torch-rb 0.1.7 → 0.1.8
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -1
- data/ext/torch/ext.cpp +17 -4
- data/ext/torch/extconf.rb +3 -0
- data/ext/torch/templates.hpp +22 -20
- data/lib/torch/native/function.rb +1 -0
- data/lib/torch/native/native_functions.yaml +275 -621
- data/lib/torch/version.rb +1 -1
- metadata +2 -9
- data/ext/torch/nn_functions.cpp +0 -615
- data/ext/torch/nn_functions.hpp +0 -6
- data/ext/torch/tensor_functions.cpp +0 -1920
- data/ext/torch/tensor_functions.hpp +0 -6
- data/ext/torch/torch_functions.cpp +0 -2975
- data/ext/torch/torch_functions.hpp +0 -6
- data/lib/torch/ext.bundle +0 -0
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fca87cb9b6d255287e9fafadf786c113798abbe76b36c82b8271b79cfbf3c2b9
|
4
|
+
data.tar.gz: 4813c71f5ad6d078e78da03cf59f8036e9e76258ffb67f538899bba146dcba2a
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 22c7150e6a7d9132c40c67819beecc6b8c69b268bd227a8e4aa324ef5e2707004691d5b65dcd4ba1ac537bfaf783947da7e5a323417cffcbf7d348768c40b7c6
|
7
|
+
data.tar.gz: 8a86c6b68efe6ad85a261d7033b87f040c22b2c670a0238accd6246274caed17b86d7b424441bba80c5ea67ec1bf53b05444dfb0c45ea5b8a52806d0ce19ec1e
|
data/CHANGELOG.md
CHANGED
data/ext/torch/ext.cpp
CHANGED
@@ -16,6 +16,12 @@
|
|
16
16
|
|
17
17
|
using namespace Rice;
|
18
18
|
|
19
|
+
// need to make a distinction between parameters and tensors
|
20
|
+
class Parameter: public torch::autograd::Variable {
|
21
|
+
public:
|
22
|
+
Parameter(Tensor&& t) : torch::autograd::Variable(t) { }
|
23
|
+
};
|
24
|
+
|
19
25
|
extern "C"
|
20
26
|
void Init_ext()
|
21
27
|
{
|
@@ -136,7 +142,13 @@ void Init_ext()
|
|
136
142
|
for (size_t i = 0; i < a.size(); i++) {
|
137
143
|
vec.push_back(from_ruby<float>(a[i]));
|
138
144
|
}
|
139
|
-
|
145
|
+
// hack for requires_grad error
|
146
|
+
if (options.requires_grad()) {
|
147
|
+
t = torch::tensor(vec, options.requires_grad(c10::nullopt));
|
148
|
+
t.set_requires_grad(true);
|
149
|
+
} else {
|
150
|
+
t = torch::tensor(vec, options);
|
151
|
+
}
|
140
152
|
}
|
141
153
|
return t.reshape(size);
|
142
154
|
});
|
@@ -146,6 +158,7 @@ void Init_ext()
|
|
146
158
|
.define_method("sparse?", &torch::Tensor::is_sparse)
|
147
159
|
.define_method("quantized?", &torch::Tensor::is_quantized)
|
148
160
|
.define_method("dim", &torch::Tensor::dim)
|
161
|
+
.define_method("numel", &torch::Tensor::numel)
|
149
162
|
.define_method("element_size", &torch::Tensor::element_size)
|
150
163
|
.define_method("requires_grad", &torch::Tensor::requires_grad)
|
151
164
|
.define_method(
|
@@ -260,7 +273,7 @@ void Init_ext()
|
|
260
273
|
auto data = torch::autograd::as_variable_ref(rd).detach();
|
261
274
|
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
262
275
|
auto var = data.set_requires_grad(requires_grad);
|
263
|
-
return
|
276
|
+
return Parameter(std::move(var));
|
264
277
|
});
|
265
278
|
|
266
279
|
Class rb_cTensorOptions = define_class_under<torch::TensorOptions>(rb_mTorch, "TensorOptions")
|
@@ -375,10 +388,10 @@ void Init_ext()
|
|
375
388
|
return torch::nn::init::sparse_(tensor, sparsity, std);
|
376
389
|
});
|
377
390
|
|
378
|
-
Class rb_cParameter = define_class_under<
|
391
|
+
Class rb_cParameter = define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter")
|
379
392
|
.define_method(
|
380
393
|
"grad",
|
381
|
-
*[](
|
394
|
+
*[](Parameter& self) {
|
382
395
|
auto grad = self.grad();
|
383
396
|
return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
|
384
397
|
});
|
data/ext/torch/extconf.rb
CHANGED
@@ -10,6 +10,9 @@ $CXXFLAGS << " -std=c++11"
|
|
10
10
|
# silence ruby/intern.h warning
|
11
11
|
$CXXFLAGS << " -Wno-deprecated-register"
|
12
12
|
|
13
|
+
# silence torch warnings
|
14
|
+
$CXXFLAGS << " -Wno-shorten-64-to-32 -Wno-missing-noreturn"
|
15
|
+
|
13
16
|
inc, lib = dir_config("torch")
|
14
17
|
|
15
18
|
inc ||= "/usr/local/include"
|
data/ext/torch/templates.hpp
CHANGED
@@ -1,5 +1,9 @@
|
|
1
1
|
#pragma once
|
2
2
|
|
3
|
+
#ifdef isfinite
|
4
|
+
#undef isfinite
|
5
|
+
#endif
|
6
|
+
|
3
7
|
#include <rice/Array.hpp>
|
4
8
|
#include <rice/Object.hpp>
|
5
9
|
|
@@ -79,12 +83,11 @@ class FanModeType {
|
|
79
83
|
FanModeType(Object o) {
|
80
84
|
s = String(o).str();
|
81
85
|
}
|
82
|
-
|
83
|
-
operator torch::nn::init::FanMode() {
|
86
|
+
operator torch::nn::init::FanModeType() {
|
84
87
|
if (s == "fan_in") {
|
85
|
-
return torch::
|
88
|
+
return torch::kFanIn;
|
86
89
|
} else if (s == "fan_out") {
|
87
|
-
return torch::
|
90
|
+
return torch::kFanOut;
|
88
91
|
} else {
|
89
92
|
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
90
93
|
}
|
@@ -104,30 +107,29 @@ class NonlinearityType {
|
|
104
107
|
NonlinearityType(Object o) {
|
105
108
|
s = String(o).str();
|
106
109
|
}
|
107
|
-
|
108
|
-
operator torch::nn::init::Nonlinearity() {
|
110
|
+
operator torch::nn::init::NonlinearityType() {
|
109
111
|
if (s == "linear") {
|
110
|
-
return torch::
|
112
|
+
return torch::kLinear;
|
111
113
|
} else if (s == "conv1d") {
|
112
|
-
return torch::
|
114
|
+
return torch::kConv1D;
|
113
115
|
} else if (s == "conv2d") {
|
114
|
-
return torch::
|
116
|
+
return torch::kConv2D;
|
115
117
|
} else if (s == "conv3d") {
|
116
|
-
return torch::
|
118
|
+
return torch::kConv3D;
|
117
119
|
} else if (s == "conv_transpose1d") {
|
118
|
-
return torch::
|
120
|
+
return torch::kConvTranspose1D;
|
119
121
|
} else if (s == "conv_transpose2d") {
|
120
|
-
return torch::
|
122
|
+
return torch::kConvTranspose2D;
|
121
123
|
} else if (s == "conv_transpose3d") {
|
122
|
-
return torch::
|
124
|
+
return torch::kConvTranspose3D;
|
123
125
|
} else if (s == "sigmoid") {
|
124
|
-
return torch::
|
126
|
+
return torch::kSigmoid;
|
125
127
|
} else if (s == "tanh") {
|
126
|
-
return torch::
|
128
|
+
return torch::kTanh;
|
127
129
|
} else if (s == "relu") {
|
128
|
-
return torch::
|
130
|
+
return torch::kReLU;
|
129
131
|
} else if (s == "leaky_relu") {
|
130
|
-
return torch::
|
132
|
+
return torch::kLeakyReLU;
|
131
133
|
} else {
|
132
134
|
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
133
135
|
}
|
@@ -149,14 +151,14 @@ class MyReduction {
|
|
149
151
|
}
|
150
152
|
operator int64_t() {
|
151
153
|
if (value.is_nil()) {
|
152
|
-
return Reduction::None;
|
154
|
+
return torch::Reduction::None;
|
153
155
|
}
|
154
156
|
|
155
157
|
std::string s = String(value).str();
|
156
158
|
if (s == "mean") {
|
157
|
-
return Reduction::Mean;
|
159
|
+
return torch::Reduction::Mean;
|
158
160
|
} else if (s == "sum") {
|
159
|
-
return Reduction::Sum;
|
161
|
+
return torch::Reduction::Sum;
|
160
162
|
} else {
|
161
163
|
throw std::runtime_error("Unsupported reduction: " + s);
|
162
164
|
}
|
@@ -37,19 +37,38 @@
|
|
37
37
|
use_c10_dispatcher: full
|
38
38
|
variants: function
|
39
39
|
|
40
|
-
|
40
|
+
# Computes the gradient of current tensor w.r.t. graph leaves.
|
41
|
+
- func: backward(Tensor self, Tensor? gradient=None, bool keep_graph=False, bool create_graph=False) -> ()
|
41
42
|
variants: method
|
42
43
|
|
43
|
-
|
44
|
+
# DEPRECATED. Sets the tensor data held by this `Variable` to be the same as
|
45
|
+
# `new_data`. It requires that `new_data` and `Variable` have compatible tensor
|
46
|
+
# type, by checking `_has_compatible_shallow_copy_type(this, new_data)`.
|
47
|
+
#
|
48
|
+
# This function is deprecated because it doesn't really make sense in a world
|
49
|
+
# where Variables *are* Tensors (as opposed to them containing tensors, which
|
50
|
+
# is what the previous interpretation was.)
|
51
|
+
- func: set_data(Tensor(a!) self, Tensor new_data) -> ()
|
52
|
+
use_c10_dispatcher: unboxed_only
|
44
53
|
variants: method
|
45
54
|
|
46
55
|
- func: data(Tensor self) -> Tensor
|
47
|
-
use_c10_dispatcher: unboxed_only
|
48
56
|
variants: method
|
49
57
|
|
58
|
+
# True if this `Variable` is a leaf and thus does not have a `grad_fn`.
|
50
59
|
- func: is_leaf(Tensor self) -> bool
|
51
60
|
variants: method
|
52
61
|
|
62
|
+
# Returns the output index of this variable from the forward operation that
|
63
|
+
# produced it. Conversely, it returns the input index of the gradient `Node` to
|
64
|
+
# which this `Variable` is connected (because in the gradient computation,
|
65
|
+
# inputs and outputs switch meaning). For example:
|
66
|
+
#
|
67
|
+
# y0, y1, y2 = f(x)
|
68
|
+
# assert y0.output_nr == 0
|
69
|
+
# assert y1.output_nr == 1
|
70
|
+
# assert y2.output_nr == 2
|
71
|
+
#
|
53
72
|
- func: output_nr(Tensor self) -> int
|
54
73
|
variants: method
|
55
74
|
supports_named_tensor: True
|
@@ -57,6 +76,9 @@
|
|
57
76
|
- func: _version(Tensor self) -> int
|
58
77
|
variants: method
|
59
78
|
|
79
|
+
- func: requires_grad_(Tensor(a!) self, bool _requires_grad=True) -> Tensor(a!)
|
80
|
+
variants: method
|
81
|
+
|
60
82
|
- func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!)
|
61
83
|
variants: method
|
62
84
|
supports_named_tensor: True
|
@@ -65,38 +87,43 @@
|
|
65
87
|
variants: method
|
66
88
|
supports_named_tensor: True
|
67
89
|
|
68
|
-
- func: align_to(Tensor(a) self,
|
90
|
+
- func: align_to(Tensor(a) self, Dimname[] names) -> Tensor(a)
|
91
|
+
variants: method
|
92
|
+
supports_named_tensor: True
|
93
|
+
|
94
|
+
- func: align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a)
|
69
95
|
variants: method
|
70
96
|
supports_named_tensor: True
|
71
97
|
|
72
98
|
- func: align_as(Tensor self, Tensor other) -> Tensor
|
73
|
-
use_c10_dispatcher: unboxed_only
|
74
99
|
variants: method
|
75
100
|
supports_named_tensor: True
|
76
101
|
|
77
102
|
- func: align_tensors(Tensor[] tensors) -> Tensor[]
|
78
|
-
use_c10_dispatcher: unboxed_only
|
79
103
|
supports_named_tensor: True
|
80
104
|
|
81
|
-
- func: refine_names(Tensor(a) self,
|
105
|
+
- func: refine_names(Tensor(a) self, Dimname[] names) -> Tensor(a)
|
82
106
|
variants: method
|
83
107
|
supports_named_tensor: True
|
84
108
|
|
85
|
-
- func: unflatten(Tensor self, Dimname dim, int[] sizes,
|
109
|
+
- func: unflatten.Dimname(Tensor self, Dimname dim, int[] sizes, Dimname[] names) -> Tensor
|
86
110
|
variants: method
|
87
111
|
supports_named_tensor: True
|
88
112
|
|
89
|
-
- func: unflatten(Tensor self, int dim, int[] sizes,
|
113
|
+
- func: unflatten.int(Tensor self, int dim, int[] sizes, Dimname[] names) -> Tensor
|
90
114
|
variants: method
|
91
115
|
supports_named_tensor: True
|
92
116
|
|
117
|
+
|
118
|
+
- func: _use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool
|
119
|
+
dispatch:
|
120
|
+
CUDA: _use_cudnn_ctc_loss
|
121
|
+
|
93
122
|
- func: _cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor)
|
94
|
-
use_c10_dispatcher: unboxed_only
|
95
123
|
dispatch:
|
96
124
|
CUDA: _cudnn_ctc_loss
|
97
125
|
|
98
126
|
- func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, int input_size, int mode, int hidden_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
99
|
-
use_c10_dispatcher: unboxed_only
|
100
127
|
dispatch:
|
101
128
|
CUDA: _cudnn_rnn_flatten_weight
|
102
129
|
|
@@ -117,7 +144,6 @@
|
|
117
144
|
variants: function
|
118
145
|
|
119
146
|
- func: _fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor)
|
120
|
-
use_c10_dispatcher: 'unboxed_only'
|
121
147
|
variants: function
|
122
148
|
dispatch:
|
123
149
|
CUDA: fused_dropout_cuda
|
@@ -132,15 +158,12 @@
|
|
132
158
|
- func: _sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, ScalarType? dtype) -> (Tensor, Tensor)
|
133
159
|
|
134
160
|
- func: _sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!)
|
135
|
-
use_c10_dispatcher: unboxed_only
|
136
161
|
|
137
162
|
|
138
163
|
- func: _sobol_engine_scramble_(Tensor(a!) self, Tensor ltm, int dimension) -> Tensor(a!)
|
139
|
-
use_c10_dispatcher: unboxed_only
|
140
164
|
|
141
165
|
|
142
166
|
- func: _sobol_engine_initialize_state_(Tensor(a!) self, int dimension) -> Tensor(a!)
|
143
|
-
use_c10_dispatcher: unboxed_only
|
144
167
|
|
145
168
|
|
146
169
|
- func: _reshape_from_tensor(Tensor self, Tensor shape) -> Tensor
|
@@ -154,27 +177,23 @@
|
|
154
177
|
supports_named_tensor: True
|
155
178
|
|
156
179
|
- func: dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
157
|
-
use_c10_dispatcher: unboxed_only
|
158
180
|
supports_named_tensor: True
|
159
181
|
|
160
182
|
- func: feature_dropout(Tensor input, float p, bool train) -> Tensor
|
161
183
|
use_c10_dispatcher: full
|
162
184
|
|
163
185
|
- func: feature_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
164
|
-
use_c10_dispatcher: unboxed_only
|
165
186
|
|
166
187
|
- func: alpha_dropout(Tensor input, float p, bool train) -> Tensor
|
167
188
|
use_c10_dispatcher: full
|
168
189
|
|
169
190
|
- func: alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
170
|
-
use_c10_dispatcher: unboxed_only
|
171
191
|
|
172
192
|
|
173
193
|
- func: feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor
|
174
194
|
use_c10_dispatcher: full
|
175
195
|
|
176
196
|
- func: feature_alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
177
|
-
use_c10_dispatcher: unboxed_only
|
178
197
|
|
179
198
|
|
180
199
|
- func: abs(Tensor self) -> Tensor
|
@@ -183,18 +202,55 @@
|
|
183
202
|
supports_named_tensor: True
|
184
203
|
|
185
204
|
- func: abs_(Tensor(a!) self) -> Tensor(a!)
|
186
|
-
use_c10_dispatcher: unboxed_only
|
187
205
|
variants: function, method
|
188
206
|
supports_named_tensor: True
|
189
|
-
dispatch:
|
190
|
-
CPU: _abs__cpu
|
191
|
-
CUDA: _abs__cuda
|
192
207
|
|
193
208
|
- func: abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
194
209
|
supports_named_tensor: True
|
210
|
+
|
211
|
+
- func: angle(Tensor self) -> Tensor
|
212
|
+
variants: function, method
|
213
|
+
supports_named_tensor: True
|
214
|
+
named_guard: False
|
215
|
+
|
216
|
+
- func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
217
|
+
named_guard: False
|
218
|
+
supports_named_tensor: True
|
219
|
+
dispatch:
|
220
|
+
CPU: _angle_out_cpu
|
221
|
+
|
222
|
+
- func: real(Tensor self) -> Tensor
|
223
|
+
variants: function, method
|
224
|
+
named_guard: False
|
225
|
+
supports_named_tensor: True
|
226
|
+
|
227
|
+
- func: real.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
228
|
+
named_guard: False
|
229
|
+
supports_named_tensor: True
|
230
|
+
dispatch:
|
231
|
+
CPU: _real_out_cpu
|
232
|
+
|
233
|
+
- func: imag(Tensor self) -> Tensor
|
234
|
+
variants: function, method
|
235
|
+
named_guard: False
|
236
|
+
supports_named_tensor: True
|
237
|
+
|
238
|
+
- func: imag.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
239
|
+
named_guard: False
|
240
|
+
supports_named_tensor: True
|
241
|
+
dispatch:
|
242
|
+
CPU: _imag_out_cpu
|
243
|
+
|
244
|
+
- func: conj(Tensor self) -> Tensor
|
245
|
+
variants: function, method
|
246
|
+
named_guard: False
|
247
|
+
supports_named_tensor: True
|
248
|
+
|
249
|
+
- func: conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
250
|
+
named_guard: False
|
251
|
+
supports_named_tensor: True
|
195
252
|
dispatch:
|
196
|
-
CPU:
|
197
|
-
CUDA: _abs_out_cuda
|
253
|
+
CPU: _conj_out_cpu
|
198
254
|
|
199
255
|
- func: acos(Tensor self) -> Tensor
|
200
256
|
use_c10_dispatcher: full
|
@@ -202,28 +258,18 @@
|
|
202
258
|
variants: function, method
|
203
259
|
|
204
260
|
- func: acos_(Tensor(a!) self) -> Tensor(a!)
|
205
|
-
use_c10_dispatcher: unboxed_only
|
206
261
|
supports_named_tensor: True
|
207
262
|
variants: function, method
|
208
|
-
dispatch:
|
209
|
-
CPU: _acos__cpu
|
210
|
-
CUDA: _acos__cuda
|
211
263
|
|
212
264
|
- func: acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
213
265
|
supports_named_tensor: True
|
214
|
-
dispatch:
|
215
|
-
CPU: _acos_out_cpu
|
216
|
-
CUDA: _acos_out_cuda
|
217
266
|
|
218
267
|
- func: avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, bool ceil_mode=False, bool count_include_pad=True) -> Tensor
|
219
|
-
use_c10_dispatcher: unboxed_only
|
220
268
|
|
221
269
|
- func: adaptive_avg_pool1d(Tensor self, int[1] output_size) -> Tensor
|
222
|
-
use_c10_dispatcher: unboxed_only
|
223
270
|
|
224
271
|
# Return: (Tensor output, Tensor indices)
|
225
272
|
- func: adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)
|
226
|
-
use_c10_dispatcher: unboxed_only
|
227
273
|
|
228
274
|
- func: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
229
275
|
use_c10_dispatcher: full
|
@@ -237,7 +283,6 @@
|
|
237
283
|
supports_named_tensor: True
|
238
284
|
|
239
285
|
- func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
240
|
-
use_c10_dispatcher: unboxed_only
|
241
286
|
variants: method
|
242
287
|
dispatch:
|
243
288
|
CPU: add_
|
@@ -263,7 +308,6 @@
|
|
263
308
|
supports_named_tensor: True
|
264
309
|
|
265
310
|
- func: add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
266
|
-
use_c10_dispatcher: unboxed_only
|
267
311
|
variants: method
|
268
312
|
supports_named_tensor: True
|
269
313
|
|
@@ -276,7 +320,6 @@
|
|
276
320
|
supports_named_tensor: True
|
277
321
|
|
278
322
|
- func: addmv_(Tensor(a!) self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
279
|
-
use_c10_dispatcher: unboxed_only
|
280
323
|
variants: function, method
|
281
324
|
dispatch:
|
282
325
|
CPU: legacy::cpu::_th_addmv_
|
@@ -294,17 +337,14 @@
|
|
294
337
|
variants: function, method
|
295
338
|
|
296
339
|
- func: addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
297
|
-
use_c10_dispatcher: unboxed_only
|
298
340
|
variants: method
|
299
341
|
|
300
342
|
- func: addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
301
343
|
|
302
344
|
- func: affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> Tensor
|
303
|
-
use_c10_dispatcher: unboxed_only
|
304
345
|
variants: function
|
305
346
|
|
306
347
|
- func: affine_grid_generator_backward(Tensor grad, int[] size, bool align_corners) -> Tensor
|
307
|
-
use_c10_dispatcher: unboxed_only
|
308
348
|
variants: function
|
309
349
|
|
310
350
|
- func: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
|
@@ -363,7 +403,6 @@
|
|
363
403
|
variants: function, method
|
364
404
|
|
365
405
|
- func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a)
|
366
|
-
use_c10_dispatcher: unboxed_only
|
367
406
|
variants: function, method
|
368
407
|
dispatch:
|
369
408
|
CPU: as_strided_tensorimpl
|
@@ -373,7 +412,6 @@
|
|
373
412
|
supports_named_tensor: True
|
374
413
|
|
375
414
|
- func: as_strided_(Tensor(a!) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a!)
|
376
|
-
use_c10_dispatcher: unboxed_only
|
377
415
|
variants: function, method
|
378
416
|
device_guard: False
|
379
417
|
|
@@ -383,18 +421,11 @@
|
|
383
421
|
variants: function, method
|
384
422
|
|
385
423
|
- func: asin_(Tensor(a!) self) -> Tensor(a!)
|
386
|
-
use_c10_dispatcher: unboxed_only
|
387
424
|
supports_named_tensor: True
|
388
425
|
variants: function, method
|
389
|
-
dispatch:
|
390
|
-
CPU: _asin__cpu
|
391
|
-
CUDA: _asin__cuda
|
392
426
|
|
393
427
|
- func: asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
394
428
|
supports_named_tensor: True
|
395
|
-
dispatch:
|
396
|
-
CPU: _asin_out_cpu
|
397
|
-
CUDA: _asin_out_cuda
|
398
429
|
|
399
430
|
- func: atan(Tensor self) -> Tensor
|
400
431
|
use_c10_dispatcher: full
|
@@ -402,7 +433,6 @@
|
|
402
433
|
variants: function, method
|
403
434
|
|
404
435
|
- func: atan_(Tensor(a!) self) -> Tensor(a!)
