | 
| 30 | 
            +
                    @position_embedding_type = config.getattr("position_embedding_type", "absolute")
         | 
| 31 | 
            +
                    register_buffer("position_ids", Torch.arange(config.max_position_embeddings).expand([1, -1]), persistent: false)
         | 
| 32 | 
            +
                    register_buffer("token_type_ids", Torch.zeros(@position_ids.size, dtype: Torch.long), persistent: false)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    @padding_idx = config.pad_token_id
         | 
| 35 | 
            +
                    @position_embeddings = Torch::NN::Embedding.new(config.max_position_embeddings, config.hidden_size, padding_idx: @padding_idx)
         | 
| 36 | 
            +
                  end
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                  def forward(input_ids: nil, token_type_ids: nil, position_ids: nil, inputs_embeds: nil, past_key_values_length: 0)
         | 
| 39 | 
            +
                    if position_ids.nil?
         | 
| 40 | 
            +
                      if !input_ids.nil?
         | 
| 41 | 
            +
                        # Create the position ids from the input token ids. Any padded tokens remain padded.
         | 
| 42 | 
            +
                        position_ids = create_position_ids_from_input_ids(input_ids, @padding_idx, past_key_values_length:)
         | 
| 43 | 
            +
                      else
         | 
| 44 | 
            +
                        position_ids = create_position_ids_from_inputs_embeds(inputs_embeds)
         | 
| 45 | 
            +
                      end
         | 
| 46 | 
            +
                    end
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    if !input_ids.nil?
         | 
| 49 | 
            +
                      input_shape = input_ids.size
         | 
| 50 | 
            +
                    else
         | 
| 51 | 
            +
                      input_shape = inputs_embeds.size[...-1]
         | 
| 52 | 
            +
                    end
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    seq_length = input_shape[1]
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
         | 
| 57 | 
            +
                    # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
         | 
| 58 | 
            +
                    # issue #5664
         | 
| 59 | 
            +
                    if token_type_ids.nil?
         | 
| 60 | 
            +
                      if respond_to?(:token_type_ids)
         | 
| 61 | 
            +
                        buffered_token_type_ids = token_type_ids[0.., ...seq_length]
         | 
| 62 | 
            +
                        buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
         | 
| 63 | 
            +
                        token_type_ids = buffered_token_type_ids_expanded
         | 
| 64 | 
            +
                      else
         | 
| 65 | 
            +
                        token_type_ids = Torch.zeros(input_shape, dtype: Torch.long, device: @position_ids.device)
         | 
| 66 | 
            +
                      end
         | 
| 67 | 
            +
                    end
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    if inputs_embeds.nil?
         | 
| 70 | 
            +
                      inputs_embeds = @word_embeddings.(input_ids)
         | 
| 71 | 
            +
                    end
         | 
| 72 | 
            +
                    token_type_embeddings = @token_type_embeddings.(token_type_ids)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    embeddings = inputs_embeds + token_type_embeddings
         | 
| 75 | 
            +
                    if @position_embedding_type == "absolute"
         | 
| 76 | 
            +
                      position_embeddings = @position_embeddings.(position_ids)
         | 
| 77 | 
            +
                      embeddings += position_embeddings
         | 
| 78 | 
            +
                    end
         | 
| 79 | 
            +
                    embeddings = @LayerNorm.(embeddings)
         | 
| 80 | 
            +
                    embeddings = @dropout.(embeddings)
         | 
| 81 | 
            +
                    embeddings
         | 
| 82 | 
            +
                  end
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                  def create_position_ids_from_inputs_embeds(inputs_embeds)
         | 
| 85 | 
            +
                    input_shape = inputs_embeds.size[...-1]
         | 
| 86 | 
            +
                    sequence_length = input_shape[1]
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    position_ids = Torch.arange(@padding_idx + 1, sequence_length + @padding_idx + 1, dtype: Torch.long, device: inputs_embeds.device)
         | 
| 89 | 
            +
                    position_ids.unsqueeze(0).expand(input_shape)
         | 
| 90 | 
            +
                  end
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                  def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length: 0)
         | 
| 93 | 
            +
                    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
         | 
| 94 | 
            +
                    mask = input_ids.ne(padding_idx).int
         | 
| 95 | 
            +
                    incremental_indices = (Torch.cumsum(mask, dim: 1).type_as(mask) + past_key_values_length) * mask
         | 
| 96 | 
            +
                    incremental_indices.long + padding_idx
         | 
| 97 | 
            +
                  end
         | 
| 98 | 
            +
                end
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                class XLMRobertaSelfAttention < Torch::NN::Module
         | 
| 101 | 
            +
                  def initialize(config, position_embedding_type: nil)
         | 
| 102 | 
            +
                    super()
         | 
| 103 | 
            +
                    if config.hidden_size % config.num_attention_heads != 0 && !config.hasattr("embedding_size")
         | 
| 104 | 
            +
                      raise ArgumentError, "The hidden size (#{config.hidden_size}) is not a multiple of the number of attention heads (#{config.num_attention_heads})"
         | 
| 105 | 
            +
                    end
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    @num_attention_heads = config.num_attention_heads
         | 
| 108 | 
            +
                    @attention_head_size = (config.hidden_size / config.num_attention_heads).to_i
         | 
| 109 | 
            +
                    @all_head_size = @num_attention_heads * @attention_head_size
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    @query = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
         | 
| 112 | 
            +
                    @key = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
         | 
| 113 | 
            +
                    @value = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: config.attention_probs_dropout_prob)
         | 
| 116 | 
            +
                    @position_embedding_type = position_embedding_type || config.getattr("position_embedding_type", "absolute")
         | 
| 117 | 
            +
                    if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query"
         | 
| 118 | 
            +
                      @max_position_embeddings = config.max_position_embeddings
         | 
| 119 | 
            +
                      @distance_embedding = Torch::NN::Embedding.new((2 * config.max_position_embeddings) - 1, @attention_head_size)
         | 
| 120 | 
            +
                    end
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    @is_decoder = config.is_decoder
         | 
| 123 | 
            +
                  end
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                  def transpose_for_scores(x)
         | 
| 126 | 
            +
                    new_x_shape = x.size[...-1] + [@num_attention_heads, @attention_head_size]
         | 
| 127 | 
            +
                    x = x.view(new_x_shape)
         | 
| 128 | 
            +
                    x.permute(0, 2, 1, 3)
         | 
| 129 | 
            +
                  end
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                  def forward(
         | 
| 132 | 
            +
                    hidden_states,
         | 
| 133 | 
            +
                    attention_mask: nil,
         | 
| 134 | 
            +
                    head_mask: nil,
         | 
| 135 | 
            +
                    encoder_hidden_states: nil,
         | 
| 136 | 
            +
                    encoder_attention_mask: nil,
         | 
| 137 | 
            +
                    past_key_value: nil,
         | 
| 138 | 
            +
                    output_attentions: false
         | 
| 139 | 
            +
                  )
         | 
| 140 | 
            +
                    mixed_query_layer = @query.(hidden_states)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    # If this is instantiated as a cross-attention module, the keys
         | 
| 143 | 
            +
                    # and values come from an encoder; the attention mask needs to be
         | 
| 144 | 
            +
                    # such that the encoder's padding tokens are not attended to.
         | 
| 145 | 
            +
                    is_cross_attention = !encoder_hidden_states.nil?
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    if is_cross_attention && !past_key_value.nil?
         | 
| 148 | 
            +
                      # reuse k,v, cross_attentions
         | 
| 149 | 
            +
                      key_layer = past_key_value[0]
         | 
| 150 | 
            +
                      value_layer = past_key_value[1]
         | 
| 151 | 
            +
                      attention_mask = encoder_attention_mask
         | 
| 152 | 
            +
                    elsif is_cross_attention
         | 
| 153 | 
            +
                      key_layer = transpose_for_scores(@key.(encoder_hidden_states))
         | 
| 154 | 
            +
                      value_layer = transpose_for_scores(@value.(encoder_hidden_states))
         | 
| 155 | 
            +
                      attention_mask = encoder_attention_mask
         | 
| 156 | 
            +
                    elsif !past_key_value.nil?
         | 
| 157 | 
            +
                      key_layer = transpose_for_scores(@key.(hidden_states))
         | 
| 158 | 
            +
                      value_layer = transpose_for_scores(@value.(hidden_states))
         | 
| 159 | 
            +
                      key_layer = Torch.cat([past_key_value[0], key_layer], dim: 2)
         | 
| 160 | 
            +
                      value_layer = Torch.cat([past_key_value[1], value_layer], dim: 2)
         | 
| 161 | 
            +
                    else
         | 
| 162 | 
            +
                      key_layer = transpose_for_scores(@key.(hidden_states))
         | 
| 163 | 
            +
                      value_layer = transpose_for_scores(@value.(hidden_states))
         | 
| 164 | 
            +
                    end
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    query_layer = transpose_for_scores(mixed_query_layer)
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    use_cache = !past_key_value.nil?
