torch-rb 0.1.7 → 0.1.8
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -1
- data/ext/torch/ext.cpp +17 -4
- data/ext/torch/extconf.rb +3 -0
- data/ext/torch/templates.hpp +22 -20
- data/lib/torch/native/function.rb +1 -0
- data/lib/torch/native/native_functions.yaml +275 -621
- data/lib/torch/version.rb +1 -1
- metadata +2 -9
- data/ext/torch/nn_functions.cpp +0 -615
- data/ext/torch/nn_functions.hpp +0 -6
- data/ext/torch/tensor_functions.cpp +0 -1920
- data/ext/torch/tensor_functions.hpp +0 -6
- data/ext/torch/torch_functions.cpp +0 -2975
- data/ext/torch/torch_functions.hpp +0 -6
- data/lib/torch/ext.bundle +0 -0
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fca87cb9b6d255287e9fafadf786c113798abbe76b36c82b8271b79cfbf3c2b9
|
4
|
+
data.tar.gz: 4813c71f5ad6d078e78da03cf59f8036e9e76258ffb67f538899bba146dcba2a
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 22c7150e6a7d9132c40c67819beecc6b8c69b268bd227a8e4aa324ef5e2707004691d5b65dcd4ba1ac537bfaf783947da7e5a323417cffcbf7d348768c40b7c6
|
7
|
+
data.tar.gz: 8a86c6b68efe6ad85a261d7033b87f040c22b2c670a0238accd6246274caed17b86d7b424441bba80c5ea67ec1bf53b05444dfb0c45ea5b8a52806d0ce19ec1e
|
data/CHANGELOG.md
CHANGED
data/ext/torch/ext.cpp
CHANGED
@@ -16,6 +16,12 @@
|
|
16
16
|
|
17
17
|
using namespace Rice;
|
18
18
|
|
19
|
+
// need to make a distinction between parameters and tensors
|
20
|
+
class Parameter: public torch::autograd::Variable {
|
21
|
+
public:
|
22
|
+
Parameter(Tensor&& t) : torch::autograd::Variable(t) { }
|
23
|
+
};
|
24
|
+
|
19
25
|
extern "C"
|
20
26
|
void Init_ext()
|
21
27
|
{
|
@@ -136,7 +142,13 @@ void Init_ext()
|
|
136
142
|
for (size_t i = 0; i < a.size(); i++) {
|
137
143
|
vec.push_back(from_ruby<float>(a[i]));
|
138
144
|
}
|
139
|
-
|
145
|
+
// hack for requires_grad error
|
146
|
+
if (options.requires_grad()) {
|
147
|
+
t = torch::tensor(vec, options.requires_grad(c10::nullopt));
|
148
|
+
t.set_requires_grad(true);
|
149
|
+
} else {
|
150
|
+
t = torch::tensor(vec, options);
|
151
|
+
}
|
140
152
|
}
|
141
153
|
return t.reshape(size);
|
142
154
|
});
|
@@ -146,6 +158,7 @@ void Init_ext()
|
|
146
158
|
.define_method("sparse?", &torch::Tensor::is_sparse)
|
147
159
|
.define_method("quantized?", &torch::Tensor::is_quantized)
|
148
160
|
.define_method("dim", &torch::Tensor::dim)
|
161
|
+
.define_method("numel", &torch::Tensor::numel)
|
149
162
|
.define_method("element_size", &torch::Tensor::element_size)
|
150
163
|
.define_method("requires_grad", &torch::Tensor::requires_grad)
|
151
164
|
.define_method(
|
@@ -260,7 +273,7 @@ void Init_ext()
|
|
260
273
|
auto data = torch::autograd::as_variable_ref(rd).detach();
|
261
274
|
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
262
275
|
auto var = data.set_requires_grad(requires_grad);
|
263
|
-
return
|
276
|
+
return Parameter(std::move(var));
|
264
277
|
});
|
265
278
|
|
266
279
|
Class rb_cTensorOptions = define_class_under<torch::TensorOptions>(rb_mTorch, "TensorOptions")
|
@@ -375,10 +388,10 @@ void Init_ext()
|
|
375
388
|
return torch::nn::init::sparse_(tensor, sparsity, std);
|
376
389
|
});
|
377
390
|
|
378
|
-
Class rb_cParameter = define_class_under<
|
391
|
+
Class rb_cParameter = define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter")
|
379
392
|
.define_method(
|
380
393
|
"grad",
|
381
|
-
*[](
|
394
|
+
*[](Parameter& self) {
|
382
395
|
auto grad = self.grad();
|
383
396
|
return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
|
384
397
|
});
|
data/ext/torch/extconf.rb
CHANGED
@@ -10,6 +10,9 @@ $CXXFLAGS << " -std=c++11"
|
|
10
10
|
# silence ruby/intern.h warning
|
11
11
|
$CXXFLAGS << " -Wno-deprecated-register"
|
12
12
|
|
13
|
+
# silence torch warnings
|
14
|
+
$CXXFLAGS << " -Wno-shorten-64-to-32 -Wno-missing-noreturn"
|
15
|
+
|
13
16
|
inc, lib = dir_config("torch")
|
14
17
|
|
15
18
|
inc ||= "/usr/local/include"
|
data/ext/torch/templates.hpp
CHANGED
@@ -1,5 +1,9 @@
|
|
1
1
|
#pragma once
|
2
2
|
|
3
|
+
#ifdef isfinite
|
4
|
+
#undef isfinite
|
5
|
+
#endif
|
6
|
+
|
3
7
|
#include <rice/Array.hpp>
|
4
8
|
#include <rice/Object.hpp>
|
5
9
|
|
@@ -79,12 +83,11 @@ class FanModeType {
|
|
79
83
|
FanModeType(Object o) {
|
80
84
|
s = String(o).str();
|
81
85
|
}
|
82
|
-
|
83
|
-
operator torch::nn::init::FanMode() {
|
86
|
+
operator torch::nn::init::FanModeType() {
|
84
87
|
if (s == "fan_in") {
|
85
|
-
return torch::
|
88
|
+
return torch::kFanIn;
|
86
89
|
} else if (s == "fan_out") {
|
87
|
-
return torch::
|
90
|
+
return torch::kFanOut;
|
88
91
|
} else {
|
89
92
|
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
90
93
|
}
|
@@ -104,30 +107,29 @@ class NonlinearityType {
|
|
104
107
|
NonlinearityType(Object o) {
|
105
108
|
s = String(o).str();
|
106
109
|
}
|
107
|
-
|
108
|
-
operator torch::nn::init::Nonlinearity() {
|
110
|
+
operator torch::nn::init::NonlinearityType() {
|
109
111
|
if (s == "linear") {
|
110
|
-
return torch::
|
112
|
+
return torch::kLinear;
|
111
113
|
} else if (s == "conv1d") {
|
112
|
-
return torch::
|
114
|
+
return torch::kConv1D;
|
113
115
|
} else if (s == "conv2d") {
|
114
|
-
return torch::
|
116
|
+
return torch::kConv2D;
|
115
117
|
} else if (s == "conv3d") {
|
116
|
-
return torch::
|
118
|
+
return torch::kConv3D;
|
117
119
|
} else if (s == "conv_transpose1d") {
|
118
|
-
return torch::
|
120
|
+
return torch::kConvTranspose1D;
|
119
121
|
} else if (s == "conv_transpose2d") {
|
120
|
-
return torch::
|
122
|
+
return torch::kConvTranspose2D;
|
121
123
|
} else if (s == "conv_transpose3d") {
|
122
|
-
return torch::
|
124
|
+
return torch::kConvTranspose3D;
|
123
125
|
} else if (s == "sigmoid") {
|
124
|
-
return torch::
|
126
|
+
return torch::kSigmoid;
|
125
127
|
} else if (s == "tanh") {
|
126
|
-
return torch::
|
128
|
+
return torch::kTanh;
|
127
129
|
} else if (s == "relu") {
|
128
|
-
return torch::
|
130
|
+
return torch::kReLU;
|
129
131
|
} else if (s == "leaky_relu") {
|
130
|
-
return torch::
|
132
|
+
return torch::kLeakyReLU;
|
131
133
|
} else {
|
132
134
|
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
133
135
|
}
|
@@ -149,14 +151,14 @@ class MyReduction {
|
|
149
151
|
}
|
150
152
|
operator int64_t() {
|
151
153
|
if (value.is_nil()) {
|
152
|
-
return Reduction::None;
|
154
|
+
return torch::Reduction::None;
|
153
155
|
}
|
154
156
|
|
155
157
|
std::string s = String(value).str();
|
156
158
|
if (s == "mean") {
|
157
|
-
return Reduction::Mean;
|
159
|
+
return torch::Reduction::Mean;
|
158
160
|
} else if (s == "sum") {
|
159
|
-
return Reduction::Sum;
|
161
|
+
return torch::Reduction::Sum;
|
160
162
|
} else {
|
161
163
|
throw std::runtime_error("Unsupported reduction: " + s);
|
162
164
|
}
|
@@ -37,19 +37,38 @@
|
|
37
37
|
use_c10_dispatcher: full
|
38
38
|
variants: function
|
39
39
|
|
40
|
-
|
40
|
+
# Computes the gradient of current tensor w.r.t. graph leaves.
|
41
|
+
- func: backward(Tensor self, Tensor? gradient=None, bool keep_graph=False, bool create_graph=False) -> ()
|
41
42
|
variants: method
|
42
43
|
|
43
|
-
|
44
|
+
# DEPRECATED. Sets the tensor data held by this `Variable` to be the same as
|
45
|
+
# `new_data`. It requires that `new_data` and `Variable` have compatible tensor
|
46
|
+
# type, by checking `_has_compatible_shallow_copy_type(this, new_data)`.
|
47
|
+
#
|
48
|
+
# This function is deprecated because it doesn't really make sense in a world
|
49
|
+
# where Variables *are* Tensors (as opposed to them containing tensors, which
|
50
|
+
# is what the previous interpretation was.)
|
51
|
+
- func: set_data(Tensor(a!) self, Tensor new_data) -> ()
|
52
|
+
use_c10_dispatcher: unboxed_only
|
44
53
|
variants: method
|
45
54
|
|
46
55
|
- func: data(Tensor self) -> Tensor
|
47
|
-
use_c10_dispatcher: unboxed_only
|
48
56
|
variants: method
|
49
57
|
|
58
|
+
# True if this `Variable` is a leaf and thus does not have a `grad_fn`.
|
50
59
|
- func: is_leaf(Tensor self) -> bool
|
51
60
|
variants: method
|
52
61
|
|
62
|
+
# Returns the output index of this variable from the forward operation that
|
63
|
+
# produced it. Conversely, it returns the input index of the gradient `Node` to
|
64
|
+
# which this `Variable` is connected (because in the gradient computation,
|
65
|
+
# inputs and outputs switch meaning). For example:
|
66
|
+
#
|
67
|
+
# y0, y1, y2 = f(x)
|
68
|
+
# assert y0.output_nr == 0
|
69
|
+
# assert y1.output_nr == 1
|
70
|
+
# assert y2.output_nr == 2
|
71
|
+
#
|
53
72
|
- func: output_nr(Tensor self) -> int
|
54
73
|
variants: method
|
55
74
|
supports_named_tensor: True
|
@@ -57,6 +76,9 @@
|
|
57
76
|
- func: _version(Tensor self) -> int
|
58
77
|
variants: method
|
59
78
|
|
79
|
+
- func: requires_grad_(Tensor(a!) self, bool _requires_grad=True) -> Tensor(a!)
|
80
|
+
variants: method
|
81
|
+
|
60
82
|
- func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!)
|
61
83
|
variants: method
|
62
84
|
supports_named_tensor: True
|
@@ -65,38 +87,43 @@
|
|
65
87
|
variants: method
|
66
88
|
supports_named_tensor: True
|
67
89
|
|
68
|
-
- func: align_to(Tensor(a) self,
|
90
|
+
- func: align_to(Tensor(a) self, Dimname[] names) -> Tensor(a)
|
91
|
+
variants: method
|
92
|
+
supports_named_tensor: True
|
93
|
+
|
94
|
+
- func: align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a)
|
69
95
|
variants: method
|
70
96
|
supports_named_tensor: True
|
71
97
|
|
72
98
|
- func: align_as(Tensor self, Tensor other) -> Tensor
|
73
|
-
use_c10_dispatcher: unboxed_only
|
74
99
|
variants: method
|
75
100
|
supports_named_tensor: True
|
76
101
|
|
77
102
|
- func: align_tensors(Tensor[] tensors) -> Tensor[]
|
78
|
-
use_c10_dispatcher: unboxed_only
|
79
103
|
supports_named_tensor: True
|
80
104
|
|
81
|
-
- func: refine_names(Tensor(a) self,
|
105
|
+
- func: refine_names(Tensor(a) self, Dimname[] names) -> Tensor(a)
|
82
106
|
variants: method
|
83
107
|
supports_named_tensor: True
|
84
108
|
|
85
|
-
- func: unflatten(Tensor self, Dimname dim, int[] sizes,
|
109
|
+
- func: unflatten.Dimname(Tensor self, Dimname dim, int[] sizes, Dimname[] names) -> Tensor
|
86
110
|
variants: method
|
87
111
|
supports_named_tensor: True
|
88
112
|
|
89
|
-
- func: unflatten(Tensor self, int dim, int[] sizes,
|
113
|
+
- func: unflatten.int(Tensor self, int dim, int[] sizes, Dimname[] names) -> Tensor
|
90
114
|
variants: method
|
91
115
|
supports_named_tensor: True
|
92
116
|
|
117
|
+
|
118
|
+
- func: _use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool
|
119
|
+
dispatch:
|
120
|
+
CUDA: _use_cudnn_ctc_loss
|
121
|
+
|
93
122
|
- func: _cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor)
|
94
|
-
use_c10_dispatcher: unboxed_only
|
95
123
|
dispatch:
|
96
124
|
CUDA: _cudnn_ctc_loss
|
97
125
|
|
98
126
|
- func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, int input_size, int mode, int hidden_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
99
|
-
use_c10_dispatcher: unboxed_only
|
100
127
|
dispatch:
|
101
128
|
CUDA: _cudnn_rnn_flatten_weight
|
102
129
|
|
@@ -117,7 +144,6 @@
|
|
117
144
|
variants: function
|
118
145
|
|
119
146
|
- func: _fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor)
|
120
|
-
use_c10_dispatcher: 'unboxed_only'
|
121
147
|
variants: function
|
122
148
|
dispatch:
|
123
149
|
CUDA: fused_dropout_cuda
|
@@ -132,15 +158,12 @@
|
|
132
158
|
- func: _sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, ScalarType? dtype) -> (Tensor, Tensor)
|
133
159
|
|
134
160
|
- func: _sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!)
|
135
|
-
use_c10_dispatcher: unboxed_only
|
136
161
|
|
137
162
|
|
138
163
|
- func: _sobol_engine_scramble_(Tensor(a!) self, Tensor ltm, int dimension) -> Tensor(a!)
|
139
|
-
use_c10_dispatcher: unboxed_only
|
140
164
|
|
141
165
|
|
142
166
|
- func: _sobol_engine_initialize_state_(Tensor(a!) self, int dimension) -> Tensor(a!)
|
143
|
-
use_c10_dispatcher: unboxed_only
|
144
167
|
|
145
168
|
|
146
169
|
- func: _reshape_from_tensor(Tensor self, Tensor shape) -> Tensor
|
@@ -154,27 +177,23 @@
|
|
154
177
|
supports_named_tensor: True
|
155
178
|
|
156
179
|
- func: dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
157
|
-
use_c10_dispatcher: unboxed_only
|
158
180
|
supports_named_tensor: True
|
159
181
|
|
160
182
|
- func: feature_dropout(Tensor input, float p, bool train) -> Tensor
|
161
183
|
use_c10_dispatcher: full
|
162
184
|
|
163
185
|
- func: feature_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
164
|
-
use_c10_dispatcher: unboxed_only
|
165
186
|
|
166
187
|
- func: alpha_dropout(Tensor input, float p, bool train) -> Tensor
|
167
188
|
use_c10_dispatcher: full
|
168
189
|
|
169
190
|
- func: alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
170
|
-
use_c10_dispatcher: unboxed_only
|
171
191
|
|
172
192
|
|
173
193
|
- func: feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor
|
174
194
|
use_c10_dispatcher: full
|
175
195
|
|
176
196
|
- func: feature_alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)
|
177
|
-
use_c10_dispatcher: unboxed_only
|
178
197
|
|
179
198
|
|
180
199
|
- func: abs(Tensor self) -> Tensor
|
@@ -183,18 +202,55 @@
|
|
183
202
|
supports_named_tensor: True
|
184
203
|
|
185
204
|
- func: abs_(Tensor(a!) self) -> Tensor(a!)
|
186
|
-
use_c10_dispatcher: unboxed_only
|
187
205
|
variants: function, method
|
188
206
|
supports_named_tensor: True
|
189
|
-
dispatch:
|
190
|
-
CPU: _abs__cpu
|
191
|
-
CUDA: _abs__cuda
|
192
207
|
|
193
208
|
- func: abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
194
209
|
supports_named_tensor: True
|
210
|
+
|
211
|
+
- func: angle(Tensor self) -> Tensor
|
212
|
+
variants: function, method
|
213
|
+
supports_named_tensor: True
|
214
|
+
named_guard: False
|
215
|
+
|
216
|
+
- func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
217
|
+
named_guard: False
|
218
|
+
supports_named_tensor: True
|
219
|
+
dispatch:
|
220
|
+
CPU: _angle_out_cpu
|
221
|
+
|
222
|
+
- func: real(Tensor self) -> Tensor
|
223
|
+
variants: function, method
|
224
|
+
named_guard: False
|
225
|
+
supports_named_tensor: True
|
226
|
+
|
227
|
+
- func: real.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
228
|
+
named_guard: False
|
229
|
+
supports_named_tensor: True
|
230
|
+
dispatch:
|
231
|
+
CPU: _real_out_cpu
|
232
|
+
|
233
|
+
- func: imag(Tensor self) -> Tensor
|
234
|
+
variants: function, method
|
235
|
+
named_guard: False
|
236
|
+
supports_named_tensor: True
|
237
|
+
|
238
|
+
- func: imag.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
239
|
+
named_guard: False
|
240
|
+
supports_named_tensor: True
|
241
|
+
dispatch:
|
242
|
+
CPU: _imag_out_cpu
|
243
|
+
|
244
|
+
- func: conj(Tensor self) -> Tensor
|
245
|
+
variants: function, method
|
246
|
+
named_guard: False
|
247
|
+
supports_named_tensor: True
|
248
|
+
|
249
|
+
- func: conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
250
|
+
named_guard: False
|
251
|
+
supports_named_tensor: True
|
195
252
|
dispatch:
|
196
|
-
CPU:
|
197
|
-
CUDA: _abs_out_cuda
|
253
|
+
CPU: _conj_out_cpu
|
198
254
|
|
199
255
|
- func: acos(Tensor self) -> Tensor
|
200
256
|
use_c10_dispatcher: full
|
@@ -202,28 +258,18 @@
|
|
202
258
|
variants: function, method
|
203
259
|
|
204
260
|
- func: acos_(Tensor(a!) self) -> Tensor(a!)