|
405
|
-
use_c10_dispatcher: unboxed_only
|
406
436
|
supports_named_tensor: True
|
407
437
|
variants: function, method
|
408
438
|
dispatch:
|
@@ -423,14 +453,12 @@
|
|
423
453
|
CUDA: baddbmm_cuda
|
424
454
|
|
425
455
|
- func: baddbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
426
|
-
use_c10_dispatcher: unboxed_only
|
427
456
|
variants: method
|
428
457
|
dispatch:
|
429
458
|
CPU: baddbmm__cpu
|
430
459
|
CUDA: baddbmm__cuda
|
431
460
|
|
432
461
|
- func: _baddbmm_mkl_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
433
|
-
use_c10_dispatcher: unboxed_only
|
434
462
|
variants: function
|
435
463
|
|
436
464
|
- func: baddbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
@@ -445,13 +473,12 @@
|
|
445
473
|
|
446
474
|
- func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor
|
447
475
|
|
448
|
-
- func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, int)
|
476
|
+
- func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)
|
449
477
|
|
450
|
-
- func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
478
|
+
- func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor)
|
451
479
|
|
452
480
|
# Sample bernoulli with values in `self` as probability.
|
453
481
|
- func: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor
|
454
|
-
use_c10_dispatcher: 'unboxed_only'
|
455
482
|
variants: function, method
|
456
483
|
supports_named_tensor: True
|
457
484
|
|
@@ -460,7 +487,6 @@
|
|
460
487
|
supports_named_tensor: True
|
461
488
|
|
462
489
|
- func: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!)
|
463
|
-
use_c10_dispatcher: 'unboxed_only'
|
464
490
|
variants: method
|
465
491
|
dispatch:
|
466
492
|
CPU: bernoulli_tensor_cpu_
|
@@ -468,7 +494,6 @@
|
|
468
494
|
supports_named_tensor: True
|
469
495
|
|
470
496
|
- func: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!)
|
471
|
-
use_c10_dispatcher: 'unboxed_only'
|
472
497
|
variants: method
|
473
498
|
dispatch:
|
474
499
|
CPU: bernoulli_scalar_cpu_
|
@@ -479,7 +504,6 @@
|
|
479
504
|
# There is no default valid on `p` here because it would introduce ambiguity
|
480
505
|
# with `bernoulli(Tensor self, *, Generator? generator=None)` declaration.
|
481
506
|
- func: bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> Tensor
|
482
|
-
use_c10_dispatcher: 'unboxed_only'
|
483
507
|
variants: function, method
|
484
508
|
|
485
509
|
- func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor
|
@@ -502,7 +526,6 @@
|
|
502
526
|
variants: function, method
|
503
527
|
|
504
528
|
- func: bitwise_not_(Tensor(a!) self) -> Tensor(a!)
|
505
|
-
use_c10_dispatcher: unboxed_only
|
506
529
|
supports_named_tensor: True
|
507
530
|
variants: method
|
508
531
|
|
@@ -513,12 +536,10 @@
|
|
513
536
|
CUDA: bitwise_not_out
|
514
537
|
|
515
538
|
- func: logical_not(Tensor self) -> Tensor
|
516
|
-
use_c10_dispatcher: unboxed_only
|
517
539
|
supports_named_tensor: True
|
518
540
|
variants: function, method
|
519
541
|
|
520
542
|
- func: logical_not_(Tensor(a!) self) -> Tensor(a!)
|
521
|
-
use_c10_dispatcher: unboxed_only
|
522
543
|
supports_named_tensor: True
|
523
544
|
variants: method
|
524
545
|
|
@@ -529,12 +550,10 @@
|
|
529
550
|
CUDA: logical_not_out
|
530
551
|
|
531
552
|
- func: logical_xor(Tensor self, Tensor other) -> Tensor
|
532
|
-
use_c10_dispatcher: unboxed_only
|
533
553
|
variants: function, method
|
534
554
|
supports_named_tensor: True
|
535
555
|
|
536
556
|
- func: logical_xor_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
537
|
-
use_c10_dispatcher: unboxed_only
|
538
557
|
variants: method
|
539
558
|
supports_named_tensor: True
|
540
559
|
|
@@ -564,11 +583,9 @@
|
|
564
583
|
supports_named_tensor: True
|
565
584
|
|
566
585
|
- func: broadcast_tensors(Tensor[] tensors) -> Tensor[]
|
567
|
-
use_c10_dispatcher: unboxed_only
|
568
586
|
device_guard: False
|
569
587
|
|
570
588
|
- func: cat(Tensor[] tensors, int dim=0) -> Tensor
|
571
|
-
use_c10_dispatcher: unboxed_only
|
572
589
|
supports_named_tensor: True
|
573
590
|
|
574
591
|
- func: cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -586,7 +603,6 @@
|
|
586
603
|
variants: function, method
|
587
604
|
|
588
605
|
- func: ceil_(Tensor(a!) self) -> Tensor(a!)
|
589
|
-
use_c10_dispatcher: unboxed_only
|
590
606
|
supports_named_tensor: True
|
591
607
|
variants: function, method
|
592
608
|
|
@@ -597,11 +613,9 @@
|
|
597
613
|
CUDA: ceil_out
|
598
614
|
|
599
615
|
- func: chain_matmul(Tensor[] matrices) -> Tensor
|
600
|
-
use_c10_dispatcher: unboxed_only
|
601
616
|
variants: function
|
602
617
|
|
603
618
|
- func: chunk(Tensor(a) self, int chunks, int dim=0) -> Tensor(a)[]
|
604
|
-
use_c10_dispatcher: unboxed_only
|
605
619
|
variants: function, method
|
606
620
|
device_guard: False
|
607
621
|
supports_named_tensor: True
|
@@ -612,7 +626,6 @@
|
|
612
626
|
variants: function, method
|
613
627
|
|
614
628
|
- func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)
|
615
|
-
use_c10_dispatcher: unboxed_only
|
616
629
|
supports_named_tensor: True
|
617
630
|
variants: function, method
|
618
631
|
dispatch:
|
@@ -631,7 +644,6 @@
|
|
631
644
|
variants: function, method
|
632
645
|
|
633
646
|
- func: clamp_max_(Tensor(a!) self, Scalar max) -> Tensor(a!)
|
634
|
-
use_c10_dispatcher: unboxed_only
|
635
647
|
supports_named_tensor: True
|
636
648
|
variants: function, method
|
637
649
|
dispatch:
|
@@ -650,7 +662,6 @@
|
|
650
662
|
variants: function, method
|
651
663
|
|
652
664
|
- func: clamp_min_(Tensor(a!) self, Scalar min) -> Tensor(a!)
|
653
|
-
use_c10_dispatcher: unboxed_only
|
654
665
|
supports_named_tensor: True
|
655
666
|
variants: function, method
|
656
667
|
dispatch:
|
@@ -668,7 +679,6 @@
|
|
668
679
|
device_guard: False
|
669
680
|
|
670
681
|
- func: constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> Tensor
|
671
|
-
use_c10_dispatcher: unboxed_only
|
672
682
|
variants: function
|
673
683
|
|
674
684
|
- func: contiguous(Tensor self, *, MemoryFormat memory_format=contiguous_format) -> Tensor
|
@@ -697,7 +707,6 @@
|
|
697
707
|
use_c10_dispatcher: full
|
698
708
|
|
699
709
|
- func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor)
|
700
|
-
use_c10_dispatcher: unboxed_only
|
701
710
|
|
702
711
|
# NB: we inherit the goofy argument order from PyTorch torch.nn.functional
|
703
712
|
- func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] output_padding=0, int groups=1, int[1] dilation=1) -> Tensor
|
@@ -707,7 +716,6 @@
|
|
707
716
|
- func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int groups=1, int[3] dilation=1) -> Tensor
|
708
717
|
|
709
718
|
- func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
710
|
-
use_c10_dispatcher: unboxed_only
|
711
719
|
variants: method
|
712
720
|
device_guard: False
|
713
721
|
supports_named_tensor: True
|
@@ -722,7 +730,6 @@
|
|
722
730
|
variants: function, method
|
723
731
|
|
724
732
|
- func: cos_(Tensor(a!) self) -> Tensor(a!)
|
725
|
-
use_c10_dispatcher: unboxed_only
|
726
733
|
supports_named_tensor: True
|
727
734
|
variants: function, method
|
728
735
|
dispatch:
|
@@ -741,7 +748,6 @@
|
|
741
748
|
variants: function, method
|
742
749
|
|
743
750
|
- func: cosh_(Tensor(a!) self) -> Tensor(a!)
|
744
|
-
use_c10_dispatcher: unboxed_only
|
745
751
|
supports_named_tensor: True
|
746
752
|
variants: function, method
|
747
753
|
dispatch:
|
@@ -768,12 +774,12 @@
|
|
768
774
|
dispatch:
|
769
775
|
CUDA: cudnn_affine_grid_generator_backward
|
770
776
|
|
771
|
-
- func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)
|
777
|
+
- func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor)
|
772
778
|
dispatch:
|
773
779
|
CUDA: cudnn_batch_norm
|
774
780
|
|
775
781
|
# NB: You can only use this if you used cudnn_batch_norm training=True
|
776
|
-
- func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon) -> (Tensor, Tensor, Tensor)
|
782
|
+
- func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace) -> (Tensor, Tensor, Tensor)
|
777
783
|
dispatch:
|
778
784
|
CUDA: cudnn_batch_norm_backward
|
779
785
|
|
@@ -782,12 +788,10 @@
|
|
782
788
|
CUDA: cudnn_convolution
|
783
789
|
|
784
790
|
- func: cudnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
785
|
-
use_c10_dispatcher: unboxed_only
|
786
791
|
dispatch:
|
787
792
|
CUDA: cudnn_convolution_backward_input
|
788
793
|
|
789
794
|
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
790
|
-
use_c10_dispatcher: unboxed_only
|
791
795
|
dispatch:
|
792
796
|
CUDA: cudnn_convolution_backward
|
793
797
|
|
@@ -797,7 +801,6 @@
|
|
797
801
|
CUDA: cudnn_convolution_backward_bias
|
798
802
|
|
799
803
|
- func: cudnn_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
800
|
-
use_c10_dispatcher: unboxed_only
|
801
804
|
dispatch:
|
802
805
|
CUDA: cudnn_convolution_backward_weight
|
803
806
|
|
@@ -808,7 +811,6 @@
|
|
808
811
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
809
812
|
# backwards
|
810
813
|
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
811
|
-
use_c10_dispatcher: unboxed_only
|
812
814
|
dispatch:
|
813
815
|
CUDA: cudnn_convolution_transpose_backward
|
814
816
|
|
@@ -818,12 +820,10 @@
|
|
818
820
|
CUDA: cudnn_convolution_backward_bias
|
819
821
|
|
820
822
|
- func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
821
|
-
use_c10_dispatcher: unboxed_only
|
822
823
|
dispatch:
|
823
824
|
CUDA: cudnn_convolution_transpose_backward_input
|
824
825
|
|
825
826
|
- func: cudnn_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
826
|
-
use_c10_dispatcher: unboxed_only
|
827
827
|
dispatch:
|
828
828
|
CUDA: cudnn_convolution_transpose_backward_weight
|
829
829
|
|
@@ -834,7 +834,6 @@
|
|
834
834
|
CUDA: cudnn_grid_sampler_forward
|
835
835
|
|
836
836
|
- func: cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid)
|
837
|
-
use_c10_dispatcher: unboxed_only
|
838
837
|
dispatch:
|
839
838
|
CUDA: cudnn_grid_sampler_backward
|
840
839
|
|
@@ -867,20 +866,17 @@
|
|
867
866
|
supports_named_tensor: True
|
868
867
|
|
869
868
|
- func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
870
|
-
use_c10_dispatcher: unboxed_only
|
871
869
|
|
872
870
|
# convenience function that converts to intlists for you
|
873
871
|
- func: ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
874
872
|
use_c10_dispatcher: full
|
875
873
|
|
876
874
|
- func: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
|
877
|
-
use_c10_dispatcher: unboxed_only
|
878
875
|
dispatch:
|
879
876
|
CPU: ctc_loss_cpu
|
880
877
|
CUDA: ctc_loss_gpu
|
881
878
|
|
882
879
|
- func: _ctc_loss_backward(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor
|
883
|
-
use_c10_dispatcher: unboxed_only
|
884
880
|
dispatch:
|
885
881
|
CPU: ctc_loss_backward_cpu
|
886
882
|
CUDA: ctc_loss_backward_gpu
|
@@ -898,11 +894,9 @@
|
|
898
894
|
variants: function, method
|
899
895
|
|
900
896
|
- func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)
|
901
|
-
use_c10_dispatcher: unboxed_only
|
902
897
|
variants: function, method
|
903
898
|
|
904
899
|
- func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)
|
905
|
-
use_c10_dispatcher: unboxed_only
|
906
900
|
variants: method
|
907
901
|
|
908
902
|
- func: div.Tensor(Tensor self, Tensor other) -> Tensor
|
@@ -916,7 +910,6 @@
|
|
916
910
|
supports_named_tensor: True
|
917
911
|
|
918
912
|
- func: div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
919
|
-
use_c10_dispatcher: unboxed_only
|
920
913
|
variants: method
|
921
914
|
dispatch:
|
922
915
|
CPU: div_
|
@@ -940,7 +933,6 @@
|
|
940
933
|
supports_named_tensor: True
|
941
934
|
|
942
935
|
- func: div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
943
|
-
use_c10_dispatcher: unboxed_only
|
944
936
|
variants: method
|
945
937
|
supports_named_tensor: True
|
946
938
|
|
@@ -956,7 +948,6 @@
|
|
956
948
|
supports_named_tensor: True
|
957
949
|
|
958
950
|
- func: einsum(str equation, Tensor[] tensors) -> Tensor
|
959
|
-
use_c10_dispatcher: unboxed_only
|
960
951
|
|
961
952
|
- func: embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor
|
962
953
|
use_c10_dispatcher: full
|
@@ -971,7 +962,6 @@
|
|
971
962
|
CUDA: embedding_dense_backward_cuda
|
972
963
|
|
973
964
|
- func: embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!)
|
974
|
-
use_c10_dispatcher: unboxed_only
|
975
965
|
dispatch:
|
976
966
|
CPU: embedding_renorm_cpu_
|
977
967
|
CUDA: embedding_renorm_cuda_
|
@@ -1027,6 +1017,9 @@
|
|
1027
1017
|
- func: new_full(Tensor self, int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1028
1018
|
variants: method
|
1029
1019
|
|
1020
|
+
- func: new_zeros(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1021
|
+
variants: method
|
1022
|
+
|
1030
1023
|
# other overrides are to provide a more helpful error message that dtype is required
|
1031
1024
|
- func: _empty_affine_quantized(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
1032
1025
|
dispatch:
|
@@ -1041,8 +1034,7 @@
|
|
1041
1034
|
CPU: empty_per_channel_affine_quantized_other_backends_stub
|
1042
1035
|
QuantizedCPU: empty_per_channel_affine_quantized_cpu
|
1043
1036
|
|
1044
|
-
- func: resize_(Tensor(a!) self, int[] size) -> Tensor(a!)
|
1045
|
-
use_c10_dispatcher: unboxed_only
|
1037
|
+
- func: resize_(Tensor(a!) self, int[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
1046
1038
|
supports_named_tensor: True
|
1047
1039
|
variants: method
|
1048
1040
|
device_guard: False
|
@@ -1054,12 +1046,11 @@
|
|
1054
1046
|
- func: empty.out(int[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
1055
1047
|
device_guard: False
|
1056
1048
|
|
1057
|
-
- func: empty_like(Tensor self) -> Tensor
|
1058
|
-
use_c10_dispatcher: full
|
1049
|
+
- func: empty_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1059
1050
|
device_guard: False
|
1060
1051
|
supports_named_tensor: True
|
1061
1052
|
|
1062
|
-
- func: empty_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=
|
1053
|
+
- func: empty_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1063
1054
|
device_guard: False
|
1064
1055
|
supports_named_tensor: True
|
1065
1056
|
|
@@ -1074,7 +1065,6 @@
|
|
1074
1065
|
variants: function, method
|
1075
1066
|
|
1076
1067
|
- func: erf_(Tensor(a!) self) -> Tensor(a!)
|
1077
|
-
use_c10_dispatcher: unboxed_only
|
1078
1068
|
supports_named_tensor: True
|
1079
1069
|
variants: function, method
|
1080
1070
|
dispatch:
|
@@ -1093,7 +1083,6 @@
|
|
1093
1083
|
variants: function, method
|
1094
1084
|
|
1095
1085
|
- func: erfc_(Tensor(a!) self) -> Tensor(a!)
|
1096
|
-
use_c10_dispatcher: unboxed_only
|
1097
1086
|
supports_named_tensor: True
|
1098
1087
|
variants: function, method
|
1099
1088
|
dispatch:
|
@@ -1112,7 +1101,6 @@
|
|
1112
1101
|
variants: function, method
|
1113
1102
|
|
1114
1103
|
- func: exp_(Tensor(a!) self) -> Tensor(a!)
|
1115
|
-
use_c10_dispatcher: unboxed_only
|
1116
1104
|
supports_named_tensor: True
|
1117
1105
|
variants: function, method
|
1118
1106
|
dispatch:
|
@@ -1131,7 +1119,6 @@
|
|
1131
1119
|
variants: function, method
|
1132
1120
|
|
1133
1121
|
- func: expm1_(Tensor(a!) self) -> Tensor(a!)
|
1134
|
-
use_c10_dispatcher: unboxed_only
|
1135
1122
|
supports_named_tensor: True
|
1136
1123
|
variants: function, method
|
1137
1124
|
|
@@ -1142,7 +1129,6 @@
|
|
1142
1129
|
CUDA: expm1_out
|
1143
1130
|
|
1144
1131
|
- func: expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a)
|
1145
|
-
use_c10_dispatcher: unboxed_only
|
1146
1132
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
1147
1133
|
device_guard: False
|
1148
1134
|
supports_named_tensor: True
|
@@ -1179,17 +1165,15 @@
|
|
1179
1165
|
variants: function, method
|
1180
1166
|
supports_named_tensor: True
|
1181
1167
|
|
1182
|
-
- func: flatten.DimnameList(Tensor self,
|
1168
|
+
- func: flatten.DimnameList(Tensor self, Dimname[] dims, Dimname out_dim) -> Tensor
|
1183
1169
|
variants: function, method
|
1184
1170
|
supports_named_tensor: True
|
1185
1171
|
|
1186
1172
|
- func: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)
|
1187
|
-
use_c10_dispatcher: unboxed_only
|
1188
1173
|
supports_named_tensor: True
|
1189
1174
|
variants: function, method
|
1190
1175
|
|
1191
1176
|
- func: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!)
|
1192
|
-
use_c10_dispatcher: unboxed_only
|
1193
1177
|
supports_named_tensor: True
|
1194
1178
|
variants: function, method
|
1195
1179
|
|
@@ -1199,7 +1183,6 @@
|
|
1199
1183
|
variants: function, method
|
1200
1184
|
|
1201
1185
|
- func: floor_(Tensor(a!) self) -> Tensor(a!)
|
1202
|
-
use_c10_dispatcher: unboxed_only
|
1203
1186
|
supports_named_tensor: True
|
1204
1187
|
variants: function, method
|
1205
1188
|
|
@@ -1215,18 +1198,11 @@
|
|
1215
1198
|
variants: function, method
|
1216
1199
|
|
1217
1200
|
- func: frac_(Tensor(a!) self) -> Tensor(a!)
|
1218
|
-
use_c10_dispatcher: unboxed_only
|
1219
1201
|
supports_named_tensor: True
|
1220
1202
|
variants: function, method
|
1221
|
-
dispatch:
|
1222
|
-
CPU: _frac__cpu
|
1223
|
-
CUDA: _frac__cuda
|
1224
1203
|
|
1225
1204
|
- func: frac.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1226
1205
|
supports_named_tensor: True
|
1227
|
-
dispatch:
|
1228
|
-
CPU: _frac_out_cpu
|
1229
|
-
CUDA: _frac_out_cuda
|
1230
1206
|
|
1231
1207
|
- func: full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1232
1208
|
device_guard: False
|
@@ -1235,10 +1211,11 @@
|
|
1235
1211
|
|
1236
1212
|
- func: full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)
|
1237
1213
|
|
1238
|
-
- func: full_like(Tensor self, Scalar fill_value) -> Tensor
|
1239
|
-
|
1214
|
+
- func: full_like(Tensor self, Scalar fill_value, *, MemoryFormat? memory_format=None) -> Tensor
|
1215
|
+
supports_named_tensor: True
|
1240
1216
|
|
1241
|
-
- func: full_like.dtype(Tensor self, Scalar fill_value, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
1217
|
+
- func: full_like.dtype(Tensor self, Scalar fill_value, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1218
|
+
supports_named_tensor: True
|
1242
1219
|
|
1243
1220
|
- func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1244
1221
|
dispatch:
|
@@ -1265,7 +1242,6 @@
|
|
1265
1242
|
CUDA: grid_sampler_2d_cuda
|
1266
1243
|
|
1267
1244
|
- func: grid_sampler_2d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
|
1268
|
-
use_c10_dispatcher: unboxed_only
|
1269
1245
|
dispatch:
|
1270
1246
|
CPU: grid_sampler_2d_backward_cpu
|
1271
1247
|
CUDA: grid_sampler_2d_backward_cuda
|
@@ -1277,7 +1253,6 @@
|
|
1277
1253
|
CUDA: grid_sampler_3d_cuda
|
1278
1254
|
|
1279
1255
|
- func: grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
|
1280
|
-
use_c10_dispatcher: unboxed_only
|
1281
1256
|
dispatch:
|
1282
1257
|
CPU: grid_sampler_3d_backward_cpu
|
1283
1258
|
CUDA: grid_sampler_3d_backward_cuda
|
@@ -1326,11 +1301,9 @@
|
|
1326
1301
|
variants: function, method
|
1327
1302
|
|
1328
1303
|
- func: irfft(Tensor self, int signal_ndim, bool normalized=False, bool onesided=True, int[] signal_sizes=[]) -> Tensor
|
1329
|
-
use_c10_dispatcher: unboxed_only
|
1330
1304
|
variants: function, method
|
1331
1305
|
|
1332
1306
|
- func: _fft_with_size(Tensor self, int signal_ndim, bool complex_input, bool complex_output, bool inverse, int[] checked_signal_sizes, bool normalized, bool onesided, int[] output_sizes) -> Tensor
|
1333
|
-
use_c10_dispatcher: unboxed_only
|
1334
1307
|
variants: function
|
1335
1308
|
dispatch:
|
1336
1309
|
CPU: _fft_mkl
|
@@ -1342,16 +1315,17 @@
|
|
1342
1315
|
- func: _cufft_get_plan_cache_max_size(int device_index) -> int
|
1343
1316
|
use_c10_dispatcher: full
|
1344
1317
|
|
1345
|
-
- func: _cufft_set_plan_cache_max_size(int device_index, int max_size) ->
|
1318
|
+
- func: _cufft_set_plan_cache_max_size(int device_index, int max_size) -> ()
|
1319
|
+
use_c10_dispatcher: unboxed_only
|
1346
1320
|
|
1347
|
-
- func: _cufft_clear_plan_cache(int device_index) ->
|
1321
|
+
- func: _cufft_clear_plan_cache(int device_index) -> ()
|
1322
|
+
use_c10_dispatcher: unboxed_only
|
1348
1323
|
|
1349
1324
|
- func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
|
1350
1325
|
variants: function, method
|
1351
1326
|
# NB: This function is special-cased in tools/autograd/gen_variable_type.py
|
1352
1327
|
|
1353
1328
|
- func: index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
1354
|
-
use_c10_dispatcher: unboxed_only
|
1355
1329
|
variants: method
|
1356
1330
|
|
1357
1331
|
- func: index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
|
@@ -1444,7 +1418,6 @@
|
|
1444
1418
|
CUDA: kl_div_backward_cuda
|
1445
1419
|
|
1446
1420
|
- func: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1447
|
-
use_c10_dispatcher: unboxed_only
|
1448
1421
|
supports_named_tensor: True
|
1449
1422
|
variants: function, method
|
1450
1423
|
|
@@ -1466,14 +1439,12 @@
|
|
1466
1439
|
- func: native_layer_norm(Tensor input, Tensor? weight, Tensor? bias, int M, int N, float eps) -> (Tensor, Tensor, Tensor)
|
1467
1440
|
dispatch:
|
1468
1441
|
CPU: layer_norm_cpu
|
1442
|
+
CUDA: layer_norm_cuda
|
1469
1443
|
|
1470
1444
|
- func: native_layer_norm_backward(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, int M, int N, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1471
1445
|
dispatch:
|
1472
1446
|
CPU: layer_norm_backward_cpu
|
1473
|
-
|
1474
|
-
- func: native_layer_norm_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, int M, int N, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1475
|
-
dispatch:
|
1476
|
-
CPU: layer_norm_double_backward_cpu
|
1447
|
+
CUDA: layer_norm_backward_cuda
|
1477
1448
|
|
1478
1449
|
- func: linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
1479
1450
|
python_module: nn
|
@@ -1484,19 +1455,16 @@
|
|
1484
1455
|
MkldnnCPU: mkldnn_linear
|
1485
1456
|
|
1486
1457
|
- func: fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
1487
|
-
use_c10_dispatcher: unboxed_only
|
1488
1458
|
|
1489
1459
|
- func: fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
1490
1460
|
use_c10_dispatcher: full
|
1491
1461
|
|
1492
1462
|
- func: fbgemm_linear_quantize_weight(Tensor input) -> (Tensor, Tensor, float, int)
|
1493
|
-
use_c10_dispatcher: unboxed_only
|
1494
1463
|
|
1495
1464
|
- func: fbgemm_pack_gemm_matrix_fp16(Tensor input) -> Tensor
|
1496
1465
|
use_c10_dispatcher: full
|
1497
1466
|
|
1498
1467
|
- func: fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
1499
|
-
use_c10_dispatcher: unboxed_only
|
1500
1468
|
|
1501
1469
|
- func: fbgemm_linear_fp16_weight(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
1502
1470
|
use_c10_dispatcher: full
|
@@ -1520,7 +1488,6 @@
|
|
1520
1488
|
variants: function, method
|
1521
1489
|
|
1522
1490
|
- func: log_(Tensor(a!) self) -> Tensor(a!)