         | 
| 169 | 
            +
                    if @is_decoder
         | 
| 170 | 
            +
                      # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
         | 
| 171 | 
            +
                      # Further calls to cross_attention layer can then reuse all cross-attention
         | 
| 172 | 
            +
                      # key/value_states (first "if" case)
         | 
| 173 | 
            +
                      # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
         | 
| 174 | 
            +
                      # all previous decoder key/value_states. Further calls to uni-directional self-attention
         | 
| 175 | 
            +
                      # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
         | 
| 176 | 
            +
                      # if encoder bi-directional self-attention `past_key_value` is always `None`
         | 
| 177 | 
            +
                      past_key_value = [key_layer, value_layer]
         | 
| 178 | 
            +
                    end
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         | 
| 181 | 
            +
                    attention_scores = Torch.matmul(query_layer, key_layer.transpose(-1, -2))
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query"
         | 
| 184 | 
            +
                      query_length, key_length = [query_layer.shape[2], key_layer.shape[2]]
         | 
| 185 | 
            +
                      if use_cache
         | 
| 186 | 
            +
                        position_ids_l = Torch.tensor(key_length - 1, dtype: Torch.long, device: hidden_states.device).view(-1, 1)
         | 
| 187 | 
            +
                      else
         | 
| 188 | 
            +
                        position_ids_l = Torch.arange(query_length, dtype: Torch.long, device: hidden_states.device).view(-1, 1)
         | 
| 189 | 
            +
                      end
         | 
| 190 | 
            +
                      position_ids_r = Torch.arange(key_length, dtype: Torch.long, device: hidden_states.device).view(1, -1)
         | 
| 191 | 
            +
                      distance = position_ids_l - position_ids_r
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                      positional_embedding = @distance_embedding.((distance + @max_position_embeddings) - 1)
         | 
| 194 | 
            +
                      positional_embedding = positional_embedding.to(dtype: query_layer.dtype)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                      if @position_embedding_type == "relative_key"
         | 
| 197 | 
            +
                        relative_position_scores = Torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         | 
| 198 | 
            +
                        attention_scores = attention_scores + relative_position_scores
         | 
| 199 | 
            +
                      elsif @position_embedding_type == "relative_key_query"
         | 
| 200 | 
            +
                        relative_position_scores_query = Torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         | 
| 201 | 
            +
                        relative_position_scores_key = Torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
         | 
| 202 | 
            +
                        attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
         | 
| 203 | 
            +
                      end
         | 
| 204 | 
            +
                    end
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    attention_scores = attention_scores / Math.sqrt(@attention_head_size)
         | 
| 207 | 
            +
                    if !attention_mask.nil?
         | 
| 208 | 
            +
                      # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
         | 
| 209 | 
            +
                      attention_scores = attention_scores + attention_mask
         | 
| 210 | 
            +
                    end
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    # Normalize the attention scores to probabilities.
         | 
| 213 | 
            +
                    attention_probs = Torch::NN::Functional.softmax(attention_scores, dim: -1)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    # This is actually dropping out entire tokens to attend to, which might
         | 
| 216 | 
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         | 
| 217 | 
            +
                    attention_probs = @dropout.(attention_probs)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    # Mask heads if we want to
         | 
| 220 | 
            +
                    if !head_mask.nil?
         | 
| 221 | 
            +
                      attention_probs = attention_probs * head_mask
         | 
| 222 | 
            +
                    end
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    context_layer = Torch.matmul(attention_probs, value_layer)
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous
         | 
| 227 | 
            +
                    new_context_layer_shape = context_layer.size[...-2] + [@all_head_size]
         | 
| 228 | 
            +
                    context_layer = context_layer.view(new_context_layer_shape)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    outputs = output_attentions ? [context_layer, attention_probs] : [context_layer]
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    if @is_decoder
         | 
| 233 | 
            +
                      outputs = outputs + [past_key_value]
         | 
| 234 | 
            +
                    end
         | 
| 235 | 
            +
                    outputs
         | 
| 236 | 
            +
                  end
         | 
| 237 | 
            +
                end
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                class XLMRobertaSdpaSelfAttention < XLMRobertaSelfAttention
         | 
| 240 | 
            +
                  def initialize(config, position_embedding_type: nil)
         | 
| 241 | 
            +
                    super(config, position_embedding_type: position_embedding_type)
         | 
| 242 | 
            +
                    @dropout_prob = config.attention_probs_dropout_prob
         | 
| 243 | 
            +
                    @require_contiguous_qkv = Packaging::Version.parse(Utils.get_torch_version) < Packaging::Version.parse("2.2.0")
         | 
| 244 | 
            +
                  end
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                  # Adapted from XLMRobertaSelfAttention
         | 
| 247 | 
            +
                  def forward(
         | 
| 248 | 
            +
                    hidden_states,
         | 
| 249 | 
            +
                    attention_mask: nil,
         | 
| 250 | 
            +
                    head_mask: nil,
         | 
| 251 | 
            +
                    encoder_hidden_states: nil,
         | 
| 252 | 
            +
                    encoder_attention_mask: nil,
         | 
| 253 | 
            +
                    past_key_value: nil,
         | 
| 254 | 
            +
                    output_attentions: false
         | 
| 255 | 
            +
                  )
         | 
| 256 | 
            +
                    if @position_embedding_type != "absolute" || output_attentions || !head_mask.nil?
         | 
| 257 | 
            +
                      # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
         | 
| 258 | 
            +
                      Transformers.logger.warn("XLMRobertaSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support non-absolute `position_embedding_type` or `output_attentions: true` or `head_mask`. Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation: \"eager\"` when loading the model.")
         | 
| 259 | 
            +
                      return super(hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)
         | 
| 260 | 
            +
                    end
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    bsz, tgt_len, _ = hidden_states.size
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    query_layer = transpose_for_scores(@query.(hidden_states))
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    # If this is instantiated as a cross-attention module, the keys and values come from an encoder; the attention
         | 
| 267 | 
            +
                    # mask needs to be such that the encoder's padding tokens are not attended to.
         | 
| 268 | 
            +
                    is_cross_attention = !encoder_hidden_states.nil?
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    current_states = is_cross_attention ? encoder_hidden_states : hidden_states
         | 
| 271 | 
            +
                    attention_mask = is_cross_attention ? encoder_attention_mask : attention_mask
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    # Check `seq_length` of `past_key_value` == `len(current_states)` to support prefix tuning
         | 
| 274 | 
            +
                    if is_cross_attention && past_key_value && past_key_value[0].shape[2] == current_states.shape[1]
         | 
| 275 | 
            +
                      key_layer, value_layer = past_key_value
         | 
| 276 | 
            +
                    else
         | 
| 277 | 
            +
                      key_layer = transpose_for_scores(@key.(current_states))
         | 
| 278 | 
            +
                      value_layer = transpose_for_scores(@value.(current_states))
         | 
| 279 | 
            +
                      if !past_key_value.nil? && !is_cross_attention
         | 
| 280 | 
            +
                        key_layer = Torch.cat([past_key_value[0], key_layer], dim: 2)
         | 
| 281 | 
            +
                        value_layer = Torch.cat([past_key_value[1], value_layer], dim: 2)
         | 
| 282 | 
            +
                      end
         | 
| 283 | 
            +
                    end
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    if @is_decoder
         | 
| 286 | 
            +
                      # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
         | 
| 287 | 
            +
                      # Further calls to cross_attention layer can then reuse all cross-attention
         | 
| 288 | 
            +
                      # key/value_states (first "if" case)
         | 
| 289 | 
            +
                      # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
         | 
| 290 | 
            +
                      # all previous decoder key/value_states. Further calls to uni-directional self-attention
         | 
| 291 | 
            +
                      # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
         | 
| 292 | 
            +
                      # if encoder bi-directional self-attention `past_key_value` is always `None`
         | 
| 293 | 
            +
                      past_key_value = [key_layer, value_layer]
         | 
| 294 | 
            +
                    end
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
         | 
| 297 | 
            +
                    # attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
         | 
| 298 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577
         | 
| 299 | 
            +
                    if @require_contiguous_qkv && query_layer.device.type == "cuda" && !attention_mask.nil?