|
205
|
-
use_c10_dispatcher: unboxed_only
|
206
261
|
supports_named_tensor: True
|
207
262
|
variants: function, method
|
208
|
-
dispatch:
|
209
|
-
CPU: _acos__cpu
|
210
|
-
CUDA: _acos__cuda
|
211
263
|
|
212
264
|
- func: acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
213
265
|
supports_named_tensor: True
|
214
|
-
dispatch:
|
215
|
-
CPU: _acos_out_cpu
|
216
|
-
CUDA: _acos_out_cuda
|
217
266
|
|
218
267
|
- func: avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, bool ceil_mode=False, bool count_include_pad=True) -> Tensor
|
219
|
-
use_c10_dispatcher: unboxed_only
|
220
268
|
|
221
269
|
- func: adaptive_avg_pool1d(Tensor self, int[1] output_size) -> Tensor
|
222
|
-
use_c10_dispatcher: unboxed_only
|
223
270
|
|
224
271
|
# Return: (Tensor output, Tensor indices)
|
225
272
|
- func: adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)
|
226
|
-
use_c10_dispatcher: unboxed_only
|
227
273
|
|
228
274
|
- func: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
229
275
|
use_c10_dispatcher: full
|
@@ -237,7 +283,6 @@
|
|
237
283
|
supports_named_tensor: True
|
238
284
|
|
239
285
|
- func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
240
|
-
use_c10_dispatcher: unboxed_only
|
241
286
|
variants: method
|
242
287
|
dispatch:
|
243
288
|
CPU: add_
|
@@ -263,7 +308,6 @@
|
|
263
308
|
supports_named_tensor: True
|
264
309
|
|
265
310
|
- func: add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
266
|
-
use_c10_dispatcher: unboxed_only
|
267
311
|
variants: method
|
268
312
|
supports_named_tensor: True
|
269
313
|
|
@@ -276,7 +320,6 @@
|
|
276
320
|
supports_named_tensor: True
|
277
321
|
|
278
322
|
- func: addmv_(Tensor(a!) self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
279
|
-
use_c10_dispatcher: unboxed_only
|
280
323
|
variants: function, method
|
281
324
|
dispatch:
|
282
325
|
CPU: legacy::cpu::_th_addmv_
|
@@ -294,17 +337,14 @@
|
|
294
337
|
variants: function, method
|
295
338
|
|
296
339
|
- func: addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
297
|
-
use_c10_dispatcher: unboxed_only
|
298
340
|
variants: method
|
299
341
|
|
300
342
|
- func: addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
301
343
|
|
302
344
|
- func: affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> Tensor
|
303
|
-
use_c10_dispatcher: unboxed_only
|
304
345
|
variants: function
|
305
346
|
|
306
347
|
- func: affine_grid_generator_backward(Tensor grad, int[] size, bool align_corners) -> Tensor
|
307
|
-
use_c10_dispatcher: unboxed_only
|
308
348
|
variants: function
|
309
349
|
|
310
350
|
- func: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
|
@@ -363,7 +403,6 @@
|
|
363
403
|
variants: function, method
|
364
404
|
|
365
405
|
- func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a)
|
366
|
-
use_c10_dispatcher: unboxed_only
|
367
406
|
variants: function, method
|
368
407
|
dispatch:
|
369
408
|
CPU: as_strided_tensorimpl
|
@@ -373,7 +412,6 @@
|
|
373
412
|
supports_named_tensor: True
|
374
413
|
|
375
414
|
- func: as_strided_(Tensor(a!) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a!)
|
376
|
-
use_c10_dispatcher: unboxed_only
|
377
415
|
variants: function, method
|
378
416
|
device_guard: False
|
379
417
|
|
@@ -383,18 +421,11 @@
|
|
383
421
|
variants: function, method
|
384
422
|
|
385
423
|
- func: asin_(Tensor(a!) self) -> Tensor(a!)
|
386
|
-
use_c10_dispatcher: unboxed_only
|
387
424
|
supports_named_tensor: True
|
388
425
|
variants: function, method
|
389
|
-
dispatch:
|
390
|
-
CPU: _asin__cpu
|
391
|
-
CUDA: _asin__cuda
|
392
426
|
|
393
427
|
- func: asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
394
428
|
supports_named_tensor: True
|
395
|
-
dispatch:
|
396
|
-
CPU: _asin_out_cpu
|
397
|
-
CUDA: _asin_out_cuda
|
398
429
|
|
399
430
|
- func: atan(Tensor self) -> Tensor
|
400
431
|
use_c10_dispatcher: full
|
@@ -402,7 +433,6 @@
|
|
402
433
|
variants: function, method
|
403
434
|
|
404
435
|
- func: atan_(Tensor(a!) self) -> Tensor(a!)
|
405
|
-
use_c10_dispatcher: unboxed_only
|
406
436
|
supports_named_tensor: True
|
407
437
|
variants: function, method
|
408
438
|
dispatch:
|
@@ -423,14 +453,12 @@
|
|
423
453
|
CUDA: baddbmm_cuda
|
424
454
|
|
425
455
|
- func: baddbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
426
|
-
use_c10_dispatcher: unboxed_only
|
427
456
|
variants: method
|
428
457
|
dispatch:
|
429
458
|
CPU: baddbmm__cpu
|
430
459
|
CUDA: baddbmm__cuda
|
431
460
|
|
432
461
|
- func: _baddbmm_mkl_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
433
|
-
use_c10_dispatcher: unboxed_only
|
434
462
|
variants: function
|
435
463
|
|
436
464
|
- func: baddbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
@@ -445,13 +473,12 @@
|
|
445
473
|
|
446
474
|
- func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor
|
447
475
|
|
448
|
-
- func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, int)
|
476
|
+
- func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)
|
449
477
|
|
450
|
-
- func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
478
|
+
- func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor)
|
451
479
|
|
452
480
|
# Sample bernoulli with values in `self` as probability.
|
453
481
|
- func: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor
|
454
|
-
use_c10_dispatcher: 'unboxed_only'
|
455
482
|
variants: function, method
|
456
483
|
supports_named_tensor: True
|
457
484
|
|
@@ -460,7 +487,6 @@
|
|
460
487
|
supports_named_tensor: True
|
461
488
|
|
462
489
|
- func: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!)
|
463
|
-
use_c10_dispatcher: 'unboxed_only'
|
464
490
|
variants: method
|
465
491
|
dispatch:
|
466
492
|
CPU: bernoulli_tensor_cpu_
|
@@ -468,7 +494,6 @@
|
|
468
494
|
supports_named_tensor: True
|
469
495
|
|
470
496
|
- func: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!)
|
471
|
-
use_c10_dispatcher: 'unboxed_only'
|
472
497
|
variants: method
|
473
498
|
dispatch:
|
474
499
|
CPU: bernoulli_scalar_cpu_
|
@@ -479,7 +504,6 @@
|
|
479
504
|
# There is no default valid on `p` here because it would introduce ambiguity
|
480
505
|
# with `bernoulli(Tensor self, *, Generator? generator=None)` declaration.
|
481
506
|
- func: bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> Tensor
|
482
|
-
use_c10_dispatcher: 'unboxed_only'
|
483
507
|
variants: function, method
|
484
508
|
|
485
509
|
- func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor
|
@@ -502,7 +526,6 @@
|
|
502
526
|
variants: function, method
|
503
527
|
|
504
528
|
- func: bitwise_not_(Tensor(a!) self) -> Tensor(a!)
|
505
|
-
use_c10_dispatcher: unboxed_only
|
506
529
|
supports_named_tensor: True
|
507
530
|
variants: method
|
508
531
|
|
@@ -513,12 +536,10 @@
|
|
513
536
|
CUDA: bitwise_not_out
|
514
537
|
|
515
538
|
- func: logical_not(Tensor self) -> Tensor
|
516
|
-
use_c10_dispatcher: unboxed_only
|
517
539
|
supports_named_tensor: True
|
518
540
|
variants: function, method
|
519
541
|
|
520
542
|
- func: logical_not_(Tensor(a!) self) -> Tensor(a!)
|
521
|
-
use_c10_dispatcher: unboxed_only
|
522
543
|
supports_named_tensor: True
|
523
544
|
variants: method
|
524
545
|
|
@@ -529,12 +550,10 @@
|
|
529
550
|
CUDA: logical_not_out
|
530
551
|
|
531
552
|
- func: logical_xor(Tensor self, Tensor other) -> Tensor
|
532
|
-
use_c10_dispatcher: unboxed_only
|
533
553
|
variants: function, method
|
534
554
|
supports_named_tensor: True
|
535
555
|
|
536
556
|
- func: logical_xor_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
537
|
-
use_c10_dispatcher: unboxed_only
|
538
557
|
variants: method
|
539
558
|
supports_named_tensor: True
|
540
559
|
|
@@ -564,11 +583,9 @@
|
|
564
583
|
supports_named_tensor: True
|
565
584
|
|
566
585
|
- func: broadcast_tensors(Tensor[] tensors) -> Tensor[]
|
567
|
-
use_c10_dispatcher: unboxed_only
|
568
586
|
device_guard: False
|
569
587
|
|
570
588
|
- func: cat(Tensor[] tensors, int dim=0) -> Tensor
|
571
|
-
use_c10_dispatcher: unboxed_only
|
572
589
|
supports_named_tensor: True
|
573
590
|
|
574
591
|
- func: cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -586,7 +603,6 @@
|
|
586
603
|
variants: function, method
|
587
604
|
|
588
605
|
- func: ceil_(Tensor(a!) self) -> Tensor(a!)
|
589
|
-
use_c10_dispatcher: unboxed_only
|
590
606
|
supports_named_tensor: True
|
591
607
|
variants: function, method
|
592
608
|
|
@@ -597,11 +613,9 @@
|
|
597
613
|
CUDA: ceil_out
|
598
614
|
|
599
615
|
- func: chain_matmul(Tensor[] matrices) -> Tensor
|
600
|
-
use_c10_dispatcher: unboxed_only
|
601
616
|
variants: function
|
602
617
|
|
603
618
|
- func: chunk(Tensor(a) self, int chunks, int dim=0) -> Tensor(a)[]
|
604
|
-
use_c10_dispatcher: unboxed_only
|
605
619
|
variants: function, method
|
606
620
|
device_guard: False
|
607
621
|
supports_named_tensor: True
|
@@ -612,7 +626,6 @@
|
|
612
626
|
variants: function, method
|
613
627
|
|
614
628
|
- func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)
|
615
|
-
use_c10_dispatcher: unboxed_only
|
616
629
|
supports_named_tensor: True
|
617
630
|
variants: function, method
|
618
631
|
dispatch:
|
@@ -631,7 +644,6 @@
|
|
631
644
|
variants: function, method
|
632
645
|
|
633
646
|
- func: clamp_max_(Tensor(a!) self, Scalar max) -> Tensor(a!)
|
634
|
-
use_c10_dispatcher: unboxed_only
|
635
647
|
supports_named_tensor: True
|
636
648
|
variants: function, method
|
637
649
|
dispatch:
|
@@ -650,7 +662,6 @@
|
|
650
662
|
variants: function, method
|
651
663
|
|
652
664
|
- func: clamp_min_(Tensor(a!) self, Scalar min) -> Tensor(a!)
|
653
|
-
use_c10_dispatcher: unboxed_only
|
654
665
|
supports_named_tensor: True
|
655
666
|
variants: function, method
|
656
667
|
dispatch:
|
@@ -668,7 +679,6 @@
|
|
668
679
|
device_guard: False
|
669
680
|
|
670
681
|
- func: constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> Tensor
|
671
|
-
use_c10_dispatcher: unboxed_only
|
672
682
|
variants: function
|
673
683
|
|
674
684
|
- func: contiguous(Tensor self, *, MemoryFormat memory_format=contiguous_format) -> Tensor
|
@@ -697,7 +707,6 @@
|
|
697
707
|
use_c10_dispatcher: full
|
698
708
|
|
699
709
|
- func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor)
|
700
|
-
use_c10_dispatcher: unboxed_only
|
701
710
|
|
702
711
|
# NB: we inherit the goofy argument order from PyTorch torch.nn.functional
|
703
712
|
- func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=1, int[1] padding=0, int[1] output_padding=0, int groups=1, int[1] dilation=1) -> Tensor
|
@@ -707,7 +716,6 @@
|
|
707
716
|
- func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int groups=1, int[3] dilation=1) -> Tensor
|
708
717
|
|
709
718
|
- func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
710
|
-
use_c10_dispatcher: unboxed_only
|
711
719
|
variants: method
|
712
720
|
device_guard: False
|
713
721
|
supports_named_tensor: True
|
@@ -722,7 +730,6 @@
|
|
722
730
|
variants: function, method
|
723
731
|
|
724
732
|
- func: cos_(Tensor(a!) self) -> Tensor(a!)
|
725
|
-
use_c10_dispatcher: unboxed_only
|
726
733
|
supports_named_tensor: True
|
727
734
|
variants: function, method
|
728
735
|
dispatch:
|
@@ -741,7 +748,6 @@
|
|
741
748
|
variants: function, method
|
742
749
|
|
743
750
|
- func: cosh_(Tensor(a!) self) -> Tensor(a!)
|
744
|
-
use_c10_dispatcher: unboxed_only
|
745
751
|
supports_named_tensor: True
|
746
752
|
variants: function, method
|
747
753
|
dispatch:
|
@@ -768,12 +774,12 @@
|
|
768
774
|
dispatch:
|
769
775
|
CUDA: cudnn_affine_grid_generator_backward
|
770
776
|
|
771
|
-
- func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)
|
777
|
+
- func: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor)
|
772
778
|
dispatch:
|
773
779
|
CUDA: cudnn_batch_norm
|
774
780
|
|
775
781
|
# NB: You can only use this if you used cudnn_batch_norm training=True
|
776
|
-
- func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon) -> (Tensor, Tensor, Tensor)
|
782
|
+
- func: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace) -> (Tensor, Tensor, Tensor)
|
777
783
|
dispatch:
|
778
784
|
CUDA: cudnn_batch_norm_backward
|
779
785
|
|
@@ -782,12 +788,10 @@
|
|
782
788
|
CUDA: cudnn_convolution
|
783
789
|
|
784
790
|
- func: cudnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
785
|
-
use_c10_dispatcher: unboxed_only
|
786
791
|
dispatch:
|
787
792
|
CUDA: cudnn_convolution_backward_input
|
788
793
|
|
789
794
|
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
790
|
-
use_c10_dispatcher: unboxed_only
|
791
795
|
dispatch:
|
792
796
|
CUDA: cudnn_convolution_backward
|
793
797
|
|
@@ -797,7 +801,6 @@
|
|
797
801
|
CUDA: cudnn_convolution_backward_bias
|
798
802
|
|
799
803
|
- func: cudnn_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
800
|
-
use_c10_dispatcher: unboxed_only
|
801
804
|
dispatch:
|
802
805
|
CUDA: cudnn_convolution_backward_weight
|
803
806
|
|
@@ -808,7 +811,6 @@
|
|
808
811
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
809
812
|
# backwards
|
810
813
|
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
811
|
-
use_c10_dispatcher: unboxed_only
|
812
814
|
dispatch:
|
813
815
|
CUDA: cudnn_convolution_transpose_backward
|
814
816
|
|
@@ -818,12 +820,10 @@
|
|
818
820
|
CUDA: cudnn_convolution_backward_bias
|
819
821
|
|
820
822
|
- func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
821
|
-
use_c10_dispatcher: unboxed_only
|
822
823
|
dispatch:
|
823
824
|
CUDA: cudnn_convolution_transpose_backward_input
|
824
825
|
|
825
826
|
- func: cudnn_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
826
|
-
use_c10_dispatcher: unboxed_only
|
827
827
|
dispatch:
|
828
828
|
CUDA: cudnn_convolution_transpose_backward_weight
|
829
829
|
|
@@ -834,7 +834,6 @@
|
|
834
834
|
CUDA: cudnn_grid_sampler_forward
|
835
835
|
|
836
836
|
- func: cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid)
|
837
|
-
use_c10_dispatcher: unboxed_only
|
838
837
|
dispatch:
|
839
838
|
CUDA: cudnn_grid_sampler_backward
|
840
839
|
|
@@ -867,20 +866,17 @@
|
|
867
866
|
supports_named_tensor: True
|
868
867
|
|
869
868
|
- func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
870
|
-
use_c10_dispatcher: unboxed_only
|
871
869
|
|
872
870
|
# convenience function that converts to intlists for you
|
873
871
|
- func: ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
874
872
|
use_c10_dispatcher: full
|
875
873
|
|
876
874
|
- func: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
|
877
|
-
use_c10_dispatcher: unboxed_only
|
878
875
|
dispatch:
|
879
876
|
CPU: ctc_loss_cpu
|
880
877
|
CUDA: ctc_loss_gpu
|
881
878
|
|
882
879
|
- func: _ctc_loss_backward(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor
|
883
|
-
use_c10_dispatcher: unboxed_only
|
884
880
|
dispatch:
|
885
881
|
CPU: ctc_loss_backward_cpu
|
886
882
|
CUDA: ctc_loss_backward_gpu
|
@@ -898,11 +894,9 @@
|
|
898
894
|
variants: function, method
|
899
895
|
|
900
896
|
- func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)
|
901
|
-
use_c10_dispatcher: unboxed_only
|
902
897
|
variants: function, method
|
903
898
|
|
904
899
|
- func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)
|
905
|
-
use_c10_dispatcher: unboxed_only
|
906
900
|
variants: method
|
907
901
|
|
908
902
|
- func: div.Tensor(Tensor self, Tensor other) -> Tensor
|
@@ -916,7 +910,6 @@
|
|
916
910
|
supports_named_tensor: True
|
917
911
|
|
918
912
|
- func: div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
919
|
-
use_c10_dispatcher: unboxed_only
|
920
913
|
variants: method
|
921
914
|
dispatch:
|
922
915
|
CPU: div_
|
@@ -940,7 +933,6 @@
|
|
940
933
|
supports_named_tensor: True
|
941
934
|
|
942
935
|
- func: div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
943
|
-
use_c10_dispatcher: unboxed_only
|
944
936
|
variants: method
|
945
937
|
supports_named_tensor: True
|
946
938
|
|
@@ -956,7 +948,6 @@
|
|
956
948
|
supports_named_tensor: True
|
957
949
|
|
958
950
|
- func: einsum(str equation, Tensor[] tensors) -> Tensor
|
959
|
-
use_c10_dispatcher: unboxed_only
|
960
951
|
|
961
952
|
- func: embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor
|
962
953
|
use_c10_dispatcher: full
|
@@ -971,7 +962,6 @@
|
|
971
962
|
CUDA: embedding_dense_backward_cuda
|
972
963
|
|
973
964
|
- func: embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!)
|
974
|
-
use_c10_dispatcher: unboxed_only
|
975
965
|
dispatch:
|
976
966
|
CPU: embedding_renorm_cpu_
|
977
967
|
CUDA: embedding_renorm_cuda_
|
@@ -1027,6 +1017,9 @@
|
|
1027
1017
|
- func: new_full(Tensor self, int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1028
1018
|
variants: method
|
1029
1019
|
|
1020
|
+
- func: new_zeros(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1021
|
+
variants: method
|
1022
|
+
|
1030
1023
|
# other overrides are to provide a more helpful error message that dtype is required
|
1031
1024
|
- func: _empty_affine_quantized(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
1032
1025
|
dispatch:
|
@@ -1041,8 +1034,7 @@
|
|
1041
1034
|
CPU: empty_per_channel_affine_quantized_other_backends_stub
|
1042
1035
|
QuantizedCPU: empty_per_channel_affine_quantized_cpu
|
1043
1036
|
|
1044
|
-
- func: resize_(Tensor(a!) self, int[] size) -> Tensor(a!)
|
1045
|
-
use_c10_dispatcher: unboxed_only
|
1037
|
+
- func: resize_(Tensor(a!) self, int[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
1046
1038
|
supports_named_tensor: True
|
1047
1039
|
variants: method
|
1048
1040
|
device_guard: False
|
@@ -1054,12 +1046,11 @@
|
|
1054
1046
|
- func: empty.out(int[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
1055
1047
|
device_guard: False
|
1056
1048
|
|
1057
|
-
- func: empty_like(Tensor self) -> Tensor
|
1058
|
-
use_c10_dispatcher: full
|
1049
|
+
- func: empty_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1059
1050
|
device_guard: False
|
1060
1051
|
supports_named_tensor: True
|
1061
1052
|
|
1062
|
-
- func: empty_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=
|
1053
|
+
- func: empty_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1063
1054
|
device_guard: False
|
1064
1055
|
supports_named_tensor: True
|
1065
1056
|
|
@@ -1074,7 +1065,6 @@
|
|
1074
1065
|
variants: function, method
|
1075
1066
|
|
1076
1067
|
- func: erf_(Tensor(a!) self) -> Tensor(a!)
|
1077
|
-
use_c10_dispatcher: unboxed_only
|
1078
1068
|
supports_named_tensor: True
|
1079
1069
|
variants: function, method
|
1080
1070
|
dispatch:
|
@@ -1093,7 +1083,6 @@
|
|
1093
1083
|
variants: function, method
|
1094
1084
|
|
1095
1085
|
- func: erfc_(Tensor(a!) self) -> Tensor(a!)
|
1096
|
-
use_c10_dispatcher: unboxed_only
|
1097
1086
|
supports_named_tensor: True
|
1098
1087
|
variants: function, method
|
1099
1088
|
dispatch:
|
@@ -1112,7 +1101,6 @@
|
|
1112
1101
|
variants: function, method
|
1113
1102
|
|
1114
1103
|
- func: exp_(Tensor(a!) self) -> Tensor(a!)
|
1115
|
-
use_c10_dispatcher: unboxed_only
|
1116
1104
|
supports_named_tensor: True
|
1117
1105
|
variants: function, method
|
1118
1106
|
dispatch:
|
@@ -1131,7 +1119,6 @@
|
|
1131
1119
|
variants: function, method
|
1132
1120
|
|
1133
1121
|
- func: expm1_(Tensor(a!) self) -> Tensor(a!)