|
1523
|
-
use_c10_dispatcher: unboxed_only
|
1524
1491
|
supports_named_tensor: True
|
1525
1492
|
variants: function, method
|
1526
1493
|
|
@@ -1536,18 +1503,14 @@
|
|
1536
1503
|
variants: function, method
|
1537
1504
|
|
1538
1505
|
- func: log10_(Tensor(a!) self) -> Tensor(a!)
|
1539
|
-
use_c10_dispatcher: unboxed_only
|
1540
1506
|
supports_named_tensor: True
|
1541
1507
|
variants: function, method
|
1542
|
-
dispatch:
|
1543
|
-
CPU: _log10__cpu
|
1544
|
-
CUDA: _log10__cuda
|
1545
1508
|
|
1546
1509
|
- func: log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1547
1510
|
supports_named_tensor: True
|
1548
1511
|
dispatch:
|
1549
|
-
CPU:
|
1550
|
-
CUDA:
|
1512
|
+
CPU: log10_out
|
1513
|
+
CUDA: log10_out
|
1551
1514
|
|
1552
1515
|
- func: log1p(Tensor self) -> Tensor
|
1553
1516
|
use_c10_dispatcher: full
|
@@ -1555,20 +1518,19 @@
|
|
1555
1518
|
variants: function, method
|
1556
1519
|
|
1557
1520
|
- func: log1p_(Tensor(a!) self) -> Tensor(a!)
|
1558
|
-
use_c10_dispatcher: unboxed_only
|
1559
1521
|
supports_named_tensor: True
|
1560
1522
|
variants: function, method
|
1561
1523
|
dispatch:
|
1562
|
-
CPU:
|
1563
|
-
CUDA:
|
1524
|
+
CPU: log1p_
|
1525
|
+
CUDA: log1p_
|
1564
1526
|
SparseCPU: log1p_sparse_
|
1565
1527
|
SparseCUDA: log1p_sparse_
|
1566
1528
|
|
1567
1529
|
- func: log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1568
1530
|
supports_named_tensor: True
|
1569
1531
|
dispatch:
|
1570
|
-
CPU:
|
1571
|
-
CUDA:
|
1532
|
+
CPU: log1p_out
|
1533
|
+
CUDA: log1p_out
|
1572
1534
|
SparseCPU: log1p_out_sparse
|
1573
1535
|
SparseCUDA: log1p_out_sparse
|
1574
1536
|
|
@@ -1578,18 +1540,14 @@
|
|
1578
1540
|
variants: function, method
|
1579
1541
|
|
1580
1542
|
- func: log2_(Tensor(a!) self) -> Tensor(a!)
|
1581
|
-
use_c10_dispatcher: unboxed_only
|
1582
1543
|
supports_named_tensor: True
|
1583
1544
|
variants: function, method
|
1584
|
-
dispatch:
|
1585
|
-
CPU: _log2__cpu
|
1586
|
-
CUDA: _log2__cuda
|
1587
1545
|
|
1588
1546
|
- func: log2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1589
1547
|
supports_named_tensor: True
|
1590
1548
|
dispatch:
|
1591
|
-
CPU:
|
1592
|
-
CUDA:
|
1549
|
+
CPU: log2_out
|
1550
|
+
CUDA: log2_out
|
1593
1551
|
|
1594
1552
|
- func: logdet(Tensor self) -> Tensor
|
1595
1553
|
use_c10_dispatcher: full
|
@@ -1603,11 +1561,11 @@
|
|
1603
1561
|
CUDA: logspace_cuda_out
|
1604
1562
|
|
1605
1563
|
# log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
1606
|
-
- func: log_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
1564
|
+
- func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
1607
1565
|
variants: function, method
|
1608
1566
|
supports_named_tensor: True
|
1609
1567
|
|
1610
|
-
- func: log_softmax(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1568
|
+
- func: log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1611
1569
|
variants: function, method
|
1612
1570
|
supports_named_tensor: True
|
1613
1571
|
|
@@ -1624,7 +1582,6 @@
|
|
1624
1582
|
CUDA: log_softmax_backward_cuda
|
1625
1583
|
|
1626
1584
|
- func: logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1627
|
-
use_c10_dispatcher: unboxed_only
|
1628
1585
|
supports_named_tensor: True
|
1629
1586
|
variants: function, method
|
1630
1587
|
|
@@ -1660,7 +1617,6 @@
|
|
1660
1617
|
variants: function, method
|
1661
1618
|
|
1662
1619
|
- func: max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1663
|
-
use_c10_dispatcher: unboxed_only
|
1664
1620
|
variants: function, method
|
1665
1621
|
supports_named_tensor: True
|
1666
1622
|
|
@@ -1668,7 +1624,6 @@
|
|
1668
1624
|
supports_named_tensor: True
|
1669
1625
|
|
1670
1626
|
- func: max_values(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1671
|
-
use_c10_dispatcher: unboxed_only
|
1672
1627
|
variants: function, method
|
1673
1628
|
|
1674
1629
|
- func: max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
@@ -1683,28 +1638,22 @@
|
|
1683
1638
|
|
1684
1639
|
# Return: (Tensor output, Tensor indices)
|
1685
1640
|
- func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
1686
|
-
use_c10_dispatcher: unboxed_only
|
1687
1641
|
|
1688
1642
|
- func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor
|
1689
|
-
use_c10_dispatcher: unboxed_only
|
1690
1643
|
|
1691
1644
|
- func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1692
|
-
use_c10_dispatcher: unboxed_only
|
1693
1645
|
|
1694
1646
|
- func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1695
|
-
use_c10_dispatcher: unboxed_only
|
1696
1647
|
requires_tensor: True
|
1697
1648
|
dispatch:
|
1698
1649
|
MkldnnCPU: mkldnn_max_pool2d
|
1699
1650
|
|
1700
1651
|
- func: quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1701
|
-
use_c10_dispatcher: unboxed_only
|
1702
1652
|
requires_tensor: True
|
1703
1653
|
dispatch:
|
1704
1654
|
QuantizedCPU: quantized_max_pool2d
|
1705
1655
|
|
1706
1656
|
- func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor
|
1707
|
-
use_c10_dispatcher: unboxed_only
|
1708
1657
|
|
1709
1658
|
# The CPU and GPU dispatch variants are named weirdly here because otherwise there
|
1710
1659
|
# are namespacing issues in C++
|
@@ -1734,18 +1683,11 @@
|
|
1734
1683
|
- func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
1735
1684
|
variants: function, method
|
1736
1685
|
supports_named_tensor: True
|
1737
|
-
dispatch:
|
1738
|
-
CPU: mean_cpu_gpu
|
1739
|
-
CUDA: mean_cpu_gpu
|
1740
1686
|
|
1741
1687
|
- func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1742
1688
|
supports_named_tensor: True
|
1743
|
-
dispatch:
|
1744
|
-
CPU: mean_out_cpu_gpu
|
1745
|
-
CUDA: mean_out_cpu_gpu
|
1746
1689
|
|
1747
1690
|
- func: median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1748
|
-
use_c10_dispatcher: unboxed_only
|
1749
1691
|
supports_named_tensor: True
|
1750
1692
|
variants: function, method
|
1751
1693
|
|
@@ -1760,7 +1702,6 @@
|
|
1760
1702
|
supports_named_tensor: True
|
1761
1703
|
|
1762
1704
|
- func: min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1763
|
-
use_c10_dispatcher: unboxed_only
|
1764
1705
|
variants: function, method
|
1765
1706
|
supports_named_tensor: True
|
1766
1707
|
|
@@ -1768,7 +1709,6 @@
|
|
1768
1709
|
supports_named_tensor: True
|
1769
1710
|
|
1770
1711
|
- func: min_values(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1771
|
-
use_c10_dispatcher: unboxed_only
|
1772
1712
|
variants: function, method
|
1773
1713
|
|
1774
1714
|
- func: min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
@@ -1784,13 +1724,10 @@
|
|
1784
1724
|
- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups) -> Tensor
|
1785
1725
|
|
1786
1726
|
- func: mkldnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> Tensor
|
1787
|
-
use_c10_dispatcher: unboxed_only
|
1788
1727
|
|
1789
1728
|
- func: mkldnn_convolution_backward_weights(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> (Tensor, Tensor)
|
1790
|
-
use_c10_dispatcher: unboxed_only
|
1791
1729
|
|
1792
1730
|
- func: mkldnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1793
|
-
use_c10_dispatcher: unboxed_only
|
1794
1731
|
|
1795
1732
|
- func: miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)
|
1796
1733
|
dispatch:
|
@@ -1805,12 +1742,10 @@
|
|
1805
1742
|
CUDA: miopen_convolution
|
1806
1743
|
|
1807
1744
|
- func: miopen_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1808
|
-
use_c10_dispatcher: unboxed_only
|
1809
1745
|
dispatch:
|
1810
1746
|
CUDA: miopen_convolution_backward_input
|
1811
1747
|
|
1812
1748
|
- func: miopen_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1813
|
-
use_c10_dispatcher: unboxed_only
|
1814
1749
|
dispatch:
|
1815
1750
|
CUDA: miopen_convolution_backward
|
1816
1751
|
|
@@ -1820,7 +1755,6 @@
|
|
1820
1755
|
CUDA: miopen_convolution_backward_bias
|
1821
1756
|
|
1822
1757
|
- func: miopen_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1823
|
-
use_c10_dispatcher: unboxed_only
|
1824
1758
|
dispatch:
|
1825
1759
|
CUDA: miopen_convolution_backward_weight
|
1826
1760
|
|
@@ -1831,17 +1765,14 @@
|
|
1831
1765
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
1832
1766
|
# backwards
|
1833
1767
|
- func: miopen_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1834
|
-
use_c10_dispatcher: unboxed_only
|
1835
1768
|
dispatch:
|
1836
1769
|
CUDA: miopen_convolution_transpose_backward
|
1837
1770
|
|
1838
1771
|
- func: miopen_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1839
|
-
use_c10_dispatcher: unboxed_only
|
1840
1772
|
dispatch:
|
1841
1773
|
CUDA: miopen_convolution_transpose_backward_input
|
1842
1774
|
|
1843
1775
|
- func: miopen_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1844
|
-
use_c10_dispatcher: unboxed_only
|
1845
1776
|
dispatch:
|
1846
1777
|
CUDA: miopen_convolution_transpose_backward_weight
|
1847
1778
|
|
@@ -1850,17 +1781,14 @@
|
|
1850
1781
|
CUDA: miopen_depthwise_convolution
|
1851
1782
|
|
1852
1783
|
- func: miopen_depthwise_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1853
|
-
use_c10_dispatcher: unboxed_only
|
1854
1784
|
dispatch:
|
1855
1785
|
CUDA: miopen_depthwise_convolution_backward_input
|
1856
1786
|
|
1857
1787
|
- func: miopen_depthwise_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1858
|
-
use_c10_dispatcher: unboxed_only
|
1859
1788
|
dispatch:
|
1860
1789
|
CUDA: miopen_depthwise_convolution_backward
|
1861
1790
|
|
1862
1791
|
- func: miopen_depthwise_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1863
|
-
use_c10_dispatcher: unboxed_only
|
1864
1792
|
dispatch:
|
1865
1793
|
CUDA: miopen_depthwise_convolution_backward_weight
|
1866
1794
|
|
@@ -1894,7 +1822,6 @@
|
|
1894
1822
|
use_c10_dispatcher: full
|
1895
1823
|
|
1896
1824
|
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1897
|
-
use_c10_dispatcher: unboxed_only
|
1898
1825
|
supports_named_tensor: True
|
1899
1826
|
variants: function, method
|
1900
1827
|
|
@@ -1920,7 +1847,6 @@
|
|
1920
1847
|
supports_named_tensor: True
|
1921
1848
|
|
1922
1849
|
- func: mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
1923
|
-
use_c10_dispatcher: unboxed_only
|
1924
1850
|
variants: method
|
1925
1851
|
dispatch:
|
1926
1852
|
CPU: mul_
|
@@ -1945,7 +1871,6 @@
|
|
1945
1871
|
variants: function, method
|
1946
1872
|
|
1947
1873
|
- func: mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
1948
|
-
use_c10_dispatcher: unboxed_only
|
1949
1874
|
variants: method
|
1950
1875
|
|
1951
1876
|
- func: mv(Tensor self, Tensor vec) -> Tensor
|
@@ -1967,7 +1892,6 @@
|
|
1967
1892
|
variants: function, method
|
1968
1893
|
|
1969
1894
|
- func: mvlgamma_(Tensor(a!) self, int p) -> Tensor(a!)
|
1970
|
-
use_c10_dispatcher: unboxed_only
|
1971
1895
|
variants: method
|
1972
1896
|
|
1973
1897
|
- func: narrow_copy(Tensor self, int dim, int start, int length) -> Tensor
|
@@ -1980,7 +1904,6 @@
|
|
1980
1904
|
SparseCUDA: narrow_copy_sparse
|
1981
1905
|
|
1982
1906
|
- func: narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)
|
1983
|
-
use_c10_dispatcher: unboxed_only
|
1984
1907
|
variants: function, method
|
1985
1908
|
device_guard: False
|
1986
1909
|
supports_named_tensor: True
|
@@ -1992,7 +1915,6 @@
|
|
1992
1915
|
MkldnnCPU: mkldnn_batch_norm
|
1993
1916
|
|
1994
1917
|
- func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)
|
1995
|
-
use_c10_dispatcher: unboxed_only
|
1996
1918
|
dispatch:
|
1997
1919
|
CUDA: batch_norm_stats_cuda
|
1998
1920
|
|
@@ -2000,6 +1922,10 @@
|
|
2000
1922
|
dispatch:
|
2001
1923
|
CUDA: batch_norm_elemt_cuda
|
2002
1924
|
|
1925
|
+
- func: batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)
|
1926
|
+
dispatch:
|
1927
|
+
CUDA: batch_norm_elemt_cuda_out
|
1928
|
+
|
2003
1929
|
# for backward compatibility
|
2004
1930
|
- func: batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor)
|
2005
1931
|
dispatch:
|
@@ -2030,19 +1956,16 @@
|
|
2030
1956
|
- func: _nnpack_available() -> bool
|
2031
1957
|
use_c10_dispatcher: full
|
2032
1958
|
|
2033
|
-
- func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int[2] padding) -> Tensor
|
1959
|
+
- func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int[2] padding, int[2] stride=1) -> Tensor
|
2034
1960
|
variants: function
|
2035
1961
|
|
2036
1962
|
- func: _nnpack_spatial_convolution_backward(Tensor input, Tensor grad_output, Tensor weight, int[2] padding, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
2037
|
-
use_c10_dispatcher: unboxed_only
|
2038
1963
|
variants: function
|
2039
1964
|
|
2040
1965
|
- func: _nnpack_spatial_convolution_backward_input(Tensor input, Tensor grad_output, Tensor weight, int[2] padding) -> Tensor
|
2041
|
-
use_c10_dispatcher: unboxed_only
|
2042
1966
|
variants: function
|
2043
1967
|
|
2044
1968
|
- func: _nnpack_spatial_convolution_backward_weight(Tensor input, int[] weightsize, Tensor grad_output, int[2] padding) -> Tensor
|
2045
|
-
use_c10_dispatcher: unboxed_only
|
2046
1969
|
variants: function
|
2047
1970
|
|
2048
1971
|
- func: ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2052,16 +1975,18 @@
|
|
2052
1975
|
|
2053
1976
|
- func: ones.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2054
1977
|
|
2055
|
-
- func: ones_like(Tensor self) -> Tensor
|
2056
|
-
|
1978
|
+
- func: ones_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1979
|
+
supports_named_tensor: True
|
2057
1980
|
|
2058
|
-
- func: ones_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
1981
|
+
- func: ones_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1982
|
+
supports_named_tensor: True
|
2059
1983
|
|
2060
1984
|
- func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor
|
2061
1985
|
use_c10_dispatcher: full
|
2062
1986
|
|
2063
|
-
- func: cdist(Tensor x1, Tensor x2, float p=2) -> Tensor
|
1987
|
+
- func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor
|
2064
1988
|
use_c10_dispatcher: full
|
1989
|
+
supports_named_tensor: True
|
2065
1990
|
|
2066
1991
|
- func: _cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor
|
2067
1992
|
use_c10_dispatcher: full
|
@@ -2080,7 +2005,6 @@
|
|
2080
2005
|
variants: function
|
2081
2006
|
|
2082
2007
|
- func: permute(Tensor(a) self, int[] dims) -> Tensor(a)
|
2083
|
-
use_c10_dispatcher: unboxed_only
|
2084
2008
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
2085
2009
|
|
2086
2010
|
# Only exposed from C++ -- in Python,
|
@@ -2091,7 +2015,6 @@
|
|
2091
2015
|
# behavior on Windows, for reasons I don't understand
|
2092
2016
|
# (maybe related to capital letter collation somehow...)
|
2093
2017
|
- func: numpy_T(Tensor(a) self) -> Tensor(a)
|
2094
|
-
use_c10_dispatcher: unboxed_only
|
2095
2018
|
variants: method
|
2096
2019
|
|
2097
2020
|
- func: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor
|
@@ -2130,10 +2053,11 @@
|
|
2130
2053
|
|
2131
2054
|
- func: rand.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2132
2055
|
|
2133
|
-
- func: rand_like(Tensor self) -> Tensor
|
2134
|
-
|
2056
|
+
- func: rand_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2057
|
+
supports_named_tensor: True
|
2135
2058
|
|
2136
|
-
- func: rand_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2059
|
+
- func: rand_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2060
|
+
supports_named_tensor: True
|
2137
2061
|
|
2138
2062
|
- func: randint(int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2139
2063
|
|
@@ -2151,15 +2075,13 @@
|
|
2151
2075
|
|
2152
2076
|
- func: randint.low_generator_out(int low, int high, int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2153
2077
|
|
2154
|
-
- func: randint_like(Tensor self, int high) -> Tensor
|
2155
|
-
use_c10_dispatcher: full
|
2078
|
+
- func: randint_like(Tensor self, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2156
2079
|
|
2157
|
-
- func: randint_like.low(Tensor self, int low, int high) -> Tensor
|
2158
|
-
use_c10_dispatcher: full
|
2080
|
+
- func: randint_like.low(Tensor self, int low, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2159
2081
|
|
2160
|
-
- func: randint_like.dtype(Tensor self, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2082
|
+
- func: randint_like.dtype(Tensor self, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2161
2083
|
|
2162
|
-
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2084
|
+
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2163
2085
|
|
2164
2086
|
- func: randn(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2165
2087
|
|
@@ -2175,10 +2097,11 @@
|
|
2175
2097
|
|
2176
2098
|
- func: randn.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2177
2099
|
|
2178
|
-
- func: randn_like(Tensor self) -> Tensor
|
2179
|
-
|
2100
|
+
- func: randn_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2101
|
+
supports_named_tensor: True
|
2180
2102
|
|
2181
|
-
- func: randn_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2103
|
+
- func: randn_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2104
|
+
supports_named_tensor: True
|
2182
2105
|
|
2183
2106
|
- func: randperm(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2184
2107
|
|
@@ -2206,7 +2129,6 @@
|
|
2206
2129
|
variants: function, method
|
2207
2130
|
|
2208
2131
|
- func: reciprocal_(Tensor(a!) self) -> Tensor(a!)
|
2209
|
-
use_c10_dispatcher: unboxed_only
|
2210
2132
|
supports_named_tensor: True
|
2211
2133
|
variants: function, method
|
2212
2134
|
dispatch:
|
@@ -2225,7 +2147,6 @@
|
|
2225
2147
|
variants: function, method
|
2226
2148
|
|
2227
2149
|
- func: neg_(Tensor(a!) self) -> Tensor(a!)
|
2228
|
-
use_c10_dispatcher: unboxed_only
|
2229
2150
|
supports_named_tensor: True
|
2230
2151
|
variants: function, method
|
2231
2152
|
|
@@ -2236,7 +2157,6 @@
|
|
2236
2157
|
CUDA: neg_out
|
2237
2158
|
|
2238
2159
|
- func: repeat(Tensor self, int[] repeats) -> Tensor
|
2239
|
-
use_c10_dispatcher: unboxed_only
|
2240
2160
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
2241
2161
|
|
2242
2162
|
- func: repeat_interleave.Tensor(Tensor repeats) -> Tensor
|
@@ -2255,13 +2175,11 @@
|
|
2255
2175
|
variants: function, method
|
2256
2176
|
|
2257
2177
|
- func: reshape(Tensor self, int[] shape) -> Tensor
|
2258
|
-
use_c10_dispatcher: unboxed_only
|
2259
2178
|
variants: function, method
|
2260
2179
|
device_guard: False
|
2261
2180
|
supports_named_tensor: True
|
2262
2181
|
|
2263
2182
|
- func: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor
|
2264
|
-
use_c10_dispatcher: unboxed_only
|
2265
2183
|
device_guard: False
|
2266
2184
|
requires_tensor: True
|
2267
2185
|
dispatch:
|
@@ -2278,7 +2196,6 @@
|
|
2278
2196
|
variants: function, method
|
2279
2197
|
|
2280
2198
|
- func: round_(Tensor(a!) self) -> Tensor(a!)
|
2281
|
-
use_c10_dispatcher: unboxed_only
|
2282
2199
|
supports_named_tensor: True
|
2283
2200
|
variants: function, method
|
2284
2201
|
|
@@ -2289,10 +2206,8 @@
|
|
2289
2206
|
CUDA: round_out
|
2290
2207
|
|
2291
2208
|
- func: rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
2292
|
-
use_c10_dispatcher: 'unboxed_only'
|
2293
2209
|
|
2294
2210
|
- func: rrelu_(Tensor(a!) self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)
|
2295
|
-
use_c10_dispatcher: 'unboxed_only'
|
2296
2211
|
|
2297
2212
|
- func: relu(Tensor self) -> Tensor
|
2298
2213
|
use_c10_dispatcher: full
|
@@ -2305,7 +2220,6 @@
|
|
2305
2220
|
supports_named_tensor: True
|
2306
2221
|
|
2307
2222
|
- func: relu_(Tensor(a!) self) -> Tensor(a!)
|
2308
|
-
use_c10_dispatcher: unboxed_only
|
2309
2223
|
supports_named_tensor: True
|
2310
2224
|
variants: function, method
|
2311
2225
|
dispatch:
|
@@ -2322,7 +2236,6 @@
|
|
2322
2236
|
CUDA: prelu_cuda
|
2323
2237
|
|
2324
2238
|
- func: prelu_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor)
|
2325
|
-
use_c10_dispatcher: unboxed_only
|
2326
2239
|
variants: function, method
|
2327
2240
|
dispatch:
|
2328
2241
|
CPU: prelu_backward_cpu
|
@@ -2362,7 +2275,6 @@
|
|
2362
2275
|
variants: function, method
|
2363
2276
|
|
2364
2277
|
- func: rsqrt_(Tensor(a!) self) -> Tensor(a!)