         | 
| 300 | 
            +
                      query_layer = query_layer.contiguous
         | 
| 301 | 
            +
                      key_layer = key_layer.contiguous
         | 
| 302 | 
            +
                      value_layer = value_layer.contiguous
         | 
| 303 | 
            +
                    end
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
         | 
| 306 | 
            +
                    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
         | 
| 307 | 
            +
                    # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create
         | 
| 308 | 
            +
                    # a causal mask in case tgt_len == 1.
         | 
| 309 | 
            +
                    is_causal = @is_decoder && !is_cross_attention && attention_mask.nil? && tgt_len > 1 ? true : false
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    attn_output = Torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attn_mask: attention_mask, dropout_p: @training ? @dropout_prob : 0.0, is_causal: is_causal)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    attn_output = attn_output.transpose(1, 2)
         | 
| 314 | 
            +
                    attn_output = attn_output.reshape(bsz, tgt_len, @all_head_size)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    outputs = [attn_output]
         | 
| 317 | 
            +
                    if @is_decoder
         | 
| 318 | 
            +
                      outputs = outputs + [past_key_value]
         | 
| 319 | 
            +
                    end
         | 
| 320 | 
            +
                    outputs
         | 
| 321 | 
            +
                  end
         | 
| 322 | 
            +
                end
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                class XLMRobertaSelfOutput < Torch::NN::Module
         | 
| 325 | 
            +
                  def initialize(config)
         | 
| 326 | 
            +
                    super()
         | 
| 327 | 
            +
                    @dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
         | 
| 328 | 
            +
                    @LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
         | 
| 329 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
         | 
| 330 | 
            +
                  end
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                  def forward(hidden_states, input_tensor)
         | 
| 333 | 
            +
                    hidden_states = @dense.(hidden_states)
         | 
| 334 | 
            +
                    hidden_states = @dropout.(hidden_states)
         | 
| 335 | 
            +
                    hidden_states = @LayerNorm.(hidden_states + input_tensor)
         | 
| 336 | 
            +
                    hidden_states
         | 
| 337 | 
            +
                  end
         | 
| 338 | 
            +
                end
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                XLM_ROBERTA_SELF_ATTENTION_CLASSES = {"eager" => XLMRobertaSelfAttention, "sdpa" => XLMRobertaSdpaSelfAttention}
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                class XLMRobertaAttention < Torch::NN::Module
         | 
| 343 | 
            +
                  def initialize(config, position_embedding_type: nil)
         | 
| 344 | 
            +
                    super()
         | 
| 345 | 
            +
                    @self = XLM_ROBERTA_SELF_ATTENTION_CLASSES.fetch(config._attn_implementation).new(config, position_embedding_type: position_embedding_type)
         | 
| 346 | 
            +
                    @output = XLMRobertaSelfOutput.new(config)
         | 
| 347 | 
            +
                    @pruned_heads = Set.new
         | 
| 348 | 
            +
                  end
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                  def prune_heads(heads)
         | 
| 351 | 
            +
                    if heads.length == 0
         | 
| 352 | 
            +
                      return
         | 
| 353 | 
            +
                    end
         | 
| 354 | 
            +
                    heads, index = TorchUtils.find_pruneable_heads_and_indices(heads, @self.num_attention_heads, @self.attention_head_size, @pruned_heads)
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    # Prune linear layers
         | 
| 357 | 
            +
                    @query = TorchUtils.prune_linear_layer(@self.query, index)
         | 
| 358 | 
            +
                    @key = TorchUtils.prune_linear_layer(@self.key, index)
         | 
| 359 | 
            +
                    @value = TorchUtils.prune_linear_layer(@self.value, index)
         | 
| 360 | 
            +
                    @dense = TorchUtils.prune_linear_layer(@output.dense, index, dim: 1)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    # Update hyper params and store pruned heads
         | 
| 363 | 
            +
                    @num_attention_heads = @self.num_attention_heads - heads.length
         | 
| 364 | 
            +
                    @all_head_size = @self.attention_head_size * @self.num_attention_heads
         | 
| 365 | 
            +
                    @pruned_heads = @pruned_heads.union(heads)
         | 
| 366 | 
            +
                  end
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                  def forward(
         | 
| 369 | 
            +
                    hidden_states,
         | 
| 370 | 
            +
                    attention_mask: nil,
         | 
| 371 | 
            +
                    head_mask: nil,
         | 
| 372 | 
            +
                    encoder_hidden_states: nil,
         | 
| 373 | 
            +
                    encoder_attention_mask: nil,
         | 
| 374 | 
            +
                    past_key_value: nil,
         | 
| 375 | 
            +
                    output_attentions: false
         | 
| 376 | 
            +
                  )
         | 
| 377 | 
            +
                    self_outputs = @self.(hidden_states, attention_mask:, head_mask:, encoder_hidden_states:, encoder_attention_mask:, past_key_value:, output_attentions:)
         | 
| 378 | 
            +
                    attention_output = @output.(self_outputs[0], hidden_states)
         | 
| 379 | 
            +
                    outputs = [attention_output] + self_outputs[1..]
         | 
| 380 | 
            +
                    outputs
         | 
| 381 | 
            +
                  end
         | 
| 382 | 
            +
                end
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                class XLMRobertaIntermediate < Torch::NN::Module
         | 
| 385 | 
            +
                  def initialize(config)
         | 
| 386 | 
            +
                    super()
         | 
| 387 | 
            +
                    @dense = Torch::NN::Linear.new(config.hidden_size, config.intermediate_size)
         | 
| 388 | 
            +
                    if config.hidden_act.is_a?(String)
         | 
| 389 | 
            +
                      @intermediate_act_fn = ACT2FN[config.hidden_act]
         | 
| 390 | 
            +
                    else
         | 
| 391 | 
            +
                      @intermediate_act_fn = config.hidden_act
         | 
| 392 | 
            +
                    end
         | 
| 393 | 
            +
                  end
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                  def forward(hidden_states)
         | 
| 396 | 
            +
                    hidden_states = @dense.(hidden_states)
         | 
| 397 | 
            +
                    hidden_states = @intermediate_act_fn.(hidden_states)
         | 
| 398 | 
            +
                    hidden_states
         | 
| 399 | 
            +
                  end
         | 
| 400 | 
            +
                end
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                class XLMRobertaOutput < Torch::NN::Module
         | 
| 403 | 
            +
                  def initialize(config)
         | 
| 404 | 
            +
                    super()
         | 
| 405 | 
            +
                    @dense = Torch::NN::Linear.new(config.intermediate_size, config.hidden_size)
         | 
| 406 | 
            +
                    @LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
         | 
| 407 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
         | 
| 408 | 
            +
                  end
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                  def forward(hidden_states, input_tensor)
         | 
| 411 | 
            +
                    hidden_states = @dense.(hidden_states)
         | 
| 412 | 
            +
                    hidden_states = @dropout.(hidden_states)
         | 
| 413 | 
            +
                    hidden_states = @LayerNorm.(hidden_states + input_tensor)
         | 
| 414 | 
            +
                    hidden_states
         | 
| 415 | 
            +
                  end
         | 
| 416 | 
            +
                end
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                class XLMRobertaLayer < Torch::NN::Module
         | 
| 419 | 
            +
                  def initialize(config)
         | 
| 420 | 
            +
                    super()
         | 
| 421 | 
            +
                    @chunk_size_feed_forward = config.chunk_size_feed_forward
         | 
| 422 | 
            +
                    @seq_len_dim = 1
         | 
| 423 | 
            +
                    @attention = XLMRobertaAttention.new(config)
         | 
| 424 | 
            +
                    @is_decoder = config.is_decoder
         | 
| 425 | 
            +
                    @add_cross_attention = config.add_cross_attention
         | 
| 426 | 
            +
                    if @add_cross_attention
         | 
| 427 | 
            +
                      if !@is_decoder
         | 
| 428 | 
            +
                        raise ArgumentError, "#{self} should be used as a decoder model if cross attention is added"
         | 
| 429 | 
            +
                      end
         | 
| 430 | 
            +
                      @crossattention = XLMRobertaAttention.new(config, position_embedding_type: "absolute")
         | 
| 431 | 
            +
                    end
         | 
| 432 | 
            +
                    @intermediate = XLMRobertaIntermediate.new(config)
         | 
| 433 | 
            +
                    @output = XLMRobertaOutput.new(config)
         | 
| 434 | 
            +
                  end
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                  def forward(
         | 
| 437 | 
            +
                    hidden_states,
         | 
| 438 | 
            +
                    attention_mask: nil,
         | 
| 439 | 
            +
                    head_mask: nil,
         | 
| 440 | 
            +
                    encoder_hidden_states: nil,
         | 
| 441 | 
            +
                    encoder_attention_mask: nil,
         | 
| 442 | 
            +
                    past_key_value: nil,
         | 
| 443 | 
            +
                    output_attentions: false
         | 
| 444 | 
            +
                  )
         | 
| 445 | 
            +
                    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
         | 
| 446 | 
            +
                    self_attn_past_key_value = !past_key_value.nil? ? past_key_value[...2] : nil
         | 
| 447 | 
            +
                    self_attention_outputs = @attention.(hidden_states, attention_mask:, head_mask:, output_attentions: output_attentions, past_key_value: self_attn_past_key_value)
         | 
| 448 | 
            +
                    attention_output = self_attention_outputs[0]
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    # if decoder, the last output is tuple of self-attn cache
         | 
| 451 | 
            +
                    if @is_decoder
         | 
| 452 | 
            +
                      outputs = self_attention_outputs[1...-1]
         | 
| 453 | 
            +
                      present_key_value = self_attention_outputs[-1]
         | 
| 454 | 
            +
                    else
         | 
| 455 | 
            +
                      outputs = self_attention_outputs[1..]
         | 
| 456 | 
            +
                    end
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                    cross_attn_present_key_value = nil
         | 
| 459 | 
            +
                    if @is_decoder && !encoder_hidden_states.nil?