|
1134
|
-
use_c10_dispatcher: unboxed_only
|
1135
1122
|
supports_named_tensor: True
|
1136
1123
|
variants: function, method
|
1137
1124
|
|
@@ -1142,7 +1129,6 @@
|
|
1142
1129
|
CUDA: expm1_out
|
1143
1130
|
|
1144
1131
|
- func: expand(Tensor(a) self, int[] size, *, bool implicit=False) -> Tensor(a)
|
1145
|
-
use_c10_dispatcher: unboxed_only
|
1146
1132
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
1147
1133
|
device_guard: False
|
1148
1134
|
supports_named_tensor: True
|
@@ -1179,17 +1165,15 @@
|
|
1179
1165
|
variants: function, method
|
1180
1166
|
supports_named_tensor: True
|
1181
1167
|
|
1182
|
-
- func: flatten.DimnameList(Tensor self,
|
1168
|
+
- func: flatten.DimnameList(Tensor self, Dimname[] dims, Dimname out_dim) -> Tensor
|
1183
1169
|
variants: function, method
|
1184
1170
|
supports_named_tensor: True
|
1185
1171
|
|
1186
1172
|
- func: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)
|
1187
|
-
use_c10_dispatcher: unboxed_only
|
1188
1173
|
supports_named_tensor: True
|
1189
1174
|
variants: function, method
|
1190
1175
|
|
1191
1176
|
- func: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!)
|
1192
|
-
use_c10_dispatcher: unboxed_only
|
1193
1177
|
supports_named_tensor: True
|
1194
1178
|
variants: function, method
|
1195
1179
|
|
@@ -1199,7 +1183,6 @@
|
|
1199
1183
|
variants: function, method
|
1200
1184
|
|
1201
1185
|
- func: floor_(Tensor(a!) self) -> Tensor(a!)
|
1202
|
-
use_c10_dispatcher: unboxed_only
|
1203
1186
|
supports_named_tensor: True
|
1204
1187
|
variants: function, method
|
1205
1188
|
|
@@ -1215,18 +1198,11 @@
|
|
1215
1198
|
variants: function, method
|
1216
1199
|
|
1217
1200
|
- func: frac_(Tensor(a!) self) -> Tensor(a!)
|
1218
|
-
use_c10_dispatcher: unboxed_only
|
1219
1201
|
supports_named_tensor: True
|
1220
1202
|
variants: function, method
|
1221
|
-
dispatch:
|
1222
|
-
CPU: _frac__cpu
|
1223
|
-
CUDA: _frac__cuda
|
1224
1203
|
|
1225
1204
|
- func: frac.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1226
1205
|
supports_named_tensor: True
|
1227
|
-
dispatch:
|
1228
|
-
CPU: _frac_out_cpu
|
1229
|
-
CUDA: _frac_out_cuda
|
1230
1206
|
|
1231
1207
|
- func: full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1232
1208
|
device_guard: False
|
@@ -1235,10 +1211,11 @@
|
|
1235
1211
|
|
1236
1212
|
- func: full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)
|
1237
1213
|
|
1238
|
-
- func: full_like(Tensor self, Scalar fill_value) -> Tensor
|
1239
|
-
|
1214
|
+
- func: full_like(Tensor self, Scalar fill_value, *, MemoryFormat? memory_format=None) -> Tensor
|
1215
|
+
supports_named_tensor: True
|
1240
1216
|
|
1241
|
-
- func: full_like.dtype(Tensor self, Scalar fill_value, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
1217
|
+
- func: full_like.dtype(Tensor self, Scalar fill_value, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1218
|
+
supports_named_tensor: True
|
1242
1219
|
|
1243
1220
|
- func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1244
1221
|
dispatch:
|
@@ -1265,7 +1242,6 @@
|
|
1265
1242
|
CUDA: grid_sampler_2d_cuda
|
1266
1243
|
|
1267
1244
|
- func: grid_sampler_2d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
|
1268
|
-
use_c10_dispatcher: unboxed_only
|
1269
1245
|
dispatch:
|
1270
1246
|
CPU: grid_sampler_2d_backward_cpu
|
1271
1247
|
CUDA: grid_sampler_2d_backward_cuda
|
@@ -1277,7 +1253,6 @@
|
|
1277
1253
|
CUDA: grid_sampler_3d_cuda
|
1278
1254
|
|
1279
1255
|
- func: grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
|
1280
|
-
use_c10_dispatcher: unboxed_only
|
1281
1256
|
dispatch:
|
1282
1257
|
CPU: grid_sampler_3d_backward_cpu
|
1283
1258
|
CUDA: grid_sampler_3d_backward_cuda
|
@@ -1326,11 +1301,9 @@
|
|
1326
1301
|
variants: function, method
|
1327
1302
|
|
1328
1303
|
- func: irfft(Tensor self, int signal_ndim, bool normalized=False, bool onesided=True, int[] signal_sizes=[]) -> Tensor
|
1329
|
-
use_c10_dispatcher: unboxed_only
|
1330
1304
|
variants: function, method
|
1331
1305
|
|
1332
1306
|
- func: _fft_with_size(Tensor self, int signal_ndim, bool complex_input, bool complex_output, bool inverse, int[] checked_signal_sizes, bool normalized, bool onesided, int[] output_sizes) -> Tensor
|
1333
|
-
use_c10_dispatcher: unboxed_only
|
1334
1307
|
variants: function
|
1335
1308
|
dispatch:
|
1336
1309
|
CPU: _fft_mkl
|
@@ -1342,16 +1315,17 @@
|
|
1342
1315
|
- func: _cufft_get_plan_cache_max_size(int device_index) -> int
|
1343
1316
|
use_c10_dispatcher: full
|
1344
1317
|
|
1345
|
-
- func: _cufft_set_plan_cache_max_size(int device_index, int max_size) ->
|
1318
|
+
- func: _cufft_set_plan_cache_max_size(int device_index, int max_size) -> ()
|
1319
|
+
use_c10_dispatcher: unboxed_only
|
1346
1320
|
|
1347
|
-
- func: _cufft_clear_plan_cache(int device_index) ->
|
1321
|
+
- func: _cufft_clear_plan_cache(int device_index) -> ()
|
1322
|
+
use_c10_dispatcher: unboxed_only
|
1348
1323
|
|
1349
1324
|
- func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
|
1350
1325
|
variants: function, method
|
1351
1326
|
# NB: This function is special-cased in tools/autograd/gen_variable_type.py
|
1352
1327
|
|
1353
1328
|
- func: index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
1354
|
-
use_c10_dispatcher: unboxed_only
|
1355
1329
|
variants: method
|
1356
1330
|
|
1357
1331
|
- func: index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
|
@@ -1444,7 +1418,6 @@
|
|
1444
1418
|
CUDA: kl_div_backward_cuda
|
1445
1419
|
|
1446
1420
|
- func: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1447
|
-
use_c10_dispatcher: unboxed_only
|
1448
1421
|
supports_named_tensor: True
|
1449
1422
|
variants: function, method
|
1450
1423
|
|
@@ -1466,14 +1439,12 @@
|
|
1466
1439
|
- func: native_layer_norm(Tensor input, Tensor? weight, Tensor? bias, int M, int N, float eps) -> (Tensor, Tensor, Tensor)
|
1467
1440
|
dispatch:
|
1468
1441
|
CPU: layer_norm_cpu
|
1442
|
+
CUDA: layer_norm_cuda
|
1469
1443
|
|
1470
1444
|
- func: native_layer_norm_backward(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, int M, int N, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1471
1445
|
dispatch:
|
1472
1446
|
CPU: layer_norm_backward_cpu
|
1473
|
-
|
1474
|
-
- func: native_layer_norm_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, int M, int N, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1475
|
-
dispatch:
|
1476
|
-
CPU: layer_norm_double_backward_cpu
|
1447
|
+
CUDA: layer_norm_backward_cuda
|
1477
1448
|
|
1478
1449
|
- func: linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
1479
1450
|
python_module: nn
|
@@ -1484,19 +1455,16 @@
|
|
1484
1455
|
MkldnnCPU: mkldnn_linear
|
1485
1456
|
|
1486
1457
|
- func: fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
1487
|
-
use_c10_dispatcher: unboxed_only
|
1488
1458
|
|
1489
1459
|
- func: fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
1490
1460
|
use_c10_dispatcher: full
|
1491
1461
|
|
1492
1462
|
- func: fbgemm_linear_quantize_weight(Tensor input) -> (Tensor, Tensor, float, int)
|
1493
|
-
use_c10_dispatcher: unboxed_only
|
1494
1463
|
|
1495
1464
|
- func: fbgemm_pack_gemm_matrix_fp16(Tensor input) -> Tensor
|
1496
1465
|
use_c10_dispatcher: full
|
1497
1466
|
|
1498
1467
|
- func: fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
1499
|
-
use_c10_dispatcher: unboxed_only
|
1500
1468
|
|
1501
1469
|
- func: fbgemm_linear_fp16_weight(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor
|
1502
1470
|
use_c10_dispatcher: full
|
@@ -1520,7 +1488,6 @@
|
|
1520
1488
|
variants: function, method
|
1521
1489
|
|
1522
1490
|
- func: log_(Tensor(a!) self) -> Tensor(a!)
|
1523
|
-
use_c10_dispatcher: unboxed_only
|
1524
1491
|
supports_named_tensor: True
|
1525
1492
|
variants: function, method
|
1526
1493
|
|
@@ -1536,18 +1503,14 @@
|
|
1536
1503
|
variants: function, method
|
1537
1504
|
|
1538
1505
|
- func: log10_(Tensor(a!) self) -> Tensor(a!)
|
1539
|
-
use_c10_dispatcher: unboxed_only
|
1540
1506
|
supports_named_tensor: True
|
1541
1507
|
variants: function, method
|
1542
|
-
dispatch:
|
1543
|
-
CPU: _log10__cpu
|
1544
|
-
CUDA: _log10__cuda
|
1545
1508
|
|
1546
1509
|
- func: log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1547
1510
|
supports_named_tensor: True
|
1548
1511
|
dispatch:
|
1549
|
-
CPU:
|
1550
|
-
CUDA:
|
1512
|
+
CPU: log10_out
|
1513
|
+
CUDA: log10_out
|
1551
1514
|
|
1552
1515
|
- func: log1p(Tensor self) -> Tensor
|
1553
1516
|
use_c10_dispatcher: full
|
@@ -1555,20 +1518,19 @@
|
|
1555
1518
|
variants: function, method
|
1556
1519
|
|
1557
1520
|
- func: log1p_(Tensor(a!) self) -> Tensor(a!)
|
1558
|
-
use_c10_dispatcher: unboxed_only
|
1559
1521
|
supports_named_tensor: True
|
1560
1522
|
variants: function, method
|
1561
1523
|
dispatch:
|
1562
|
-
CPU:
|
1563
|
-
CUDA:
|
1524
|
+
CPU: log1p_
|
1525
|
+
CUDA: log1p_
|
1564
1526
|
SparseCPU: log1p_sparse_
|
1565
1527
|
SparseCUDA: log1p_sparse_
|
1566
1528
|
|
1567
1529
|
- func: log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1568
1530
|
supports_named_tensor: True
|
1569
1531
|
dispatch:
|
1570
|
-
CPU:
|
1571
|
-
CUDA:
|
1532
|
+
CPU: log1p_out
|
1533
|
+
CUDA: log1p_out
|
1572
1534
|
SparseCPU: log1p_out_sparse
|
1573
1535
|
SparseCUDA: log1p_out_sparse
|
1574
1536
|
|
@@ -1578,18 +1540,14 @@
|
|
1578
1540
|
variants: function, method
|
1579
1541
|
|
1580
1542
|
- func: log2_(Tensor(a!) self) -> Tensor(a!)
|
1581
|
-
use_c10_dispatcher: unboxed_only
|
1582
1543
|
supports_named_tensor: True
|
1583
1544
|
variants: function, method
|
1584
|
-
dispatch:
|
1585
|
-
CPU: _log2__cpu
|
1586
|
-
CUDA: _log2__cuda
|
1587
1545
|
|
1588
1546
|
- func: log2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
1589
1547
|
supports_named_tensor: True
|
1590
1548
|
dispatch:
|
1591
|
-
CPU:
|
1592
|
-
CUDA:
|
1549
|
+
CPU: log2_out
|
1550
|
+
CUDA: log2_out
|
1593
1551
|
|
1594
1552
|
- func: logdet(Tensor self) -> Tensor
|
1595
1553
|
use_c10_dispatcher: full
|
@@ -1603,11 +1561,11 @@
|
|
1603
1561
|
CUDA: logspace_cuda_out
|
1604
1562
|
|
1605
1563
|
# log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
1606
|
-
- func: log_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
1564
|
+
- func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
1607
1565
|
variants: function, method
|
1608
1566
|
supports_named_tensor: True
|
1609
1567
|
|
1610
|
-
- func: log_softmax(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1568
|
+
- func: log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1611
1569
|
variants: function, method
|
1612
1570
|
supports_named_tensor: True
|
1613
1571
|
|
@@ -1624,7 +1582,6 @@
|
|
1624
1582
|
CUDA: log_softmax_backward_cuda
|
1625
1583
|
|
1626
1584
|
- func: logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1627
|
-
use_c10_dispatcher: unboxed_only
|
1628
1585
|
supports_named_tensor: True
|
1629
1586
|
variants: function, method
|
1630
1587
|
|
@@ -1660,7 +1617,6 @@
|
|
1660
1617
|
variants: function, method
|
1661
1618
|
|
1662
1619
|
- func: max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1663
|
-
use_c10_dispatcher: unboxed_only
|
1664
1620
|
variants: function, method
|
1665
1621
|
supports_named_tensor: True
|
1666
1622
|
|
@@ -1668,7 +1624,6 @@
|
|
1668
1624
|
supports_named_tensor: True
|
1669
1625
|
|
1670
1626
|
- func: max_values(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1671
|
-
use_c10_dispatcher: unboxed_only
|
1672
1627
|
variants: function, method
|
1673
1628
|
|
1674
1629
|
- func: max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
@@ -1683,28 +1638,22 @@
|
|
1683
1638
|
|
1684
1639
|
# Return: (Tensor output, Tensor indices)
|
1685
1640
|
- func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
1686
|
-
use_c10_dispatcher: unboxed_only
|
1687
1641
|
|
1688
1642
|
- func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor
|
1689
|
-
use_c10_dispatcher: unboxed_only
|
1690
1643
|
|
1691
1644
|
- func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1692
|
-
use_c10_dispatcher: unboxed_only
|
1693
1645
|
|
1694
1646
|
- func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1695
|
-
use_c10_dispatcher: unboxed_only
|
1696
1647
|
requires_tensor: True
|
1697
1648
|
dispatch:
|
1698
1649
|
MkldnnCPU: mkldnn_max_pool2d
|
1699
1650
|
|
1700
1651
|
- func: quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1701
|
-
use_c10_dispatcher: unboxed_only
|
1702
1652
|
requires_tensor: True
|
1703
1653
|
dispatch:
|
1704
1654
|
QuantizedCPU: quantized_max_pool2d
|
1705
1655
|
|
1706
1656
|
- func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor
|
1707
|
-
use_c10_dispatcher: unboxed_only
|
1708
1657
|
|
1709
1658
|
# The CPU and GPU dispatch variants are named weirdly here because otherwise there
|
1710
1659
|
# are namespacing issues in C++
|
@@ -1734,18 +1683,11 @@
|
|
1734
1683
|
- func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
1735
1684
|
variants: function, method
|
1736
1685
|
supports_named_tensor: True
|
1737
|
-
dispatch:
|
1738
|
-
CPU: mean_cpu_gpu
|
1739
|
-
CUDA: mean_cpu_gpu
|
1740
1686
|
|
1741
1687
|
- func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1742
1688
|
supports_named_tensor: True
|
1743
|
-
dispatch:
|
1744
|
-
CPU: mean_out_cpu_gpu
|
1745
|
-
CUDA: mean_out_cpu_gpu
|
1746
1689
|
|
1747
1690
|
- func: median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1748
|
-
use_c10_dispatcher: unboxed_only
|
1749
1691
|
supports_named_tensor: True
|
1750
1692
|
variants: function, method
|
1751
1693
|
|
@@ -1760,7 +1702,6 @@
|
|
1760
1702
|
supports_named_tensor: True
|
1761
1703
|
|
1762
1704
|
- func: min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1763
|
-
use_c10_dispatcher: unboxed_only
|
1764
1705
|
variants: function, method
|
1765
1706
|
supports_named_tensor: True
|
1766
1707
|
|
@@ -1768,7 +1709,6 @@
|
|
1768
1709
|
supports_named_tensor: True
|
1769
1710
|
|
1770
1711
|
- func: min_values(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
1771
|
-
use_c10_dispatcher: unboxed_only
|
1772
1712
|
variants: function, method
|
1773
1713
|
|
1774
1714
|
- func: min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)
|
@@ -1784,13 +1724,10 @@
|
|
1784
1724
|
- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups) -> Tensor
|
1785
1725
|
|
1786
1726
|
- func: mkldnn_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> Tensor
|
1787
|
-
use_c10_dispatcher: unboxed_only
|
1788
1727
|
|
1789
1728
|
- func: mkldnn_convolution_backward_weights(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool bias_defined) -> (Tensor, Tensor)
|
1790
|
-
use_c10_dispatcher: unboxed_only
|
1791
1729
|
|
1792
1730
|
- func: mkldnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1793
|
-
use_c10_dispatcher: unboxed_only
|
1794
1731
|
|
1795
1732
|
- func: miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)
|
1796
1733
|
dispatch:
|
@@ -1805,12 +1742,10 @@
|
|
1805
1742
|
CUDA: miopen_convolution
|
1806
1743
|
|
1807
1744
|
- func: miopen_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1808
|
-
use_c10_dispatcher: unboxed_only
|
1809
1745
|
dispatch:
|
1810
1746
|
CUDA: miopen_convolution_backward_input
|
1811
1747
|
|
1812
1748
|
- func: miopen_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1813
|
-
use_c10_dispatcher: unboxed_only
|
1814
1749
|
dispatch:
|
1815
1750
|
CUDA: miopen_convolution_backward
|
1816
1751
|
|
@@ -1820,7 +1755,6 @@
|
|
1820
1755
|
CUDA: miopen_convolution_backward_bias
|
1821
1756
|
|
1822
1757
|
- func: miopen_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1823
|
-
use_c10_dispatcher: unboxed_only
|
1824
1758
|
dispatch:
|
1825
1759
|
CUDA: miopen_convolution_backward_weight
|
1826
1760
|
|
@@ -1831,17 +1765,14 @@
|
|
1831
1765
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
1832
1766
|
# backwards
|
1833
1767
|
- func: miopen_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1834
|
-
use_c10_dispatcher: unboxed_only
|
1835
1768
|
dispatch:
|
1836
1769
|
CUDA: miopen_convolution_transpose_backward
|
1837
1770
|
|
1838
1771
|
- func: miopen_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1839
|
-
use_c10_dispatcher: unboxed_only
|
1840
1772
|
dispatch:
|
1841
1773
|
CUDA: miopen_convolution_transpose_backward_input
|
1842
1774
|
|
1843
1775
|
- func: miopen_convolution_transpose_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1844
|
-
use_c10_dispatcher: unboxed_only
|
1845
1776
|
dispatch:
|
1846
1777
|
CUDA: miopen_convolution_transpose_backward_weight
|
1847
1778
|
|
@@ -1850,17 +1781,14 @@
|
|
1850
1781
|
CUDA: miopen_depthwise_convolution
|
1851
1782
|
|
1852
1783
|
- func: miopen_depthwise_convolution_backward_input(int[] self_size, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1853
|
-
use_c10_dispatcher: unboxed_only
|
1854
1784
|
dispatch:
|
1855
1785
|
CUDA: miopen_depthwise_convolution_backward_input
|
1856
1786
|
|
1857
1787
|
- func: miopen_depthwise_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1858
|
-
use_c10_dispatcher: unboxed_only
|
1859
1788
|
dispatch:
|
1860
1789
|
CUDA: miopen_depthwise_convolution_backward
|
1861
1790
|
|
1862
1791
|
- func: miopen_depthwise_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
1863
|
-
use_c10_dispatcher: unboxed_only
|
1864
1792
|
dispatch:
|
1865
1793
|
CUDA: miopen_depthwise_convolution_backward_weight
|
1866
1794
|
|
@@ -1894,7 +1822,6 @@
|
|
1894
1822
|
use_c10_dispatcher: full
|
1895
1823
|
|
1896
1824
|
- func: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
|
1897
|
-
use_c10_dispatcher: unboxed_only
|
1898
1825
|
supports_named_tensor: True
|
1899
1826
|
variants: function, method
|
1900
1827
|
|
@@ -1920,7 +1847,6 @@
|
|
1920
1847
|
supports_named_tensor: True
|
1921
1848
|
|
1922
1849
|
- func: mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
1923
|
-
use_c10_dispatcher: unboxed_only
|
1924
1850
|
variants: method
|
1925
1851
|
dispatch:
|
1926
1852
|
CPU: mul_
|
@@ -1945,7 +1871,6 @@
|
|
1945
1871
|
variants: function, method
|
1946
1872
|
|
1947
1873
|
- func: mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
1948
|
-
use_c10_dispatcher: unboxed_only
|
1949
1874
|
variants: method
|
1950
1875
|
|
1951
1876
|
- func: mv(Tensor self, Tensor vec) -> Tensor
|
@@ -1967,7 +1892,6 @@
|
|
1967
1892
|
variants: function, method
|
1968
1893
|
|
1969
1894
|
- func: mvlgamma_(Tensor(a!) self, int p) -> Tensor(a!)