|
2365
|
-
use_c10_dispatcher: unboxed_only
|
2366
2278
|
supports_named_tensor: True
|
2367
2279
|
variants: function, method
|
2368
2280
|
|
@@ -2378,7 +2290,6 @@
|
|
2378
2290
|
supports_named_tensor: True
|
2379
2291
|
|
2380
2292
|
- func: select.int(Tensor(a) self, int dim, int index) -> Tensor(a)
|
2381
|
-
use_c10_dispatcher: unboxed_only
|
2382
2293
|
variants: function, method
|
2383
2294
|
device_guard: False
|
2384
2295
|
supports_named_tensor: True
|
@@ -2387,13 +2298,11 @@
|
|
2387
2298
|
use_c10_dispatcher: full
|
2388
2299
|
|
2389
2300
|
- func: selu_(Tensor(a!) self) -> Tensor(a!)
|
2390
|
-
use_c10_dispatcher: unboxed_only
|
2391
2301
|
|
2392
2302
|
- func: celu(Tensor self, Scalar alpha=1.0) -> Tensor
|
2393
2303
|
use_c10_dispatcher: full
|
2394
2304
|
|
2395
2305
|
- func: celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!)
|
2396
|
-
use_c10_dispatcher: unboxed_only
|
2397
2306
|
|
2398
2307
|
|
2399
2308
|
- func: sigmoid(Tensor self) -> Tensor
|
@@ -2406,19 +2315,15 @@
|
|
2406
2315
|
MkldnnCPU: mkldnn_sigmoid
|
2407
2316
|
|
2408
2317
|
- func: sigmoid_(Tensor(a!) self) -> Tensor(a!)
|
2409
|
-
use_c10_dispatcher: unboxed_only
|
2410
2318
|
supports_named_tensor: True
|
2411
2319
|
variants: function, method
|
2412
2320
|
dispatch:
|
2413
|
-
CPU:
|
2414
|
-
CUDA:
|
2321
|
+
CPU: sigmoid_
|
2322
|
+
CUDA: sigmoid_
|
2415
2323
|
MkldnnCPU: mkldnn_sigmoid_
|
2416
2324
|
|
2417
2325
|
- func: sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2418
2326
|
supports_named_tensor: True
|
2419
|
-
dispatch:
|
2420
|
-
CPU: _sigmoid_out_cpu
|
2421
|
-
CUDA: _sigmoid_out_cuda
|
2422
2327
|
|
2423
2328
|
- func: sin(Tensor self) -> Tensor
|
2424
2329
|
use_c10_dispatcher: full
|
@@ -2426,18 +2331,14 @@
|
|
2426
2331
|
variants: function, method
|
2427
2332
|
|
2428
2333
|
- func: sin_(Tensor(a!) self) -> Tensor(a!)
|
2429
|
-
use_c10_dispatcher: unboxed_only
|
2430
2334
|
supports_named_tensor: True
|
2431
2335
|
variants: function, method
|
2432
|
-
dispatch:
|
2433
|
-
CPU: _sin__cpu
|
2434
|
-
CUDA: _sin__cuda
|
2435
2336
|
|
2436
2337
|
- func: sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2437
2338
|
supports_named_tensor: True
|
2438
2339
|
dispatch:
|
2439
|
-
CPU:
|
2440
|
-
CUDA:
|
2340
|
+
CPU: sin_out
|
2341
|
+
CUDA: sin_out
|
2441
2342
|
|
2442
2343
|
- func: sinh(Tensor self) -> Tensor
|
2443
2344
|
use_c10_dispatcher: full
|
@@ -2445,26 +2346,32 @@
|
|
2445
2346
|
variants: function, method
|
2446
2347
|
|
2447
2348
|
- func: sinh_(Tensor(a!) self) -> Tensor(a!)
|
2448
|
-
use_c10_dispatcher: unboxed_only
|
2449
2349
|
supports_named_tensor: True
|
2450
2350
|
variants: function, method
|
2451
|
-
dispatch:
|
2452
|
-
CPU: _sinh__cpu
|
2453
|
-
CUDA: _sinh__cuda
|
2454
2351
|
|
2455
2352
|
- func: sinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2456
2353
|
supports_named_tensor: True
|
2457
|
-
dispatch:
|
2458
|
-
CPU: _sinh_out_cpu
|
2459
|
-
CUDA: _sinh_out_cuda
|
2460
2354
|
|
2355
|
+
# Returns a copy of this `Variable` that is detached from its autograd graph.
|
2356
|
+
# This method is OK to call if the `Variable` is a view.
|
2357
|
+
#
|
2358
|
+
# NOTE: Previously, if we change the tensor metadata (e.g. sizes / strides /
|
2359
|
+
# storage / storage_offset) of a tensor created from `detach()`, those metadata
|
2360
|
+
# in the original tensor will also be updated. However, the new behavior is that
|
2361
|
+
# those metadata changes to the detached tensor will not update the original tensor
|
2362
|
+
# anymore, and in the `detach()` function we need to set `allow_tensor_metadata_change_`
|
2363
|
+
# to false to make such changes explicitly illegal, in order to prevent users from
|
2364
|
+
# changing metadata of the detached tensor and expecting the original tensor to also
|
2365
|
+
# be updated.
|
2461
2366
|
- func: detach(Tensor self) -> Tensor
|
2462
2367
|
use_c10_dispatcher: full
|
2463
2368
|
supports_named_tensor: True
|
2464
2369
|
variants: function, method
|
2465
2370
|
|
2371
|
+
# Like `detach()`, but modifies this `Variable` in-place. This method may
|
2372
|
+
# only be called on non-view `Variable`s. You can use `is_view()` to check
|
2373
|
+
# this. If this `Variable` is a view, throws an `std::runtime_error()`.
|
2466
2374
|
- func: detach_(Tensor(a!) self) -> Tensor(a!)
|
2467
|
-
use_c10_dispatcher: unboxed_only
|
2468
2375
|
supports_named_tensor: True
|
2469
2376
|
variants: function, method
|
2470
2377
|
|
@@ -2480,13 +2387,11 @@
|
|
2480
2387
|
supports_named_tensor: True
|
2481
2388
|
|
2482
2389
|
- func: slice.Tensor(Tensor(a) self, int dim=0, int start=0, int end=9223372036854775807, int step=1) -> Tensor(a)
|
2483
|
-
use_c10_dispatcher: unboxed_only
|
2484
2390
|
variants: function, method
|
2485
2391
|
device_guard: False
|
2486
2392
|
supports_named_tensor: True
|
2487
2393
|
|
2488
2394
|
- func: slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)
|
2489
|
-
use_c10_dispatcher: unboxed_only
|
2490
2395
|
variants: function, method
|
2491
2396
|
|
2492
2397
|
- func: smm(Tensor self, Tensor mat2) -> Tensor
|
@@ -2494,11 +2399,11 @@
|
|
2494
2399
|
variants: function, method
|
2495
2400
|
|
2496
2401
|
# softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
2497
|
-
- func: softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
2402
|
+
- func: softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
2498
2403
|
variants: function, method
|
2499
2404
|
supports_named_tensor: True
|
2500
2405
|
|
2501
|
-
- func: softmax(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
2406
|
+
- func: softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
2502
2407
|
variants: function, method
|
2503
2408
|
supports_named_tensor: True
|
2504
2409
|
|
@@ -2516,25 +2421,21 @@
|
|
2516
2421
|
CUDA: softmax_backward_cuda
|
2517
2422
|
|
2518
2423
|
- func: split.Tensor(Tensor(a) self, int split_size, int dim=0) -> Tensor(a)[]
|
2519
|
-
use_c10_dispatcher: unboxed_only
|
2520
2424
|
variants: function, method
|
2521
2425
|
device_guard: False
|
2522
2426
|
supports_named_tensor: True
|
2523
2427
|
|
2524
2428
|
- func: split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> Tensor[]
|
2525
|
-
use_c10_dispatcher: unboxed_only
|
2526
2429
|
variants: function, method
|
2527
2430
|
device_guard: False
|
2528
2431
|
supports_named_tensor: True
|
2529
2432
|
|
2530
2433
|
- func: squeeze(Tensor(a) self) -> Tensor(a)
|
2531
|
-
use_c10_dispatcher: unboxed_only
|
2532
2434
|
supports_named_tensor: True
|
2533
2435
|
variants: function, method
|
2534
2436
|
device_guard: False
|
2535
2437
|
|
2536
2438
|
- func: squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)
|
2537
|
-
use_c10_dispatcher: unboxed_only
|
2538
2439
|
supports_named_tensor: True
|
2539
2440
|
variants: function, method
|
2540
2441
|
device_guard: False
|
@@ -2545,12 +2446,10 @@
|
|
2545
2446
|
device_guard: False
|
2546
2447
|
|
2547
2448
|
- func: squeeze_(Tensor(a!) self) -> Tensor(a!)
|
2548
|
-
use_c10_dispatcher: unboxed_only
|
2549
2449
|
variants: method
|
2550
2450
|
device_guard: False
|
2551
2451
|
|
2552
2452
|
- func: squeeze_.dim(Tensor(a!) self, int dim) -> Tensor(a!)
|
2553
|
-
use_c10_dispatcher: unboxed_only
|
2554
2453
|
variants: method
|
2555
2454
|
device_guard: False
|
2556
2455
|
|
@@ -2570,7 +2469,6 @@
|
|
2570
2469
|
SparseCUDA: _sspaddmm_out_cuda
|
2571
2470
|
|
2572
2471
|
- func: stack(Tensor[] tensors, int dim=0) -> Tensor
|
2573
|
-
use_c10_dispatcher: unboxed_only
|
2574
2472
|
|
2575
2473
|
- func: stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
2576
2474
|
|
@@ -2611,7 +2509,6 @@
|
|
2611
2509
|
supports_named_tensor: True
|
2612
2510
|
|
2613
2511
|
- func: sum_to_size(Tensor self, int[] size) -> Tensor
|
2614
|
-
use_c10_dispatcher: unboxed_only
|
2615
2512
|
variants: method
|
2616
2513
|
device_guard: False
|
2617
2514
|
|
@@ -2621,18 +2518,11 @@
|
|
2621
2518
|
variants: function, method
|
2622
2519
|
|
2623
2520
|
- func: sqrt_(Tensor(a!) self) -> Tensor(a!)
|
2624
|
-
use_c10_dispatcher: unboxed_only
|
2625
2521
|
supports_named_tensor: True
|
2626
2522
|
variants: function, method
|
2627
|
-
dispatch:
|
2628
|
-
CPU: _sqrt__cpu
|
2629
|
-
CUDA: _sqrt__cuda
|
2630
2523
|
|
2631
2524
|
- func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2632
2525
|
supports_named_tensor: True
|
2633
|
-
dispatch:
|
2634
|
-
CPU: _sqrt_out_cpu
|
2635
|
-
CUDA: _sqrt_out_cuda
|
2636
2526
|
|
2637
2527
|
- func: std(Tensor self, bool unbiased=True) -> Tensor
|
2638
2528
|
use_c10_dispatcher: full
|
@@ -2640,17 +2530,14 @@
|
|
2640
2530
|
supports_named_tensor: True
|
2641
2531
|
|
2642
2532
|
- func: std.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2643
|
-
use_c10_dispatcher: unboxed_only
|
2644
2533
|
variants: function, method
|
2645
2534
|
supports_named_tensor: True
|
2646
2535
|
|
2647
2536
|
- func: std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
|
2648
|
-
use_c10_dispatcher: unboxed_only
|
2649
2537
|
variants: function
|
2650
2538
|
supports_named_tensor: True
|
2651
2539
|
|
2652
2540
|
- func: std_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2653
|
-
use_c10_dispatcher: unboxed_only
|
2654
2541
|
variants: function
|
2655
2542
|
supports_named_tensor: True
|
2656
2543
|
|
@@ -2688,13 +2575,11 @@
|
|
2688
2575
|
|
2689
2576
|
|
2690
2577
|
- func: t(Tensor(a) self) -> Tensor(a)
|
2691
|
-
use_c10_dispatcher: unboxed_only
|
2692
2578
|
device_guard: False
|
2693
2579
|
variants: function, method
|
2694
2580
|
supports_named_tensor: True
|
2695
2581
|
|
2696
2582
|
- func: t_(Tensor(a!) self) -> Tensor(a!)
|
2697
|
-
use_c10_dispatcher: unboxed_only
|
2698
2583
|
device_guard: False
|
2699
2584
|
variants: method
|
2700
2585
|
|
@@ -2704,7 +2589,6 @@
|
|
2704
2589
|
variants: function, method
|
2705
2590
|
|
2706
2591
|
- func: tan_(Tensor(a!) self) -> Tensor(a!)
|
2707
|
-
use_c10_dispatcher: unboxed_only
|
2708
2592
|
supports_named_tensor: True
|
2709
2593
|
variants: function, method
|
2710
2594
|
dispatch:
|
@@ -2723,7 +2607,6 @@
|
|
2723
2607
|
variants: function, method
|
2724
2608
|
|
2725
2609
|
- func: tanh_(Tensor(a!) self) -> Tensor(a!)
|
2726
|
-
use_c10_dispatcher: unboxed_only
|
2727
2610
|
supports_named_tensor: True
|
2728
2611
|
variants: function, method
|
2729
2612
|
dispatch:
|
@@ -2737,7 +2620,6 @@
|
|
2737
2620
|
CUDA: _tanh_out_cuda
|
2738
2621
|
|
2739
2622
|
- func: tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> Tensor
|
2740
|
-
use_c10_dispatcher: unboxed_only
|
2741
2623
|
variants: function
|
2742
2624
|
|
2743
2625
|
# TODO: namespace threshold in 'nn'
|
@@ -2747,7 +2629,6 @@
|
|
2747
2629
|
supports_named_tensor: True
|
2748
2630
|
|
2749
2631
|
- func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!)
|
2750
|
-
use_c10_dispatcher: unboxed_only
|
2751
2632
|
variants: function
|
2752
2633
|
supports_named_tensor: True
|
2753
2634
|
|
@@ -2759,7 +2640,6 @@
|
|
2759
2640
|
variants: function
|
2760
2641
|
|
2761
2642
|
- func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)
|
2762
|
-
use_c10_dispatcher: unboxed_only
|
2763
2643
|
variants: function, method
|
2764
2644
|
device_guard: False
|
2765
2645
|
supports_named_tensor: True
|
@@ -2777,12 +2657,10 @@
|
|
2777
2657
|
MkldnnCPU: mkldnn_transpose
|
2778
2658
|
|
2779
2659
|
- func: transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)
|
2780
|
-
use_c10_dispatcher: unboxed_only
|
2781
2660
|
variants: method
|
2782
2661
|
device_guard: False
|
2783
2662
|
|
2784
2663
|
- func: _mkldnn_transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)
|
2785
|
-
use_c10_dispatcher: unboxed_only
|
2786
2664
|
device_guard: False
|
2787
2665
|
requires_tensor: True
|
2788
2666
|
dispatch:
|
@@ -2794,14 +2672,12 @@
|
|
2794
2672
|
variants: function
|
2795
2673
|
|
2796
2674
|
- func: flip(Tensor self, int[] dims) -> Tensor
|
2797
|
-
use_c10_dispatcher: unboxed_only
|
2798
2675
|
variants: function, method
|
2799
2676
|
dispatch:
|
2800
2677
|
CPU: flip_cpu
|
2801
2678
|
CUDA: flip_cuda
|
2802
2679
|
|
2803
2680
|
- func: roll(Tensor self, int[1] shifts, int[1] dims=[]) -> Tensor
|
2804
|
-
use_c10_dispatcher: unboxed_only
|
2805
2681
|
variants: function, method
|
2806
2682
|
dispatch:
|
2807
2683
|
CPU: roll_cpu
|
@@ -2810,7 +2686,6 @@
|
|
2810
2686
|
# default int[] value [0,1] should not add space after comma, since native_parse.py uses ', ' to split args
|
2811
2687
|
|
2812
2688
|
- func: rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor
|
2813
|
-
use_c10_dispatcher: unboxed_only
|
2814
2689
|
variants: function, method
|
2815
2690
|
|
2816
2691
|
- func: trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor
|
@@ -2820,7 +2695,6 @@
|
|
2820
2695
|
use_c10_dispatcher: full
|
2821
2696
|
|
2822
2697
|
- func: _trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor
|
2823
|
-
use_c10_dispatcher: unboxed_only
|
2824
2698
|
|
2825
2699
|
- func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor
|
2826
2700
|
use_c10_dispatcher: full
|
@@ -2831,7 +2705,6 @@
|
|
2831
2705
|
variants: function, method
|
2832
2706
|
|
2833
2707
|
- func: trunc_(Tensor(a!) self) -> Tensor(a!)
|
2834
|
-
use_c10_dispatcher: unboxed_only
|
2835
2708
|
supports_named_tensor: True
|
2836
2709
|
variants: function, method
|
2837
2710
|
|
@@ -2850,28 +2723,24 @@
|
|
2850
2723
|
variants: function
|
2851
2724
|
|
2852
2725
|
- func: _unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)
|
2853
|
-
use_c10_dispatcher: unboxed_only
|
2854
2726
|
variants: function
|
2855
2727
|
dispatch:
|
2856
2728
|
CPU: _unique_cpu
|
2857
2729
|
CUDA: _unique_cuda
|
2858
2730
|
|
2859
2731
|
- func: unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2860
|
-
use_c10_dispatcher: unboxed_only
|
2861
2732
|
variants: function
|
2862
2733
|
dispatch:
|
2863
2734
|
CPU: unique_dim_cpu
|
2864
2735
|
CUDA: unique_dim_cuda
|
2865
2736
|
|
2866
2737
|
- func: unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor)
|
2867
|
-
use_c10_dispatcher: unboxed_only
|
2868
2738
|
variants: function
|
2869
2739
|
dispatch:
|
2870
2740
|
CPU: unique_consecutive_cpu
|
2871
2741
|
CUDA: unique_consecutive_cuda
|
2872
2742
|
|
2873
2743
|
- func: unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2874
|
-
use_c10_dispatcher: unboxed_only
|
2875
2744
|
variants: function
|
2876
2745
|
dispatch:
|
2877
2746
|
CPU: unique_dim_consecutive_cpu
|
@@ -2882,22 +2751,18 @@
|
|
2882
2751
|
# Please don't rely on these two operators, they will be removed soon
|
2883
2752
|
|
2884
2753
|
- func: _unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2885
|
-
use_c10_dispatcher: unboxed_only
|
2886
2754
|
variants: function
|
2887
2755
|
dispatch:
|
2888
2756
|
CPU: _unique2_cpu
|
2889
2757
|
CUDA: _unique2_cuda
|
2890
2758
|
|
2891
2759
|
- func: _unsafe_view(Tensor self, int[] size) -> Tensor
|
2892
|
-
use_c10_dispatcher: unboxed_only
|
2893
2760
|
|
2894
2761
|
- func: unsqueeze(Tensor(a) self, int dim) -> Tensor(a)
|
2895
|
-
use_c10_dispatcher: unboxed_only
|
2896
2762
|
variants: function, method
|
2897
2763
|
device_guard: False
|
2898
2764
|
|
2899
2765
|
- func: unsqueeze_(Tensor(a!) self, int dim) -> Tensor(a!)
|
2900
|
-
use_c10_dispatcher: unboxed_only
|
2901
2766
|
variants: method
|
2902
2767
|
device_guard: False
|
2903
2768
|
|
@@ -2907,7 +2772,6 @@
|
|
2907
2772
|
supports_named_tensor: True
|
2908
2773
|
|
2909
2774
|
- func: var.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2910
|
-
use_c10_dispatcher: unboxed_only
|
2911
2775
|
variants: function, method
|
2912
2776
|
supports_named_tensor: True
|
2913
2777
|
|
@@ -2922,12 +2786,10 @@
|
|
2922
2786
|
supports_named_tensor: True
|
2923
2787
|
|
2924
2788
|
- func: var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
|
2925
|
-
use_c10_dispatcher: unboxed_only
|
2926
2789
|
variants: function
|
2927
2790
|
supports_named_tensor: True
|
2928
2791
|
|
2929
2792
|
- func: var_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2930
|
-
use_c10_dispatcher: unboxed_only
|
2931
2793
|
variants: function
|
2932
2794
|
supports_named_tensor: True
|
2933
2795
|
|
@@ -2948,7 +2810,6 @@
|
|
2948
2810
|
variants: function, method
|
2949
2811
|
|
2950
2812
|
- func: where(Tensor condition) -> Tensor[]
|
2951
|
-
use_c10_dispatcher: unboxed_only
|
2952
2813
|
variants: function
|
2953
2814
|
|
2954
2815
|
- func: _s_where(Tensor condition, Tensor self, Tensor other) -> Tensor
|
@@ -2959,7 +2820,6 @@
|
|
2959
2820
|
CUDA: _s_where_cuda
|
2960
2821
|
|
2961
2822
|
- func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor
|
2962
|
-
use_c10_dispatcher: unboxed_only
|
2963
2823
|
variants: function
|
2964
2824
|
|
2965
2825
|
# VariableType::_weight_norm does not want to be given a gap in the autograd graph,
|
@@ -2969,19 +2829,16 @@
|
|
2969
2829
|
variants: function
|
2970
2830
|
|
2971
2831
|
- func: _weight_norm_cuda_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor)
|
2972
|
-
use_c10_dispatcher: unboxed_only
|
2973
2832
|
variants: function
|
2974
2833
|
dispatch:
|
2975
2834
|
CUDA: weight_norm_cuda
|
2976
2835
|
|
2977
2836
|
- func: _weight_norm_cuda_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
2978
|
-
use_c10_dispatcher: unboxed_only
|
2979
2837
|
variants: function
|
2980
2838
|
dispatch:
|
2981
2839
|
CUDA: weight_norm_cuda_backward
|
2982
2840
|
|
2983
2841
|
- func: _weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
2984
|
-
use_c10_dispatcher: unboxed_only
|
2985
2842
|
variants: function
|
2986
2843
|
|
2987
2844
|
- func: zeros.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2991,10 +2848,11 @@
|
|
2991
2848
|
|
2992
2849
|
- func: zeros.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2993
2850
|
|
2994
|
-
- func: zeros_like(Tensor self) -> Tensor
|
2995
|
-
|
2851
|
+
- func: zeros_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2852
|
+
supports_named_tensor: True
|
2996
2853
|
|
2997
|
-
- func: zeros_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2854
|
+
- func: zeros_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2855
|
+
supports_named_tensor: True
|
2998
2856
|
|
2999
2857
|
- func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor
|
3000
2858
|
use_c10_dispatcher: full
|
@@ -3004,7 +2862,6 @@
|
|
3004
2862
|
CUDA: _standard_gamma_grad_cuda
|
3005
2863
|
|
3006
2864
|
- func: _standard_gamma(Tensor self, Generator? generator=None) -> Tensor
|
3007
|
-
use_c10_dispatcher: 'unboxed_only'
|
3008
2865
|
variants: function
|
3009
2866
|
dispatch:
|
3010
2867
|
CPU: _s_gamma_cpu
|
@@ -3017,14 +2874,12 @@
|
|
3017
2874
|
CUDA: _dirichlet_grad_cuda
|
3018
2875
|
|
3019
2876
|
- func: _sample_dirichlet(Tensor self, Generator? generator=None) -> Tensor
|
3020
|
-
use_c10_dispatcher: 'unboxed_only'
|
3021
2877
|
variants: function
|
3022
2878
|
dispatch:
|
3023
2879
|
CPU: _s_dirichlet_cpu
|
3024
2880
|
CUDA: _s_dirichlet_cuda
|
3025
2881
|
|
3026
2882
|
- func: poisson(Tensor self, Generator? generator=None) -> Tensor
|
3027
|
-
use_c10_dispatcher: 'unboxed_only'
|
3028
2883
|
dispatch:
|
3029
2884
|
CPU: _s_poisson_cpu
|
3030
2885
|
CUDA: _s_poisson_cuda
|
@@ -3045,12 +2900,10 @@
|
|
3045
2900
|
- func: _sparse_sum.dtype(Tensor self, *, ScalarType dtype) -> Tensor
|
3046
2901
|
|
3047
2902
|
- func: _sparse_sum.dim(Tensor self, int[1] dim) -> Tensor
|
3048
|
-
use_c10_dispatcher: unboxed_only
|
3049
2903
|
|
3050
2904
|
- func: _sparse_sum.dim_dtype(Tensor self, int[1] dim, *, ScalarType dtype) -> Tensor
|
3051
2905
|
|
3052
2906
|
- func: _sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor
|
3053
|
-
use_c10_dispatcher: unboxed_only
|
3054
2907
|
dispatch:
|
3055
2908
|
SparseCPU: _sparse_sum_backward_cpu
|
3056
2909
|
SparseCUDA: _sparse_sum_backward_cuda
|
@@ -3066,7 +2919,6 @@
|
|
3066
2919
|
variants: function, method
|
3067
2920
|
|
3068
2921
|
- func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor
|
3069
|
-
use_c10_dispatcher: unboxed_only
|
3070
2922
|
variants: function, method
|
3071
2923
|
|
3072
2924
|
- func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)
|
@@ -3088,7 +2940,6 @@
|
|
3088
2940
|
variants: function
|
3089
2941
|
|
3090
2942
|
- func: frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
3091
|
-
use_c10_dispatcher: unboxed_only
|
3092
2943
|
variants: function
|
3093
2944
|
|
3094
2945
|
- func: frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -3102,14 +2953,12 @@
|
|
3102
2953
|
variants: function
|
3103
2954
|
|
3104
2955
|
- func: nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> Tensor
|
3105
|
-
use_c10_dispatcher: unboxed_only
|
3106
2956
|
variants: function
|
3107
2957
|
|
3108
2958
|
- func: nuclear_norm.dim_out(Tensor self, int[2] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
3109
2959
|
variants: function
|
3110
2960
|
|
3111
|
-
- func: clone(Tensor self) -> Tensor
|
3112
|
-
use_c10_dispatcher: full
|
2961
|
+
- func: clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
3113
2962
|
variants: function, method
|
3114
2963
|
dispatch:
|
3115
2964
|
CPU: clone
|
@@ -3120,8 +2969,7 @@
|
|
3120
2969
|
QuantizedCPU: quantized_clone
|
3121
2970
|
supports_named_tensor: True
|
3122
2971
|
|
3123
|
-
- func: resize_as_(Tensor(a!) self, Tensor the_template) -> Tensor(a!)