         | 
| 460 | 
            +
                      if instance_variable_defined?(:@crossattention)
         | 
| 461 | 
            +
                        raise ArgumentError, "If `encoder_hidden_states` are passed, #{self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
         | 
| 462 | 
            +
                      end
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                      # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
         | 
| 465 | 
            +
                      cross_attn_past_key_value = !past_key_value.nil? ? past_key_value[-2..] : nil
         | 
| 466 | 
            +
                      cross_attention_outputs = @crossattention.(attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions)
         | 
| 467 | 
            +
                      attention_output = cross_attention_outputs[0]
         | 
| 468 | 
            +
                      outputs = outputs + cross_attention_outputs[1...-1]
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                      # add cross-attn cache to positions 3,4 of present_key_value tuple
         | 
| 471 | 
            +
                      cross_attn_present_key_value = cross_attention_outputs[-1]
         | 
| 472 | 
            +
                      present_key_value = present_key_value + cross_attn_present_key_value
         | 
| 473 | 
            +
                    end
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    layer_output = TorchUtils.apply_chunking_to_forward(method(:feed_forward_chunk), @chunk_size_feed_forward, @seq_len_dim, attention_output)
         | 
| 476 | 
            +
                    outputs = [layer_output] + outputs
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    # if decoder, return the attn key/values as the last output
         | 
| 479 | 
            +
                    if @is_decoder
         | 
| 480 | 
            +
                      outputs = outputs + [present_key_value]
         | 
| 481 | 
            +
                    end
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    outputs
         | 
| 484 | 
            +
                  end
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                  def feed_forward_chunk(attention_output)
         | 
| 487 | 
            +
                    intermediate_output = @intermediate.(attention_output)
         | 
| 488 | 
            +
                    layer_output = @output.(intermediate_output, attention_output)
         | 
| 489 | 
            +
                    layer_output
         | 
| 490 | 
            +
                  end
         | 
| 491 | 
            +
                end
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                class XLMRobertaEncoder < Torch::NN::Module
         | 
| 494 | 
            +
                  def initialize(config)
         | 
| 495 | 
            +
                    super()
         | 
| 496 | 
            +
                    @config = config
         | 
| 497 | 
            +
                    @layer = Torch::NN::ModuleList.new(config.num_hidden_layers.times.map { |_| XLMRobertaLayer.new(config) })
         | 
| 498 | 
            +
                    @gradient_checkpointing = false
         | 
| 499 | 
            +
                  end
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                  def forward(
         | 
| 502 | 
            +
                    hidden_states,
         | 
| 503 | 
            +
                    attention_mask: nil,
         | 
| 504 | 
            +
                    head_mask: nil,
         | 
| 505 | 
            +
                    encoder_hidden_states: nil,
         | 
| 506 | 
            +
                    encoder_attention_mask: nil,
         | 
| 507 | 
            +
                    past_key_values: nil,
         | 
| 508 | 
            +
                    use_cache: nil,
         | 
| 509 | 
            +
                    output_attentions: false,
         | 
| 510 | 
            +
                    output_hidden_states: false,
         | 
| 511 | 
            +
                    return_dict: true
         | 
| 512 | 
            +
                  )
         | 
| 513 | 
            +
                    all_hidden_states = output_hidden_states ? [] : nil
         | 
| 514 | 
            +
                    all_self_attentions = output_attentions ? [] : nil
         | 
| 515 | 
            +
                    all_cross_attentions = output_attentions && @config.add_cross_attention ? [] : nil
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                    if @gradient_checkpointing && @training
         | 
| 518 | 
            +
                      if use_cache
         | 
| 519 | 
            +
                        Transformers.logger.warn("`use_cache: true` is incompatible with gradient checkpointing. Setting `use_cache: false`...")
         | 
| 520 | 
            +
                        use_cache = false
         | 
| 521 | 
            +
                      end
         | 
| 522 | 
            +
                    end
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                    next_decoder_cache = use_cache ? [] : nil
         | 
| 525 | 
            +
                    @layer.each_with_index do |layer_module, i|
         | 
| 526 | 
            +
                      if output_hidden_states
         | 
| 527 | 
            +
                        all_hidden_states = all_hidden_states + [hidden_states]
         | 
| 528 | 
            +
                      end
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                      layer_head_mask = !head_mask.nil? ? head_mask[i] : nil
         | 
| 531 | 
            +
                      past_key_value = !past_key_values.nil? ? past_key_values[i] : nil
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                      if @gradient_checkpointing && @training
         | 
| 534 | 
            +
                        layer_outputs = _gradient_checkpointing_func(layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)
         | 
| 535 | 
            +
                      else
         | 
| 536 | 
            +
                        layer_outputs = layer_module.(hidden_states, attention_mask:, head_mask: layer_head_mask, encoder_hidden_states:, encoder_attention_mask:, past_key_value:, output_attentions:)
         | 
| 537 | 
            +
                      end
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                      hidden_states = layer_outputs[0]
         | 
| 540 | 
            +
                      if use_cache
         | 
| 541 | 
            +
                        next_decoder_cache += [layer_outputs[-1]]
         | 
| 542 | 
            +
                      end
         | 
| 543 | 
            +
                      if output_attentions
         | 
| 544 | 
            +
                        all_self_attentions = all_self_attentions + [layer_outputs[1]]
         | 
| 545 | 
            +
                        if @config.add_cross_attention
         | 
| 546 | 
            +
                          all_cross_attentions = all_cross_attentions + [layer_outputs[2]]
         | 
| 547 | 
            +
                        end
         | 
| 548 | 
            +
                      end
         | 
| 549 | 
            +
                    end
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                    if output_hidden_states
         | 
| 552 | 
            +
                      all_hidden_states = all_hidden_states + [hidden_states]
         | 
| 553 | 
            +
                    end
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                    if !return_dict
         | 
| 556 | 
            +
                      return Array([hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions].select { |v| !v.nil? })
         | 
| 557 | 
            +
                    end
         | 
| 558 | 
            +
                    BaseModelOutputWithPastAndCrossAttentions.new(last_hidden_state: hidden_states, past_key_values: next_decoder_cache, hidden_states: all_hidden_states, attentions: all_self_attentions, cross_attentions: all_cross_attentions)
         | 
| 559 | 
            +
                  end
         | 
| 560 | 
            +
                end
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                class XLMRobertaPooler < Torch::NN::Module
         | 
| 563 | 
            +
                  def initialize(config)
         | 
| 564 | 
            +
                    super()
         | 
| 565 | 
            +
                    @dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
         | 
| 566 | 
            +
                    @activation = Torch::NN::Tanh.new
         | 
| 567 | 
            +
                  end
         | 
| 568 | 
            +
             | 
| 569 | 
            +
                  def forward(hidden_states)
         | 
| 570 | 
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         | 
| 571 | 
            +
                    # to the first token.
         | 
| 572 | 
            +
                    first_token_tensor = hidden_states[0.., 0]
         | 
| 573 | 
            +
                    pooled_output = @dense.(first_token_tensor)
         | 
| 574 | 
            +
                    pooled_output = @activation.(pooled_output)
         | 
| 575 | 
            +
                    pooled_output
         | 
| 576 | 
            +
                  end
         | 
| 577 | 
            +
                end
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                class XLMRobertaPreTrainedModel < PreTrainedModel
         | 
| 580 | 
            +
                  self.config_class = XLMRobertaConfig
         | 
| 581 | 
            +
                  self.base_model_prefix = "roberta"
         | 
| 582 | 
            +
                  # self.supports_gradient_checkpointing = true
         | 
| 583 | 
            +
                  # self._no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaSelfAttention", "XLMRobertaSdpaSelfAttention"]
         | 
| 584 | 
            +
                  # self._supports_sdpa = true
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                  def _init_weights(module_)
         | 
| 587 | 
            +
                    if module_.is_a?(Torch::NN::Linear)
         | 
| 588 | 
            +
                      # Slightly different from the TF version which uses truncated_normal for initialization
         | 
| 589 | 
            +
                      # cf https://github.com/pytorch/pytorch/pull/5617
         | 
| 590 | 
            +
                      module_.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
         | 
| 591 | 
            +
                      if !module_.bias.nil?
         | 
| 592 | 
            +
                        module_.bias.data.zero!
         | 
| 593 | 
            +
                      end
         | 
| 594 | 
            +
                    elsif module_.is_a?(Torch::NN::Embedding)
         | 
| 595 | 
            +
                      module_.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
         | 
| 596 | 
            +
                      if !module_.padding_idx.nil?
         | 
| 597 | 
            +
                        module_.weight.data.fetch(module_.padding_idx).zero!
         | 
| 598 | 
            +
                      end
         | 
| 599 | 
            +
                    elsif module_.is_a?(Torch::NN::LayerNorm)
         | 
| 600 | 
            +
                      module_.bias.data.zero!