|
1970
|
-
use_c10_dispatcher: unboxed_only
|
1971
1895
|
variants: method
|
1972
1896
|
|
1973
1897
|
- func: narrow_copy(Tensor self, int dim, int start, int length) -> Tensor
|
@@ -1980,7 +1904,6 @@
|
|
1980
1904
|
SparseCUDA: narrow_copy_sparse
|
1981
1905
|
|
1982
1906
|
- func: narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)
|
1983
|
-
use_c10_dispatcher: unboxed_only
|
1984
1907
|
variants: function, method
|
1985
1908
|
device_guard: False
|
1986
1909
|
supports_named_tensor: True
|
@@ -1992,7 +1915,6 @@
|
|
1992
1915
|
MkldnnCPU: mkldnn_batch_norm
|
1993
1916
|
|
1994
1917
|
- func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)
|
1995
|
-
use_c10_dispatcher: unboxed_only
|
1996
1918
|
dispatch:
|
1997
1919
|
CUDA: batch_norm_stats_cuda
|
1998
1920
|
|
@@ -2000,6 +1922,10 @@
|
|
2000
1922
|
dispatch:
|
2001
1923
|
CUDA: batch_norm_elemt_cuda
|
2002
1924
|
|
1925
|
+
- func: batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)
|
1926
|
+
dispatch:
|
1927
|
+
CUDA: batch_norm_elemt_cuda_out
|
1928
|
+
|
2003
1929
|
# for backward compatibility
|
2004
1930
|
- func: batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor)
|
2005
1931
|
dispatch:
|
@@ -2030,19 +1956,16 @@
|
|
2030
1956
|
- func: _nnpack_available() -> bool
|
2031
1957
|
use_c10_dispatcher: full
|
2032
1958
|
|
2033
|
-
- func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int[2] padding) -> Tensor
|
1959
|
+
- func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, int[2] padding, int[2] stride=1) -> Tensor
|
2034
1960
|
variants: function
|
2035
1961
|
|
2036
1962
|
- func: _nnpack_spatial_convolution_backward(Tensor input, Tensor grad_output, Tensor weight, int[2] padding, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
2037
|
-
use_c10_dispatcher: unboxed_only
|
2038
1963
|
variants: function
|
2039
1964
|
|
2040
1965
|
- func: _nnpack_spatial_convolution_backward_input(Tensor input, Tensor grad_output, Tensor weight, int[2] padding) -> Tensor
|
2041
|
-
use_c10_dispatcher: unboxed_only
|
2042
1966
|
variants: function
|
2043
1967
|
|
2044
1968
|
- func: _nnpack_spatial_convolution_backward_weight(Tensor input, int[] weightsize, Tensor grad_output, int[2] padding) -> Tensor
|
2045
|
-
use_c10_dispatcher: unboxed_only
|
2046
1969
|
variants: function
|
2047
1970
|
|
2048
1971
|
- func: ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2052,16 +1975,18 @@
|
|
2052
1975
|
|
2053
1976
|
- func: ones.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2054
1977
|
|
2055
|
-
- func: ones_like(Tensor self) -> Tensor
|
2056
|
-
|
1978
|
+
- func: ones_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1979
|
+
supports_named_tensor: True
|
2057
1980
|
|
2058
|
-
- func: ones_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
1981
|
+
- func: ones_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1982
|
+
supports_named_tensor: True
|
2059
1983
|
|
2060
1984
|
- func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor
|
2061
1985
|
use_c10_dispatcher: full
|
2062
1986
|
|
2063
|
-
- func: cdist(Tensor x1, Tensor x2, float p=2) -> Tensor
|
1987
|
+
- func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor
|
2064
1988
|
use_c10_dispatcher: full
|
1989
|
+
supports_named_tensor: True
|
2065
1990
|
|
2066
1991
|
- func: _cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor
|
2067
1992
|
use_c10_dispatcher: full
|
@@ -2080,7 +2005,6 @@
|
|
2080
2005
|
variants: function
|
2081
2006
|
|
2082
2007
|
- func: permute(Tensor(a) self, int[] dims) -> Tensor(a)
|
2083
|
-
use_c10_dispatcher: unboxed_only
|
2084
2008
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
2085
2009
|
|
2086
2010
|
# Only exposed from C++ -- in Python,
|
@@ -2091,7 +2015,6 @@
|
|
2091
2015
|
# behavior on Windows, for reasons I don't understand
|
2092
2016
|
# (maybe related to capital letter collation somehow...)
|
2093
2017
|
- func: numpy_T(Tensor(a) self) -> Tensor(a)
|
2094
|
-
use_c10_dispatcher: unboxed_only
|
2095
2018
|
variants: method
|
2096
2019
|
|
2097
2020
|
- func: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor
|
@@ -2130,10 +2053,11 @@
|
|
2130
2053
|
|
2131
2054
|
- func: rand.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2132
2055
|
|
2133
|
-
- func: rand_like(Tensor self) -> Tensor
|
2134
|
-
|
2056
|
+
- func: rand_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2057
|
+
supports_named_tensor: True
|
2135
2058
|
|
2136
|
-
- func: rand_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2059
|
+
- func: rand_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2060
|
+
supports_named_tensor: True
|
2137
2061
|
|
2138
2062
|
- func: randint(int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2139
2063
|
|
@@ -2151,15 +2075,13 @@
|
|
2151
2075
|
|
2152
2076
|
- func: randint.low_generator_out(int low, int high, int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2153
2077
|
|
2154
|
-
- func: randint_like(Tensor self, int high) -> Tensor
|
2155
|
-
use_c10_dispatcher: full
|
2078
|
+
- func: randint_like(Tensor self, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2156
2079
|
|
2157
|
-
- func: randint_like.low(Tensor self, int low, int high) -> Tensor
|
2158
|
-
use_c10_dispatcher: full
|
2080
|
+
- func: randint_like.low(Tensor self, int low, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2159
2081
|
|
2160
|
-
- func: randint_like.dtype(Tensor self, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2082
|
+
- func: randint_like.dtype(Tensor self, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2161
2083
|
|
2162
|
-
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2084
|
+
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2163
2085
|
|
2164
2086
|
- func: randn(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2165
2087
|
|
@@ -2175,10 +2097,11 @@
|
|
2175
2097
|
|
2176
2098
|
- func: randn.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2177
2099
|
|
2178
|
-
- func: randn_like(Tensor self) -> Tensor
|
2179
|
-
|
2100
|
+
- func: randn_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2101
|
+
supports_named_tensor: True
|
2180
2102
|
|
2181
|
-
- func: randn_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2103
|
+
- func: randn_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2104
|
+
supports_named_tensor: True
|
2182
2105
|
|
2183
2106
|
- func: randperm(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2184
2107
|
|
@@ -2206,7 +2129,6 @@
|
|
2206
2129
|
variants: function, method
|
2207
2130
|
|
2208
2131
|
- func: reciprocal_(Tensor(a!) self) -> Tensor(a!)
|
2209
|
-
use_c10_dispatcher: unboxed_only
|
2210
2132
|
supports_named_tensor: True
|
2211
2133
|
variants: function, method
|
2212
2134
|
dispatch:
|
@@ -2225,7 +2147,6 @@
|
|
2225
2147
|
variants: function, method
|
2226
2148
|
|
2227
2149
|
- func: neg_(Tensor(a!) self) -> Tensor(a!)
|
2228
|
-
use_c10_dispatcher: unboxed_only
|
2229
2150
|
supports_named_tensor: True
|
2230
2151
|
variants: function, method
|
2231
2152
|
|
@@ -2236,7 +2157,6 @@
|
|
2236
2157
|
CUDA: neg_out
|
2237
2158
|
|
2238
2159
|
- func: repeat(Tensor self, int[] repeats) -> Tensor
|
2239
|
-
use_c10_dispatcher: unboxed_only
|
2240
2160
|
variants: method # This is method-only to match the previous tensor API. In the future we could make this a function too.
|
2241
2161
|
|
2242
2162
|
- func: repeat_interleave.Tensor(Tensor repeats) -> Tensor
|
@@ -2255,13 +2175,11 @@
|
|
2255
2175
|
variants: function, method
|
2256
2176
|
|
2257
2177
|
- func: reshape(Tensor self, int[] shape) -> Tensor
|
2258
|
-
use_c10_dispatcher: unboxed_only
|
2259
2178
|
variants: function, method
|
2260
2179
|
device_guard: False
|
2261
2180
|
supports_named_tensor: True
|
2262
2181
|
|
2263
2182
|
- func: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor
|
2264
|
-
use_c10_dispatcher: unboxed_only
|
2265
2183
|
device_guard: False
|
2266
2184
|
requires_tensor: True
|
2267
2185
|
dispatch:
|
@@ -2278,7 +2196,6 @@
|
|
2278
2196
|
variants: function, method
|
2279
2197
|
|
2280
2198
|
- func: round_(Tensor(a!) self) -> Tensor(a!)
|
2281
|
-
use_c10_dispatcher: unboxed_only
|
2282
2199
|
supports_named_tensor: True
|
2283
2200
|
variants: function, method
|
2284
2201
|
|
@@ -2289,10 +2206,8 @@
|
|
2289
2206
|
CUDA: round_out
|
2290
2207
|
|
2291
2208
|
- func: rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
2292
|
-
use_c10_dispatcher: 'unboxed_only'
|
2293
2209
|
|
2294
2210
|
- func: rrelu_(Tensor(a!) self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)
|
2295
|
-
use_c10_dispatcher: 'unboxed_only'
|
2296
2211
|
|
2297
2212
|
- func: relu(Tensor self) -> Tensor
|
2298
2213
|
use_c10_dispatcher: full
|
@@ -2305,7 +2220,6 @@
|
|
2305
2220
|
supports_named_tensor: True
|
2306
2221
|
|
2307
2222
|
- func: relu_(Tensor(a!) self) -> Tensor(a!)
|
2308
|
-
use_c10_dispatcher: unboxed_only
|
2309
2223
|
supports_named_tensor: True
|
2310
2224
|
variants: function, method
|
2311
2225
|
dispatch:
|
@@ -2322,7 +2236,6 @@
|
|
2322
2236
|
CUDA: prelu_cuda
|
2323
2237
|
|
2324
2238
|
- func: prelu_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor)
|
2325
|
-
use_c10_dispatcher: unboxed_only
|
2326
2239
|
variants: function, method
|
2327
2240
|
dispatch:
|
2328
2241
|
CPU: prelu_backward_cpu
|
@@ -2362,7 +2275,6 @@
|
|
2362
2275
|
variants: function, method
|
2363
2276
|
|
2364
2277
|
- func: rsqrt_(Tensor(a!) self) -> Tensor(a!)
|
2365
|
-
use_c10_dispatcher: unboxed_only
|
2366
2278
|
supports_named_tensor: True
|
2367
2279
|
variants: function, method
|
2368
2280
|
|
@@ -2378,7 +2290,6 @@
|
|
2378
2290
|
supports_named_tensor: True
|
2379
2291
|
|
2380
2292
|
- func: select.int(Tensor(a) self, int dim, int index) -> Tensor(a)
|
2381
|
-
use_c10_dispatcher: unboxed_only
|
2382
2293
|
variants: function, method
|
2383
2294
|
device_guard: False
|
2384
2295
|
supports_named_tensor: True
|
@@ -2387,13 +2298,11 @@
|
|
2387
2298
|
use_c10_dispatcher: full
|
2388
2299
|
|
2389
2300
|
- func: selu_(Tensor(a!) self) -> Tensor(a!)
|
2390
|
-
use_c10_dispatcher: unboxed_only
|
2391
2301
|
|
2392
2302
|
- func: celu(Tensor self, Scalar alpha=1.0) -> Tensor
|
2393
2303
|
use_c10_dispatcher: full
|
2394
2304
|
|
2395
2305
|
- func: celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!)
|
2396
|
-
use_c10_dispatcher: unboxed_only
|
2397
2306
|
|
2398
2307
|
|
2399
2308
|
- func: sigmoid(Tensor self) -> Tensor
|
@@ -2406,19 +2315,15 @@
|
|
2406
2315
|
MkldnnCPU: mkldnn_sigmoid
|
2407
2316
|
|
2408
2317
|
- func: sigmoid_(Tensor(a!) self) -> Tensor(a!)
|
2409
|
-
use_c10_dispatcher: unboxed_only
|
2410
2318
|
supports_named_tensor: True
|
2411
2319
|
variants: function, method
|
2412
2320
|
dispatch:
|
2413
|
-
CPU:
|
2414
|
-
CUDA:
|
2321
|
+
CPU: sigmoid_
|
2322
|
+
CUDA: sigmoid_
|
2415
2323
|
MkldnnCPU: mkldnn_sigmoid_
|
2416
2324
|
|
2417
2325
|
- func: sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2418
2326
|
supports_named_tensor: True
|
2419
|
-
dispatch:
|
2420
|
-
CPU: _sigmoid_out_cpu
|
2421
|
-
CUDA: _sigmoid_out_cuda
|
2422
2327
|
|
2423
2328
|
- func: sin(Tensor self) -> Tensor
|
2424
2329
|
use_c10_dispatcher: full
|
@@ -2426,18 +2331,14 @@
|
|
2426
2331
|
variants: function, method
|
2427
2332
|
|
2428
2333
|
- func: sin_(Tensor(a!) self) -> Tensor(a!)
|
2429
|
-
use_c10_dispatcher: unboxed_only
|
2430
2334
|
supports_named_tensor: True
|
2431
2335
|
variants: function, method
|
2432
|
-
dispatch:
|
2433
|
-
CPU: _sin__cpu
|
2434
|
-
CUDA: _sin__cuda
|
2435
2336
|
|
2436
2337
|
- func: sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2437
2338
|
supports_named_tensor: True
|
2438
2339
|
dispatch:
|
2439
|
-
CPU:
|
2440
|
-
CUDA:
|
2340
|
+
CPU: sin_out
|
2341
|
+
CUDA: sin_out
|
2441
2342
|
|
2442
2343
|
- func: sinh(Tensor self) -> Tensor
|
2443
2344
|
use_c10_dispatcher: full
|
@@ -2445,26 +2346,32 @@
|
|
2445
2346
|
variants: function, method
|
2446
2347
|
|
2447
2348
|
- func: sinh_(Tensor(a!) self) -> Tensor(a!)
|
2448
|
-
use_c10_dispatcher: unboxed_only
|
2449
2349
|
supports_named_tensor: True
|
2450
2350
|
variants: function, method
|
2451
|
-
dispatch:
|
2452
|
-
CPU: _sinh__cpu
|
2453
|
-
CUDA: _sinh__cuda
|
2454
2351
|
|
2455
2352
|
- func: sinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2456
2353
|
supports_named_tensor: True
|
2457
|
-
dispatch:
|
2458
|
-
CPU: _sinh_out_cpu
|
2459
|
-
CUDA: _sinh_out_cuda
|
2460
2354
|
|
2355
|
+
# Returns a copy of this `Variable` that is detached from its autograd graph.
|
2356
|
+
# This method is OK to call if the `Variable` is a view.
|
2357
|
+
#
|
2358
|
+
# NOTE: Previously, if we change the tensor metadata (e.g. sizes / strides /
|
2359
|
+
# storage / storage_offset) of a tensor created from `detach()`, those metadata
|
2360
|
+
# in the original tensor will also be updated. However, the new behavior is that
|
2361
|
+
# those metadata changes to the detached tensor will not update the original tensor
|
2362
|
+
# anymore, and in the `detach()` function we need to set `allow_tensor_metadata_change_`
|
2363
|
+
# to false to make such changes explicitly illegal, in order to prevent users from
|
2364
|
+
# changing metadata of the detached tensor and expecting the original tensor to also
|
2365
|
+
# be updated.
|
2461
2366
|
- func: detach(Tensor self) -> Tensor
|
2462
2367
|
use_c10_dispatcher: full
|
2463
2368
|
supports_named_tensor: True
|
2464
2369
|
variants: function, method
|
2465
2370
|
|
2371
|
+
# Like `detach()`, but modifies this `Variable` in-place. This method may
|
2372
|
+
# only be called on non-view `Variable`s. You can use `is_view()` to check
|
2373
|
+
# this. If this `Variable` is a view, throws an `std::runtime_error()`.
|
2466
2374
|
- func: detach_(Tensor(a!) self) -> Tensor(a!)
|
2467
|
-
use_c10_dispatcher: unboxed_only
|
2468
2375
|
supports_named_tensor: True
|
2469
2376
|
variants: function, method
|
2470
2377
|
|
@@ -2480,13 +2387,11 @@
|
|
2480
2387
|
supports_named_tensor: True
|
2481
2388
|
|
2482
2389
|
- func: slice.Tensor(Tensor(a) self, int dim=0, int start=0, int end=9223372036854775807, int step=1) -> Tensor(a)
|
2483
|
-
use_c10_dispatcher: unboxed_only
|
2484
2390
|
variants: function, method
|
2485
2391
|
device_guard: False
|
2486
2392
|
supports_named_tensor: True
|
2487
2393
|
|
2488
2394
|
- func: slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)
|
2489
|
-
use_c10_dispatcher: unboxed_only
|
2490
2395
|
variants: function, method
|
2491
2396
|
|
2492
2397
|
- func: smm(Tensor self, Tensor mat2) -> Tensor
|
@@ -2494,11 +2399,11 @@
|
|
2494
2399
|
variants: function, method
|
2495
2400
|
|
2496
2401
|
# softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
2497
|
-
- func: softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
2402
|
+
- func: softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
2498
2403
|
variants: function, method
|
2499
2404
|
supports_named_tensor: True
|
2500
2405
|
|
2501
|
-
- func: softmax(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
2406
|
+
- func: softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
2502
2407
|
variants: function, method
|
2503
2408
|
supports_named_tensor: True
|
2504
2409
|
|
@@ -2516,25 +2421,21 @@
|
|
2516
2421
|
CUDA: softmax_backward_cuda
|
2517
2422
|
|
2518
2423
|
- func: split.Tensor(Tensor(a) self, int split_size, int dim=0) -> Tensor(a)[]
|
2519
|
-
use_c10_dispatcher: unboxed_only
|
2520
2424
|
variants: function, method
|
2521
2425
|
device_guard: False
|
2522
2426
|
supports_named_tensor: True
|
2523
2427
|
|
2524
2428
|
- func: split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> Tensor[]
|
2525
|
-
use_c10_dispatcher: unboxed_only
|
2526
2429
|
variants: function, method
|
2527
2430
|
device_guard: False
|
2528
2431
|
supports_named_tensor: True
|
2529
2432
|
|
2530
2433
|
- func: squeeze(Tensor(a) self) -> Tensor(a)
|
2531
|
-
use_c10_dispatcher: unboxed_only
|
2532
2434
|
supports_named_tensor: True
|
2533
2435
|
variants: function, method
|
2534
2436
|
device_guard: False
|
2535
2437
|
|
2536
2438
|
- func: squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)
|
2537
|
-
use_c10_dispatcher: unboxed_only
|
2538
2439
|
supports_named_tensor: True
|
2539
2440
|
variants: function, method
|
2540
2441
|
device_guard: False
|
@@ -2545,12 +2446,10 @@
|
|
2545
2446
|
device_guard: False
|
2546
2447
|
|
2547
2448
|
- func: squeeze_(Tensor(a!) self) -> Tensor(a!)
|
2548
|
-
use_c10_dispatcher: unboxed_only
|
2549
2449
|
variants: method
|
2550
2450
|
device_guard: False
|
2551
2451
|
|
2552
2452
|
- func: squeeze_.dim(Tensor(a!) self, int dim) -> Tensor(a!)