|
3124
|
-
use_c10_dispatcher: unboxed_only
|
2972
|
+
- func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
3125
2973
|
supports_named_tensor: True
|
3126
2974
|
variants: function, method
|
3127
2975
|
|
@@ -3144,12 +2992,11 @@
|
|
3144
2992
|
SparseCUDA: pow_sparse_scalar
|
3145
2993
|
|
3146
2994
|
- func: zero_(Tensor(a!) self) -> Tensor(a!)
|
3147
|
-
use_c10_dispatcher: unboxed_only
|
3148
2995
|
supports_named_tensor: True
|
3149
2996
|
variants: method, function
|
3150
2997
|
dispatch:
|
3151
|
-
CPU:
|
3152
|
-
CUDA:
|
2998
|
+
CPU: zero_
|
2999
|
+
CUDA: zero_
|
3153
3000
|
SparseCPU: zero_sparse_
|
3154
3001
|
SparseCUDA: zero_sparse_
|
3155
3002
|
MkldnnCPU: mkldnn_zero_
|
@@ -3173,7 +3020,6 @@
|
|
3173
3020
|
supports_named_tensor: True
|
3174
3021
|
|
3175
3022
|
- func: sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
3176
|
-
use_c10_dispatcher: unboxed_only
|
3177
3023
|
variants: method
|
3178
3024
|
dispatch:
|
3179
3025
|
CPU: sub_
|
@@ -3189,7 +3035,6 @@
|
|
3189
3035
|
supports_named_tensor: True
|
3190
3036
|
|
3191
3037
|
- func: sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
3192
|
-
use_c10_dispatcher: unboxed_only
|
3193
3038
|
variants: method
|
3194
3039
|
supports_named_tensor: True
|
3195
3040
|
|
@@ -3229,7 +3074,6 @@
|
|
3229
3074
|
supports_named_tensor: True
|
3230
3075
|
|
3231
3076
|
- func: addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
3232
|
-
use_c10_dispatcher: unboxed_only
|
3233
3077
|
variants: method
|
3234
3078
|
dispatch:
|
3235
3079
|
CPU: legacy::cpu::_th_addmm_
|
@@ -3380,7 +3224,6 @@
|
|
3380
3224
|
requires_tensor: True
|
3381
3225
|
|
3382
3226
|
- func: sparse_resize_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!)
|
3383
|
-
use_c10_dispatcher: unboxed_only
|
3384
3227
|
variants: method
|
3385
3228
|
dispatch:
|
3386
3229
|
SparseCPU: sparse_resize_
|
@@ -3388,7 +3231,6 @@
|
|
3388
3231
|
requires_tensor: True
|
3389
3232
|
|
3390
3233
|
- func: sparse_resize_and_clear_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!)
|
3391
|
-
use_c10_dispatcher: unboxed_only
|
3392
3234
|
variants: method
|
3393
3235
|
dispatch:
|
3394
3236
|
SparseCPU: sparse_resize_and_clear_
|
@@ -3488,7 +3330,6 @@
|
|
3488
3330
|
|
3489
3331
|
|
3490
3332
|
- func: _indices(Tensor(a) self) -> Tensor(a)
|
3491
|
-
use_c10_dispatcher: unboxed_only
|
3492
3333
|
variants: method
|
3493
3334
|
dispatch:
|
3494
3335
|
SparseCPU: _indices_sparse
|
@@ -3497,7 +3338,6 @@
|
|
3497
3338
|
device_guard: False
|
3498
3339
|
|
3499
3340
|
- func: _values(Tensor(a) self) -> Tensor(a)
|
3500
|
-
use_c10_dispatcher: unboxed_only
|
3501
3341
|
variants: method
|
3502
3342
|
dispatch:
|
3503
3343
|
SparseCPU: _values_sparse
|
@@ -3509,7 +3349,6 @@
|
|
3509
3349
|
# a bit unsafe. Similar to _indices and _values, this is useful for implementing
|
3510
3350
|
# custom sparse operations in Python/C++ extension.
|
3511
3351
|
- func: _coalesced_(Tensor(a!) self, bool coalesced) -> Tensor(a!)
|
3512
|
-
use_c10_dispatcher: unboxed_only
|
3513
3352
|
variants: method
|
3514
3353
|
dispatch:
|
3515
3354
|
SparseCPU: _coalesced_sparse_
|
@@ -3518,7 +3357,6 @@
|
|
3518
3357
|
device_guard: False
|
3519
3358
|
|
3520
3359
|
- func: indices(Tensor(a) self) -> Tensor(a)
|
3521
|
-
use_c10_dispatcher: unboxed_only
|
3522
3360
|
variants: method
|
3523
3361
|
dispatch:
|
3524
3362
|
SparseCPU: indices_sparse
|
@@ -3527,7 +3365,6 @@
|
|
3527
3365
|
device_guard: False
|
3528
3366
|
|
3529
3367
|
- func: values(Tensor(a) self) -> Tensor(a)
|
3530
|
-
use_c10_dispatcher: unboxed_only
|
3531
3368
|
variants: method
|
3532
3369
|
dispatch:
|
3533
3370
|
SparseCPU: values_sparse
|
@@ -3550,21 +3387,13 @@
|
|
3550
3387
|
requires_tensor: True
|
3551
3388
|
|
3552
3389
|
- func: copy_sparse_to_sparse_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
3553
|
-
use_c10_dispatcher: unboxed_only
|
3554
3390
|
variants: function
|
3555
3391
|
dispatch:
|
3556
3392
|
SparseCPU: copy_sparse_
|
3557
3393
|
SparseCUDA: copy_sparse_
|
3558
3394
|
requires_tensor: True
|
3559
3395
|
|
3560
|
-
- func: numel(Tensor self) -> int
|
3561
|
-
use_c10_dispatcher: full
|
3562
|
-
variants: function, method
|
3563
|
-
device_guard: False
|
3564
|
-
supports_named_tensor: True
|
3565
|
-
|
3566
3396
|
- func: unbind.int(Tensor(a) self, int dim=0) -> Tensor(a)[]
|
3567
|
-
use_c10_dispatcher: unboxed_only
|
3568
3397
|
variants: function, method
|
3569
3398
|
supports_named_tensor: True
|
3570
3399
|
|
@@ -3593,7 +3422,6 @@
|
|
3593
3422
|
CPU: dense_to_mkldnn
|
3594
3423
|
|
3595
3424
|
- func: mkldnn_reorder_conv2d_weight(Tensor self, int[2] padding=0, int[2] stride=1, int[2] dilation=1, int groups=1) -> Tensor
|
3596
|
-
use_c10_dispatcher: unboxed_only
|
3597
3425
|
variants: function
|
3598
3426
|
python_module: nn
|
3599
3427
|
dispatch:
|
@@ -3631,13 +3459,11 @@
|
|
3631
3459
|
QuantizedCPU: q_zero_point_quant
|
3632
3460
|
|
3633
3461
|
- func: q_per_channel_scales(Tensor self) -> Tensor
|
3634
|
-
use_c10_dispatcher: unboxed_only
|
3635
3462
|
variants: function, method
|
3636
3463
|
dispatch:
|
3637
3464
|
QuantizedCPU: q_per_channel_scales_quant
|
3638
3465
|
|
3639
3466
|
- func: q_per_channel_zero_points(Tensor self) -> Tensor
|
3640
|
-
use_c10_dispatcher: unboxed_only
|
3641
3467
|
variants: function, method
|
3642
3468
|
dispatch:
|
3643
3469
|
QuantizedCPU: q_per_channel_zero_points_quant
|
@@ -3659,7 +3485,6 @@
|
|
3659
3485
|
CPU: make_per_tensor_quantized_tensor_cpu
|
3660
3486
|
|
3661
3487
|
- func: _make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor
|
3662
|
-
use_c10_dispatcher: unboxed_only
|
3663
3488
|
dispatch:
|
3664
3489
|
CPU: make_per_channel_quantized_tensor_cpu
|
3665
3490
|
|
@@ -3696,31 +3521,28 @@
|
|
3696
3521
|
# to(Device) must not exist because all constructors of Device also works for
|
3697
3522
|
# TensorOptions. Otherwise, an ambiguity error is thrown.
|
3698
3523
|
# See NOTE [ TensorOptions Constructors ].
|
3699
|
-
- func: to.dtype_layout(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, bool non_blocking=False, bool copy=False) -> Tensor
|
3524
|
+
- func: to.dtype_layout(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3700
3525
|
variants: method
|
3701
3526
|
device_guard: False
|
3702
3527
|
supports_named_tensor: True
|
3703
3528
|
|
3704
|
-
- func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False) -> Tensor
|
3529
|
+
- func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3705
3530
|
variants: method
|
3706
3531
|
device_guard: False
|
3707
3532
|
supports_named_tensor: True
|
3708
3533
|
|
3709
|
-
- func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False) -> Tensor
|
3534
|
+
- func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3710
3535
|
variants: method
|
3711
3536
|
device_guard: False
|
3712
3537
|
supports_named_tensor: True
|
3713
3538
|
|
3714
|
-
- func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False) -> Tensor
|
3715
|
-
use_c10_dispatcher: full
|
3539
|
+
- func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3716
3540
|
variants: method
|
3717
3541
|
device_guard: False
|
3718
3542
|
|
3719
3543
|
- func: meshgrid(Tensor[] tensors) -> Tensor[]
|
3720
|
-
use_c10_dispatcher: unboxed_only
|
3721
3544
|
|
3722
3545
|
- func: cartesian_prod(Tensor[] tensors) -> Tensor
|
3723
|
-
use_c10_dispatcher: unboxed_only
|
3724
3546
|
variants: function
|
3725
3547
|
|
3726
3548
|
- func: combinations(Tensor self, int r=2, bool with_replacement=False) -> Tensor
|
@@ -3774,7 +3596,6 @@
|
|
3774
3596
|
CUDA: _thnn_fused_gru_cell_cuda
|
3775
3597
|
|
3776
3598
|
- func: _thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
3777
|
-
use_c10_dispatcher: unboxed_only
|
3778
3599
|
dispatch:
|
3779
3600
|
CUDA: _thnn_fused_gru_cell_backward_cuda
|
3780
3601
|
|
@@ -3782,28 +3603,20 @@
|
|
3782
3603
|
|
3783
3604
|
# RNN cells and layers
|
3784
3605
|
- func: lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor)
|
3785
|
-
use_c10_dispatcher: unboxed_only
|
3786
3606
|
|
3787
3607
|
- func: lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor)
|
3788
|
-
use_c10_dispatcher: unboxed_only
|
3789
3608
|
|
3790
3609
|
- func: gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3791
|
-
use_c10_dispatcher: unboxed_only
|
3792
3610
|
|
3793
3611
|
- func: gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3794
|
-
use_c10_dispatcher: unboxed_only
|
3795
3612
|
|
3796
3613
|
- func: rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3797
|
-
use_c10_dispatcher: unboxed_only
|
3798
3614
|
|
3799
3615
|
- func: rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3800
|
-
use_c10_dispatcher: unboxed_only
|
3801
3616
|
|
3802
3617
|
- func: rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3803
|
-
use_c10_dispatcher: unboxed_only
|
3804
3618
|
|
3805
3619
|
- func: rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3806
|
-
use_c10_dispatcher: unboxed_only
|
3807
3620
|
|
3808
3621
|
- func: lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)
|
3809
3622
|
|
@@ -3816,17 +3629,16 @@
|
|
3816
3629
|
# Quantized RNN layers
|
3817
3630
|
- func: quantized_lstm(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3818
3631
|
|
3632
|
+
- func: quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3633
|
+
|
3819
3634
|
# Quantized GRU layers
|
3820
3635
|
|
3821
3636
|
- func: quantized_gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3822
|
-
use_c10_dispatcher: unboxed_only
|
3823
3637
|
|
3824
3638
|
- func: quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3825
|
-
use_c10_dispatcher: unboxed_only
|
3826
3639
|
|
3827
3640
|
# Quantized RNN cells
|
3828
3641
|
- func: quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor)
|
3829
|
-
use_c10_dispatcher: unboxed_only
|
3830
3642
|
|
3831
3643
|
- func: quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor
|
3832
3644
|
use_c10_dispatcher: full
|
@@ -3839,13 +3651,10 @@
|
|
3839
3651
|
|
3840
3652
|
# PackedSequence utilities
|
3841
3653
|
- func: _pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor)
|
3842
|
-
use_c10_dispatcher: unboxed_only
|
3843
3654
|
|
3844
3655
|
- func: _pack_padded_sequence_backward(Tensor grad, int[] input_size, Tensor batch_sizes, bool batch_first) -> Tensor
|
3845
|
-
use_c10_dispatcher: unboxed_only
|
3846
3656
|
|
3847
3657
|
- func: _pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor)
|
3848
|
-
use_c10_dispatcher: unboxed_only
|
3849
3658
|
|
3850
3659
|
# wrappers for legacy TH methods
|
3851
3660
|
|
@@ -3853,8 +3662,8 @@
|
|
3853
3662
|
variants: method
|
3854
3663
|
device_guard: False
|
3855
3664
|
dispatch:
|
3856
|
-
CPU:
|
3857
|
-
CUDA:
|
3665
|
+
CPU: set_
|
3666
|
+
CUDA: set_
|
3858
3667
|
|
3859
3668
|
- func: set_.source_Storage_storage_offset(Tensor(a!) self, Storage source, int storage_offset, int[] size, int[] stride=[]) -> Tensor(a!)
|
3860
3669
|
variants: method
|
@@ -3865,7 +3674,6 @@
|
|
3865
3674
|
QuantizedCPU: set_storage
|
3866
3675
|
|
3867
3676
|
- func: set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!)
|
3868
|
-
use_c10_dispatcher: unboxed_only
|
3869
3677
|
variants: method
|
3870
3678
|
device_guard: False
|
3871
3679
|
dispatch:
|
@@ -3873,11 +3681,10 @@
|
|
3873
3681
|
CUDA: legacy::cuda::_th_set_
|
3874
3682
|
|
3875
3683
|
- func: set_(Tensor(a!) self) -> Tensor(a!)
|
3876
|
-
use_c10_dispatcher: unboxed_only
|
3877
3684
|
variants: method
|
3878
3685
|
dispatch:
|
3879
|
-
CPU:
|
3880
|
-
CUDA:
|
3686
|
+
CPU: set_cpu_
|
3687
|
+
CUDA: set_cuda_
|
3881
3688
|
|
3882
3689
|
- func: set_quantizer_(Tensor(a!) self, ConstQuantizerPtr quantizer) -> Tensor(a!)
|
3883
3690
|
variants: method
|
@@ -3889,11 +3696,10 @@
|
|
3889
3696
|
variants: method
|
3890
3697
|
device_guard: False
|
3891
3698
|
dispatch:
|
3892
|
-
CPU:
|
3893
|
-
CUDA:
|
3699
|
+
CPU: is_set_to
|
3700
|
+
CUDA: is_set_to
|
3894
3701
|
|
3895
3702
|
- func: masked_fill_.Scalar(Tensor(a!) self, Tensor mask, Scalar value) -> Tensor(a!)
|
3896
|
-
use_c10_dispatcher: unboxed_only
|
3897
3703
|
variants: method
|
3898
3704
|
dispatch:
|
3899
3705
|
CPU: masked_fill__cpu
|
@@ -3906,7 +3712,6 @@
|
|
3906
3712
|
supports_named_tensor: True
|
3907
3713
|
|
3908
3714
|
- func: masked_fill_.Tensor(Tensor(a!) self, Tensor mask, Tensor value) -> Tensor(a!)
|
3909
|
-
use_c10_dispatcher: unboxed_only
|
3910
3715
|
variants: method
|
3911
3716
|
dispatch:
|
3912
3717
|
CPU: masked_fill__cpu
|
@@ -3919,7 +3724,6 @@
|
|
3919
3724
|
supports_named_tensor: True
|
3920
3725
|
|
3921
3726
|
- func: masked_scatter_(Tensor(a!) self, Tensor mask, Tensor source) -> Tensor(a!)
|
3922
|
-
use_c10_dispatcher: unboxed_only
|
3923
3727
|
variants: method
|
3924
3728
|
dispatch:
|
3925
3729
|
CPU: masked_scatter__cpu
|
@@ -3930,7 +3734,6 @@
|
|
3930
3734
|
variants: function, method
|
3931
3735
|
|
3932
3736
|
- func: view(Tensor(a) self, int[] size) -> Tensor(a)
|
3933
|
-
use_c10_dispatcher: unboxed_only
|
3934
3737
|
variants: method
|
3935
3738
|
device_guard: False
|
3936
3739
|
dispatch:
|
@@ -3940,17 +3743,15 @@
|
|
3940
3743
|
QuantizedCPU: view
|
3941
3744
|
|
3942
3745
|
- func: put_(Tensor(a!) self, Tensor index, Tensor source, bool accumulate=False) -> Tensor(a!)
|
3943
|
-
use_c10_dispatcher: unboxed_only
|
3944
3746
|
variants: method
|
3945
3747
|
dispatch:
|
3946
3748
|
CPU: legacy::cpu::_th_put_
|
3947
3749
|
CUDA: legacy::cuda::_th_put_
|
3948
3750
|
|
3949
3751
|
- func: index_add_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
3950
|
-
use_c10_dispatcher: unboxed_only
|
3951
3752
|
variants: method
|
3952
3753
|
dispatch:
|
3953
|
-
CPU:
|
3754
|
+
CPU: index_add_cpu_
|
3954
3755
|
CUDA: legacy::cuda::_th_index_add_
|
3955
3756
|
|
3956
3757
|
- func: index_add(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
|
@@ -3960,50 +3761,47 @@
|
|
3960
3761
|
- func: index_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor
|
3961
3762
|
variants: function, method
|
3962
3763
|
|
3963
|
-
- func: index_fill_.
|
3964
|
-
use_c10_dispatcher: unboxed_only
|
3764
|
+
- func: index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
3965
3765
|
variants: method
|
3966
3766
|
supports_named_tensor: True
|
3967
3767
|
dispatch:
|
3968
3768
|
CPU: legacy::cpu::_th_index_fill_
|
3969
3769
|
CUDA: legacy::cuda::_th_index_fill_
|
3970
3770
|
|
3971
|
-
- func: index_fill.
|
3771
|
+
- func: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
3972
3772
|
use_c10_dispatcher: full
|
3973
3773
|
supports_named_tensor: True
|
3974
3774
|
variants: function, method
|
3975
3775
|
|
3976
|
-
- func: index_fill_.
|
3977
|
-
use_c10_dispatcher: unboxed_only
|
3776
|
+
- func: index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!)
|
3978
3777
|
variants: method
|
3979
3778
|
dispatch:
|
3980
|
-
CPU:
|
3981
|
-
CUDA:
|
3779
|
+
CPU: index_fill_
|
3780
|
+
CUDA: index_fill_
|
3982
3781
|
supports_named_tensor: True
|
3983
3782
|
|
3984
|
-
- func: index_fill.
|
3783
|
+
- func: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor
|
3985
3784
|
use_c10_dispatcher: full
|
3986
3785
|
variants: function, method
|
3987
3786
|
supports_named_tensor: True
|
3988
3787
|
|
3989
|
-
- func: index_fill_.
|
3788
|
+
- func: index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!)
|
3990
3789
|
variants: method
|
3991
3790
|
supports_named_tensor: True
|
3992
3791
|
|
3993
|
-
- func: index_fill_.
|
3792
|
+
- func: index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!)
|
3994
3793
|
variants: method
|
3995
3794
|
supports_named_tensor: True
|
3996
3795
|
|
3997
|
-
- func: index_fill.
|
3796
|
+
- func: index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor
|
3998
3797
|
variants: function, method
|
3999
3798
|
supports_named_tensor: True
|
4000
3799
|
|
4001
|
-
- func: index_fill.