         | 
| 601 | 
            +
                      module_.weight.data.fill!(1.0)
         | 
| 602 | 
            +
                    end
         | 
| 603 | 
            +
                  end
         | 
| 604 | 
            +
                end
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                class XLMRobertaModel < XLMRobertaPreTrainedModel
         | 
| 607 | 
            +
                  # self._no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaLayer"]
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                  def initialize(config, add_pooling_layer: true)
         | 
| 610 | 
            +
                    super(config)
         | 
| 611 | 
            +
                    @config = config
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                    @embeddings = XLMRobertaEmbeddings.new(config)
         | 
| 614 | 
            +
                    @encoder = XLMRobertaEncoder.new(config)
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                    @pooler = add_pooling_layer ? XLMRobertaPooler.new(config) : nil
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                    @attn_implementation = config._attn_implementation
         | 
| 619 | 
            +
                    @position_embedding_type = config.position_embedding_type
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                    # Initialize weights and apply final processing
         | 
| 622 | 
            +
                    post_init
         | 
| 623 | 
            +
                  end
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                  def get_input_embeddings
         | 
| 626 | 
            +
                    @embeddings.word_embeddings
         | 
| 627 | 
            +
                  end
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                  def set_input_embeddings(value)
         | 
| 630 | 
            +
                    @word_embeddings = value
         | 
| 631 | 
            +
                  end
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                  def _prune_heads(heads_to_prune)
         | 
| 634 | 
            +
                    heads_to_prune.each do |layer, heads|
         | 
| 635 | 
            +
                      @encoder.layer[layer].attention.prune_heads(heads)
         | 
| 636 | 
            +
                    end
         | 
| 637 | 
            +
                  end
         | 
| 638 | 
            +
             | 
| 639 | 
            +
                  def forward(
         | 
| 640 | 
            +
                    input_ids,
         | 
| 641 | 
            +
                    attention_mask: nil,
         | 
| 642 | 
            +
                    token_type_ids: nil,
         | 
| 643 | 
            +
                    position_ids: nil,
         | 
| 644 | 
            +
                    head_mask: nil,
         | 
| 645 | 
            +
                    inputs_embeds: nil,
         | 
| 646 | 
            +
                    encoder_hidden_states: nil,
         | 
| 647 | 
            +
                    encoder_attention_mask: nil,
         | 
| 648 | 
            +
                    past_key_values: nil,
         | 
| 649 | 
            +
                    use_cache: nil,
         | 
| 650 | 
            +
                    output_attentions: nil,
         | 
| 651 | 
            +
                    output_hidden_states: nil,
         | 
| 652 | 
            +
                    return_dict: nil
         | 
| 653 | 
            +
                  )
         | 
| 654 | 
            +
                    output_attentions = !output_attentions.nil? ? output_attentions : @config.output_attentions
         | 
| 655 | 
            +
                    output_hidden_states = !output_hidden_states.nil? ? output_hidden_states : @config.output_hidden_states
         | 
| 656 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                    if @config.is_decoder
         | 
| 659 | 
            +
                      use_cache = !use_cache.nil? ? use_cache : @config.use_cache
         | 
| 660 | 
            +
                    else
         | 
| 661 | 
            +
                      use_cache = false
         | 
| 662 | 
            +
                    end
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                    if !input_ids.nil? && !inputs_embeds.nil?
         | 
| 665 | 
            +
                      raise ArgumentError, "You cannot specify both input_ids and inputs_embeds at the same time"
         | 
| 666 | 
            +
                    elsif !input_ids.nil?
         | 
| 667 | 
            +
                      warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
         | 
| 668 | 
            +
                      input_shape = input_ids.size
         | 
| 669 | 
            +
                    elsif !inputs_embeds.nil?
         | 
| 670 | 
            +
                      input_shape = inputs_embeds.size[...-1]
         | 
| 671 | 
            +
                    else
         | 
| 672 | 
            +
                      raise ArgumentError, "You have to specify either input_ids or inputs_embeds"
         | 
| 673 | 
            +
                    end
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                    batch_size, seq_length = input_shape
         | 
| 676 | 
            +
                    device = !input_ids.nil? ? input_ids.device : inputs_embeds.device
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    # past_key_values_length
         | 
| 679 | 
            +
                    past_key_values_length = !past_key_values.nil? ? past_key_values[0][0].shape[2] : 0
         | 
| 680 | 
            +
             | 
| 681 | 
            +
                    if token_type_ids.nil?
         | 
| 682 | 
            +
                      if @embeddings.respond_to?(:token_type_ids)
         | 
| 683 | 
            +
                        buffered_token_type_ids = @embeddings.token_type_ids[0.., ...seq_length]
         | 
| 684 | 
            +
                        buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
         | 
| 685 | 
            +
                        token_type_ids = buffered_token_type_ids_expanded
         | 
| 686 | 
            +
                      else
         | 
| 687 | 
            +
                        token_type_ids = Torch.zeros(input_shape, dtype: Torch.long, device: device)
         | 
| 688 | 
            +
                      end
         | 
| 689 | 
            +
                    end
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                    embedding_output = @embeddings.(input_ids: input_ids, position_ids: position_ids, token_type_ids: token_type_ids, inputs_embeds: inputs_embeds, past_key_values_length: past_key_values_length)
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                    if attention_mask.nil?
         | 
| 694 | 
            +
                      attention_mask = Torch.ones([batch_size, seq_length + past_key_values_length], device: device)
         | 
| 695 | 
            +
                    end
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    use_sdpa_attention_masks = @attn_implementation == "sdpa" && @position_embedding_type == "absolute" && head_mask.nil? && !output_attentions
         | 
| 698 | 
            +
             | 
| 699 | 
            +
                    # Expand the attention mask
         | 
| 700 | 
            +
                    if use_sdpa_attention_masks && attention_mask.dim == 2
         | 
| 701 | 
            +
                      # Expand the attention mask for SDPA.
         | 
| 702 | 
            +
                      # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
         | 
| 703 | 
            +
                      if @config.is_decoder
         | 
| 704 | 
            +
                        extended_attention_mask = ModelingAttnMaskUtils._prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, embedding_output, past_key_values_length)
         | 
| 705 | 
            +
                      else
         | 
| 706 | 
            +
                        extended_attention_mask = ModelingAttnMaskUtils._prepare_4d_attention_mask_for_sdpa(attention_mask, embedding_output.dtype, tgt_len: seq_length)
         | 
| 707 | 
            +
                      end
         | 
| 708 | 
            +
                    else
         | 
| 709 | 
            +
                      # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         | 
| 710 | 
            +
                      # ourselves in which case we just need to make it broadcastable to all heads.
         | 
| 711 | 
            +
                      extended_attention_mask = get_extended_attention_mask(attention_mask, input_shape)
         | 
| 712 | 
            +
                    end
         | 
| 713 | 
            +
             | 
| 714 | 
            +
                    # If a 2D or 3D attention mask is provided for the cross-attention
         | 
| 715 | 
            +
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         | 
| 716 | 
            +
                    if @config.is_decoder && !encoder_hidden_states.nil?
         | 
| 717 | 
            +
                      encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size
         | 
| 718 | 
            +
                      encoder_hidden_shape = [encoder_batch_size, encoder_sequence_length]
         | 
| 719 | 
            +
                      if encoder_attention_mask.nil?
         | 
| 720 | 
            +
                        encoder_attention_mask = Torch.ones(encoder_hidden_shape, device: device)
         | 
| 721 | 
            +
                      end
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                      if use_sdpa_attention_masks && encoder_attention_mask.dim == 2
         | 
| 724 | 
            +
                        # Expand the attention mask for SDPA.
         | 
| 725 | 
            +
                        # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
         | 
| 726 | 
            +
                        encoder_extended_attention_mask = ModelingAttnMaskUtils._prepare_4d_attention_mask_for_sdpa(encoder_attention_mask, embedding_output.dtype, tgt_len: seq_length)
         | 
| 727 | 
            +
                      else
         | 
| 728 | 
            +
                        encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
         | 
| 729 | 
            +
                      end
         | 
| 730 | 
            +
                    else
         | 
| 731 | 
            +
                      encoder_extended_attention_mask = nil
         | 
| 732 | 
            +
                    end
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                    # Prepare head mask if needed
         | 
| 735 | 
            +
                    # 1.0 in head_mask indicate we keep the head
         | 
| 736 | 
            +
                    # attention_probs has shape bsz x n_heads x N x N
         | 
| 737 | 
            +
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         | 
| 738 | 
            +
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         | 
| 739 | 
            +
                    head_mask = get_head_mask(head_mask, @config.num_hidden_layers)
         | 
| 740 | 
            +
             | 
| 741 | 
            +
                    encoder_outputs = @encoder.(embedding_output, attention_mask: extended_attention_mask, head_mask: head_mask, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_extended_attention_mask, past_key_values: past_key_values, use_cache: use_cache, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 742 | 
            +
                    sequence_output = encoder_outputs[0]
         | 
| 743 | 
            +
                    pooled_output = !@pooler.nil? ? @pooler.(sequence_output) : nil
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                    if !return_dict
         | 
| 746 | 
            +
                      return [sequence_output, pooled_output] + encoder_outputs[1..]