|
2553
|
-
use_c10_dispatcher: unboxed_only
|
2554
2453
|
variants: method
|
2555
2454
|
device_guard: False
|
2556
2455
|
|
@@ -2570,7 +2469,6 @@
|
|
2570
2469
|
SparseCUDA: _sspaddmm_out_cuda
|
2571
2470
|
|
2572
2471
|
- func: stack(Tensor[] tensors, int dim=0) -> Tensor
|
2573
|
-
use_c10_dispatcher: unboxed_only
|
2574
2472
|
|
2575
2473
|
- func: stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
2576
2474
|
|
@@ -2611,7 +2509,6 @@
|
|
2611
2509
|
supports_named_tensor: True
|
2612
2510
|
|
2613
2511
|
- func: sum_to_size(Tensor self, int[] size) -> Tensor
|
2614
|
-
use_c10_dispatcher: unboxed_only
|
2615
2512
|
variants: method
|
2616
2513
|
device_guard: False
|
2617
2514
|
|
@@ -2621,18 +2518,11 @@
|
|
2621
2518
|
variants: function, method
|
2622
2519
|
|
2623
2520
|
- func: sqrt_(Tensor(a!) self) -> Tensor(a!)
|
2624
|
-
use_c10_dispatcher: unboxed_only
|
2625
2521
|
supports_named_tensor: True
|
2626
2522
|
variants: function, method
|
2627
|
-
dispatch:
|
2628
|
-
CPU: _sqrt__cpu
|
2629
|
-
CUDA: _sqrt__cuda
|
2630
2523
|
|
2631
2524
|
- func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2632
2525
|
supports_named_tensor: True
|
2633
|
-
dispatch:
|
2634
|
-
CPU: _sqrt_out_cpu
|
2635
|
-
CUDA: _sqrt_out_cuda
|
2636
2526
|
|
2637
2527
|
- func: std(Tensor self, bool unbiased=True) -> Tensor
|
2638
2528
|
use_c10_dispatcher: full
|
@@ -2640,17 +2530,14 @@
|
|
2640
2530
|
supports_named_tensor: True
|
2641
2531
|
|
2642
2532
|
- func: std.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2643
|
-
use_c10_dispatcher: unboxed_only
|
2644
2533
|
variants: function, method
|
2645
2534
|
supports_named_tensor: True
|
2646
2535
|
|
2647
2536
|
- func: std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
|
2648
|
-
use_c10_dispatcher: unboxed_only
|
2649
2537
|
variants: function
|
2650
2538
|
supports_named_tensor: True
|
2651
2539
|
|
2652
2540
|
- func: std_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2653
|
-
use_c10_dispatcher: unboxed_only
|
2654
2541
|
variants: function
|
2655
2542
|
supports_named_tensor: True
|
2656
2543
|
|
@@ -2688,13 +2575,11 @@
|
|
2688
2575
|
|
2689
2576
|
|
2690
2577
|
- func: t(Tensor(a) self) -> Tensor(a)
|
2691
|
-
use_c10_dispatcher: unboxed_only
|
2692
2578
|
device_guard: False
|
2693
2579
|
variants: function, method
|
2694
2580
|
supports_named_tensor: True
|
2695
2581
|
|
2696
2582
|
- func: t_(Tensor(a!) self) -> Tensor(a!)
|
2697
|
-
use_c10_dispatcher: unboxed_only
|
2698
2583
|
device_guard: False
|
2699
2584
|
variants: method
|
2700
2585
|
|
@@ -2704,7 +2589,6 @@
|
|
2704
2589
|
variants: function, method
|
2705
2590
|
|
2706
2591
|
- func: tan_(Tensor(a!) self) -> Tensor(a!)
|
2707
|
-
use_c10_dispatcher: unboxed_only
|
2708
2592
|
supports_named_tensor: True
|
2709
2593
|
variants: function, method
|
2710
2594
|
dispatch:
|
@@ -2723,7 +2607,6 @@
|
|
2723
2607
|
variants: function, method
|
2724
2608
|
|
2725
2609
|
- func: tanh_(Tensor(a!) self) -> Tensor(a!)
|
2726
|
-
use_c10_dispatcher: unboxed_only
|
2727
2610
|
supports_named_tensor: True
|
2728
2611
|
variants: function, method
|
2729
2612
|
dispatch:
|
@@ -2737,7 +2620,6 @@
|
|
2737
2620
|
CUDA: _tanh_out_cuda
|
2738
2621
|
|
2739
2622
|
- func: tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> Tensor
|
2740
|
-
use_c10_dispatcher: unboxed_only
|
2741
2623
|
variants: function
|
2742
2624
|
|
2743
2625
|
# TODO: namespace threshold in 'nn'
|
@@ -2747,7 +2629,6 @@
|
|
2747
2629
|
supports_named_tensor: True
|
2748
2630
|
|
2749
2631
|
- func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!)
|
2750
|
-
use_c10_dispatcher: unboxed_only
|
2751
2632
|
variants: function
|
2752
2633
|
supports_named_tensor: True
|
2753
2634
|
|
@@ -2759,7 +2640,6 @@
|
|
2759
2640
|
variants: function
|
2760
2641
|
|
2761
2642
|
- func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)
|
2762
|
-
use_c10_dispatcher: unboxed_only
|
2763
2643
|
variants: function, method
|
2764
2644
|
device_guard: False
|
2765
2645
|
supports_named_tensor: True
|
@@ -2777,12 +2657,10 @@
|
|
2777
2657
|
MkldnnCPU: mkldnn_transpose
|
2778
2658
|
|
2779
2659
|
- func: transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)
|
2780
|
-
use_c10_dispatcher: unboxed_only
|
2781
2660
|
variants: method
|
2782
2661
|
device_guard: False
|
2783
2662
|
|
2784
2663
|
- func: _mkldnn_transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)
|
2785
|
-
use_c10_dispatcher: unboxed_only
|
2786
2664
|
device_guard: False
|
2787
2665
|
requires_tensor: True
|
2788
2666
|
dispatch:
|
@@ -2794,14 +2672,12 @@
|
|
2794
2672
|
variants: function
|
2795
2673
|
|
2796
2674
|
- func: flip(Tensor self, int[] dims) -> Tensor
|
2797
|
-
use_c10_dispatcher: unboxed_only
|
2798
2675
|
variants: function, method
|
2799
2676
|
dispatch:
|
2800
2677
|
CPU: flip_cpu
|
2801
2678
|
CUDA: flip_cuda
|
2802
2679
|
|
2803
2680
|
- func: roll(Tensor self, int[1] shifts, int[1] dims=[]) -> Tensor
|
2804
|
-
use_c10_dispatcher: unboxed_only
|
2805
2681
|
variants: function, method
|
2806
2682
|
dispatch:
|
2807
2683
|
CPU: roll_cpu
|
@@ -2810,7 +2686,6 @@
|
|
2810
2686
|
# default int[] value [0,1] should not add space after comma, since native_parse.py uses ', ' to split args
|
2811
2687
|
|
2812
2688
|
- func: rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor
|
2813
|
-
use_c10_dispatcher: unboxed_only
|
2814
2689
|
variants: function, method
|
2815
2690
|
|
2816
2691
|
- func: trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor
|
@@ -2820,7 +2695,6 @@
|
|
2820
2695
|
use_c10_dispatcher: full
|
2821
2696
|
|
2822
2697
|
- func: _trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor
|
2823
|
-
use_c10_dispatcher: unboxed_only
|
2824
2698
|
|
2825
2699
|
- func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor
|
2826
2700
|
use_c10_dispatcher: full
|
@@ -2831,7 +2705,6 @@
|
|
2831
2705
|
variants: function, method
|
2832
2706
|
|
2833
2707
|
- func: trunc_(Tensor(a!) self) -> Tensor(a!)
|
2834
|
-
use_c10_dispatcher: unboxed_only
|
2835
2708
|
supports_named_tensor: True
|
2836
2709
|
variants: function, method
|
2837
2710
|
|
@@ -2850,28 +2723,24 @@
|
|
2850
2723
|
variants: function
|
2851
2724
|
|
2852
2725
|
- func: _unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)
|
2853
|
-
use_c10_dispatcher: unboxed_only
|
2854
2726
|
variants: function
|
2855
2727
|
dispatch:
|
2856
2728
|
CPU: _unique_cpu
|
2857
2729
|
CUDA: _unique_cuda
|
2858
2730
|
|
2859
2731
|
- func: unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2860
|
-
use_c10_dispatcher: unboxed_only
|
2861
2732
|
variants: function
|
2862
2733
|
dispatch:
|
2863
2734
|
CPU: unique_dim_cpu
|
2864
2735
|
CUDA: unique_dim_cuda
|
2865
2736
|
|
2866
2737
|
- func: unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor)
|
2867
|
-
use_c10_dispatcher: unboxed_only
|
2868
2738
|
variants: function
|
2869
2739
|
dispatch:
|
2870
2740
|
CPU: unique_consecutive_cpu
|
2871
2741
|
CUDA: unique_consecutive_cuda
|
2872
2742
|
|
2873
2743
|
- func: unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2874
|
-
use_c10_dispatcher: unboxed_only
|
2875
2744
|
variants: function
|
2876
2745
|
dispatch:
|
2877
2746
|
CPU: unique_dim_consecutive_cpu
|
@@ -2882,22 +2751,18 @@
|
|
2882
2751
|
# Please don't rely on these two operators, they will be removed soon
|
2883
2752
|
|
2884
2753
|
- func: _unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)
|
2885
|
-
use_c10_dispatcher: unboxed_only
|
2886
2754
|
variants: function
|
2887
2755
|
dispatch:
|
2888
2756
|
CPU: _unique2_cpu
|
2889
2757
|
CUDA: _unique2_cuda
|
2890
2758
|
|
2891
2759
|
- func: _unsafe_view(Tensor self, int[] size) -> Tensor
|
2892
|
-
use_c10_dispatcher: unboxed_only
|
2893
2760
|
|
2894
2761
|
- func: unsqueeze(Tensor(a) self, int dim) -> Tensor(a)
|
2895
|
-
use_c10_dispatcher: unboxed_only
|
2896
2762
|
variants: function, method
|
2897
2763
|
device_guard: False
|
2898
2764
|
|
2899
2765
|
- func: unsqueeze_(Tensor(a!) self, int dim) -> Tensor(a!)
|
2900
|
-
use_c10_dispatcher: unboxed_only
|
2901
2766
|
variants: method
|
2902
2767
|
device_guard: False
|
2903
2768
|
|
@@ -2907,7 +2772,6 @@
|
|
2907
2772
|
supports_named_tensor: True
|
2908
2773
|
|
2909
2774
|
- func: var.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor
|
2910
|
-
use_c10_dispatcher: unboxed_only
|
2911
2775
|
variants: function, method
|
2912
2776
|
supports_named_tensor: True
|
2913
2777
|
|
@@ -2922,12 +2786,10 @@
|
|
2922
2786
|
supports_named_tensor: True
|
2923
2787
|
|
2924
2788
|
- func: var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
|
2925
|
-
use_c10_dispatcher: unboxed_only
|
2926
2789
|
variants: function
|
2927
2790
|
supports_named_tensor: True
|
2928
2791
|
|
2929
2792
|
- func: var_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
|
2930
|
-
use_c10_dispatcher: unboxed_only
|
2931
2793
|
variants: function
|
2932
2794
|
supports_named_tensor: True
|
2933
2795
|
|
@@ -2948,7 +2810,6 @@
|
|
2948
2810
|
variants: function, method
|
2949
2811
|
|
2950
2812
|
- func: where(Tensor condition) -> Tensor[]
|
2951
|
-
use_c10_dispatcher: unboxed_only
|
2952
2813
|
variants: function
|
2953
2814
|
|
2954
2815
|
- func: _s_where(Tensor condition, Tensor self, Tensor other) -> Tensor
|
@@ -2959,7 +2820,6 @@
|
|
2959
2820
|
CUDA: _s_where_cuda
|
2960
2821
|
|
2961
2822
|
- func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor
|
2962
|
-
use_c10_dispatcher: unboxed_only
|
2963
2823
|
variants: function
|
2964
2824
|
|
2965
2825
|
# VariableType::_weight_norm does not want to be given a gap in the autograd graph,
|
@@ -2969,19 +2829,16 @@
|
|
2969
2829
|
variants: function
|
2970
2830
|
|
2971
2831
|
- func: _weight_norm_cuda_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor)
|
2972
|
-
use_c10_dispatcher: unboxed_only
|
2973
2832
|
variants: function
|
2974
2833
|
dispatch:
|
2975
2834
|
CUDA: weight_norm_cuda
|
2976
2835
|
|
2977
2836
|
- func: _weight_norm_cuda_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
2978
|
-
use_c10_dispatcher: unboxed_only
|
2979
2837
|
variants: function
|
2980
2838
|
dispatch:
|
2981
2839
|
CUDA: weight_norm_cuda_backward
|
2982
2840
|
|
2983
2841
|
- func: _weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
2984
|
-
use_c10_dispatcher: unboxed_only
|
2985
2842
|
variants: function
|
2986
2843
|
|
2987
2844
|
- func: zeros.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2991,10 +2848,11 @@
|
|
2991
2848
|
|
2992
2849
|
- func: zeros.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2993
2850
|
|
2994
|
-
- func: zeros_like(Tensor self) -> Tensor
|
2995
|
-
|
2851
|
+
- func: zeros_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2852
|
+
supports_named_tensor: True
|
2996
2853
|
|
2997
|
-
- func: zeros_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False) -> Tensor
|
2854
|
+
- func: zeros_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2855
|
+
supports_named_tensor: True
|
2998
2856
|
|
2999
2857
|
- func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor
|
3000
2858
|
use_c10_dispatcher: full
|
@@ -3004,7 +2862,6 @@
|
|
3004
2862
|
CUDA: _standard_gamma_grad_cuda
|
3005
2863
|
|
3006
2864
|
- func: _standard_gamma(Tensor self, Generator? generator=None) -> Tensor
|
3007
|
-
use_c10_dispatcher: 'unboxed_only'
|
3008
2865
|
variants: function
|
3009
2866
|
dispatch:
|
3010
2867
|
CPU: _s_gamma_cpu
|
@@ -3017,14 +2874,12 @@
|
|
3017
2874
|
CUDA: _dirichlet_grad_cuda
|
3018
2875
|
|
3019
2876
|
- func: _sample_dirichlet(Tensor self, Generator? generator=None) -> Tensor
|
3020
|
-
use_c10_dispatcher: 'unboxed_only'
|
3021
2877
|
variants: function
|
3022
2878
|
dispatch:
|
3023
2879
|
CPU: _s_dirichlet_cpu
|
3024
2880
|
CUDA: _s_dirichlet_cuda
|
3025
2881
|
|
3026
2882
|
- func: poisson(Tensor self, Generator? generator=None) -> Tensor
|
3027
|
-
use_c10_dispatcher: 'unboxed_only'
|
3028
2883
|
dispatch:
|
3029
2884
|
CPU: _s_poisson_cpu
|
3030
2885
|
CUDA: _s_poisson_cuda
|
@@ -3045,12 +2900,10 @@
|
|
3045
2900
|
- func: _sparse_sum.dtype(Tensor self, *, ScalarType dtype) -> Tensor
|
3046
2901
|
|
3047
2902
|
- func: _sparse_sum.dim(Tensor self, int[1] dim) -> Tensor
|
3048
|
-
use_c10_dispatcher: unboxed_only
|
3049
2903
|
|
3050
2904
|
- func: _sparse_sum.dim_dtype(Tensor self, int[1] dim, *, ScalarType dtype) -> Tensor
|
3051
2905
|
|
3052
2906
|
- func: _sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor
|
3053
|
-
use_c10_dispatcher: unboxed_only
|
3054
2907
|
dispatch:
|
3055
2908
|
SparseCPU: _sparse_sum_backward_cpu
|
3056
2909
|
SparseCUDA: _sparse_sum_backward_cuda
|
@@ -3066,7 +2919,6 @@
|
|
3066
2919
|
variants: function, method
|
3067
2920
|
|
3068
2921
|
- func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor
|
3069
|
-
use_c10_dispatcher: unboxed_only
|
3070
2922
|
variants: function, method
|
3071
2923
|
|
3072
2924
|
- func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)
|
@@ -3088,7 +2940,6 @@
|
|
3088
2940
|
variants: function
|
3089
2941
|
|
3090
2942
|
- func: frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
3091
|
-
use_c10_dispatcher: unboxed_only
|
3092
2943
|
variants: function
|
3093
2944
|
|
3094
2945
|
- func: frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -3102,14 +2953,12 @@
|
|
3102
2953
|
variants: function
|
3103
2954
|
|
3104
2955
|
- func: nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> Tensor
|
3105
|
-
use_c10_dispatcher: unboxed_only
|
3106
2956
|
variants: function
|
3107
2957
|
|
3108
2958
|
- func: nuclear_norm.dim_out(Tensor self, int[2] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
3109
2959
|
variants: function
|
3110
2960
|
|
3111
|
-
- func: clone(Tensor self) -> Tensor
|
3112
|
-
use_c10_dispatcher: full
|
2961
|
+
- func: clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
3113
2962
|
variants: function, method
|
3114
2963
|
dispatch:
|
3115
2964
|
CPU: clone
|
@@ -3120,8 +2969,7 @@
|
|
3120
2969
|
QuantizedCPU: quantized_clone
|
3121
2970
|
supports_named_tensor: True
|
3122
2971
|
|
3123
|
-
- func: resize_as_(Tensor(a!) self, Tensor the_template) -> Tensor(a!)
|
3124
|
-
use_c10_dispatcher: unboxed_only
|
2972
|
+
- func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
3125
2973
|
supports_named_tensor: True
|
3126
2974
|
variants: function, method
|
3127
2975
|
|
@@ -3144,12 +2992,11 @@
|
|
3144
2992
|
SparseCUDA: pow_sparse_scalar
|
3145
2993
|
|
3146
2994
|
- func: zero_(Tensor(a!) self) -> Tensor(a!)
|
3147
|
-
use_c10_dispatcher: unboxed_only
|
3148
2995
|
supports_named_tensor: True
|
3149
2996
|
variants: method, function
|
3150
2997
|
dispatch:
|
3151
|
-
CPU:
|
3152
|
-
CUDA:
|
2998
|
+
CPU: zero_
|
2999
|
+
CUDA: zero_
|
3153
3000
|
SparseCPU: zero_sparse_
|
3154
3001
|
SparseCUDA: zero_sparse_
|
3155
3002
|
MkldnnCPU: mkldnn_zero_
|
@@ -3173,7 +3020,6 @@
|
|
3173
3020
|
supports_named_tensor: True
|
3174
3021
|
|
3175
3022
|
- func: sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
3176
|
-
use_c10_dispatcher: unboxed_only
|
3177
3023
|
variants: method
|
3178
3024
|
dispatch:
|
3179
3025
|
CPU: sub_
|
@@ -3189,7 +3035,6 @@
|
|
3189
3035
|
supports_named_tensor: True
|
3190
3036
|
|
3191
3037
|
- func: sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
3192
|
-
use_c10_dispatcher: unboxed_only
|
3193
3038
|
variants: method
|
3194
3039
|
supports_named_tensor: True
|
3195
3040
|
|
@@ -3229,7 +3074,6 @@
|
|
3229
3074
|
supports_named_tensor: True
|
3230
3075
|
|
3231
3076
|
- func: addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
3232
|
-
use_c10_dispatcher: unboxed_only
|
3233
3077
|
variants: method
|
3234
3078
|
dispatch:
|
3235
3079
|
CPU: legacy::cpu::_th_addmm_
|
@@ -3380,7 +3224,6 @@
|
|
3380
3224
|
requires_tensor: True
|
3381
3225
|
|
3382
3226
|
- func: sparse_resize_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!)
|
3383
|
-
use_c10_dispatcher: unboxed_only
|
3384
3227
|
variants: method
|
3385
3228
|
dispatch:
|
3386
3229
|
SparseCPU: sparse_resize_
|
@@ -3388,7 +3231,6 @@
|
|
3388
3231
|
requires_tensor: True
|
3389
3232
|
|
3390
3233
|
- func: sparse_resize_and_clear_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!)
|
3391
|
-
use_c10_dispatcher: unboxed_only
|
3392
3234
|
variants: method
|
3393
3235
|
dispatch:
|
3394
3236
|
SparseCPU: sparse_resize_and_clear_
|
@@ -3488,7 +3330,6 @@
|
|
3488
3330
|
|
3489
3331
|
|
3490
3332
|
- func: _indices(Tensor(a) self) -> Tensor(a)
|
3491
|
-
use_c10_dispatcher: unboxed_only
|
3492
3333
|
variants: method
|
3493
3334
|
dispatch:
|
3494
3335
|
SparseCPU: _indices_sparse
|
@@ -3497,7 +3338,6 @@
|
|
3497
3338
|
device_guard: False
|
3498
3339
|
|
3499
3340
|
- func: _values(Tensor(a) self) -> Tensor(a)
|
3500
|
-
use_c10_dispatcher: unboxed_only
|
3501
3341
|
variants: method
|
3502
3342
|
dispatch:
|
3503
3343
|
SparseCPU: _values_sparse
|
@@ -3509,7 +3349,6 @@
|
|
3509
3349
|
# a bit unsafe. Similar to _indices and _values, this is useful for implementing
|
3510
3350
|
# custom sparse operations in Python/C++ extension.
|
3511
3351
|
- func: _coalesced_(Tensor(a!) self, bool coalesced) -> Tensor(a!)