|
3800
|
+
- func: index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor
|
4002
3801
|
variants: function, method
|
4003
3802
|
supports_named_tensor: True
|
4004
3803
|
|
4005
3804
|
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
4006
|
-
use_c10_dispatcher: unboxed_only
|
4007
3805
|
variants: method
|
4008
3806
|
dispatch:
|
4009
3807
|
CPU: legacy::cpu::_th_scatter_
|
@@ -4014,7 +3812,6 @@
|
|
4014
3812
|
variants: function, method
|
4015
3813
|
|
4016
3814
|
- func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
4017
|
-
use_c10_dispatcher: unboxed_only
|
4018
3815
|
variants: method
|
4019
3816
|
dispatch:
|
4020
3817
|
CPU: legacy::cpu::_th_scatter_
|
@@ -4031,7 +3828,6 @@
|
|
4031
3828
|
variants: function, method
|
4032
3829
|
|
4033
3830
|
- func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
4034
|
-
use_c10_dispatcher: unboxed_only
|
4035
3831
|
variants: method
|
4036
3832
|
dispatch:
|
4037
3833
|
CPU: legacy::cpu::_th_scatter_add_
|
@@ -4045,51 +3841,39 @@
|
|
4045
3841
|
variants: function, method
|
4046
3842
|
|
4047
3843
|
- func: lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4048
|
-
use_c10_dispatcher: unboxed_only
|
4049
3844
|
variants: method
|
4050
3845
|
|
4051
3846
|
- func: lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4052
|
-
use_c10_dispatcher: unboxed_only
|
4053
3847
|
variants: method
|
4054
3848
|
|
4055
3849
|
- func: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4056
|
-
use_c10_dispatcher: unboxed_only
|
4057
3850
|
variants: method
|
4058
3851
|
|
4059
3852
|
- func: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4060
|
-
use_c10_dispatcher: unboxed_only
|
4061
3853
|
variants: method
|
4062
3854
|
|
4063
3855
|
- func: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4064
|
-
use_c10_dispatcher: unboxed_only
|
4065
3856
|
variants: method
|
4066
3857
|
|
4067
3858
|
- func: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4068
|
-
use_c10_dispatcher: unboxed_only
|
4069
3859
|
variants: method
|
4070
3860
|
|
4071
3861
|
- func: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4072
|
-
use_c10_dispatcher: unboxed_only
|
4073
3862
|
variants: method
|
4074
3863
|
|
4075
3864
|
- func: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4076
|
-
use_c10_dispatcher: unboxed_only
|
4077
3865
|
variants: method
|
4078
3866
|
|
4079
3867
|
- func: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4080
|
-
use_c10_dispatcher: unboxed_only
|
4081
3868
|
variants: method
|
4082
3869
|
|
4083
3870
|
- func: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4084
|
-
use_c10_dispatcher: unboxed_only
|
4085
3871
|
variants: method
|
4086
3872
|
|
4087
3873
|
- func: ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4088
|
-
use_c10_dispatcher: unboxed_only
|
4089
3874
|
variants: method
|
4090
3875
|
|
4091
3876
|
- func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4092
|
-
use_c10_dispatcher: unboxed_only
|
4093
3877
|
variants: method
|
4094
3878
|
|
4095
3879
|
- func: __and__.Scalar(Tensor self, Scalar other) -> Tensor
|
@@ -4107,14 +3891,12 @@
|
|
4107
3891
|
CUDA: legacy::cuda::_th_and
|
4108
3892
|
|
4109
3893
|
- func: __iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4110
|
-
use_c10_dispatcher: unboxed_only
|
4111
3894
|
variants: method
|
4112
3895
|
dispatch:
|
4113
3896
|
CPU: legacy::cpu::_th_iand_
|
4114
3897
|
CUDA: legacy::cuda::_th_iand_
|
4115
3898
|
|
4116
3899
|
- func: __iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4117
|
-
use_c10_dispatcher: unboxed_only
|
4118
3900
|
variants: method
|
4119
3901
|
dispatch:
|
4120
3902
|
CPU: legacy::cpu::_th_iand_
|
@@ -4135,46 +3917,54 @@
|
|
4135
3917
|
CUDA: legacy::cuda::_th_or
|
4136
3918
|
|
4137
3919
|
- func: __ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4138
|
-
use_c10_dispatcher: unboxed_only
|
4139
3920
|
variants: method
|
4140
3921
|
dispatch:
|
4141
3922
|
CPU: legacy::cpu::_th_ior_
|
4142
3923
|
CUDA: legacy::cuda::_th_ior_
|
4143
3924
|
|
4144
3925
|
- func: __ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4145
|
-
use_c10_dispatcher: unboxed_only
|
4146
3926
|
variants: method
|
4147
3927
|
dispatch:
|
4148
3928
|
CPU: legacy::cpu::_th_ior_
|
4149
3929
|
CUDA: legacy::cuda::_th_ior_
|
4150
3930
|
|
3931
|
+
- func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
3932
|
+
variants: function
|
3933
|
+
dispatch:
|
3934
|
+
CPU: bitwise_xor_out
|
3935
|
+
CUDA: bitwise_xor_out
|
3936
|
+
|
3937
|
+
- func: bitwise_xor.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
3938
|
+
variants: function
|
3939
|
+
dispatch:
|
3940
|
+
CPU: bitwise_xor_out
|
3941
|
+
CUDA: bitwise_xor_out
|
3942
|
+
|
3943
|
+
- func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor
|
3944
|
+
variants: method, function
|
3945
|
+
|
3946
|
+
- func: bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor
|
3947
|
+
variants: method, function
|
3948
|
+
|
3949
|
+
- func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3950
|
+
variants: method
|
3951
|
+
|
3952
|
+
- func: bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3953
|
+
variants: method
|
3954
|
+
|
4151
3955
|
- func: __xor__.Scalar(Tensor self, Scalar other) -> Tensor
|
4152
3956
|
use_c10_dispatcher: full
|
4153
3957
|
variants: method, function
|
4154
|
-
dispatch:
|
4155
|
-
CPU: legacy::cpu::_th_xor
|
4156
|
-
CUDA: legacy::cuda::_th_xor
|
4157
3958
|
|
4158
3959
|
- func: __xor__.Tensor(Tensor self, Tensor other) -> Tensor
|
4159
3960
|
use_c10_dispatcher: full
|
4160
3961
|
variants: method, function
|
4161
|
-
dispatch:
|
4162
|
-
CPU: legacy::cpu::_th_xor
|
4163
|
-
CUDA: legacy::cuda::_th_xor
|
4164
3962
|
|
4165
3963
|
- func: __ixor__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4166
|
-
use_c10_dispatcher: unboxed_only
|
4167
3964
|
variants: method
|
4168
|
-
dispatch:
|
4169
|
-
CPU: legacy::cpu::_th_ixor_
|
4170
|
-
CUDA: legacy::cuda::_th_ixor_
|
4171
3965
|
|
4172
3966
|
- func: __ixor__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4173
|
-
use_c10_dispatcher: unboxed_only
|
4174
3967
|
variants: method
|
4175
|
-
dispatch:
|
4176
|
-
CPU: legacy::cpu::_th_ixor_
|
4177
|
-
CUDA: legacy::cuda::_th_ixor_
|
4178
3968
|
|
4179
3969
|
- func: __lshift__.Scalar(Tensor self, Scalar other) -> Tensor
|
4180
3970
|
use_c10_dispatcher: full
|
@@ -4191,14 +3981,12 @@
|
|
4191
3981
|
CUDA: legacy::cuda::_th_lshift
|
4192
3982
|
|
4193
3983
|
- func: __ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4194
|
-
use_c10_dispatcher: unboxed_only
|
4195
3984
|
variants: method
|
4196
3985
|
dispatch:
|
4197
3986
|
CPU: legacy::cpu::_th_ilshift_
|
4198
3987
|
CUDA: legacy::cuda::_th_ilshift_
|
4199
3988
|
|
4200
3989
|
- func: __ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4201
|
-
use_c10_dispatcher: unboxed_only
|
4202
3990
|
variants: method
|
4203
3991
|
dispatch:
|
4204
3992
|
CPU: legacy::cpu::_th_ilshift_
|
@@ -4219,21 +4007,18 @@
|
|
4219
4007
|
CUDA: legacy::cuda::_th_rshift
|
4220
4008
|
|
4221
4009
|
- func: __irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4222
|
-
use_c10_dispatcher: unboxed_only
|
4223
4010
|
variants: method
|
4224
4011
|
dispatch:
|
4225
4012
|
CPU: legacy::cpu::_th_irshift_
|
4226
4013
|
CUDA: legacy::cuda::_th_irshift_
|
4227
4014
|
|
4228
4015
|
- func: __irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4229
|
-
use_c10_dispatcher: unboxed_only
|
4230
4016
|
variants: method
|
4231
4017
|
dispatch:
|
4232
4018
|
CPU: legacy::cpu::_th_irshift_
|
4233
4019
|
CUDA: legacy::cuda::_th_irshift_
|
4234
4020
|
|
4235
4021
|
- func: lgamma_(Tensor(a!) self) -> Tensor(a!)
|
4236
|
-
use_c10_dispatcher: unboxed_only
|
4237
4022
|
supports_named_tensor: True
|
4238
4023
|
variants: method
|
4239
4024
|
dispatch:
|
@@ -4241,43 +4026,36 @@
|
|
4241
4026
|
CUDA: _lgamma__cuda
|
4242
4027
|
|
4243
4028
|
- func: atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4244
|
-
use_c10_dispatcher: unboxed_only
|
4245
4029
|
supports_named_tensor: True
|
4246
4030
|
variants: method
|
4247
4031
|
|
4248
4032
|
- func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
4249
|
-
use_c10_dispatcher: unboxed_only
|
4250
4033
|
variants: method
|
4251
4034
|
dispatch:
|
4252
4035
|
CPU: tril_cpu_
|
4253
4036
|
CUDA: tril_cuda_
|
4254
4037
|
|
4255
4038
|
- func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
4256
|
-
use_c10_dispatcher: unboxed_only
|
4257
4039
|
variants: method
|
4258
4040
|
dispatch:
|
4259
4041
|
CPU: triu_cpu_
|
4260
4042
|
CUDA: triu_cuda_
|
4261
4043
|
|
4262
4044
|
- func: digamma_(Tensor(a!) self) -> Tensor(a!)
|
4263
|
-
use_c10_dispatcher: unboxed_only
|
4264
4045
|
supports_named_tensor: True
|
4265
4046
|
variants: method
|
4266
4047
|
|
4267
4048
|
- func: polygamma_(Tensor(a!) self, int n) -> Tensor(a!)
|
4268
|
-
use_c10_dispatcher: unboxed_only
|
4269
4049
|
supports_named_tensor: True
|
4270
4050
|
variants: method
|
4271
4051
|
|
4272
4052
|
- func: renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!)
|
4273
|
-
use_c10_dispatcher: unboxed_only
|
4274
4053
|
variants: method
|
4275
4054
|
dispatch:
|
4276
4055
|
CPU: legacy::cpu::_th_renorm_
|
4277
4056
|
CUDA: legacy::cuda::_th_renorm_
|
4278
4057
|
|
4279
4058
|
- func: pow_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!)
|
4280
|
-
use_c10_dispatcher: unboxed_only
|
4281
4059
|
supports_named_tensor: True
|
4282
4060
|
variants: method
|
4283
4061
|
dispatch:
|
@@ -4285,7 +4063,6 @@
|
|
4285
4063
|
CUDA: pow_
|
4286
4064
|
|
4287
4065
|
- func: pow_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!)
|
4288
|
-
use_c10_dispatcher: unboxed_only
|
4289
4066
|
supports_named_tensor: True
|
4290
4067
|
variants: method
|
4291
4068
|
dispatch:
|
@@ -4293,49 +4070,42 @@
|
|
4293
4070
|
CUDA: pow_
|
4294
4071
|
|
4295
4072
|
- func: lerp_.Scalar(Tensor(a!) self, Tensor end, Scalar weight) -> Tensor(a!)
|
4296
|
-
use_c10_dispatcher: unboxed_only
|
4297
4073
|
variants: method
|
4298
4074
|
dispatch:
|
4299
4075
|
CPU: lerp_cpu_scalar_
|
4300
4076
|
CUDA: lerp_cuda_scalar_
|
4301
4077
|
|
4302
4078
|
- func: lerp_.Tensor(Tensor(a!) self, Tensor end, Tensor weight) -> Tensor(a!)
|
4303
|
-
use_c10_dispatcher: unboxed_only
|
4304
4079
|
variants: method
|
4305
4080
|
dispatch:
|
4306
4081
|
CPU: lerp_cpu_tensor_
|
4307
4082
|
CUDA: lerp_cuda_tensor_
|
4308
4083
|
|
4309
4084
|
- func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4310
|
-
use_c10_dispatcher: unboxed_only
|
4311
4085
|
variants: method
|
4312
4086
|
dispatch:
|
4313
4087
|
CPU: legacy::cpu::_th_fmod_
|
4314
4088
|
CUDA: legacy::cuda::_th_fmod_
|
4315
4089
|
|
4316
4090
|
- func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4317
|
-
use_c10_dispatcher: unboxed_only
|
4318
4091
|
variants: method
|
4319
4092
|
dispatch:
|
4320
4093
|
CPU: legacy::cpu::_th_fmod_
|
4321
4094
|
CUDA: legacy::cuda::_th_fmod_
|
4322
4095
|
|
4323
4096
|
- func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4324
|
-
use_c10_dispatcher: unboxed_only
|
4325
4097
|
variants: method
|
4326
4098
|
dispatch:
|
4327
4099
|
CPU: legacy::cpu::_th_remainder_
|
4328
4100
|
CUDA: legacy::cuda::_th_remainder_
|
4329
4101
|
|
4330
4102
|
- func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4331
|
-
use_c10_dispatcher: unboxed_only
|
4332
4103
|
variants: method
|
4333
4104
|
dispatch:
|
4334
4105
|
CPU: legacy::cpu::_th_remainder_
|
4335
4106
|
CUDA: legacy::cuda::_th_remainder_
|
4336
4107
|
|
4337
4108
|
- func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
4338
|
-
use_c10_dispatcher: unboxed_only
|
4339
4109
|
variants: method
|
4340
4110
|
dispatch:
|
4341
4111
|
CPU: legacy::cpu::_th_addbmm_
|
@@ -4354,11 +4124,10 @@
|
|
4354
4124
|
CUDA: legacy::cuda::_th_addbmm
|
4355
4125
|
|
4356
4126
|
- func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
4357
|
-
use_c10_dispatcher: unboxed_only
|
4358
4127
|
variants: method
|
4128
|
+
supports_named_tensor: True
|
4359
4129
|
|
4360
4130
|
- func: random_.from(Tensor(a!) self, int from, int to, *, Generator? generator=None) -> Tensor(a!)
|
4361
|
-
use_c10_dispatcher: 'unboxed_only'
|
4362
4131
|
variants: method
|
4363
4132
|
dispatch:
|
4364
4133
|
CPU: legacy::cpu::_th_random_
|
@@ -4366,7 +4135,6 @@
|
|
4366
4135
|
supports_named_tensor: True
|
4367
4136
|
|
4368
4137
|
- func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!)
|
4369
|
-
use_c10_dispatcher: 'unboxed_only'
|
4370
4138
|
variants: method
|
4371
4139
|
dispatch:
|
4372
4140
|
CPU: legacy::cpu::_th_random_
|
@@ -4374,7 +4142,6 @@
|
|
4374
4142
|
supports_named_tensor: True
|
4375
4143
|
|
4376
4144
|
- func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!)
|
4377
|
-
use_c10_dispatcher: 'unboxed_only'
|
4378
4145
|
variants: method
|
4379
4146
|
dispatch:
|
4380
4147
|
CPU: legacy::cpu::_th_random_
|
@@ -4382,7 +4149,6 @@
|
|
4382
4149
|
supports_named_tensor: True
|
4383
4150
|
|
4384
4151
|
- func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)
|
4385
|
-
use_c10_dispatcher: 'unboxed_only'
|
4386
4152
|
variants: method
|
4387
4153
|
dispatch:
|
4388
4154
|
CPU: legacy::cpu::_th_uniform_
|
@@ -4390,7 +4156,6 @@
|
|
4390
4156
|
supports_named_tensor: True
|
4391
4157
|
|
4392
4158
|
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
4393
|
-
use_c10_dispatcher: 'unboxed_only'
|
4394
4159
|
variants: method
|
4395
4160
|
dispatch:
|
4396
4161
|
CPU: legacy::cpu::_th_normal_
|
@@ -4398,7 +4163,6 @@
|
|
4398
4163
|
supports_named_tensor: True
|
4399
4164
|
|
4400
4165
|
- func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)
|
4401
|
-
use_c10_dispatcher: 'unboxed_only'
|
4402
4166
|
variants: method
|
4403
4167
|
dispatch:
|
4404
4168
|
CPU: legacy::cpu::_th_cauchy_
|
@@ -4406,7 +4170,6 @@
|
|
4406
4170
|
supports_named_tensor: True
|
4407
4171
|
|
4408
4172
|
- func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!)
|
4409
|
-
use_c10_dispatcher: 'unboxed_only'
|
4410
4173
|
variants: method
|
4411
4174
|
dispatch:
|
4412
4175
|
CPU: legacy::cpu::_th_log_normal_
|
@@ -4414,7 +4177,6 @@
|
|
4414
4177
|
supports_named_tensor: True
|
4415
4178
|
|
4416
4179
|
- func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)
|
4417
|
-
use_c10_dispatcher: 'unboxed_only'
|
4418
4180
|
variants: method
|
4419
4181
|
dispatch:
|
4420
4182
|
CPU: legacy::cpu::_th_exponential_
|
@@ -4422,7 +4184,6 @@
|
|
4422
4184
|
supports_named_tensor: True
|
4423
4185
|
|
4424
4186
|
- func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)
|
4425
|
-
use_c10_dispatcher: 'unboxed_only'
|
4426
4187
|
variants: method
|
4427
4188
|
dispatch:
|
4428
4189
|
CPU: legacy::cpu::_th_geometric_
|
@@ -4734,7 +4495,6 @@
|
|
4734
4495
|
CUDA: legacy::cuda::_th_nonzero
|
4735
4496
|
|
4736
4497
|
- func: nonzero_numpy(Tensor self) -> Tensor[]
|
4737
|
-
use_c10_dispatcher: unboxed_only
|
4738
4498
|
variants: method, function
|
4739
4499
|
|
4740
4500
|
- func: gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)
|
@@ -4758,20 +4518,24 @@
|
|
4758
4518
|
use_c10_dispatcher: full
|
4759
4519
|
|
4760
4520
|
- func: addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
4521
|
+
supports_named_tensor: True
|
4761
4522
|
|
4762
4523
|
- func: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
4763
4524
|
use_c10_dispatcher: full
|
4764
4525
|
variants: method, function
|
4526
|
+
supports_named_tensor: True
|
4765
4527
|
|
4766
4528
|
- func: addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
4767
|
-
use_c10_dispatcher: unboxed_only
|
4768
4529
|
variants: method
|
4530
|
+
supports_named_tensor: True
|
4769
4531
|
|
4770
4532
|
- func: addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
4533
|
+
supports_named_tensor: True
|
4771
4534
|
|
4772
4535
|
- func: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
4773
4536
|
use_c10_dispatcher: full
|
4774
4537
|
variants: method, function
|
4538
|
+
supports_named_tensor: True
|
4775
4539
|
|
4776
4540
|
- func: lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)
|
4777
4541
|
dispatch:
|
@@ -4779,7 +4543,6 @@
|
|
4779
4543
|
CUDA: legacy::cuda::_th_gels_out
|
4780
4544
|
|
4781
4545
|
- func: lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR)
|
4782
|
-
use_c10_dispatcher: unboxed_only
|
4783
4546
|
variants: method, function
|
4784
4547
|
dispatch:
|
4785
4548
|
CPU: legacy::cpu::_th_gels
|
@@ -4788,11 +4551,9 @@
|
|
4788
4551
|
- func: triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)
|
4789
4552
|
|
4790
4553
|
- func: triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient)
|
4791
|
-
use_c10_dispatcher: unboxed_only
|
4792
4554
|
variants: method, function
|
4793
4555
|
|
4794
4556
|
- func: _triangular_solve_helper(Tensor self, Tensor A, bool upper, bool transpose, bool unitriangular) -> (Tensor, Tensor)
|
4795
|
-
use_c10_dispatcher: unboxed_only
|
4796
4557
|
variants: function
|
4797
4558
|
dispatch:
|
4798
4559
|
CPU: _triangular_solve_helper_cpu
|
@@ -4801,11 +4562,9 @@
|
|
4801
4562
|
- func: symeig.e(Tensor self, bool eigenvectors=False, bool upper=True, *, Tensor(a!) e, Tensor(b!) V) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)
|
4802
4563
|
|
4803
4564
|
- func: symeig(Tensor self, bool eigenvectors=False, bool upper=True) -> (Tensor eigenvalues, Tensor eigenvectors)
|
4804
|
-
use_c10_dispatcher: unboxed_only
|
4805
4565
|
variants: method, function
|
4806
4566
|
|
4807
4567
|
- func: _symeig_helper(Tensor self, bool eigenvectors, bool upper) -> (Tensor, Tensor)
|
4808
|
-
use_c10_dispatcher: unboxed_only
|
4809
4568
|
variants: function
|
4810
4569
|
dispatch:
|
4811
4570
|
CPU: _symeig_helper_cpu
|
@@ -4817,7 +4576,6 @@
|
|
4817
4576
|
CUDA: legacy::cuda::_th_eig_out
|
4818
4577
|
|
4819
4578
|
- func: eig(Tensor self, bool eigenvectors=False) -> (Tensor eigenvalues, Tensor eigenvectors)
|
4820
|
-
use_c10_dispatcher: unboxed_only
|
4821
4579
|
variants: method, function
|
4822
4580
|
dispatch:
|
4823
4581
|
CPU: legacy::cpu::_th_eig
|
@@ -4826,11 +4584,9 @@
|
|
4826
4584
|
- func: svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V)
|
4827
4585
|
|
4828
4586
|
- func: svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V)
|
4829
|
-
use_c10_dispatcher: unboxed_only
|
4830
4587
|
variants: method, function
|
4831
4588
|
|
4832
4589
|
- func: _svd_helper(Tensor self, bool some, bool compute_uv) -> (Tensor, Tensor, Tensor)
|
4833
|
-
use_c10_dispatcher: unboxed_only
|
4834
4590
|
variants: function
|
4835
4591
|
dispatch:
|
4836
4592
|
CPU: _svd_helper_cpu
|
@@ -4863,13 +4619,11 @@
|
|
4863
4619
|
CUDA: _cholesky_solve_helper_cuda
|
4864
4620
|
|
4865
4621
|
- func: solve(Tensor self, Tensor A) -> (Tensor solution, Tensor LU)
|
4866
|
-
use_c10_dispatcher: unboxed_only
|
4867
4622
|
variants: function, method
|
4868
4623
|
|
4869
4624
|
- func: solve.solution(Tensor self, Tensor A, *, Tensor(a!) solution, Tensor(b!) lu) -> (Tensor(a!) solution, Tensor(b!) LU)
|
4870
4625
|
|
4871
4626
|
- func: _solve_helper(Tensor self, Tensor A) -> (Tensor, Tensor)
|
4872
|
-
use_c10_dispatcher: unboxed_only
|
4873
4627
|
variants: function
|
4874
4628
|
dispatch:
|
4875
4629
|
CPU: _solve_helper_cpu
|
@@ -4890,11 +4644,9 @@
|
|
4890
4644
|
- func: qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)
|
4891
4645
|
|
4892
4646
|
- func: qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R)
|
4893
|
-
use_c10_dispatcher: unboxed_only
|
4894
4647
|
variants: method, function
|
4895
4648
|
|
4896
4649
|
- func: _qr_helper(Tensor self, bool some) -> (Tensor, Tensor)
|
4897
|
-
use_c10_dispatcher: unboxed_only
|
4898
4650
|
variants: function
|
4899
4651
|
dispatch:
|
4900
4652
|
CPU: _qr_helper_cpu
|
@@ -4906,7 +4658,6 @@
|
|
4906
4658
|
CUDA: legacy::cuda::_th_geqrf_out
|
4907
4659
|
|
4908
4660
|
- func: geqrf(Tensor self) -> (Tensor a, Tensor tau)
|
4909
|
-
use_c10_dispatcher: unboxed_only
|
4910
4661
|
variants: method, function
|
4911
4662
|
dispatch:
|
4912
4663
|
CPU: legacy::cpu::_th_geqrf
|
@@ -4933,7 +4684,6 @@
|
|
4933
4684
|
CPU: legacy::cpu::_th_ormqr
|
4934
4685
|
|
4935
4686
|
- func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor, Tensor, Tensor)
|
4936
|
-
use_c10_dispatcher: unboxed_only
|
4937
4687
|
variants: function
|
4938
4688
|
dispatch:
|
4939
4689
|
CPU: _lu_with_info_cpu
|
@@ -4959,21 +4709,18 @@
|
|
4959
4709
|
CUDA: multinomial_out
|
4960
4710
|
|
4961
4711
|
- func: multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor
|
4962
|
-
use_c10_dispatcher: 'unboxed_only'
|
4963
4712
|
variants: method, function
|
4964
4713
|
dispatch:
|
4965
4714
|
CPU: multinomial
|
4966
4715
|
CUDA: multinomial
|
4967
4716
|
|
4968
4717
|
- func: _multinomial_alias_setup(Tensor probs) -> (Tensor, Tensor)
|
4969
|
-
use_c10_dispatcher: unboxed_only
|
4970
4718
|
variants: function
|
4971
4719
|
dispatch:
|
4972
4720
|
CPU: legacy::cpu::_th_multinomial_alias_setup
|
4973
4721
|
CUDA: legacy::cuda::_th_multinomial_alias_setup
|
4974
4722
|
|
4975
4723
|
- func: _multinomial_alias_draw(Tensor J, Tensor q, int num_samples, *, Generator? generator=None) -> Tensor
|
4976
|
-
use_c10_dispatcher: 'unboxed_only'
|
4977
4724
|
variants: function
|
4978
4725
|
dispatch:
|
4979
4726
|
CPU: legacy::cpu::_th_multinomial_alias_draw
|
@@ -5018,7 +4765,6 @@
|
|
5018
4765
|
CUDA: erfinv
|
5019
4766
|
|
5020
4767
|
- func: erfinv_(Tensor(a!) self) -> Tensor(a!)
|
5021
|
-
use_c10_dispatcher: unboxed_only
|
5022
4768
|
supports_named_tensor: True
|
5023
4769
|
variants: method
|
5024
4770
|
dispatch:
|
@@ -5032,12 +4778,10 @@
|
|
5032
4778
|
CUDA: _erfinv_out_cuda
|
5033
4779
|
|
5034
4780
|
- func: sign(Tensor self) -> Tensor
|
5035
|
-
use_c10_dispatcher: unboxed_only
|
5036
4781
|
variants: function, method
|
5037
4782
|
supports_named_tensor: True
|
5038
4783
|
|
5039
4784
|
- func: sign_(Tensor(a!) self) -> Tensor(a!)