         | 
| 747 | 
            +
                    end
         | 
| 748 | 
            +
             | 
| 749 | 
            +
                    BaseModelOutputWithPoolingAndCrossAttentions.new(last_hidden_state: sequence_output, pooler_output: pooled_output, past_key_values: encoder_outputs.past_key_values, hidden_states: encoder_outputs.hidden_states, attentions: encoder_outputs.attentions, cross_attentions: encoder_outputs.cross_attentions)
         | 
| 750 | 
            +
                  end
         | 
| 751 | 
            +
                end
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                class XLMRobertaForCausalLM < XLMRobertaPreTrainedModel
         | 
| 754 | 
            +
                  self._tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
         | 
| 755 | 
            +
             | 
| 756 | 
            +
                  def initialize(config)
         | 
| 757 | 
            +
                    super(config)
         | 
| 758 | 
            +
             | 
| 759 | 
            +
                    if !config.is_decoder
         | 
| 760 | 
            +
                      Transformers.logger.warn("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
         | 
| 761 | 
            +
                    end
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    @roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
         | 
| 764 | 
            +
                    @lm_head = XLMRobertaLMHead.new(config)
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                    # Initialize weights and apply final processing
         | 
| 767 | 
            +
                    post_init
         | 
| 768 | 
            +
                  end
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                  def get_output_embeddings
         | 
| 771 | 
            +
                    @lm_head.decoder
         | 
| 772 | 
            +
                  end
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                  def set_output_embeddings(new_embeddings)
         | 
| 775 | 
            +
                    @decoder = new_embeddings
         | 
| 776 | 
            +
                  end
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                  def forward(
         | 
| 779 | 
            +
                    input_ids: nil,
         | 
| 780 | 
            +
                    attention_mask: nil,
         | 
| 781 | 
            +
                    token_type_ids: nil,
         | 
| 782 | 
            +
                    position_ids: nil,
         | 
| 783 | 
            +
                    head_mask: nil,
         | 
| 784 | 
            +
                    inputs_embeds: nil,
         | 
| 785 | 
            +
                    encoder_hidden_states: nil,
         | 
| 786 | 
            +
                    encoder_attention_mask: nil,
         | 
| 787 | 
            +
                    labels: nil,
         | 
| 788 | 
            +
                    past_key_values: nil,
         | 
| 789 | 
            +
                    use_cache: nil,
         | 
| 790 | 
            +
                    output_attentions: nil,
         | 
| 791 | 
            +
                    output_hidden_states: nil,
         | 
| 792 | 
            +
                    return_dict: nil
         | 
| 793 | 
            +
                  )
         | 
| 794 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 795 | 
            +
                    if !labels.nil?
         | 
| 796 | 
            +
                      use_cache = false
         | 
| 797 | 
            +
                    end
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                    outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_attention_mask, past_key_values: past_key_values, use_cache: use_cache, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 800 | 
            +
             | 
| 801 | 
            +
                    sequence_output = outputs[0]
         | 
| 802 | 
            +
                    prediction_scores = @lm_head.(sequence_output)
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                    lm_loss = nil
         | 
| 805 | 
            +
                    if !labels.nil?
         | 
| 806 | 
            +
                      # move labels to correct device to enable model parallelism
         | 
| 807 | 
            +
                      labels = labels.to(prediction_scores.device)
         | 
| 808 | 
            +
                      # we are doing next-token prediction; shift prediction scores and input ids by one
         | 
| 809 | 
            +
                      shifted_prediction_scores = prediction_scores[0.., ...-1, 0..].contiguous
         | 
| 810 | 
            +
                      labels = labels[0.., 1..].contiguous
         | 
| 811 | 
            +
                      loss_fct = Torch::NN::CrossEntropyLoss.new
         | 
| 812 | 
            +
                      lm_loss = loss_fct.(shifted_prediction_scores.view(-1, @config.vocab_size), labels.view(-1))
         | 
| 813 | 
            +
                    end
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                    if !return_dict
         | 
| 816 | 
            +
                      output = [prediction_scores] + outputs[2..]
         | 
| 817 | 
            +
                      return !lm_loss.nil? ? [lm_loss] + output : output
         | 
| 818 | 
            +
                    end
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                    CausalLMOutputWithCrossAttentions.new(loss: lm_loss, logits: prediction_scores, past_key_values: outputs.past_key_values, hidden_states: outputs.hidden_states, attentions: outputs.attentions, cross_attentions: outputs.cross_attentions)
         | 
| 821 | 
            +
                  end
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                  def prepare_inputs_for_generation(input_ids, past_key_values: nil, attention_mask: nil, **model_kwargs)
         | 
| 824 | 
            +
                    input_shape = input_ids.shape
         | 
| 825 | 
            +
                    # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
         | 
| 826 | 
            +
                    if attention_mask.nil?
         | 
| 827 | 
            +
                      attention_mask = input_ids.new_ones(input_shape)
         | 
| 828 | 
            +
                    end
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    # cut decoder_input_ids if past_key_values is used
         | 
| 831 | 
            +
                    if !past_key_values.nil?
         | 
| 832 | 
            +
                      past_length = past_key_values[0][0].shape[2]
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                      # Some generation methods already pass only the last input ID
         | 
| 835 | 
            +
                      if input_ids.shape[1] > past_length
         | 
| 836 | 
            +
                        remove_prefix_length = past_length
         | 
| 837 | 
            +
                      else
         | 
| 838 | 
            +
                        # Default to old behavior: keep only final ID
         | 
| 839 | 
            +
                        remove_prefix_length = input_ids.shape[1] - 1
         | 
| 840 | 
            +
                      end
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                      input_ids = input_ids[0.., remove_prefix_length..]
         | 
| 843 | 
            +
                    end
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                    {"input_ids" => input_ids, "attention_mask" => attention_mask, "past_key_values" => past_key_values}
         | 
| 846 | 
            +
                  end
         | 
| 847 | 
            +
             | 
| 848 | 
            +
                  def _reorder_cache(past_key_values, beam_idx)
         | 
| 849 | 
            +
                    reordered_past = []
         | 
| 850 | 
            +
                    past_key_values.each do |layer_past|
         | 
| 851 | 
            +
                      reordered_past += [Array(layer_past.select { |past_state| past_state })]
         | 
| 852 | 
            +
                    end
         | 
| 853 | 
            +
                    reordered_past
         | 
| 854 | 
            +
                  end
         | 
| 855 | 
            +
                end
         | 
| 856 | 
            +
             | 
| 857 | 
            +
                class XLMRobertaForMaskedLM < XLMRobertaPreTrainedModel
         | 
| 858 | 
            +
                  self._tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                  def initialize(config)
         | 
| 861 | 
            +
                    super(config)
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                    if config.is_decoder
         | 
| 864 | 
            +
                      Transformers.logger.warn("If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder: false` for bi-directional self-attention.")
         | 
| 865 | 
            +
                    end
         | 
| 866 | 
            +
             | 
| 867 | 
            +
                    @roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
         | 
| 868 | 
            +
                    @lm_head = XLMRobertaLMHead.new(config)
         | 
| 869 | 
            +
             | 
| 870 | 
            +
                    # Initialize weights and apply final processing
         | 
| 871 | 
            +
                    post_init
         | 
| 872 | 
            +
                  end
         | 
| 873 | 
            +
             | 
| 874 | 
            +
                  def get_output_embeddings
         | 
| 875 | 
            +
                    @lm_head.decoder
         | 
| 876 | 
            +
                  end
         | 
| 877 | 
            +
             | 
| 878 | 
            +
                  def set_output_embeddings(new_embeddings)
         | 
| 879 | 
            +
                    @decoder = new_embeddings
         | 
| 880 | 
            +
                  end
         | 
| 881 | 
            +
             | 
| 882 | 
            +
                  def forward(
         | 
| 883 | 
            +
                    input_ids: nil,
         | 
| 884 | 
            +
                    attention_mask: nil,
         | 
| 885 | 
            +
                    token_type_ids: nil,
         | 
| 886 | 
            +
                    position_ids: nil,
         | 
| 887 | 
            +
                    head_mask: nil,
         | 
| 888 | 
            +
                    inputs_embeds: nil,
         | 
| 889 | 
            +
                    encoder_hidden_states: nil,
         | 
| 890 | 
            +
                    encoder_attention_mask: nil,
         | 
| 891 | 
            +
                    labels: nil,
         | 
| 892 | 
            +
                    output_attentions: nil,
         | 
| 893 | 
            +
                    output_hidden_states: nil,
         | 
| 894 | 
            +
                    return_dict: nil
         | 
| 895 | 
            +
                  )
         | 
| 896 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_attention_mask, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 899 | 
            +
                    sequence_output = outputs[0]
         | 
| 900 | 
            +
                    prediction_scores = @lm_head.(sequence_output)
         | 
| 901 | 
            +
             | 
| 902 | 
            +
                    masked_lm_loss = nil
         | 
| 903 | 
            +
                    if !labels.nil?
         | 
| 904 | 
            +
                      # move labels to correct device to enable model parallelism
         | 
| 905 | 
            +
                      labels = labels.to(prediction_scores.device)
         | 
| 906 | 
            +
                      loss_fct = Torch::NN::CrossEntropyLoss.new
         | 
| 907 | 
            +
                      masked_lm_loss = loss_fct.(prediction_scores.view(-1, @config.vocab_size), labels.view(-1))
         | 
| 908 | 
            +
                    end
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    if !return_dict
         | 
| 911 | 
            +
                      output = [prediction_scores] + outputs[2..]