|
3512
|
-
use_c10_dispatcher: unboxed_only
|
3513
3352
|
variants: method
|
3514
3353
|
dispatch:
|
3515
3354
|
SparseCPU: _coalesced_sparse_
|
@@ -3518,7 +3357,6 @@
|
|
3518
3357
|
device_guard: False
|
3519
3358
|
|
3520
3359
|
- func: indices(Tensor(a) self) -> Tensor(a)
|
3521
|
-
use_c10_dispatcher: unboxed_only
|
3522
3360
|
variants: method
|
3523
3361
|
dispatch:
|
3524
3362
|
SparseCPU: indices_sparse
|
@@ -3527,7 +3365,6 @@
|
|
3527
3365
|
device_guard: False
|
3528
3366
|
|
3529
3367
|
- func: values(Tensor(a) self) -> Tensor(a)
|
3530
|
-
use_c10_dispatcher: unboxed_only
|
3531
3368
|
variants: method
|
3532
3369
|
dispatch:
|
3533
3370
|
SparseCPU: values_sparse
|
@@ -3550,21 +3387,13 @@
|
|
3550
3387
|
requires_tensor: True
|
3551
3388
|
|
3552
3389
|
- func: copy_sparse_to_sparse_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
3553
|
-
use_c10_dispatcher: unboxed_only
|
3554
3390
|
variants: function
|
3555
3391
|
dispatch:
|
3556
3392
|
SparseCPU: copy_sparse_
|
3557
3393
|
SparseCUDA: copy_sparse_
|
3558
3394
|
requires_tensor: True
|
3559
3395
|
|
3560
|
-
- func: numel(Tensor self) -> int
|
3561
|
-
use_c10_dispatcher: full
|
3562
|
-
variants: function, method
|
3563
|
-
device_guard: False
|
3564
|
-
supports_named_tensor: True
|
3565
|
-
|
3566
3396
|
- func: unbind.int(Tensor(a) self, int dim=0) -> Tensor(a)[]
|
3567
|
-
use_c10_dispatcher: unboxed_only
|
3568
3397
|
variants: function, method
|
3569
3398
|
supports_named_tensor: True
|
3570
3399
|
|
@@ -3593,7 +3422,6 @@
|
|
3593
3422
|
CPU: dense_to_mkldnn
|
3594
3423
|
|
3595
3424
|
- func: mkldnn_reorder_conv2d_weight(Tensor self, int[2] padding=0, int[2] stride=1, int[2] dilation=1, int groups=1) -> Tensor
|
3596
|
-
use_c10_dispatcher: unboxed_only
|
3597
3425
|
variants: function
|
3598
3426
|
python_module: nn
|
3599
3427
|
dispatch:
|
@@ -3631,13 +3459,11 @@
|
|
3631
3459
|
QuantizedCPU: q_zero_point_quant
|
3632
3460
|
|
3633
3461
|
- func: q_per_channel_scales(Tensor self) -> Tensor
|
3634
|
-
use_c10_dispatcher: unboxed_only
|
3635
3462
|
variants: function, method
|
3636
3463
|
dispatch:
|
3637
3464
|
QuantizedCPU: q_per_channel_scales_quant
|
3638
3465
|
|
3639
3466
|
- func: q_per_channel_zero_points(Tensor self) -> Tensor
|
3640
|
-
use_c10_dispatcher: unboxed_only
|
3641
3467
|
variants: function, method
|
3642
3468
|
dispatch:
|
3643
3469
|
QuantizedCPU: q_per_channel_zero_points_quant
|
@@ -3659,7 +3485,6 @@
|
|
3659
3485
|
CPU: make_per_tensor_quantized_tensor_cpu
|
3660
3486
|
|
3661
3487
|
- func: _make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor
|
3662
|
-
use_c10_dispatcher: unboxed_only
|
3663
3488
|
dispatch:
|
3664
3489
|
CPU: make_per_channel_quantized_tensor_cpu
|
3665
3490
|
|
@@ -3696,31 +3521,28 @@
|
|
3696
3521
|
# to(Device) must not exist because all constructors of Device also works for
|
3697
3522
|
# TensorOptions. Otherwise, an ambiguity error is thrown.
|
3698
3523
|
# See NOTE [ TensorOptions Constructors ].
|
3699
|
-
- func: to.dtype_layout(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, bool non_blocking=False, bool copy=False) -> Tensor
|
3524
|
+
- func: to.dtype_layout(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3700
3525
|
variants: method
|
3701
3526
|
device_guard: False
|
3702
3527
|
supports_named_tensor: True
|
3703
3528
|
|
3704
|
-
- func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False) -> Tensor
|
3529
|
+
- func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3705
3530
|
variants: method
|
3706
3531
|
device_guard: False
|
3707
3532
|
supports_named_tensor: True
|
3708
3533
|
|
3709
|
-
- func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False) -> Tensor
|
3534
|
+
- func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3710
3535
|
variants: method
|
3711
3536
|
device_guard: False
|
3712
3537
|
supports_named_tensor: True
|
3713
3538
|
|
3714
|
-
- func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False) -> Tensor
|
3715
|
-
use_c10_dispatcher: full
|
3539
|
+
- func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
3716
3540
|
variants: method
|
3717
3541
|
device_guard: False
|
3718
3542
|
|
3719
3543
|
- func: meshgrid(Tensor[] tensors) -> Tensor[]
|
3720
|
-
use_c10_dispatcher: unboxed_only
|
3721
3544
|
|
3722
3545
|
- func: cartesian_prod(Tensor[] tensors) -> Tensor
|
3723
|
-
use_c10_dispatcher: unboxed_only
|
3724
3546
|
variants: function
|
3725
3547
|
|
3726
3548
|
- func: combinations(Tensor self, int r=2, bool with_replacement=False) -> Tensor
|
@@ -3774,7 +3596,6 @@
|
|
3774
3596
|
CUDA: _thnn_fused_gru_cell_cuda
|
3775
3597
|
|
3776
3598
|
- func: _thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
|
3777
|
-
use_c10_dispatcher: unboxed_only
|
3778
3599
|
dispatch:
|
3779
3600
|
CUDA: _thnn_fused_gru_cell_backward_cuda
|
3780
3601
|
|
@@ -3782,28 +3603,20 @@
|
|
3782
3603
|
|
3783
3604
|
# RNN cells and layers
|
3784
3605
|
- func: lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor)
|
3785
|
-
use_c10_dispatcher: unboxed_only
|
3786
3606
|
|
3787
3607
|
- func: lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor)
|
3788
|
-
use_c10_dispatcher: unboxed_only
|
3789
3608
|
|
3790
3609
|
- func: gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3791
|
-
use_c10_dispatcher: unboxed_only
|
3792
3610
|
|
3793
3611
|
- func: gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3794
|
-
use_c10_dispatcher: unboxed_only
|
3795
3612
|
|
3796
3613
|
- func: rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3797
|
-
use_c10_dispatcher: unboxed_only
|
3798
3614
|
|
3799
3615
|
- func: rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3800
|
-
use_c10_dispatcher: unboxed_only
|
3801
3616
|
|
3802
3617
|
- func: rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3803
|
-
use_c10_dispatcher: unboxed_only
|
3804
3618
|
|
3805
3619
|
- func: rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3806
|
-
use_c10_dispatcher: unboxed_only
|
3807
3620
|
|
3808
3621
|
- func: lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)
|
3809
3622
|
|
@@ -3816,17 +3629,16 @@
|
|
3816
3629
|
# Quantized RNN layers
|
3817
3630
|
- func: quantized_lstm(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3818
3631
|
|
3632
|
+
- func: quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, ScalarType? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
|
3633
|
+
|
3819
3634
|
# Quantized GRU layers
|
3820
3635
|
|
3821
3636
|
- func: quantized_gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
|
3822
|
-
use_c10_dispatcher: unboxed_only
|
3823
3637
|
|
3824
3638
|
- func: quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
|
3825
|
-
use_c10_dispatcher: unboxed_only
|
3826
3639
|
|
3827
3640
|
# Quantized RNN cells
|
3828
3641
|
- func: quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor)
|
3829
|
-
use_c10_dispatcher: unboxed_only
|
3830
3642
|
|
3831
3643
|
- func: quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor
|
3832
3644
|
use_c10_dispatcher: full
|
@@ -3839,13 +3651,10 @@
|
|
3839
3651
|
|
3840
3652
|
# PackedSequence utilities
|
3841
3653
|
- func: _pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor)
|
3842
|
-
use_c10_dispatcher: unboxed_only
|
3843
3654
|
|
3844
3655
|
- func: _pack_padded_sequence_backward(Tensor grad, int[] input_size, Tensor batch_sizes, bool batch_first) -> Tensor
|
3845
|
-
use_c10_dispatcher: unboxed_only
|
3846
3656
|
|
3847
3657
|
- func: _pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor)
|
3848
|
-
use_c10_dispatcher: unboxed_only
|
3849
3658
|
|
3850
3659
|
# wrappers for legacy TH methods
|
3851
3660
|
|
@@ -3853,8 +3662,8 @@
|
|
3853
3662
|
variants: method
|
3854
3663
|
device_guard: False
|
3855
3664
|
dispatch:
|
3856
|
-
CPU:
|
3857
|
-
CUDA:
|
3665
|
+
CPU: set_
|
3666
|
+
CUDA: set_
|
3858
3667
|
|
3859
3668
|
- func: set_.source_Storage_storage_offset(Tensor(a!) self, Storage source, int storage_offset, int[] size, int[] stride=[]) -> Tensor(a!)
|
3860
3669
|
variants: method
|
@@ -3865,7 +3674,6 @@
|
|
3865
3674
|
QuantizedCPU: set_storage
|
3866
3675
|
|
3867
3676
|
- func: set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!)
|
3868
|
-
use_c10_dispatcher: unboxed_only
|
3869
3677
|
variants: method
|
3870
3678
|
device_guard: False
|
3871
3679
|
dispatch:
|
@@ -3873,11 +3681,10 @@
|
|
3873
3681
|
CUDA: legacy::cuda::_th_set_
|
3874
3682
|
|
3875
3683
|
- func: set_(Tensor(a!) self) -> Tensor(a!)
|
3876
|
-
use_c10_dispatcher: unboxed_only
|
3877
3684
|
variants: method
|
3878
3685
|
dispatch:
|
3879
|
-
CPU:
|
3880
|
-
CUDA:
|
3686
|
+
CPU: set_cpu_
|
3687
|
+
CUDA: set_cuda_
|
3881
3688
|
|
3882
3689
|
- func: set_quantizer_(Tensor(a!) self, ConstQuantizerPtr quantizer) -> Tensor(a!)
|
3883
3690
|
variants: method
|
@@ -3889,11 +3696,10 @@
|
|
3889
3696
|
variants: method
|
3890
3697
|
device_guard: False
|
3891
3698
|
dispatch:
|
3892
|
-
CPU:
|
3893
|
-
CUDA:
|
3699
|
+
CPU: is_set_to
|
3700
|
+
CUDA: is_set_to
|
3894
3701
|
|
3895
3702
|
- func: masked_fill_.Scalar(Tensor(a!) self, Tensor mask, Scalar value) -> Tensor(a!)
|
3896
|
-
use_c10_dispatcher: unboxed_only
|
3897
3703
|
variants: method
|
3898
3704
|
dispatch:
|
3899
3705
|
CPU: masked_fill__cpu
|
@@ -3906,7 +3712,6 @@
|
|
3906
3712
|
supports_named_tensor: True
|
3907
3713
|
|
3908
3714
|
- func: masked_fill_.Tensor(Tensor(a!) self, Tensor mask, Tensor value) -> Tensor(a!)
|
3909
|
-
use_c10_dispatcher: unboxed_only
|
3910
3715
|
variants: method
|
3911
3716
|
dispatch:
|
3912
3717
|
CPU: masked_fill__cpu
|
@@ -3919,7 +3724,6 @@
|
|
3919
3724
|
supports_named_tensor: True
|
3920
3725
|
|
3921
3726
|
- func: masked_scatter_(Tensor(a!) self, Tensor mask, Tensor source) -> Tensor(a!)
|
3922
|
-
use_c10_dispatcher: unboxed_only
|
3923
3727
|
variants: method
|
3924
3728
|
dispatch:
|
3925
3729
|
CPU: masked_scatter__cpu
|
@@ -3930,7 +3734,6 @@
|
|
3930
3734
|
variants: function, method
|
3931
3735
|
|
3932
3736
|
- func: view(Tensor(a) self, int[] size) -> Tensor(a)
|
3933
|
-
use_c10_dispatcher: unboxed_only
|
3934
3737
|
variants: method
|
3935
3738
|
device_guard: False
|
3936
3739
|
dispatch:
|
@@ -3940,17 +3743,15 @@
|
|
3940
3743
|
QuantizedCPU: view
|
3941
3744
|
|
3942
3745
|
- func: put_(Tensor(a!) self, Tensor index, Tensor source, bool accumulate=False) -> Tensor(a!)
|
3943
|
-
use_c10_dispatcher: unboxed_only
|
3944
3746
|
variants: method
|
3945
3747
|
dispatch:
|
3946
3748
|
CPU: legacy::cpu::_th_put_
|
3947
3749
|
CUDA: legacy::cuda::_th_put_
|
3948
3750
|
|
3949
3751
|
- func: index_add_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
3950
|
-
use_c10_dispatcher: unboxed_only
|
3951
3752
|
variants: method
|
3952
3753
|
dispatch:
|
3953
|
-
CPU:
|
3754
|
+
CPU: index_add_cpu_
|
3954
3755
|
CUDA: legacy::cuda::_th_index_add_
|
3955
3756
|
|
3956
3757
|
- func: index_add(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
|
@@ -3960,50 +3761,47 @@
|
|
3960
3761
|
- func: index_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor
|
3961
3762
|
variants: function, method
|
3962
3763
|
|
3963
|
-
- func: index_fill_.
|
3964
|
-
use_c10_dispatcher: unboxed_only
|
3764
|
+
- func: index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
3965
3765
|
variants: method
|
3966
3766
|
supports_named_tensor: True
|
3967
3767
|
dispatch:
|
3968
3768
|
CPU: legacy::cpu::_th_index_fill_
|
3969
3769
|
CUDA: legacy::cuda::_th_index_fill_
|
3970
3770
|
|
3971
|
-
- func: index_fill.
|
3771
|
+
- func: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
3972
3772
|
use_c10_dispatcher: full
|
3973
3773
|
supports_named_tensor: True
|
3974
3774
|
variants: function, method
|
3975
3775
|
|
3976
|
-
- func: index_fill_.
|
3977
|
-
use_c10_dispatcher: unboxed_only
|
3776
|
+
- func: index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!)
|
3978
3777
|
variants: method
|
3979
3778
|
dispatch:
|
3980
|
-
CPU:
|
3981
|
-
CUDA:
|
3779
|
+
CPU: index_fill_
|
3780
|
+
CUDA: index_fill_
|
3982
3781
|
supports_named_tensor: True
|
3983
3782
|
|
3984
|
-
- func: index_fill.
|
3783
|
+
- func: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor
|
3985
3784
|
use_c10_dispatcher: full
|
3986
3785
|
variants: function, method
|
3987
3786
|
supports_named_tensor: True
|
3988
3787
|
|
3989
|
-
- func: index_fill_.
|
3788
|
+
- func: index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!)
|
3990
3789
|
variants: method
|
3991
3790
|
supports_named_tensor: True
|
3992
3791
|
|
3993
|
-
- func: index_fill_.
|
3792
|
+
- func: index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!)
|
3994
3793
|
variants: method
|
3995
3794
|
supports_named_tensor: True
|
3996
3795
|
|
3997
|
-
- func: index_fill.
|
3796
|
+
- func: index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor
|
3998
3797
|
variants: function, method
|
3999
3798
|
supports_named_tensor: True
|
4000
3799
|
|
4001
|
-
- func: index_fill.