|
5040
|
-
use_c10_dispatcher: unboxed_only
|
5041
4785
|
variants: method
|
5042
4786
|
supports_named_tensor: True
|
5043
4787
|
|
@@ -5202,7 +4946,6 @@
|
|
5202
4946
|
CUDA: legacy::cuda::_th_sort_out
|
5203
4947
|
|
5204
4948
|
- func: sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)
|
5205
|
-
use_c10_dispatcher: unboxed_only
|
5206
4949
|
variants: method, function
|
5207
4950
|
dispatch:
|
5208
4951
|
CPU: legacy::cpu::_th_sort
|
@@ -5227,7 +4970,6 @@
|
|
5227
4970
|
CUDA: legacy::cuda::_th_topk_out
|
5228
4971
|
|
5229
4972
|
- func: topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)
|
5230
|
-
use_c10_dispatcher: unboxed_only
|
5231
4973
|
variants: method, function
|
5232
4974
|
dispatch:
|
5233
4975
|
CPU: topk
|
@@ -5257,11 +4999,11 @@
|
|
5257
4999
|
CUDA: legacy::cuda::_th_renorm
|
5258
5000
|
|
5259
5001
|
- func: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a)
|
5260
|
-
use_c10_dispatcher: unboxed_only
|
5261
5002
|
variants: method
|
5003
|
+
device_guard: False
|
5262
5004
|
dispatch:
|
5263
|
-
CPU:
|
5264
|
-
CUDA:
|
5005
|
+
CPU: unfold
|
5006
|
+
CUDA: unfold
|
5265
5007
|
|
5266
5008
|
- func: equal(Tensor self, Tensor other) -> bool
|
5267
5009
|
use_c10_dispatcher: full
|
@@ -5270,6 +5012,7 @@
|
|
5270
5012
|
CPU: legacy::cpu::_th_equal
|
5271
5013
|
CUDA: legacy::cuda::_th_equal
|
5272
5014
|
QuantizedCPU: quantized_equal
|
5015
|
+
supports_named_tensor: True
|
5273
5016
|
|
5274
5017
|
- func: pow.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)
|
5275
5018
|
supports_named_tensor: True
|
@@ -5304,7 +5047,6 @@
|
|
5304
5047
|
CUDA: normal_out_cuda
|
5305
5048
|
|
5306
5049
|
- func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor
|
5307
|
-
use_c10_dispatcher: 'unboxed_only'
|
5308
5050
|
dispatch:
|
5309
5051
|
CPU: legacy::cpu::_th_normal
|
5310
5052
|
CUDA: normal_cuda
|
@@ -5315,7 +5057,6 @@
|
|
5315
5057
|
CUDA: normal_out_cuda
|
5316
5058
|
|
5317
5059
|
- func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5318
|
-
use_c10_dispatcher: 'unboxed_only'
|
5319
5060
|
dispatch:
|
5320
5061
|
CPU: legacy::cpu::_th_normal
|
5321
5062
|
CUDA: normal_cuda
|
@@ -5326,7 +5067,6 @@
|
|
5326
5067
|
CUDA: normal_out_cuda
|
5327
5068
|
|
5328
5069
|
- func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5329
|
-
use_c10_dispatcher: 'unboxed_only'
|
5330
5070
|
dispatch:
|
5331
5071
|
CPU: legacy::cpu::_th_normal
|
5332
5072
|
CUDA: normal_cuda
|
@@ -5336,7 +5076,6 @@
|
|
5336
5076
|
- func: normal.float_float_out(float mean, float std, int[] size, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5337
5077
|
|
5338
5078
|
- func: alias(Tensor(a) self) -> Tensor(a)
|
5339
|
-
use_c10_dispatcher: unboxed_only
|
5340
5079
|
variants: method, function
|
5341
5080
|
supports_named_tensor: True
|
5342
5081
|
|
@@ -5347,7 +5086,6 @@
|
|
5347
5086
|
CUDA: legacy::cuda::_th_addr
|
5348
5087
|
|
5349
5088
|
- func: _addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
5350
|
-
use_c10_dispatcher: unboxed_only
|
5351
5089
|
dispatch:
|
5352
5090
|
CPU: legacy::cpu::_th_addr_
|
5353
5091
|
CUDA: legacy::cuda::_th_addr_
|
@@ -5358,7 +5096,6 @@
|
|
5358
5096
|
CUDA: legacy::cuda::_th_addr_out
|
5359
5097
|
|
5360
5098
|
- func: _index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
5361
|
-
use_c10_dispatcher: unboxed_only
|
5362
5099
|
dispatch:
|
5363
5100
|
CPU: legacy::cpu::_th_index_copy_
|
5364
5101
|
CUDA: legacy::cuda::_th_index_copy_
|
@@ -5400,7 +5137,6 @@
|
|
5400
5137
|
supports_named_tensor: True
|
5401
5138
|
|
5402
5139
|
- func: _cat(Tensor[] tensors, int dim=0) -> Tensor
|
5403
|
-
use_c10_dispatcher: unboxed_only
|
5404
5140
|
dispatch:
|
5405
5141
|
CPU: legacy::cpu::_th_cat
|
5406
5142
|
CUDA: legacy::cuda::_th_cat
|
@@ -5411,7 +5147,6 @@
|
|
5411
5147
|
CUDA: legacy::cuda::_th_cat_out
|
5412
5148
|
|
5413
5149
|
- func: _mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor, Tensor)
|
5414
|
-
use_c10_dispatcher: unboxed_only
|
5415
5150
|
dispatch:
|
5416
5151
|
CPU: legacy::cpu::_th_mode
|
5417
5152
|
CUDA: legacy::cuda::_th_mode
|
@@ -5422,7 +5157,6 @@
|
|
5422
5157
|
CUDA: legacy::cuda::_th_mode_out
|
5423
5158
|
|
5424
5159
|
- func: _max(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
|
5425
|
-
use_c10_dispatcher: unboxed_only
|
5426
5160
|
dispatch:
|
5427
5161
|
CPU: legacy::cpu::_th_max
|
5428
5162
|
CUDA: legacy::cuda::_th_max
|
@@ -5433,7 +5167,6 @@
|
|
5433
5167
|
CUDA: legacy::cuda::_th_max_out
|
5434
5168
|
|
5435
5169
|
- func: _min(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
|
5436
|
-
use_c10_dispatcher: unboxed_only
|
5437
5170
|
dispatch:
|
5438
5171
|
CPU: legacy::cpu::_th_min
|
5439
5172
|
CUDA: legacy::cuda::_th_min
|
@@ -5471,78 +5204,63 @@
|
|
5471
5204
|
|
5472
5205
|
- func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5473
5206
|
python_module: nn
|
5474
|
-
dispatch:
|
5475
|
-
CPU: legacy::cpu::_thnn_mse_loss_forward_out
|
5476
|
-
CUDA: legacy::cuda::_thnn_mse_loss_forward_out
|
5477
5207
|
|
5478
5208
|
- func: mse_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5479
5209
|
use_c10_dispatcher: full
|
5480
5210
|
python_module: nn
|
5481
|
-
dispatch:
|
5482
|
-
CPU: legacy::cpu::_thnn_mse_loss_forward
|
5483
|
-
CUDA: legacy::cuda::_thnn_mse_loss_forward
|
5484
5211
|
|
5485
5212
|
- func: mse_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5486
5213
|
python_module: nn
|
5487
5214
|
dispatch:
|
5488
|
-
CPU:
|
5489
|
-
CUDA:
|
5215
|
+
CPU: mse_loss_backward_out
|
5216
|
+
CUDA: mse_loss_backward_out
|
5490
5217
|
|
5491
5218
|
- func: mse_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5492
5219
|
use_c10_dispatcher: full
|
5493
5220
|
python_module: nn
|
5494
5221
|
dispatch:
|
5495
|
-
CPU:
|
5496
|
-
CUDA:
|
5222
|
+
CPU: mse_loss_backward
|
5223
|
+
CUDA: mse_loss_backward
|
5497
5224
|
|
5498
5225
|
- func: l1_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5499
5226
|
python_module: nn
|
5500
|
-
dispatch:
|
5501
|
-
CPU: legacy::cpu::_thnn_l1_loss_forward_out
|
5502
|
-
CUDA: legacy::cuda::_thnn_l1_loss_forward_out
|
5503
5227
|
|
5504
5228
|
- func: l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5505
5229
|
use_c10_dispatcher: full
|
5506
5230
|
python_module: nn
|
5507
|
-
dispatch:
|
5508
|
-
CPU: legacy::cpu::_thnn_l1_loss_forward
|
5509
|
-
CUDA: legacy::cuda::_thnn_l1_loss_forward
|
5510
5231
|
|
5511
5232
|
- func: l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5512
5233
|
python_module: nn
|
5513
5234
|
dispatch:
|
5514
|
-
CPU:
|
5515
|
-
CUDA:
|
5235
|
+
CPU: l1_loss_backward_out
|
5236
|
+
CUDA: l1_loss_backward_out
|
5516
5237
|
|
5517
5238
|
- func: l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5518
5239
|
use_c10_dispatcher: full
|
5519
5240
|
python_module: nn
|
5520
|
-
dispatch:
|
5521
|
-
CPU: legacy::cpu::_thnn_l1_loss_backward
|
5522
|
-
CUDA: legacy::cuda::_thnn_l1_loss_backward
|
5523
5241
|
|
5524
5242
|
- func: multi_margin_loss.out(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5525
5243
|
python_module: nn
|
5526
5244
|
dispatch:
|
5527
|
-
CPU:
|
5245
|
+
CPU: multi_margin_loss_cpu_out
|
5528
5246
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_forward_out
|
5529
5247
|
|
5530
5248
|
- func: multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5531
5249
|
python_module: nn
|
5532
5250
|
dispatch:
|
5533
|
-
CPU:
|
5251
|
+
CPU: multi_margin_loss_cpu
|
5534
5252
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_forward
|
5535
5253
|
|
5536
5254
|
- func: multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5537
5255
|
python_module: nn
|
5538
5256
|
dispatch:
|
5539
|
-
CPU:
|
5257
|
+
CPU: multi_margin_loss_cpu_backward_out
|
5540
5258
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_backward_out
|
5541
5259
|
|
5542
5260
|
- func: multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5543
5261
|
python_module: nn
|
5544
5262
|
dispatch:
|
5545
|
-
CPU:
|
5263
|
+
CPU: multi_margin_loss_cpu_backward
|
5546
5264
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_backward
|
5547
5265
|
|
5548
5266
|
- func: multilabel_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5555,27 +5273,26 @@
|
|
5555
5273
|
- func: multilabel_margin_loss_forward.output(Tensor self, Tensor target, int reduction, *, Tensor(a!) output, Tensor(b!) is_target) -> (Tensor(a!), Tensor(b!))
|
5556
5274
|
python_module: nn
|
5557
5275
|
dispatch:
|
5558
|
-
CPU:
|
5276
|
+
CPU: multilabel_margin_loss_forward_out_cpu
|
5559
5277
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward_out
|
5560
5278
|
|
5561
5279
|
- func: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target)
|
5562
|
-
use_c10_dispatcher: unboxed_only
|
5563
5280
|
python_module: nn
|
5564
5281
|
dispatch:
|
5565
|
-
CPU:
|
5282
|
+
CPU: multilabel_margin_loss_forward_cpu
|
5566
5283
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward
|
5567
5284
|
|
5568
5285
|
- func: multilabel_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5569
5286
|
python_module: nn
|
5570
5287
|
dispatch:
|
5571
|
-
CPU:
|
5288
|
+
CPU: multilabel_margin_loss_backward_cpu_out
|
5572
5289
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_backward_out
|
5573
5290
|
|
5574
5291
|
- func: multilabel_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target) -> Tensor
|
5575
5292
|
use_c10_dispatcher: full
|
5576
5293
|
python_module: nn
|
5577
5294
|
dispatch:
|
5578
|
-
CPU:
|
5295
|
+
CPU: multilabel_margin_loss_backward_cpu
|
5579
5296
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_backward
|
5580
5297
|
|
5581
5298
|
- func: nll_loss.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5587,25 +5304,25 @@
|
|
5587
5304
|
- func: nll_loss_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))
|
5588
5305
|
python_module: nn
|
5589
5306
|
dispatch:
|
5590
|
-
CPU:
|
5307
|
+
CPU: nll_loss_forward_out_cpu
|
5591
5308
|
CUDA: legacy::cuda::_thnn_nll_loss_forward_out
|
5592
5309
|
|
5593
5310
|
- func: nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)
|
5594
5311
|
python_module: nn
|
5595
5312
|
dispatch:
|
5596
|
-
CPU:
|
5313
|
+
CPU: nll_loss_forward_cpu
|
5597
5314
|
CUDA: legacy::cuda::_thnn_nll_loss_forward
|
5598
5315
|
|
5599
5316
|
- func: nll_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5600
5317
|
python_module: nn
|
5601
5318
|
dispatch:
|
5602
|
-
CPU:
|
5319
|
+
CPU: nll_loss_backward_out_cpu
|
5603
5320
|
CUDA: legacy::cuda::_thnn_nll_loss_backward_out
|
5604
5321
|
|
5605
5322
|
- func: nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor
|
5606
5323
|
python_module: nn
|
5607
5324
|
dispatch:
|
5608
|
-
CPU:
|
5325
|
+
CPU: nll_loss_backward_cpu
|
5609
5326
|
CUDA: legacy::cuda::_thnn_nll_loss_backward
|
5610
5327
|
|
5611
5328
|
- func: nll_loss2d.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5617,52 +5334,46 @@
|
|
5617
5334
|
- func: nll_loss2d_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))
|
5618
5335
|
python_module: nn
|
5619
5336
|
dispatch:
|
5620
|
-
CPU:
|
5337
|
+
CPU: nll_loss2d_forward_out_cpu
|
5621
5338
|
CUDA: legacy::cuda::_thnn_nll_loss2d_forward_out
|
5622
5339
|
|
5623
5340
|
- func: nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)
|
5624
5341
|
python_module: nn
|
5625
5342
|
dispatch:
|
5626
|
-
CPU:
|
5343
|
+
CPU: nll_loss2d_forward_cpu
|
5627
5344
|
CUDA: legacy::cuda::_thnn_nll_loss2d_forward
|
5628
5345
|
|
5629
5346
|
- func: nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5630
5347
|
python_module: nn
|
5631
5348
|
dispatch:
|
5632
|
-
CPU:
|
5349
|
+
CPU: nll_loss2d_backward_out_cpu
|
5633
5350
|
CUDA: legacy::cuda::_thnn_nll_loss2d_backward_out
|
5634
5351
|
|
5635
5352
|
- func: nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor
|
5636
5353
|
python_module: nn
|
5637
5354
|
dispatch:
|
5638
|
-
CPU:
|
5355
|
+
CPU: nll_loss2d_backward_cpu
|
5639
5356
|
CUDA: legacy::cuda::_thnn_nll_loss2d_backward
|
5640
5357
|
|
5641
5358
|
- func: smooth_l1_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5642
5359
|
python_module: nn
|
5643
5360
|
dispatch:
|
5644
|
-
CPU:
|
5645
|
-
CUDA:
|
5361
|
+
CPU: smooth_l1_loss_out
|
5362
|
+
CUDA: smooth_l1_loss_out
|
5646
5363
|
|
5647
5364
|
- func: smooth_l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5648
5365
|
use_c10_dispatcher: full
|
5649
5366
|
python_module: nn
|
5650
|
-
dispatch:
|
5651
|
-
CPU: legacy::cpu::_thnn_smooth_l1_loss_forward
|
5652
|
-
CUDA: legacy::cuda::_thnn_smooth_l1_loss_forward
|
5653
5367
|
|
5654
5368
|
- func: smooth_l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5655
5369
|
python_module: nn
|
5656
5370
|
dispatch:
|
5657
|
-
CPU:
|
5658
|
-
CUDA:
|
5371
|
+
CPU: smooth_l1_loss_backward_out
|
5372
|
+
CUDA: smooth_l1_loss_backward_out
|
5659
5373
|
|
5660
5374
|
- func: smooth_l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5661
5375
|
use_c10_dispatcher: full
|
5662
5376
|
python_module: nn
|
5663
|
-
dispatch:
|
5664
|
-
CPU: legacy::cpu::_thnn_smooth_l1_loss_backward
|
5665
|
-
CUDA: legacy::cuda::_thnn_smooth_l1_loss_backward
|
5666
5377
|
|
5667
5378
|
- func: soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5668
5379
|
python_module: nn
|
@@ -5717,7 +5428,6 @@
|
|
5717
5428
|
CUDA: legacy::cuda::_thnn_elu_backward
|
5718
5429
|
|
5719
5430
|
- func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)
|
5720
|
-
use_c10_dispatcher: unboxed_only
|
5721
5431
|
python_module: nn
|
5722
5432
|
dispatch:
|
5723
5433
|
CPU: legacy::cpu::_thnn_elu_forward_
|
@@ -5776,7 +5486,6 @@
|
|
5776
5486
|
CUDA: legacy::cuda::_thnn_hardtanh_backward
|
5777
5487
|
|
5778
5488
|
- func: hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!)
|
5779
|
-
use_c10_dispatcher: unboxed_only
|
5780
5489
|
python_module: nn
|
5781
5490
|
dispatch:
|
5782
5491
|
CPU: legacy::cpu::_thnn_hardtanh_forward_
|
@@ -5809,7 +5518,6 @@
|
|
5809
5518
|
CUDA: legacy::cuda::_thnn_leaky_relu_backward
|
5810
5519
|
|
5811
5520
|
- func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!)