         | 
| 912 | 
            +
                      return !masked_lm_loss.nil? ? [masked_lm_loss] + output : output
         | 
| 913 | 
            +
                    end
         | 
| 914 | 
            +
             | 
| 915 | 
            +
                    MaskedLMOutput.new(loss: masked_lm_loss, logits: prediction_scores, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
         | 
| 916 | 
            +
                  end
         | 
| 917 | 
            +
                end
         | 
| 918 | 
            +
             | 
| 919 | 
            +
                class XLMRobertaLMHead < Torch::NN::Module
         | 
| 920 | 
            +
                  def initialize(config)
         | 
| 921 | 
            +
                    super()
         | 
| 922 | 
            +
                    @dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
         | 
| 923 | 
            +
                    @layer_norm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
         | 
| 924 | 
            +
             | 
| 925 | 
            +
                    @decoder = Torch::NN::Linear.new(config.hidden_size, config.vocab_size)
         | 
| 926 | 
            +
                    @bias = Torch::NN::Parameter.new(Torch.zeros(config.vocab_size))
         | 
| 927 | 
            +
                    @bias = @bias
         | 
| 928 | 
            +
                  end
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                  def forward(features, **kwargs)
         | 
| 931 | 
            +
                    x = @dense.(features)
         | 
| 932 | 
            +
                    x = Activations.gelu(x)
         | 
| 933 | 
            +
                    x = @layer_norm.(x)
         | 
| 934 | 
            +
             | 
| 935 | 
            +
                    # project back to size of vocabulary with bias
         | 
| 936 | 
            +
                    x = @decoder.(x)
         | 
| 937 | 
            +
             | 
| 938 | 
            +
                    x
         | 
| 939 | 
            +
                  end
         | 
| 940 | 
            +
             | 
| 941 | 
            +
                  def _tie_weights
         | 
| 942 | 
            +
                    # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
         | 
| 943 | 
            +
                    # For accelerate compatibility and to not break backward compatibility
         | 
| 944 | 
            +
                    if @decoder.bias.device.type == "meta"
         | 
| 945 | 
            +
                      @bias = @bias
         | 
| 946 | 
            +
                    else
         | 
| 947 | 
            +
                      @bias = @decoder.bias
         | 
| 948 | 
            +
                    end
         | 
| 949 | 
            +
                  end
         | 
| 950 | 
            +
                end
         | 
| 951 | 
            +
             | 
| 952 | 
            +
                class XLMRobertaForSequenceClassification < XLMRobertaPreTrainedModel
         | 
| 953 | 
            +
                  def initialize(config)
         | 
| 954 | 
            +
                    super(config)
         | 
| 955 | 
            +
                    @num_labels = config.num_labels
         | 
| 956 | 
            +
                    @config = config
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                    @roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
         | 
| 959 | 
            +
                    @classifier = XLMRobertaClassificationHead.new(config)
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                    # Initialize weights and apply final processing
         | 
| 962 | 
            +
                    post_init
         | 
| 963 | 
            +
                  end
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                  def forward(
         | 
| 966 | 
            +
                    input_ids: nil,
         | 
| 967 | 
            +
                    attention_mask: nil,
         | 
| 968 | 
            +
                    token_type_ids: nil,
         | 
| 969 | 
            +
                    position_ids: nil,
         | 
| 970 | 
            +
                    head_mask: nil,
         | 
| 971 | 
            +
                    inputs_embeds: nil,
         | 
| 972 | 
            +
                    labels: nil,
         | 
| 973 | 
            +
                    output_attentions: nil,
         | 
| 974 | 
            +
                    output_hidden_states: nil,
         | 
| 975 | 
            +
                    return_dict: nil
         | 
| 976 | 
            +
                  )
         | 
| 977 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 978 | 
            +
             | 
| 979 | 
            +
                    outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 980 | 
            +
                    sequence_output = outputs[0]
         | 
| 981 | 
            +
                    logits = @classifier.(sequence_output)
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    loss = nil
         | 
| 984 | 
            +
                    if !labels.nil?
         | 
| 985 | 
            +
                      # move labels to correct device to enable model parallelism
         | 
| 986 | 
            +
                      labels = labels.to(logits.device)
         | 
| 987 | 
            +
                      if @config.problem_type.nil?
         | 
| 988 | 
            +
                        if @num_labels == 1
         | 
| 989 | 
            +
                          @problem_type = "regression"
         | 
| 990 | 
            +
                        elsif @num_labels > 1 && labels.dtype == Torch.long || labels.dtype == Torch.int
         | 
| 991 | 
            +
                          @problem_type = "single_label_classification"
         | 
| 992 | 
            +
                        else
         | 
| 993 | 
            +
                          @problem_type = "multi_label_classification"
         | 
| 994 | 
            +
                        end
         | 
| 995 | 
            +
                      end
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                      if @config.problem_type == "regression"
         | 
| 998 | 
            +
                        loss_fct = Torch::NN::MSELoss.new
         | 
| 999 | 
            +
                        if @num_labels == 1
         | 
| 1000 | 
            +
                          loss = loss_fct.(logits.squeeze, labels.squeeze)
         | 
| 1001 | 
            +
                        else
         | 
| 1002 | 
            +
                          loss = loss_fct.(logits, labels)
         | 
| 1003 | 
            +
                        end
         | 
| 1004 | 
            +
                      elsif @config.problem_type == "single_label_classification"
         | 
| 1005 | 
            +
                        loss_fct = Torch::NN::CrossEntropyLoss.new
         | 
| 1006 | 
            +
                        loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
         | 
| 1007 | 
            +
                      elsif @config.problem_type == "multi_label_classification"
         | 
| 1008 | 
            +
                        loss_fct = Torch::NN::BCEWithLogitsLoss.new
         | 
| 1009 | 
            +
                        loss = loss_fct.(logits, labels)
         | 
| 1010 | 
            +
                      end
         | 
| 1011 | 
            +
                    end
         | 
| 1012 | 
            +
             | 
| 1013 | 
            +
                    if !return_dict
         | 
| 1014 | 
            +
                      output = [logits] + outputs[2..]
         | 
| 1015 | 
            +
                      return !loss.nil? ? [loss] + output : output
         | 
| 1016 | 
            +
                    end
         | 
| 1017 | 
            +
             | 
| 1018 | 
            +
                    SequenceClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
         | 
| 1019 | 
            +
                  end
         | 
| 1020 | 
            +
                end
         | 
| 1021 | 
            +
             | 
| 1022 | 
            +
                class XLMRobertaForMultipleChoice < XLMRobertaPreTrainedModel
         | 
| 1023 | 
            +
                  def initialize(config)
         | 
| 1024 | 
            +
                    super(config)
         | 
| 1025 | 
            +
             | 
| 1026 | 
            +
                    @roberta = XLMRobertaModel.new(config)
         | 
| 1027 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
         | 
| 1028 | 
            +
                    @classifier = Torch::NN::Linear.new(config.hidden_size, 1)
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1031 | 
            +
                    post_init
         | 
| 1032 | 
            +
                  end
         | 
| 1033 | 
            +
             | 
| 1034 | 
            +
                  def forward(
         | 
| 1035 | 
            +
                    input_ids: nil,
         | 
| 1036 | 
            +
                    token_type_ids: nil,
         | 
| 1037 | 
            +
                    attention_mask: nil,
         | 
| 1038 | 
            +
                    labels: nil,
         | 
| 1039 | 
            +
                    position_ids: nil,
         | 
| 1040 | 
            +
                    head_mask: nil,
         | 
| 1041 | 
            +
                    inputs_embeds: nil,
         | 
| 1042 | 
            +
                    output_attentions: nil,
         | 
| 1043 | 
            +
                    output_hidden_states: nil,
         | 
| 1044 | 
            +
                    return_dict: nil
         | 
| 1045 | 
            +
                  )
         | 
| 1046 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 1047 | 
            +
                    num_choices = !input_ids.nil? ? input_ids.shape[1] : inputs_embeds.shape[1]
         | 
| 1048 | 
            +
             | 
| 1049 | 
            +
                    flat_input_ids = !input_ids.nil? ? input_ids.view(-1, input_ids.size(-1)) : nil
         | 
| 1050 | 
            +
                    flat_position_ids = !position_ids.nil? ? position_ids.view(-1, position_ids.size(-1)) : nil
         | 
| 1051 | 
            +
                    flat_token_type_ids = !token_type_ids.nil? ? token_type_ids.view(-1, token_type_ids.size(-1)) : nil
         | 
| 1052 | 
            +
                    flat_attention_mask = !attention_mask.nil? ? attention_mask.view(-1, attention_mask.size(-1)) : nil
         | 
| 1053 | 
            +
                    flat_inputs_embeds = !inputs_embeds.nil? ? inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) : nil
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
                    outputs = @roberta.(flat_input_ids, position_ids: flat_position_ids, token_type_ids: flat_token_type_ids, attention_mask: flat_attention_mask, head_mask: head_mask, inputs_embeds: flat_inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 1056 | 
            +
                    pooled_output = outputs[1]
         | 
| 1057 | 
            +
             | 
| 1058 | 
            +
                    pooled_output = @dropout.(pooled_output)
         | 
| 1059 | 
            +
                    logits = @classifier.(pooled_output)
         | 
| 1060 | 
            +
                    reshaped_logits = logits.view(-1, num_choices)
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                    loss = nil
         | 
| 1063 | 
            +
                    if !labels.nil?