|
3800
|
+
- func: index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor
|
4002
3801
|
variants: function, method
|
4003
3802
|
supports_named_tensor: True
|
4004
3803
|
|
4005
3804
|
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
4006
|
-
use_c10_dispatcher: unboxed_only
|
4007
3805
|
variants: method
|
4008
3806
|
dispatch:
|
4009
3807
|
CPU: legacy::cpu::_th_scatter_
|
@@ -4014,7 +3812,6 @@
|
|
4014
3812
|
variants: function, method
|
4015
3813
|
|
4016
3814
|
- func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
4017
|
-
use_c10_dispatcher: unboxed_only
|
4018
3815
|
variants: method
|
4019
3816
|
dispatch:
|
4020
3817
|
CPU: legacy::cpu::_th_scatter_
|
@@ -4031,7 +3828,6 @@
|
|
4031
3828
|
variants: function, method
|
4032
3829
|
|
4033
3830
|
- func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
4034
|
-
use_c10_dispatcher: unboxed_only
|
4035
3831
|
variants: method
|
4036
3832
|
dispatch:
|
4037
3833
|
CPU: legacy::cpu::_th_scatter_add_
|
@@ -4045,51 +3841,39 @@
|
|
4045
3841
|
variants: function, method
|
4046
3842
|
|
4047
3843
|
- func: lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4048
|
-
use_c10_dispatcher: unboxed_only
|
4049
3844
|
variants: method
|
4050
3845
|
|
4051
3846
|
- func: lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4052
|
-
use_c10_dispatcher: unboxed_only
|
4053
3847
|
variants: method
|
4054
3848
|
|
4055
3849
|
- func: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4056
|
-
use_c10_dispatcher: unboxed_only
|
4057
3850
|
variants: method
|
4058
3851
|
|
4059
3852
|
- func: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4060
|
-
use_c10_dispatcher: unboxed_only
|
4061
3853
|
variants: method
|
4062
3854
|
|
4063
3855
|
- func: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4064
|
-
use_c10_dispatcher: unboxed_only
|
4065
3856
|
variants: method
|
4066
3857
|
|
4067
3858
|
- func: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4068
|
-
use_c10_dispatcher: unboxed_only
|
4069
3859
|
variants: method
|
4070
3860
|
|
4071
3861
|
- func: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4072
|
-
use_c10_dispatcher: unboxed_only
|
4073
3862
|
variants: method
|
4074
3863
|
|
4075
3864
|
- func: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4076
|
-
use_c10_dispatcher: unboxed_only
|
4077
3865
|
variants: method
|
4078
3866
|
|
4079
3867
|
- func: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4080
|
-
use_c10_dispatcher: unboxed_only
|
4081
3868
|
variants: method
|
4082
3869
|
|
4083
3870
|
- func: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4084
|
-
use_c10_dispatcher: unboxed_only
|
4085
3871
|
variants: method
|
4086
3872
|
|
4087
3873
|
- func: ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4088
|
-
use_c10_dispatcher: unboxed_only
|
4089
3874
|
variants: method
|
4090
3875
|
|
4091
3876
|
- func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4092
|
-
use_c10_dispatcher: unboxed_only
|
4093
3877
|
variants: method
|
4094
3878
|
|
4095
3879
|
- func: __and__.Scalar(Tensor self, Scalar other) -> Tensor
|
@@ -4107,14 +3891,12 @@
|
|
4107
3891
|
CUDA: legacy::cuda::_th_and
|
4108
3892
|
|
4109
3893
|
- func: __iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4110
|
-
use_c10_dispatcher: unboxed_only
|
4111
3894
|
variants: method
|
4112
3895
|
dispatch:
|
4113
3896
|
CPU: legacy::cpu::_th_iand_
|
4114
3897
|
CUDA: legacy::cuda::_th_iand_
|
4115
3898
|
|
4116
3899
|
- func: __iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4117
|
-
use_c10_dispatcher: unboxed_only
|
4118
3900
|
variants: method
|
4119
3901
|
dispatch:
|
4120
3902
|
CPU: legacy::cpu::_th_iand_
|
@@ -4135,46 +3917,54 @@
|
|
4135
3917
|
CUDA: legacy::cuda::_th_or
|
4136
3918
|
|
4137
3919
|
- func: __ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4138
|
-
use_c10_dispatcher: unboxed_only
|
4139
3920
|
variants: method
|
4140
3921
|
dispatch:
|
4141
3922
|
CPU: legacy::cpu::_th_ior_
|
4142
3923
|
CUDA: legacy::cuda::_th_ior_
|
4143
3924
|
|
4144
3925
|
- func: __ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4145
|
-
use_c10_dispatcher: unboxed_only
|
4146
3926
|
variants: method
|
4147
3927
|
dispatch:
|
4148
3928
|
CPU: legacy::cpu::_th_ior_
|
4149
3929
|
CUDA: legacy::cuda::_th_ior_
|
4150
3930
|
|
3931
|
+
- func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
3932
|
+
variants: function
|
3933
|
+
dispatch:
|
3934
|
+
CPU: bitwise_xor_out
|
3935
|
+
CUDA: bitwise_xor_out
|
3936
|
+
|
3937
|
+
- func: bitwise_xor.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
3938
|
+
variants: function
|
3939
|
+
dispatch:
|
3940
|
+
CPU: bitwise_xor_out
|
3941
|
+
CUDA: bitwise_xor_out
|
3942
|
+
|
3943
|
+
- func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor
|
3944
|
+
variants: method, function
|
3945
|
+
|
3946
|
+
- func: bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor
|
3947
|
+
variants: method, function
|
3948
|
+
|
3949
|
+
- func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3950
|
+
variants: method
|
3951
|
+
|
3952
|
+
- func: bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3953
|
+
variants: method
|
3954
|
+
|
4151
3955
|
- func: __xor__.Scalar(Tensor self, Scalar other) -> Tensor
|
4152
3956
|
use_c10_dispatcher: full
|
4153
3957
|
variants: method, function
|
4154
|
-
dispatch:
|
4155
|
-
CPU: legacy::cpu::_th_xor
|
4156
|
-
CUDA: legacy::cuda::_th_xor
|
4157
3958
|
|
4158
3959
|
- func: __xor__.Tensor(Tensor self, Tensor other) -> Tensor
|
4159
3960
|
use_c10_dispatcher: full
|
4160
3961
|
variants: method, function
|
4161
|
-
dispatch:
|
4162
|
-
CPU: legacy::cpu::_th_xor
|
4163
|
-
CUDA: legacy::cuda::_th_xor
|
4164
3962
|
|
4165
3963
|
- func: __ixor__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4166
|
-
use_c10_dispatcher: unboxed_only
|
4167
3964
|
variants: method
|
4168
|
-
dispatch:
|
4169
|
-
CPU: legacy::cpu::_th_ixor_
|
4170
|
-
CUDA: legacy::cuda::_th_ixor_
|
4171
3965
|
|
4172
3966
|
- func: __ixor__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4173
|
-
use_c10_dispatcher: unboxed_only
|
4174
3967
|
variants: method
|
4175
|
-
dispatch:
|
4176
|
-
CPU: legacy::cpu::_th_ixor_
|
4177
|
-
CUDA: legacy::cuda::_th_ixor_
|
4178
3968
|
|
4179
3969
|
- func: __lshift__.Scalar(Tensor self, Scalar other) -> Tensor
|
4180
3970
|
use_c10_dispatcher: full
|
@@ -4191,14 +3981,12 @@
|
|
4191
3981
|
CUDA: legacy::cuda::_th_lshift
|
4192
3982
|
|
4193
3983
|
- func: __ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4194
|
-
use_c10_dispatcher: unboxed_only
|
4195
3984
|
variants: method
|
4196
3985
|
dispatch:
|
4197
3986
|
CPU: legacy::cpu::_th_ilshift_
|
4198
3987
|
CUDA: legacy::cuda::_th_ilshift_
|
4199
3988
|
|
4200
3989
|
- func: __ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4201
|
-
use_c10_dispatcher: unboxed_only
|
4202
3990
|
variants: method
|
4203
3991
|
dispatch:
|
4204
3992
|
CPU: legacy::cpu::_th_ilshift_
|
@@ -4219,21 +4007,18 @@
|
|
4219
4007
|
CUDA: legacy::cuda::_th_rshift
|
4220
4008
|
|
4221
4009
|
- func: __irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4222
|
-
use_c10_dispatcher: unboxed_only
|
4223
4010
|
variants: method
|
4224
4011
|
dispatch:
|
4225
4012
|
CPU: legacy::cpu::_th_irshift_
|
4226
4013
|
CUDA: legacy::cuda::_th_irshift_
|
4227
4014
|
|
4228
4015
|
- func: __irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4229
|
-
use_c10_dispatcher: unboxed_only
|
4230
4016
|
variants: method
|
4231
4017
|
dispatch:
|
4232
4018
|
CPU: legacy::cpu::_th_irshift_
|
4233
4019
|
CUDA: legacy::cuda::_th_irshift_
|
4234
4020
|
|
4235
4021
|
- func: lgamma_(Tensor(a!) self) -> Tensor(a!)
|
4236
|
-
use_c10_dispatcher: unboxed_only
|
4237
4022
|
supports_named_tensor: True
|
4238
4023
|
variants: method
|
4239
4024
|
dispatch:
|
@@ -4241,43 +4026,36 @@
|
|
4241
4026
|
CUDA: _lgamma__cuda
|
4242
4027
|
|
4243
4028
|
- func: atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4244
|
-
use_c10_dispatcher: unboxed_only
|
4245
4029
|
supports_named_tensor: True
|
4246
4030
|
variants: method
|
4247
4031
|
|
4248
4032
|
- func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
4249
|
-
use_c10_dispatcher: unboxed_only
|
4250
4033
|
variants: method
|
4251
4034
|
dispatch:
|
4252
4035
|
CPU: tril_cpu_
|
4253
4036
|
CUDA: tril_cuda_
|
4254
4037
|
|
4255
4038
|
- func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
4256
|
-
use_c10_dispatcher: unboxed_only
|
4257
4039
|
variants: method
|
4258
4040
|
dispatch:
|
4259
4041
|
CPU: triu_cpu_
|
4260
4042
|
CUDA: triu_cuda_
|
4261
4043
|
|
4262
4044
|
- func: digamma_(Tensor(a!) self) -> Tensor(a!)
|
4263
|
-
use_c10_dispatcher: unboxed_only
|
4264
4045
|
supports_named_tensor: True
|
4265
4046
|
variants: method
|
4266
4047
|
|
4267
4048
|
- func: polygamma_(Tensor(a!) self, int n) -> Tensor(a!)
|
4268
|
-
use_c10_dispatcher: unboxed_only
|
4269
4049
|
supports_named_tensor: True
|
4270
4050
|
variants: method
|
4271
4051
|
|
4272
4052
|
- func: renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!)
|
4273
|
-
use_c10_dispatcher: unboxed_only
|
4274
4053
|
variants: method
|
4275
4054
|
dispatch:
|
4276
4055
|
CPU: legacy::cpu::_th_renorm_
|
4277
4056
|
CUDA: legacy::cuda::_th_renorm_
|
4278
4057
|
|
4279
4058
|
- func: pow_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!)
|
4280
|
-
use_c10_dispatcher: unboxed_only
|
4281
4059
|
supports_named_tensor: True
|
4282
4060
|
variants: method
|
4283
4061
|
dispatch:
|
@@ -4285,7 +4063,6 @@
|
|
4285
4063
|
CUDA: pow_
|
4286
4064
|
|
4287
4065
|
- func: pow_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!)
|
4288
|
-
use_c10_dispatcher: unboxed_only
|
4289
4066
|
supports_named_tensor: True
|
4290
4067
|
variants: method
|
4291
4068
|
dispatch:
|
@@ -4293,49 +4070,42 @@
|
|
4293
4070
|
CUDA: pow_
|
4294
4071
|
|
4295
4072
|
- func: lerp_.Scalar(Tensor(a!) self, Tensor end, Scalar weight) -> Tensor(a!)
|
4296
|
-
use_c10_dispatcher: unboxed_only
|
4297
4073
|
variants: method
|
4298
4074
|
dispatch:
|
4299
4075
|
CPU: lerp_cpu_scalar_
|
4300
4076
|
CUDA: lerp_cuda_scalar_
|
4301
4077
|
|
4302
4078
|
- func: lerp_.Tensor(Tensor(a!) self, Tensor end, Tensor weight) -> Tensor(a!)
|
4303
|
-
use_c10_dispatcher: unboxed_only
|
4304
4079
|
variants: method
|
4305
4080
|
dispatch:
|
4306
4081
|
CPU: lerp_cpu_tensor_
|
4307
4082
|
CUDA: lerp_cuda_tensor_
|
4308
4083
|
|
4309
4084
|
- func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4310
|
-
use_c10_dispatcher: unboxed_only
|
4311
4085
|
variants: method
|
4312
4086
|
dispatch:
|
4313
4087
|
CPU: legacy::cpu::_th_fmod_
|
4314
4088
|
CUDA: legacy::cuda::_th_fmod_
|
4315
4089
|
|
4316
4090
|
- func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4317
|
-
use_c10_dispatcher: unboxed_only
|
4318
4091
|
variants: method
|
4319
4092
|
dispatch:
|
4320
4093
|
CPU: legacy::cpu::_th_fmod_
|
4321
4094
|
CUDA: legacy::cuda::_th_fmod_
|
4322
4095
|
|
4323
4096
|
- func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4324
|
-
use_c10_dispatcher: unboxed_only
|
4325
4097
|
variants: method
|
4326
4098
|
dispatch:
|
4327
4099
|
CPU: legacy::cpu::_th_remainder_
|
4328
4100
|
CUDA: legacy::cuda::_th_remainder_
|
4329
4101
|
|
4330
4102
|
- func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4331
|
-
use_c10_dispatcher: unboxed_only
|
4332
4103
|
variants: method
|
4333
4104
|
dispatch:
|
4334
4105
|
CPU: legacy::cpu::_th_remainder_
|
4335
4106
|
CUDA: legacy::cuda::_th_remainder_
|
4336
4107
|
|
4337
4108
|
- func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
4338
|
-
use_c10_dispatcher: unboxed_only
|
4339
4109
|
variants: method
|
4340
4110
|
dispatch:
|
4341
4111
|
CPU: legacy::cpu::_th_addbmm_
|
@@ -4354,11 +4124,10 @@
|
|
4354
4124
|
CUDA: legacy::cuda::_th_addbmm
|
4355
4125
|
|
4356
4126
|
- func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
4357
|
-
use_c10_dispatcher: unboxed_only
|
4358
4127
|
variants: method
|
4128
|
+
supports_named_tensor: True
|
4359
4129
|
|
4360
4130
|
- func: random_.from(Tensor(a!) self, int from, int to, *, Generator? generator=None) -> Tensor(a!)
|
4361
|
-
use_c10_dispatcher: 'unboxed_only'
|
4362
4131
|
variants: method
|
4363
4132
|
dispatch:
|
4364
4133
|
CPU: legacy::cpu::_th_random_
|
@@ -4366,7 +4135,6 @@
|
|
4366
4135
|
supports_named_tensor: True
|
4367
4136
|
|
4368
4137
|
- func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!)
|
4369
|
-
use_c10_dispatcher: 'unboxed_only'
|
4370
4138
|
variants: method
|
4371
4139
|
dispatch:
|
4372
4140
|
CPU: legacy::cpu::_th_random_
|
@@ -4374,7 +4142,6 @@
|
|
4374
4142
|
supports_named_tensor: True
|
4375
4143
|
|
4376
4144
|
- func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!)
|
4377
|
-
use_c10_dispatcher: 'unboxed_only'
|
4378
4145
|
variants: method
|
4379
4146
|
dispatch:
|
4380
4147
|
CPU: legacy::cpu::_th_random_
|
@@ -4382,7 +4149,6 @@
|
|
4382
4149
|
supports_named_tensor: True
|
4383
4150
|
|
4384
4151
|
- func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)
|
4385
|
-
use_c10_dispatcher: 'unboxed_only'
|
4386
4152
|
variants: method
|
4387
4153
|
dispatch:
|
4388
4154
|
CPU: legacy::cpu::_th_uniform_
|
@@ -4390,7 +4156,6 @@
|
|
4390
4156
|
supports_named_tensor: True
|
4391
4157
|
|
4392
4158
|
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
4393
|
-
use_c10_dispatcher: 'unboxed_only'
|
4394
4159
|
variants: method
|
4395
4160
|
dispatch:
|
4396
4161
|
CPU: legacy::cpu::_th_normal_
|
@@ -4398,7 +4163,6 @@
|
|
4398
4163
|
supports_named_tensor: True
|
4399
4164
|
|
4400
4165
|
- func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)
|
4401
|
-
use_c10_dispatcher: 'unboxed_only'
|
4402
4166
|
variants: method
|
4403
4167
|
dispatch:
|
4404
4168
|
CPU: legacy::cpu::_th_cauchy_
|
@@ -4406,7 +4170,6 @@
|
|
4406
4170
|
supports_named_tensor: True
|
4407
4171
|
|
4408
4172
|
- func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!)
|
4409
|
-
use_c10_dispatcher: 'unboxed_only'
|
4410
4173
|
variants: method
|
4411
4174
|
dispatch:
|
4412
4175
|
CPU: legacy::cpu::_th_log_normal_
|
@@ -4414,7 +4177,6 @@
|
|
4414
4177
|
supports_named_tensor: True
|
4415
4178
|
|
4416
4179
|
- func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)
|
4417
|
-
use_c10_dispatcher: 'unboxed_only'
|
4418
4180
|
variants: method
|
4419
4181
|
dispatch:
|
4420
4182
|
CPU: legacy::cpu::_th_exponential_
|
@@ -4422,7 +4184,6 @@
|
|
4422
4184
|
supports_named_tensor: True
|
4423
4185
|
|
4424
4186
|
- func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)
|
4425
|
-
use_c10_dispatcher: 'unboxed_only'
|
4426
4187
|
variants: method
|
4427
4188
|
dispatch:
|
4428
4189
|
CPU: legacy::cpu::_th_geometric_
|
@@ -4734,7 +4495,6 @@
|
|
4734
4495
|
CUDA: legacy::cuda::_th_nonzero
|
4735
4496
|
|
4736
4497
|
- func: nonzero_numpy(Tensor self) -> Tensor[]
|
4737
|
-
use_c10_dispatcher: unboxed_only
|
4738
4498
|
variants: method, function
|
4739
4499
|
|
4740
4500
|
- func: gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)
|
@@ -4758,20 +4518,24 @@
|
|
4758
4518
|
use_c10_dispatcher: full
|
4759
4519
|
|
4760
4520
|
- func: addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
4521
|
+
supports_named_tensor: True
|
4761
4522
|
|
4762
4523
|
- func: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
4763
4524
|
use_c10_dispatcher: full
|
4764
4525
|
variants: method, function
|
4526
|
+
supports_named_tensor: True
|
4765
4527
|
|
4766
4528
|
- func: addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
4767
|
-
use_c10_dispatcher: unboxed_only
|
4768
4529
|
variants: method
|
4530
|
+
supports_named_tensor: True
|
4769
4531
|
|
4770
4532
|
- func: addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
4533
|
+
supports_named_tensor: True
|
4771
4534
|
|
4772
4535
|
- func: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
4773
4536
|
use_c10_dispatcher: full
|
4774
4537
|
variants: method, function
|
4538
|
+
supports_named_tensor: True
|
4775
4539
|
|
4776
4540
|
- func: lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)
|
4777
4541
|
dispatch:
|
@@ -4779,7 +4543,6 @@
|
|
4779
4543
|
CUDA: legacy::cuda::_th_gels_out
|
4780
4544
|
|
4781
4545
|
- func: lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR)
|
4782
|
-
use_c10_dispatcher: unboxed_only
|
4783
4546
|
variants: method, function
|
4784
4547
|
dispatch:
|
4785
4548
|
CPU: legacy::cpu::_th_gels
|
@@ -4788,11 +4551,9 @@
|
|
4788
4551
|
- func: triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)
|
4789
4552
|
|
4790
4553
|
- func: triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient)
|
4791
|
-
use_c10_dispatcher: unboxed_only
|
4792
4554
|
variants: method, function
|
4793
4555
|
|
4794
4556
|
- func: _triangular_solve_helper(Tensor self, Tensor A, bool upper, bool transpose, bool unitriangular) -> (Tensor, Tensor)
|
4795
|
-
use_c10_dispatcher: unboxed_only
|
4796
4557
|
variants: function
|
4797
4558
|
dispatch:
|
4798
4559
|
CPU: _triangular_solve_helper_cpu
|
@@ -4801,11 +4562,9 @@
|
|
4801
4562
|
- func: symeig.e(Tensor self, bool eigenvectors=False, bool upper=True, *, Tensor(a!) e, Tensor(b!) V) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)
|
4802
4563
|
|
4803
4564
|
- func: symeig(Tensor self, bool eigenvectors=False, bool upper=True) -> (Tensor eigenvalues, Tensor eigenvectors)
|
4804
|
-
use_c10_dispatcher: unboxed_only
|
4805
4565
|
variants: method, function
|
4806
4566
|
|
4807
4567
|
- func: _symeig_helper(Tensor self, bool eigenvectors, bool upper) -> (Tensor, Tensor)
|
4808
|
-
use_c10_dispatcher: unboxed_only
|
4809
4568
|
variants: function
|
4810
4569
|
dispatch:
|
4811
4570
|
CPU: _symeig_helper_cpu
|
@@ -4817,7 +4576,6 @@
|
|
4817
4576
|
CUDA: legacy::cuda::_th_eig_out
|
4818
4577
|
|
4819
4578
|
- func: eig(Tensor self, bool eigenvectors=False) -> (Tensor eigenvalues, Tensor eigenvectors)
|
4820
|
-
use_c10_dispatcher: unboxed_only
|
4821
4579
|
variants: method, function
|
4822
4580
|
dispatch:
|
4823
4581
|
CPU: legacy::cpu::_th_eig
|
@@ -4826,11 +4584,9 @@
|
|
4826
4584
|
- func: svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V)
|
4827
4585
|
|
4828
4586
|
- func: svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V)
|
4829
|
-
use_c10_dispatcher: unboxed_only
|
4830
4587
|
variants: method, function
|
4831
4588
|
|
4832
4589
|
- func: _svd_helper(Tensor self, bool some, bool compute_uv) -> (Tensor, Tensor, Tensor)
|
4833
|
-
use_c10_dispatcher: unboxed_only
|
4834
4590
|
variants: function
|
4835
4591
|
dispatch:
|
4836
4592
|
CPU: _svd_helper_cpu
|
@@ -4863,13 +4619,11 @@
|
|
4863
4619
|
CUDA: _cholesky_solve_helper_cuda
|
4864
4620
|
|
4865
4621
|
- func: solve(Tensor self, Tensor A) -> (Tensor solution, Tensor LU)
|
4866
|
-
use_c10_dispatcher: unboxed_only
|
4867
4622
|
variants: function, method
|
4868
4623
|
|
4869
4624
|
- func: solve.solution(Tensor self, Tensor A, *, Tensor(a!) solution, Tensor(b!) lu) -> (Tensor(a!) solution, Tensor(b!) LU)
|
4870
4625
|
|
4871
4626
|
- func: _solve_helper(Tensor self, Tensor A) -> (Tensor, Tensor)
|
4872
|
-
use_c10_dispatcher: unboxed_only
|
4873
4627
|
variants: function
|
4874
4628
|
dispatch:
|
4875
4629
|
CPU: _solve_helper_cpu
|
@@ -4890,11 +4644,9 @@
|
|
4890
4644
|
- func: qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)
|
4891
4645
|
|
4892
4646
|
- func: qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R)
|
4893
|
-
use_c10_dispatcher: unboxed_only
|
4894
4647
|
variants: method, function
|
4895
4648
|
|
4896
4649
|
- func: _qr_helper(Tensor self, bool some) -> (Tensor, Tensor)
|
4897
|
-
use_c10_dispatcher: unboxed_only
|
4898
4650
|
variants: function
|
4899
4651
|
dispatch:
|
4900
4652
|
CPU: _qr_helper_cpu
|
@@ -4906,7 +4658,6 @@
|
|
4906
4658
|
CUDA: legacy::cuda::_th_geqrf_out
|
4907
4659
|
|
4908
4660
|
- func: geqrf(Tensor self) -> (Tensor a, Tensor tau)
|
4909
|
-
use_c10_dispatcher: unboxed_only
|
4910
4661
|
variants: method, function
|
4911
4662
|
dispatch:
|
4912
4663
|
CPU: legacy::cpu::_th_geqrf
|
@@ -4933,7 +4684,6 @@
|
|
4933
4684
|
CPU: legacy::cpu::_th_ormqr
|
4934
4685
|
|
4935
4686
|
- func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor, Tensor, Tensor)
|
4936
|
-
use_c10_dispatcher: unboxed_only
|
4937
4687
|
variants: function
|
4938
4688
|
dispatch:
|
4939
4689
|
CPU: _lu_with_info_cpu
|
@@ -4959,21 +4709,18 @@
|
|
4959
4709
|
CUDA: multinomial_out
|
4960
4710
|
|
4961
4711
|
- func: multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor
|
4962
|
-
use_c10_dispatcher: 'unboxed_only'
|
4963
4712
|
variants: method, function
|
4964
4713
|
dispatch:
|
4965
4714
|
CPU: multinomial
|
4966
4715
|
CUDA: multinomial
|
4967
4716
|
|
4968
4717
|
- func: _multinomial_alias_setup(Tensor probs) -> (Tensor, Tensor)
|
4969
|
-
use_c10_dispatcher: unboxed_only
|
4970
4718
|
variants: function
|
4971
4719
|
dispatch:
|
4972
4720
|
CPU: legacy::cpu::_th_multinomial_alias_setup
|
4973
4721
|
CUDA: legacy::cuda::_th_multinomial_alias_setup
|
4974
4722
|
|
4975
4723
|
- func: _multinomial_alias_draw(Tensor J, Tensor q, int num_samples, *, Generator? generator=None) -> Tensor
|
4976
|
-
use_c10_dispatcher: 'unboxed_only'
|
4977
4724
|
variants: function
|
4978
4725
|
dispatch:
|
4979
4726
|
CPU: legacy::cpu::_th_multinomial_alias_draw
|
@@ -5018,7 +4765,6 @@
|
|
5018
4765
|
CUDA: erfinv
|
5019
4766
|
|
5020
4767
|
- func: erfinv_(Tensor(a!) self) -> Tensor(a!)