|
5812
|
-
use_c10_dispatcher: unboxed_only
|
5813
5521
|
python_module: nn
|
5814
5522
|
dispatch:
|
5815
5523
|
CPU: legacy::cpu::_thnn_leaky_relu_forward_
|
@@ -5829,7 +5537,6 @@
|
|
5829
5537
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward_out
|
5830
5538
|
|
5831
5539
|
- func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)
|
5832
|
-
use_c10_dispatcher: unboxed_only
|
5833
5540
|
python_module: nn
|
5834
5541
|
dispatch:
|
5835
5542
|
CPU: legacy::cpu::_thnn_log_sigmoid_forward
|
@@ -5855,7 +5562,6 @@
|
|
5855
5562
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_out
|
5856
5563
|
|
5857
5564
|
- func: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
5858
|
-
use_c10_dispatcher: 'unboxed_only'
|
5859
5565
|
python_module: nn
|
5860
5566
|
dispatch:
|
5861
5567
|
CPU: legacy::cpu::_thnn_rrelu_with_noise_forward
|
@@ -5875,7 +5581,6 @@
|
|
5875
5581
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_backward
|
5876
5582
|
|
5877
5583
|
- func: rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)
|
5878
|
-
use_c10_dispatcher: 'unboxed_only'
|
5879
5584
|
python_module: nn
|
5880
5585
|
dispatch:
|
5881
5586
|
CPU: legacy::cpu::_thnn_rrelu_with_noise_forward_
|
@@ -5941,17 +5646,14 @@
|
|
5941
5646
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d_out
|
5942
5647
|
|
5943
5648
|
- func: adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5944
|
-
use_c10_dispatcher: unboxed_only
|
5945
5649
|
python_module: nn
|
5946
5650
|
|
5947
5651
|
- func: mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5948
|
-
use_c10_dispatcher: unboxed_only
|
5949
5652
|
dispatch:
|
5950
5653
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d
|
5951
5654
|
requires_tensor: True
|
5952
5655
|
|
5953
5656
|
- func: _adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5954
|
-
use_c10_dispatcher: unboxed_only
|
5955
5657
|
dispatch:
|
5956
5658
|
CPU: adaptive_avg_pool2d_cpu
|
5957
5659
|
CUDA: adaptive_avg_pool2d_cuda
|
@@ -5971,7 +5673,6 @@
|
|
5971
5673
|
CUDA: adaptive_avg_pool3d_out_cuda
|
5972
5674
|
|
5973
5675
|
- func: adaptive_avg_pool3d(Tensor self, int[3] output_size) -> Tensor
|
5974
|
-
use_c10_dispatcher: unboxed_only
|
5975
5676
|
python_module: nn
|
5976
5677
|
dispatch:
|
5977
5678
|
CPU: adaptive_avg_pool3d_cpu
|
@@ -5999,7 +5700,6 @@
|
|
5999
5700
|
|
6000
5701
|
# Return: (Tensor output, Tensor indices)
|
6001
5702
|
- func: adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
|
6002
|
-
use_c10_dispatcher: unboxed_only
|
6003
5703
|
python_module: nn
|
6004
5704
|
dispatch:
|
6005
5705
|
CPU: adaptive_max_pool2d_cpu
|
@@ -6027,7 +5727,6 @@
|
|
6027
5727
|
|
6028
5728
|
# Return: (Tensor output, Tensor indices)
|
6029
5729
|
- func: adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)
|
6030
|
-
use_c10_dispatcher: unboxed_only
|
6031
5730
|
python_module: nn
|
6032
5731
|
dispatch:
|
6033
5732
|
CPU: adaptive_max_pool3d_cpu
|
@@ -6054,7 +5753,6 @@
|
|
6054
5753
|
MkldnnCPU: mkldnn_avg_pool2d_out
|
6055
5754
|
|
6056
5755
|
- func: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
6057
|
-
use_c10_dispatcher: unboxed_only
|
6058
5756
|
python_module: nn
|
6059
5757
|
dispatch:
|
6060
5758
|
CPU: avg_pool2d_cpu
|
@@ -6069,7 +5767,6 @@
|
|
6069
5767
|
CUDA: avg_pool2d_backward_out_cuda
|
6070
5768
|
|
6071
5769
|
- func: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
6072
|
-
use_c10_dispatcher: unboxed_only
|
6073
5770
|
python_module: nn
|
6074
5771
|
dispatch:
|
6075
5772
|
CPU: avg_pool2d_backward_cpu
|
@@ -6082,7 +5779,6 @@
|
|
6082
5779
|
CUDA: avg_pool3d_out_cuda
|
6083
5780
|
|
6084
5781
|
- func: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
6085
|
-
use_c10_dispatcher: unboxed_only
|
6086
5782
|
python_module: nn
|
6087
5783
|
dispatch:
|
6088
5784
|
CPU: avg_pool3d_cpu
|
@@ -6095,7 +5791,6 @@
|
|
6095
5791
|
CUDA: avg_pool3d_backward_out_cuda
|
6096
5792
|
|
6097
5793
|
- func: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
6098
|
-
use_c10_dispatcher: unboxed_only
|
6099
5794
|
python_module: nn
|
6100
5795
|
dispatch:
|
6101
5796
|
CPU: avg_pool3d_backward_cpu
|
@@ -6110,7 +5805,6 @@
|
|
6110
5805
|
|
6111
5806
|
# Return: (Tensor output, Tensor indices)
|
6112
5807
|
- func: fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor)
|
6113
|
-
use_c10_dispatcher: unboxed_only
|
6114
5808
|
python_module: nn
|
6115
5809
|
dispatch:
|
6116
5810
|
CPU: fractional_max_pool2d_cpu
|
@@ -6123,7 +5817,6 @@
|
|
6123
5817
|
CUDA: fractional_max_pool2d_backward_out_cuda
|
6124
5818
|
|
6125
5819
|
- func: fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor
|
6126
|
-
use_c10_dispatcher: unboxed_only
|
6127
5820
|
python_module: nn
|
6128
5821
|
dispatch:
|
6129
5822
|
CPU: fractional_max_pool2d_backward_cpu
|
@@ -6138,7 +5831,6 @@
|
|
6138
5831
|
|
6139
5832
|
# Return: (Tensor output, Tensor indices)
|
6140
5833
|
- func: fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor)
|
6141
|
-
use_c10_dispatcher: unboxed_only
|
6142
5834
|
python_module: nn
|
6143
5835
|
dispatch:
|
6144
5836
|
CPU: fractional_max_pool3d_cpu
|
@@ -6151,7 +5843,6 @@
|
|
6151
5843
|
CUDA: fractional_max_pool3d_backward_out_cuda
|
6152
5844
|
|
6153
5845
|
- func: fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor
|
6154
|
-
use_c10_dispatcher: unboxed_only
|
6155
5846
|
python_module: nn
|
6156
5847
|
dispatch:
|
6157
5848
|
CPU: fractional_max_pool3d_backward_cpu
|
@@ -6166,7 +5857,6 @@
|
|
6166
5857
|
|
6167
5858
|
# Return: (Tensor output, Tensor indices)
|
6168
5859
|
- func: max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
6169
|
-
use_c10_dispatcher: unboxed_only
|
6170
5860
|
python_module: nn
|
6171
5861
|
dispatch:
|
6172
5862
|
CPU: max_pool2d_with_indices_cpu
|
@@ -6179,7 +5869,6 @@
|
|
6179
5869
|
CUDA: max_pool2d_with_indices_backward_out_cuda
|
6180
5870
|
|
6181
5871
|
- func: max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor
|
6182
|
-
use_c10_dispatcher: unboxed_only
|
6183
5872
|
python_module: nn
|
6184
5873
|
dispatch:
|
6185
5874
|
CPU: max_pool2d_with_indices_backward_cpu
|
@@ -6194,7 +5883,6 @@
|
|
6194
5883
|
|
6195
5884
|
# Return: (Tensor output, Tensor indices)
|
6196
5885
|
- func: max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
6197
|
-
use_c10_dispatcher: unboxed_only
|
6198
5886
|
python_module: nn
|
6199
5887
|
dispatch:
|
6200
5888
|
CPU: max_pool3d_with_indices_cpu
|
@@ -6207,7 +5895,6 @@
|
|
6207
5895
|
CUDA: max_pool3d_with_indices_backward_out_cuda
|
6208
5896
|
|
6209
5897
|
- func: max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor
|
6210
|
-
use_c10_dispatcher: unboxed_only
|
6211
5898
|
python_module: nn
|
6212
5899
|
dispatch:
|
6213
5900
|
CPU: max_pool3d_with_indices_backward_cpu
|
@@ -6220,7 +5907,6 @@
|
|
6220
5907
|
CUDA: max_unpooling2d_forward_out_cuda
|
6221
5908
|
|
6222
5909
|
- func: max_unpool2d(Tensor self, Tensor indices, int[2] output_size) -> Tensor
|
6223
|
-
use_c10_dispatcher: unboxed_only
|
6224
5910
|
python_module: nn
|
6225
5911
|
dispatch:
|
6226
5912
|
CPU: max_unpooling2d_forward_cpu
|
@@ -6233,7 +5919,6 @@
|
|
6233
5919
|
CUDA: max_unpooling2d_backward_out_cuda
|
6234
5920
|
|
6235
5921
|
- func: max_unpool2d_backward(Tensor grad_output, Tensor self, Tensor indices, int[2] output_size) -> Tensor
|
6236
|
-
use_c10_dispatcher: unboxed_only
|
6237
5922
|
python_module: nn
|
6238
5923
|
dispatch:
|
6239
5924
|
CPU: max_unpooling2d_backward_cpu
|
@@ -6246,7 +5931,6 @@
|
|
6246
5931
|
CUDA: max_unpooling3d_forward_out_cuda
|
6247
5932
|
|
6248
5933
|
- func: max_unpool3d(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor
|
6249
|
-
use_c10_dispatcher: unboxed_only
|
6250
5934
|
python_module: nn
|
6251
5935
|
dispatch:
|
6252
5936
|
CPU: max_unpooling3d_forward_cpu
|
@@ -6259,7 +5943,6 @@
|
|
6259
5943
|
CUDA: max_unpooling3d_backward_out_cuda
|
6260
5944
|
|
6261
5945
|
- func: max_unpool3d_backward(Tensor grad_output, Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor
|
6262
|
-
use_c10_dispatcher: unboxed_only
|
6263
5946
|
python_module: nn
|
6264
5947
|
dispatch:
|
6265
5948
|
CPU: max_unpooling3d_backward_cpu
|
@@ -6272,7 +5955,6 @@
|
|
6272
5955
|
CUDA: reflection_pad1d_out_cuda
|
6273
5956
|
|
6274
5957
|
- func: reflection_pad1d(Tensor self, int[2] padding) -> Tensor
|
6275
|
-
use_c10_dispatcher: unboxed_only
|
6276
5958
|
python_module: nn
|
6277
5959
|
dispatch:
|
6278
5960
|
CPU: reflection_pad1d_cpu
|
@@ -6285,7 +5967,6 @@
|
|
6285
5967
|
CUDA: reflection_pad1d_backward_out_cuda
|
6286
5968
|
|
6287
5969
|
- func: reflection_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
6288
|
-
use_c10_dispatcher: unboxed_only
|
6289
5970
|
python_module: nn
|
6290
5971
|
dispatch:
|
6291
5972
|
CPU: reflection_pad1d_backward_cpu
|
@@ -6298,7 +5979,6 @@
|
|
6298
5979
|
CUDA: reflection_pad2d_out_cuda
|
6299
5980
|
|
6300
5981
|
- func: reflection_pad2d(Tensor self, int[4] padding) -> Tensor
|
6301
|
-
use_c10_dispatcher: unboxed_only
|
6302
5982
|
python_module: nn
|
6303
5983
|
dispatch:
|
6304
5984
|
CPU: reflection_pad2d_cpu
|
@@ -6311,7 +5991,6 @@
|
|
6311
5991
|
CUDA: reflection_pad2d_backward_out_cuda
|
6312
5992
|
|
6313
5993
|
- func: reflection_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor
|
6314
|
-
use_c10_dispatcher: unboxed_only
|
6315
5994
|
python_module: nn
|
6316
5995
|
dispatch:
|
6317
5996
|
CPU: reflection_pad2d_backward_cpu
|
@@ -6324,7 +6003,6 @@
|
|
6324
6003
|
CUDA: replication_pad1d_out_cuda
|
6325
6004
|
|
6326
6005
|
- func: replication_pad1d(Tensor self, int[2] padding) -> Tensor
|
6327
|
-
use_c10_dispatcher: unboxed_only
|
6328
6006
|
python_module: nn
|
6329
6007
|
dispatch:
|
6330
6008
|
CPU: replication_pad1d_cpu
|
@@ -6337,7 +6015,6 @@
|
|
6337
6015
|
CUDA: replication_pad1d_backward_out_cuda
|
6338
6016
|
|
6339
6017
|
- func: replication_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
6340
|
-
use_c10_dispatcher: unboxed_only
|
6341
6018
|
python_module: nn
|
6342
6019
|
dispatch:
|
6343
6020
|
CPU: replication_pad1d_backward_cpu
|
@@ -6350,7 +6027,6 @@
|
|
6350
6027
|
CUDA: replication_pad2d_out_cuda
|
6351
6028
|
|
6352
6029
|
- func: replication_pad2d(Tensor self, int[4] padding) -> Tensor
|
6353
|
-
use_c10_dispatcher: unboxed_only
|
6354
6030
|
python_module: nn
|
6355
6031
|
dispatch:
|
6356
6032
|
CPU: replication_pad2d_cpu
|
@@ -6363,7 +6039,6 @@
|
|
6363
6039
|
CUDA: replication_pad2d_backward_out_cuda
|
6364
6040
|
|
6365
6041
|
- func: replication_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor
|
6366
|
-
use_c10_dispatcher: unboxed_only
|
6367
6042
|
python_module: nn
|
6368
6043
|
dispatch:
|
6369
6044
|
CPU: replication_pad2d_backward_cpu
|
@@ -6376,7 +6051,6 @@
|
|
6376
6051
|
CUDA: replication_pad3d_out_cuda
|
6377
6052
|
|
6378
6053
|
- func: replication_pad3d(Tensor self, int[6] padding) -> Tensor
|
6379
|
-
use_c10_dispatcher: unboxed_only
|
6380
6054
|
python_module: nn
|
6381
6055
|
dispatch:
|
6382
6056
|
CPU: replication_pad3d_cpu
|
@@ -6389,12 +6063,14 @@
|
|
6389
6063
|
CUDA: replication_pad3d_backward_out_cuda
|
6390
6064
|
|
6391
6065
|
- func: replication_pad3d_backward(Tensor grad_output, Tensor self, int[6] padding) -> Tensor
|
6392
|
-
use_c10_dispatcher: unboxed_only
|
6393
6066
|
python_module: nn
|
6394
6067
|
dispatch:
|
6395
6068
|
CPU: replication_pad3d_backward_cpu
|
6396
6069
|
CUDA: replication_pad3d_backward_cuda
|
6397
6070
|
|
6071
|
+
- func: _test_optional_float(Tensor self, *, float? scale=None) -> Tensor
|
6072
|
+
variants: function
|
6073
|
+
|
6398
6074
|
- func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6399
6075
|
python_module: nn
|
6400
6076
|
dispatch:
|
@@ -6402,7 +6078,6 @@
|
|
6402
6078
|
CUDA: upsample_linear1d_out_cuda
|
6403
6079
|
|
6404
6080
|
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners) -> Tensor
|
6405
|
-
use_c10_dispatcher: unboxed_only
|
6406
6081
|
python_module: nn
|
6407
6082
|
dispatch:
|
6408
6083
|
CPU: upsample_linear1d_cpu
|
@@ -6415,7 +6090,6 @@
|
|
6415
6090
|
CUDA: upsample_linear1d_backward_out_cuda
|
6416
6091
|
|
6417
6092
|
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners) -> Tensor
|
6418
|
-
use_c10_dispatcher: unboxed_only
|
6419
6093
|
python_module: nn
|
6420
6094
|
dispatch:
|
6421
6095
|
CPU: upsample_linear1d_backward_cpu
|
@@ -6428,7 +6102,6 @@
|
|
6428
6102
|
CUDA: upsample_bilinear2d_out_cuda
|
6429
6103
|
|
6430
6104
|
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6431
|
-
use_c10_dispatcher: unboxed_only
|
6432
6105
|
python_module: nn
|
6433
6106
|
dispatch:
|
6434
6107
|
CPU: upsample_bilinear2d_cpu
|
@@ -6442,7 +6115,6 @@
|
|
6442
6115
|
CUDA: upsample_bilinear2d_backward_out_cuda
|
6443
6116
|
|
6444
6117
|
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6445
|
-
use_c10_dispatcher: unboxed_only
|
6446
6118
|
python_module: nn
|
6447
6119
|
dispatch:
|
6448
6120
|
CPU: upsample_bilinear2d_backward_cpu
|
@@ -6455,7 +6127,6 @@
|
|
6455
6127
|
CUDA: upsample_bicubic2d_out_cuda
|
6456
6128
|
|
6457
6129
|
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6458
|
-
use_c10_dispatcher: unboxed_only
|
6459
6130
|
python_module: nn
|
6460
6131
|
dispatch:
|
6461
6132
|
CPU: upsample_bicubic2d_cpu
|
@@ -6468,7 +6139,6 @@
|
|
6468
6139
|
CUDA: upsample_bicubic2d_backward_out_cuda
|
6469
6140
|
|
6470
6141
|
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6471
|
-
use_c10_dispatcher: unboxed_only
|
6472
6142
|
python_module: nn
|
6473
6143
|
dispatch:
|
6474
6144
|
CPU: upsample_bicubic2d_backward_cpu
|
@@ -6481,7 +6151,6 @@
|
|
6481
6151
|
CUDA: upsample_trilinear3d_out_cuda
|
6482
6152
|
|
6483
6153
|
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners) -> Tensor
|
6484
|
-
use_c10_dispatcher: unboxed_only
|
6485
6154
|
python_module: nn
|
6486
6155
|
dispatch:
|
6487
6156
|
CPU: upsample_trilinear3d_cpu
|
@@ -6494,7 +6163,6 @@
|
|
6494
6163
|
CUDA: upsample_trilinear3d_backward_out_cuda
|
6495
6164
|
|
6496
6165
|
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners) -> Tensor
|
6497
|
-
use_c10_dispatcher: unboxed_only
|
6498
6166
|
python_module: nn
|
6499
6167
|
dispatch:
|
6500
6168
|
CPU: upsample_trilinear3d_backward_cpu
|
@@ -6507,7 +6175,6 @@
|
|
6507
6175
|
CUDA: upsample_nearest1d_out_cuda
|
6508
6176
|
|
6509
6177
|
- func: upsample_nearest1d(Tensor self, int[1] output_size) -> Tensor
|
6510
|
-
use_c10_dispatcher: unboxed_only
|
6511
6178
|
python_module: nn
|
6512
6179
|
dispatch:
|
6513
6180
|
CPU: upsample_nearest1d_cpu
|
@@ -6520,7 +6187,6 @@
|
|
6520
6187
|
CUDA: upsample_nearest1d_backward_out_cuda
|
6521
6188
|
|
6522
6189
|
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size) -> Tensor
|
6523
|
-
use_c10_dispatcher: unboxed_only
|
6524
6190
|
python_module: nn
|
6525
6191
|
dispatch:
|
6526
6192
|
CPU: upsample_nearest1d_backward_cpu
|
@@ -6533,7 +6199,6 @@
|
|
6533
6199
|
CUDA: upsample_nearest2d_out_cuda
|
6534
6200
|
|
6535
6201
|
- func: upsample_nearest2d(Tensor self, int[2] output_size) -> Tensor
|
6536
|
-
use_c10_dispatcher: unboxed_only
|
6537
6202
|
python_module: nn
|
6538
6203
|
dispatch:
|
6539
6204
|
CPU: upsample_nearest2d_cpu
|
@@ -6547,7 +6212,6 @@
|
|
6547
6212
|
CUDA: upsample_nearest2d_backward_out_cuda
|
6548
6213
|
|
6549
6214
|
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size) -> Tensor
|
6550
|
-
use_c10_dispatcher: unboxed_only
|
6551
6215
|
python_module: nn
|
6552
6216
|
dispatch:
|
6553
6217
|
CPU: upsample_nearest2d_backward_cpu
|
@@ -6560,7 +6224,6 @@
|
|
6560
6224
|
CUDA: upsample_nearest3d_out_cuda
|
6561
6225
|
|
6562
6226
|
- func: upsample_nearest3d(Tensor self, int[3] output_size) -> Tensor
|
6563
|
-
use_c10_dispatcher: unboxed_only
|
6564
6227
|
python_module: nn
|
6565
6228
|
dispatch:
|
6566
6229
|
CPU: upsample_nearest3d_cpu
|
@@ -6573,7 +6236,6 @@
|
|
6573
6236
|
CUDA: upsample_nearest3d_backward_out_cuda
|
6574
6237
|
|
6575
6238
|
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size) -> Tensor
|
6576
|
-
use_c10_dispatcher: unboxed_only
|
6577
6239
|
python_module: nn
|
6578
6240
|
dispatch:
|
6579
6241
|
CPU: upsample_nearest3d_backward_cpu
|
@@ -6582,15 +6244,12 @@
|
|
6582
6244
|
- func: sigmoid_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6583
6245
|
python_module: nn
|
6584
6246
|
dispatch:
|
6585
|
-
CPU:
|
6586
|
-
CUDA:
|
6247
|
+
CPU: sigmoid_backward_out
|
6248
|
+
CUDA: sigmoid_backward_out
|
6587
6249
|
|
6588
6250
|
- func: sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor
|
6589
6251
|
use_c10_dispatcher: full
|
6590
6252
|
python_module: nn
|
6591
|
-
dispatch:
|
6592
|
-
CPU: legacy::cpu::_thnn_sigmoid_backward
|
6593
|
-
CUDA: legacy::cuda::_thnn_sigmoid_backward
|
6594
6253
|
|
6595
6254
|
- func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6596
6255
|
python_module: nn
|
@@ -6635,14 +6294,13 @@
|
|
6635
6294
|
CPU: slow_conv_transpose2d_cpu
|
6636
6295
|
CUDA: slow_conv_transpose2d_cuda
|
6637
6296
|
|
6638
|
-
- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor
|
6297
|
+
- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6639
6298
|
python_module: nn
|
6640
6299
|
dispatch:
|
6641
6300
|
CPU: slow_conv_transpose2d_backward_out_cpu
|
6642
6301
|
CUDA: slow_conv_transpose2d_backward_out_cuda
|
6643
6302
|
|
6644
6303
|
- func: slow_conv_transpose2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6645
|
-
use_c10_dispatcher: unboxed_only
|
6646
6304
|
python_module: nn
|
6647
6305
|
dispatch:
|
6648
6306
|
CPU: slow_conv_transpose2d_backward_cpu
|
@@ -6660,14 +6318,13 @@
|
|
6660
6318
|
CPU: slow_conv_transpose3d_cpu
|
6661
6319
|
CUDA: slow_conv_transpose3d_cuda
|
6662
6320
|
|
6663
|
-
- func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor
|
6321
|
+
- func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6664
6322
|
python_module: nn
|
6665
6323
|
dispatch:
|
6666
6324
|
CPU: slow_conv_transpose3d_backward_out_cpu
|
6667
6325
|
CUDA: slow_conv_transpose3d_backward_out_cuda
|
6668
6326
|
|
6669
6327
|
- func: slow_conv_transpose3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6670
|
-
use_c10_dispatcher: unboxed_only
|
6671
6328
|
python_module: nn
|
6672
6329
|
dispatch:
|
6673
6330
|
CPU: slow_conv_transpose3d_backward_cpu
|
@@ -6682,26 +6339,25 @@
|
|
6682
6339
|
- func: thnn_conv2d_forward.output(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, *, Tensor(a!) output, Tensor(b!) finput, Tensor(c!) fgrad_input) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6683
6340
|
python_module: nn
|
6684
6341
|
dispatch:
|
6685
|
-
CPU:
|
6342
|
+
CPU: slow_conv2d_forward_out_cpu
|
6686
6343
|
CUDA: legacy::cuda::_thnn_conv2d_forward_out
|
6687
6344
|
|
6688
6345
|
- func: thnn_conv2d_forward(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input)
|
6689
6346
|
python_module: nn
|
6690
6347
|
dispatch:
|
6691
|
-
CPU:
|
6348
|
+
CPU: slow_conv2d_forward_cpu
|
6692
6349
|
CUDA: legacy::cuda::_thnn_conv2d_forward
|
6693
6350
|
|
6694
|
-
- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor
|
6351
|
+
- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6695
6352
|
python_module: nn
|
6696
6353
|
dispatch:
|
6697
|
-
CPU:
|
6354
|
+
CPU: slow_conv2d_backward_out_cpu
|
6698
6355
|
CUDA: legacy::cuda::_thnn_conv2d_backward_out
|
6699
6356
|
|
6700
6357
|
- func: thnn_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6701
|
-
use_c10_dispatcher: unboxed_only
|
6702
6358
|
python_module: nn
|
6703
6359
|
dispatch:
|
6704
|
-
CPU:
|
6360
|
+
CPU: slow_conv2d_backward_cpu
|
6705
6361
|
CUDA: legacy::cuda::_thnn_conv2d_backward
|
6706
6362
|
|
6707
6363
|
- func: thnn_conv_depthwise2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -6720,43 +6376,41 @@
|
|
6720
6376
|
dispatch:
|
6721
6377
|
CUDA: legacy::cuda::_thnn_conv_depthwise2d_forward
|
6722
6378
|
|
6723
|
-
- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor
|
6379
|
+
- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight) -> (Tensor(a!), Tensor(b!))
|
6724
6380
|
python_module: nn
|
6725
6381
|
dispatch:
|
6726
6382
|
CUDA: legacy::cuda::_thnn_conv_depthwise2d_backward_out
|
6727
6383
|
|
6728
6384
|
- func: thnn_conv_depthwise2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[2] output_mask) -> (Tensor grad_input, Tensor grad_weight)
|
6729
|
-
use_c10_dispatcher: unboxed_only
|
6730
6385
|
python_module: nn
|
6731
6386
|
dispatch:
|
6732
6387
|
CUDA: legacy::cuda::_thnn_conv_depthwise2d_backward
|
6733
6388
|
|
6734
|
-
- func:
|
6389
|
+
- func: slow_conv3d.out(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, *, Tensor(a!) out) -> Tensor(a!)
|
6735
6390
|
python_module: nn
|
6736
6391
|
|
6737
|
-
- func:
|
6392
|
+
- func: slow_conv3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0) -> Tensor
|
6738
6393
|
python_module: nn
|
6739
6394
|
|
6740
|
-
- func:
|
6395
|
+
- func: slow_conv3d_forward.output(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, *, Tensor(a!) output, Tensor(b!) finput, Tensor(c!) fgrad_input) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6741
6396
|
python_module: nn
|
6742
6397
|
dispatch:
|
6743
|
-
CPU:
|
6398
|
+
CPU: slow_conv3d_forward_out_cpu
|
6744
6399
|
|
6745
|
-
- func:
|
6400
|
+
- func: slow_conv3d_forward(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input)
|
6746
6401
|
python_module: nn
|
6747
6402
|
dispatch:
|
6748
|
-
CPU:
|
6403
|
+
CPU: slow_conv3d_forward_cpu
|
6749
6404
|
|
6750
|
-
- func:
|
6405
|
+
- func: slow_conv3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6751
6406
|
python_module: nn
|
6752
6407
|
dispatch:
|
6753
|
-
CPU:
|
6408
|
+
CPU: slow_conv3d_backward_out_cpu
|
6754
6409
|
|
6755
|
-
- func:
|
6756
|
-
use_c10_dispatcher: unboxed_only
|
6410
|
+
- func: slow_conv3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6757
6411
|
python_module: nn
|
6758
6412
|
dispatch:
|
6759
|
-
CPU:
|
6413
|
+
CPU: slow_conv3d_backward_cpu
|
6760
6414
|
|
6761
6415
|
- func: slow_conv_dilated2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1) -> Tensor
|
6762
6416
|
python_module: nn
|
@@ -6765,7 +6419,6 @@
|
|
6765
6419
|
CUDA: slow_conv_dilated2d_cuda
|
6766
6420
|
|
6767
6421
|
- func: slow_conv_dilated2d_backward(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6768
|
-
use_c10_dispatcher: unboxed_only
|
6769
6422
|
python_module: nn
|
6770
6423
|
dispatch:
|
6771
6424
|
CPU: slow_conv_dilated2d_backward_cpu
|
@@ -6778,7 +6431,6 @@
|
|
6778
6431
|
CUDA: slow_conv_dilated3d_cuda
|
6779
6432
|
|
6780
6433
|
- func: slow_conv_dilated3d_backward(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6781
|
-
use_c10_dispatcher: unboxed_only
|
6782
6434
|
python_module: nn
|
6783
6435
|
dispatch:
|
6784
6436
|
CPU: slow_conv_dilated3d_backward_cpu
|
@@ -6791,7 +6443,6 @@
|
|
6791
6443
|
CUDA: col2im_out_cuda
|
6792
6444
|
|
6793
6445
|
- func: col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6794
|
-
use_c10_dispatcher: unboxed_only
|
6795
6446
|
python_module: nn
|
6796
6447
|
dispatch:
|
6797
6448
|
CPU: col2im_cpu
|
@@ -6804,7 +6455,6 @@
|
|
6804
6455
|
CUDA: col2im_backward_out_cuda
|
6805
6456
|
|
6806
6457
|
- func: col2im_backward(Tensor grad_output, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6807
|
-
use_c10_dispatcher: unboxed_only
|
6808
6458
|
python_module: nn
|
6809
6459
|
dispatch:
|
6810
6460
|
CPU: col2im_backward_cpu
|
@@ -6817,7 +6467,6 @@
|
|
6817
6467
|
CUDA: im2col_out_cuda
|
6818
6468
|
|
6819
6469
|
- func: im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6820
|
-
use_c10_dispatcher: unboxed_only
|
6821
6470
|
python_module: nn
|
6822
6471
|
dispatch:
|
6823
6472
|
CPU: im2col_cpu
|
@@ -6830,8 +6479,13 @@
|
|
6830
6479
|
CUDA: im2col_backward_out_cuda
|
6831
6480
|
|
6832
6481
|
- func: im2col_backward(Tensor grad_output, int[2] input_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6833
|
-
use_c10_dispatcher: unboxed_only
|
6834
6482
|
python_module: nn
|
6835
6483
|
dispatch:
|
6836
6484
|
CPU: im2col_backward_cpu
|
6837
6485
|
CUDA: im2col_backward_cuda
|
6486
|
+
|
6487
|
+
- func: isfinite(Tensor self) -> Tensor
|
6488
|
+
use_c10_dispatcher: full
|
6489
|
+
variants: function
|
6490
|
+
device_guard: False
|
6491
|
+
supports_named_tensor: True
|