         | 
| 1064 | 
            +
                      # move labels to correct device to enable model parallelism
         | 
| 1065 | 
            +
                      labels = labels.to(reshaped_logits.device)
         | 
| 1066 | 
            +
                      loss_fct = Torch::NN::CrossEntropyLoss.new
         | 
| 1067 | 
            +
                      loss = loss_fct.(reshaped_logits, labels)
         | 
| 1068 | 
            +
                    end
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
                    if !return_dict
         | 
| 1071 | 
            +
                      output = [reshaped_logits] + outputs[2..]
         | 
| 1072 | 
            +
                      return !loss.nil? ? [loss] + output : output
         | 
| 1073 | 
            +
                    end
         | 
| 1074 | 
            +
             | 
| 1075 | 
            +
                    MultipleChoiceModelOutput.new(loss: loss, logits: reshaped_logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
         | 
| 1076 | 
            +
                  end
         | 
| 1077 | 
            +
                end
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                class XLMRobertaForTokenClassification < XLMRobertaPreTrainedModel
         | 
| 1080 | 
            +
                  def initialize(config)
         | 
| 1081 | 
            +
                    super(config)
         | 
| 1082 | 
            +
                    @num_labels = config.num_labels
         | 
| 1083 | 
            +
             | 
| 1084 | 
            +
                    @roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
         | 
| 1085 | 
            +
                    classifier_dropout = !config.classifier_dropout.nil? ? config.classifier_dropout : config.hidden_dropout_prob
         | 
| 1086 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: classifier_dropout)
         | 
| 1087 | 
            +
                    @classifier = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
         | 
| 1088 | 
            +
             | 
| 1089 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1090 | 
            +
                    post_init
         | 
| 1091 | 
            +
                  end
         | 
| 1092 | 
            +
             | 
| 1093 | 
            +
                  def forward(
         | 
| 1094 | 
            +
                    input_ids: nil,
         | 
| 1095 | 
            +
                    attention_mask: nil,
         | 
| 1096 | 
            +
                    token_type_ids: nil,
         | 
| 1097 | 
            +
                    position_ids: nil,
         | 
| 1098 | 
            +
                    head_mask: nil,
         | 
| 1099 | 
            +
                    inputs_embeds: nil,
         | 
| 1100 | 
            +
                    labels: nil,
         | 
| 1101 | 
            +
                    output_attentions: nil,
         | 
| 1102 | 
            +
                    output_hidden_states: nil,
         | 
| 1103 | 
            +
                    return_dict: nil
         | 
| 1104 | 
            +
                  )
         | 
| 1105 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 1106 | 
            +
             | 
| 1107 | 
            +
                    outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
                    sequence_output = outputs[0]
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                    sequence_output = @dropout.(sequence_output)
         | 
| 1112 | 
            +
                    logits = @classifier.(sequence_output)
         | 
| 1113 | 
            +
             | 
| 1114 | 
            +
                    loss = nil
         | 
| 1115 | 
            +
                    if !labels.nil?
         | 
| 1116 | 
            +
                      # move labels to correct device to enable model parallelism
         | 
| 1117 | 
            +
                      labels = labels.to(logits.device)
         | 
| 1118 | 
            +
                      loss_fct = Torch::NN::CrossEntropyLoss.new
         | 
| 1119 | 
            +
                      loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
         | 
| 1120 | 
            +
                    end
         | 
| 1121 | 
            +
             | 
| 1122 | 
            +
                    if !return_dict
         | 
| 1123 | 
            +
                      output = [logits] + outputs[2..]
         | 
| 1124 | 
            +
                      return !loss.nil? ? [loss] + output : output
         | 
| 1125 | 
            +
                    end
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
                    TokenClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
         | 
| 1128 | 
            +
                  end
         | 
| 1129 | 
            +
                end
         | 
| 1130 | 
            +
             | 
| 1131 | 
            +
                class XLMRobertaClassificationHead < Torch::NN::Module
         | 
| 1132 | 
            +
                  def initialize(config)
         | 
| 1133 | 
            +
                    super()
         | 
| 1134 | 
            +
                    @dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
         | 
| 1135 | 
            +
                    classifier_dropout = !config.classifier_dropout.nil? ? config.classifier_dropout : config.hidden_dropout_prob
         | 
| 1136 | 
            +
                    @dropout = Torch::NN::Dropout.new(p: classifier_dropout)
         | 
| 1137 | 
            +
                    @out_proj = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
         | 
| 1138 | 
            +
                  end
         | 
| 1139 | 
            +
             | 
| 1140 | 
            +
                  def forward(features, **kwargs)
         | 
| 1141 | 
            +
                    x = features[0.., 0, 0..]
         | 
| 1142 | 
            +
                    x = @dropout.(x)
         | 
| 1143 | 
            +
                    x = @dense.(x)
         | 
| 1144 | 
            +
                    x = Torch.tanh(x)
         | 
| 1145 | 
            +
                    x = @dropout.(x)
         | 
| 1146 | 
            +
                    x = @out_proj.(x)
         | 
| 1147 | 
            +
                    x
         | 
| 1148 | 
            +
                  end
         | 
| 1149 | 
            +
                end
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
                class XLMRobertaForQuestionAnswering < XLMRobertaPreTrainedModel
         | 
| 1152 | 
            +
                  def initialize(config)
         | 
| 1153 | 
            +
                    super(config)
         | 
| 1154 | 
            +
                    @num_labels = config.num_labels
         | 
| 1155 | 
            +
             | 
| 1156 | 
            +
                    @roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
         | 
| 1157 | 
            +
                    @qa_outputs = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
         | 
| 1158 | 
            +
             | 
| 1159 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1160 | 
            +
                    post_init
         | 
| 1161 | 
            +
                  end
         | 
| 1162 | 
            +
             | 
| 1163 | 
            +
                  def forward(
         | 
| 1164 | 
            +
                    input_ids: nil,
         | 
| 1165 | 
            +
                    attention_mask: nil,
         | 
| 1166 | 
            +
                    token_type_ids: nil,
         | 
| 1167 | 
            +
                    position_ids: nil,
         | 
| 1168 | 
            +
                    head_mask: nil,
         | 
| 1169 | 
            +
                    inputs_embeds: nil,
         | 
| 1170 | 
            +
                    start_positions: nil,
         | 
| 1171 | 
            +
                    end_positions: nil,
         | 
| 1172 | 
            +
                    output_attentions: nil,
         | 
| 1173 | 
            +
                    output_hidden_states: nil,
         | 
| 1174 | 
            +
                    return_dict: nil
         | 
| 1175 | 
            +
                  )
         | 
| 1176 | 
            +
                    return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
         | 
| 1177 | 
            +
             | 
| 1178 | 
            +
                    outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
         | 
| 1179 | 
            +
             | 
| 1180 | 
            +
                    sequence_output = outputs[0]
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                    logits = @qa_outputs.(sequence_output)
         | 
| 1183 | 
            +
                    start_logits, end_logits = logits.split(1, dim: -1)
         | 
| 1184 | 
            +
                    start_logits = start_logits.squeeze(-1).contiguous
         | 
| 1185 | 
            +
                    end_logits = end_logits.squeeze(-1).contiguous
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                    total_loss = nil
         | 
| 1188 | 
            +
                    if !start_positions.nil? && !end_positions.nil?
         | 
| 1189 | 
            +
                      # If we are on multi-GPU, split add a dimension
         | 
| 1190 | 
            +
                      if start_positions.size.length > 1
         | 
| 1191 | 
            +
                        start_positions = start_positions.squeeze(-1)
         | 
| 1192 | 
            +
                      end
         | 
| 1193 | 
            +
                      if end_positions.size.length > 1
         | 
| 1194 | 
            +
                        end_positions = end_positions.squeeze(-1)
         | 
| 1195 | 
            +
                      end
         | 
| 1196 | 
            +
                      # sometimes the start/end positions are outside our model inputs, we ignore these terms
         | 
| 1197 | 
            +
                      ignored_index = start_logits.size(1)
         | 
| 1198 | 
            +
                      start_positions = start_positions.clamp(0, ignored_index)
         | 
| 1199 | 
            +
                      end_positions = end_positions.clamp(0, ignored_index)
         | 
| 1200 | 
            +
             | 
| 1201 | 
            +
                      loss_fct = Torch::NN::CrossEntropyLoss.new(ignore_index: ignored_index)
         | 
| 1202 | 
            +
                      start_loss = loss_fct.(start_logits, start_positions)
         | 
| 1203 | 
            +
                      end_loss = loss_fct.(end_logits, end_positions)
         | 
| 1204 | 
            +
                      total_loss = (start_loss + end_loss) / 2
         | 
| 1205 | 
            +
                    end
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
                    if !return_dict
         | 
| 1208 | 
            +
                      output = [start_logits, end_logits] + outputs[2..]
         | 
| 1209 | 
            +
                      return !total_loss.nil? ? [total_loss] + output : output
         | 
| 1210 | 
            +
                    end
         | 
| 1211 | 
            +
             | 
| 1212 | 
            +
                    QuestionAnsweringModelOutput.new(loss: total_loss, start_logits: start_logits, end_logits: end_logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
         | 
| 1213 | 
            +
                  end
         | 
| 1214 | 
            +
                end
         | 
| 1215 | 
            +
              end
         | 
| 1216 | 
            +
            end
         |