|
5021
|
-
use_c10_dispatcher: unboxed_only
|
5022
4768
|
supports_named_tensor: True
|
5023
4769
|
variants: method
|
5024
4770
|
dispatch:
|
@@ -5032,12 +4778,10 @@
|
|
5032
4778
|
CUDA: _erfinv_out_cuda
|
5033
4779
|
|
5034
4780
|
- func: sign(Tensor self) -> Tensor
|
5035
|
-
use_c10_dispatcher: unboxed_only
|
5036
4781
|
variants: function, method
|
5037
4782
|
supports_named_tensor: True
|
5038
4783
|
|
5039
4784
|
- func: sign_(Tensor(a!) self) -> Tensor(a!)
|
5040
|
-
use_c10_dispatcher: unboxed_only
|
5041
4785
|
variants: method
|
5042
4786
|
supports_named_tensor: True
|
5043
4787
|
|
@@ -5202,7 +4946,6 @@
|
|
5202
4946
|
CUDA: legacy::cuda::_th_sort_out
|
5203
4947
|
|
5204
4948
|
- func: sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)
|
5205
|
-
use_c10_dispatcher: unboxed_only
|
5206
4949
|
variants: method, function
|
5207
4950
|
dispatch:
|
5208
4951
|
CPU: legacy::cpu::_th_sort
|
@@ -5227,7 +4970,6 @@
|
|
5227
4970
|
CUDA: legacy::cuda::_th_topk_out
|
5228
4971
|
|
5229
4972
|
- func: topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)
|
5230
|
-
use_c10_dispatcher: unboxed_only
|
5231
4973
|
variants: method, function
|
5232
4974
|
dispatch:
|
5233
4975
|
CPU: topk
|
@@ -5257,11 +4999,11 @@
|
|
5257
4999
|
CUDA: legacy::cuda::_th_renorm
|
5258
5000
|
|
5259
5001
|
- func: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a)
|
5260
|
-
use_c10_dispatcher: unboxed_only
|
5261
5002
|
variants: method
|
5003
|
+
device_guard: False
|
5262
5004
|
dispatch:
|
5263
|
-
CPU:
|
5264
|
-
CUDA:
|
5005
|
+
CPU: unfold
|
5006
|
+
CUDA: unfold
|
5265
5007
|
|
5266
5008
|
- func: equal(Tensor self, Tensor other) -> bool
|
5267
5009
|
use_c10_dispatcher: full
|
@@ -5270,6 +5012,7 @@
|
|
5270
5012
|
CPU: legacy::cpu::_th_equal
|
5271
5013
|
CUDA: legacy::cuda::_th_equal
|
5272
5014
|
QuantizedCPU: quantized_equal
|
5015
|
+
supports_named_tensor: True
|
5273
5016
|
|
5274
5017
|
- func: pow.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)
|
5275
5018
|
supports_named_tensor: True
|
@@ -5304,7 +5047,6 @@
|
|
5304
5047
|
CUDA: normal_out_cuda
|
5305
5048
|
|
5306
5049
|
- func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor
|
5307
|
-
use_c10_dispatcher: 'unboxed_only'
|
5308
5050
|
dispatch:
|
5309
5051
|
CPU: legacy::cpu::_th_normal
|
5310
5052
|
CUDA: normal_cuda
|
@@ -5315,7 +5057,6 @@
|
|
5315
5057
|
CUDA: normal_out_cuda
|
5316
5058
|
|
5317
5059
|
- func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5318
|
-
use_c10_dispatcher: 'unboxed_only'
|
5319
5060
|
dispatch:
|
5320
5061
|
CPU: legacy::cpu::_th_normal
|
5321
5062
|
CUDA: normal_cuda
|
@@ -5326,7 +5067,6 @@
|
|
5326
5067
|
CUDA: normal_out_cuda
|
5327
5068
|
|
5328
5069
|
- func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5329
|
-
use_c10_dispatcher: 'unboxed_only'
|
5330
5070
|
dispatch:
|
5331
5071
|
CPU: legacy::cpu::_th_normal
|
5332
5072
|
CUDA: normal_cuda
|
@@ -5336,7 +5076,6 @@
|
|
5336
5076
|
- func: normal.float_float_out(float mean, float std, int[] size, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5337
5077
|
|
5338
5078
|
- func: alias(Tensor(a) self) -> Tensor(a)
|
5339
|
-
use_c10_dispatcher: unboxed_only
|
5340
5079
|
variants: method, function
|
5341
5080
|
supports_named_tensor: True
|
5342
5081
|
|
@@ -5347,7 +5086,6 @@
|
|
5347
5086
|
CUDA: legacy::cuda::_th_addr
|
5348
5087
|
|
5349
5088
|
- func: _addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
5350
|
-
use_c10_dispatcher: unboxed_only
|
5351
5089
|
dispatch:
|
5352
5090
|
CPU: legacy::cpu::_th_addr_
|
5353
5091
|
CUDA: legacy::cuda::_th_addr_
|
@@ -5358,7 +5096,6 @@
|
|
5358
5096
|
CUDA: legacy::cuda::_th_addr_out
|
5359
5097
|
|
5360
5098
|
- func: _index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
5361
|
-
use_c10_dispatcher: unboxed_only
|
5362
5099
|
dispatch:
|
5363
5100
|
CPU: legacy::cpu::_th_index_copy_
|
5364
5101
|
CUDA: legacy::cuda::_th_index_copy_
|
@@ -5400,7 +5137,6 @@
|
|
5400
5137
|
supports_named_tensor: True
|
5401
5138
|
|
5402
5139
|
- func: _cat(Tensor[] tensors, int dim=0) -> Tensor
|
5403
|
-
use_c10_dispatcher: unboxed_only
|
5404
5140
|
dispatch:
|
5405
5141
|
CPU: legacy::cpu::_th_cat
|
5406
5142
|
CUDA: legacy::cuda::_th_cat
|
@@ -5411,7 +5147,6 @@
|
|
5411
5147
|
CUDA: legacy::cuda::_th_cat_out
|
5412
5148
|
|
5413
5149
|
- func: _mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor, Tensor)
|
5414
|
-
use_c10_dispatcher: unboxed_only
|
5415
5150
|
dispatch:
|
5416
5151
|
CPU: legacy::cpu::_th_mode
|
5417
5152
|
CUDA: legacy::cuda::_th_mode
|
@@ -5422,7 +5157,6 @@
|
|
5422
5157
|
CUDA: legacy::cuda::_th_mode_out
|
5423
5158
|
|
5424
5159
|
- func: _max(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
|
5425
|
-
use_c10_dispatcher: unboxed_only
|
5426
5160
|
dispatch:
|
5427
5161
|
CPU: legacy::cpu::_th_max
|
5428
5162
|
CUDA: legacy::cuda::_th_max
|
@@ -5433,7 +5167,6 @@
|
|
5433
5167
|
CUDA: legacy::cuda::_th_max_out
|
5434
5168
|
|
5435
5169
|
- func: _min(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
|
5436
|
-
use_c10_dispatcher: unboxed_only
|
5437
5170
|
dispatch:
|
5438
5171
|
CPU: legacy::cpu::_th_min
|
5439
5172
|
CUDA: legacy::cuda::_th_min
|
@@ -5471,78 +5204,63 @@
|
|
5471
5204
|
|
5472
5205
|
- func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5473
5206
|
python_module: nn
|
5474
|
-
dispatch:
|
5475
|
-
CPU: legacy::cpu::_thnn_mse_loss_forward_out
|
5476
|
-
CUDA: legacy::cuda::_thnn_mse_loss_forward_out
|
5477
5207
|
|
5478
5208
|
- func: mse_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5479
5209
|
use_c10_dispatcher: full
|
5480
5210
|
python_module: nn
|
5481
|
-
dispatch:
|
5482
|
-
CPU: legacy::cpu::_thnn_mse_loss_forward
|
5483
|
-
CUDA: legacy::cuda::_thnn_mse_loss_forward
|
5484
5211
|
|
5485
5212
|
- func: mse_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5486
5213
|
python_module: nn
|
5487
5214
|
dispatch:
|
5488
|
-
CPU:
|
5489
|
-
CUDA:
|
5215
|
+
CPU: mse_loss_backward_out
|
5216
|
+
CUDA: mse_loss_backward_out
|
5490
5217
|
|
5491
5218
|
- func: mse_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5492
5219
|
use_c10_dispatcher: full
|
5493
5220
|
python_module: nn
|
5494
5221
|
dispatch:
|
5495
|
-
CPU:
|
5496
|
-
CUDA:
|
5222
|
+
CPU: mse_loss_backward
|
5223
|
+
CUDA: mse_loss_backward
|
5497
5224
|
|
5498
5225
|
- func: l1_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5499
5226
|
python_module: nn
|
5500
|
-
dispatch:
|
5501
|
-
CPU: legacy::cpu::_thnn_l1_loss_forward_out
|
5502
|
-
CUDA: legacy::cuda::_thnn_l1_loss_forward_out
|
5503
5227
|
|
5504
5228
|
- func: l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5505
5229
|
use_c10_dispatcher: full
|
5506
5230
|
python_module: nn
|
5507
|
-
dispatch:
|
5508
|
-
CPU: legacy::cpu::_thnn_l1_loss_forward
|
5509
|
-
CUDA: legacy::cuda::_thnn_l1_loss_forward
|
5510
5231
|
|
5511
5232
|
- func: l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5512
5233
|
python_module: nn
|
5513
5234
|
dispatch:
|
5514
|
-
CPU:
|
5515
|
-
CUDA:
|
5235
|
+
CPU: l1_loss_backward_out
|
5236
|
+
CUDA: l1_loss_backward_out
|
5516
5237
|
|
5517
5238
|
- func: l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5518
5239
|
use_c10_dispatcher: full
|
5519
5240
|
python_module: nn
|
5520
|
-
dispatch:
|
5521
|
-
CPU: legacy::cpu::_thnn_l1_loss_backward
|
5522
|
-
CUDA: legacy::cuda::_thnn_l1_loss_backward
|
5523
5241
|
|
5524
5242
|
- func: multi_margin_loss.out(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5525
5243
|
python_module: nn
|
5526
5244
|
dispatch:
|
5527
|
-
CPU:
|
5245
|
+
CPU: multi_margin_loss_cpu_out
|
5528
5246
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_forward_out
|
5529
5247
|
|
5530
5248
|
- func: multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5531
5249
|
python_module: nn
|
5532
5250
|
dispatch:
|
5533
|
-
CPU:
|
5251
|
+
CPU: multi_margin_loss_cpu
|
5534
5252
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_forward
|
5535
5253
|
|
5536
5254
|
- func: multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5537
5255
|
python_module: nn
|
5538
5256
|
dispatch:
|
5539
|
-
CPU:
|
5257
|
+
CPU: multi_margin_loss_cpu_backward_out
|
5540
5258
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_backward_out
|
5541
5259
|
|
5542
5260
|
- func: multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5543
5261
|
python_module: nn
|
5544
5262
|
dispatch:
|
5545
|
-
CPU:
|
5263
|
+
CPU: multi_margin_loss_cpu_backward
|
5546
5264
|
CUDA: legacy::cuda::_thnn_multi_margin_loss_backward
|
5547
5265
|
|
5548
5266
|
- func: multilabel_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5555,27 +5273,26 @@
|
|
5555
5273
|
- func: multilabel_margin_loss_forward.output(Tensor self, Tensor target, int reduction, *, Tensor(a!) output, Tensor(b!) is_target) -> (Tensor(a!), Tensor(b!))
|
5556
5274
|
python_module: nn
|
5557
5275
|
dispatch:
|
5558
|
-
CPU:
|
5276
|
+
CPU: multilabel_margin_loss_forward_out_cpu
|
5559
5277
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward_out
|
5560
5278
|
|
5561
5279
|
- func: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target)
|
5562
|
-
use_c10_dispatcher: unboxed_only
|
5563
5280
|
python_module: nn
|
5564
5281
|
dispatch:
|
5565
|
-
CPU:
|
5282
|
+
CPU: multilabel_margin_loss_forward_cpu
|
5566
5283
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_forward
|
5567
5284
|
|
5568
5285
|
- func: multilabel_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5569
5286
|
python_module: nn
|
5570
5287
|
dispatch:
|
5571
|
-
CPU:
|
5288
|
+
CPU: multilabel_margin_loss_backward_cpu_out
|
5572
5289
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_backward_out
|
5573
5290
|
|
5574
5291
|
- func: multilabel_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target) -> Tensor
|
5575
5292
|
use_c10_dispatcher: full
|
5576
5293
|
python_module: nn
|
5577
5294
|
dispatch:
|
5578
|
-
CPU:
|
5295
|
+
CPU: multilabel_margin_loss_backward_cpu
|
5579
5296
|
CUDA: legacy::cuda::_thnn_multilabel_margin_loss_backward
|
5580
5297
|
|
5581
5298
|
- func: nll_loss.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5587,25 +5304,25 @@
|
|
5587
5304
|
- func: nll_loss_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))
|
5588
5305
|
python_module: nn
|
5589
5306
|
dispatch:
|
5590
|
-
CPU:
|
5307
|
+
CPU: nll_loss_forward_out_cpu
|
5591
5308
|
CUDA: legacy::cuda::_thnn_nll_loss_forward_out
|
5592
5309
|
|
5593
5310
|
- func: nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)
|
5594
5311
|
python_module: nn
|
5595
5312
|
dispatch:
|
5596
|
-
CPU:
|
5313
|
+
CPU: nll_loss_forward_cpu
|
5597
5314
|
CUDA: legacy::cuda::_thnn_nll_loss_forward
|
5598
5315
|
|
5599
5316
|
- func: nll_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5600
5317
|
python_module: nn
|
5601
5318
|
dispatch:
|
5602
|
-
CPU:
|
5319
|
+
CPU: nll_loss_backward_out_cpu
|
5603
5320
|
CUDA: legacy::cuda::_thnn_nll_loss_backward_out
|
5604
5321
|
|
5605
5322
|
- func: nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor
|
5606
5323
|
python_module: nn
|
5607
5324
|
dispatch:
|
5608
|
-
CPU:
|
5325
|
+
CPU: nll_loss_backward_cpu
|
5609
5326
|
CUDA: legacy::cuda::_thnn_nll_loss_backward
|
5610
5327
|
|
5611
5328
|
- func: nll_loss2d.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -5617,52 +5334,46 @@
|
|
5617
5334
|
- func: nll_loss2d_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))
|
5618
5335
|
python_module: nn
|
5619
5336
|
dispatch:
|
5620
|
-
CPU:
|
5337
|
+
CPU: nll_loss2d_forward_out_cpu
|
5621
5338
|
CUDA: legacy::cuda::_thnn_nll_loss2d_forward_out
|
5622
5339
|
|
5623
5340
|
- func: nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)
|
5624
5341
|
python_module: nn
|
5625
5342
|
dispatch:
|
5626
|
-
CPU:
|
5343
|
+
CPU: nll_loss2d_forward_cpu
|
5627
5344
|
CUDA: legacy::cuda::_thnn_nll_loss2d_forward
|
5628
5345
|
|
5629
5346
|
- func: nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5630
5347
|
python_module: nn
|
5631
5348
|
dispatch:
|
5632
|
-
CPU:
|
5349
|
+
CPU: nll_loss2d_backward_out_cpu
|
5633
5350
|
CUDA: legacy::cuda::_thnn_nll_loss2d_backward_out
|
5634
5351
|
|
5635
5352
|
- func: nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor
|
5636
5353
|
python_module: nn
|
5637
5354
|
dispatch:
|
5638
|
-
CPU:
|
5355
|
+
CPU: nll_loss2d_backward_cpu
|
5639
5356
|
CUDA: legacy::cuda::_thnn_nll_loss2d_backward
|
5640
5357
|
|
5641
5358
|
- func: smooth_l1_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5642
5359
|
python_module: nn
|
5643
5360
|
dispatch:
|
5644
|
-
CPU:
|
5645
|
-
CUDA:
|
5361
|
+
CPU: smooth_l1_loss_out
|
5362
|
+
CUDA: smooth_l1_loss_out
|
5646
5363
|
|
5647
5364
|
- func: smooth_l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5648
5365
|
use_c10_dispatcher: full
|
5649
5366
|
python_module: nn
|
5650
|
-
dispatch:
|
5651
|
-
CPU: legacy::cpu::_thnn_smooth_l1_loss_forward
|
5652
|
-
CUDA: legacy::cuda::_thnn_smooth_l1_loss_forward
|
5653
5367
|
|
5654
5368
|
- func: smooth_l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5655
5369
|
python_module: nn
|
5656
5370
|
dispatch:
|
5657
|
-
CPU:
|
5658
|
-
CUDA:
|
5371
|
+
CPU: smooth_l1_loss_backward_out
|
5372
|
+
CUDA: smooth_l1_loss_backward_out
|
5659
5373
|
|
5660
5374
|
- func: smooth_l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5661
5375
|
use_c10_dispatcher: full
|
5662
5376
|
python_module: nn
|
5663
|
-
dispatch:
|
5664
|
-
CPU: legacy::cpu::_thnn_smooth_l1_loss_backward
|
5665
|
-
CUDA: legacy::cuda::_thnn_smooth_l1_loss_backward
|
5666
5377
|
|
5667
5378
|
- func: soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5668
5379
|
python_module: nn
|
@@ -5717,7 +5428,6 @@
|
|
5717
5428
|
CUDA: legacy::cuda::_thnn_elu_backward
|
5718
5429
|
|
5719
5430
|
- func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)
|
5720
|
-
use_c10_dispatcher: unboxed_only
|
5721
5431
|
python_module: nn
|
5722
5432
|
dispatch:
|
5723
5433
|
CPU: legacy::cpu::_thnn_elu_forward_
|
@@ -5776,7 +5486,6 @@
|
|
5776
5486
|
CUDA: legacy::cuda::_thnn_hardtanh_backward
|
5777
5487
|
|
5778
5488
|
- func: hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!)
|
5779
|
-
use_c10_dispatcher: unboxed_only
|
5780
5489
|
python_module: nn
|
5781
5490
|
dispatch:
|
5782
5491
|
CPU: legacy::cpu::_thnn_hardtanh_forward_
|
@@ -5809,7 +5518,6 @@
|
|
5809
5518
|
CUDA: legacy::cuda::_thnn_leaky_relu_backward
|
5810
5519
|
|
5811
5520
|
- func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!)
|
5812
|
-
use_c10_dispatcher: unboxed_only
|
5813
5521
|
python_module: nn
|
5814
5522
|
dispatch:
|
5815
5523
|
CPU: legacy::cpu::_thnn_leaky_relu_forward_
|
@@ -5829,7 +5537,6 @@
|
|
5829
5537
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward_out
|
5830
5538
|
|
5831
5539
|
- func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)
|
5832
|
-
use_c10_dispatcher: unboxed_only
|
5833
5540
|
python_module: nn
|
5834
5541
|
dispatch:
|
5835
5542
|
CPU: legacy::cpu::_thnn_log_sigmoid_forward
|
@@ -5855,7 +5562,6 @@
|
|
5855
5562
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_out
|
5856
5563
|
|
5857
5564
|
- func: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
5858
|
-
use_c10_dispatcher: 'unboxed_only'
|
5859
5565
|
python_module: nn
|
5860
5566
|
dispatch:
|
5861
5567
|
CPU: legacy::cpu::_thnn_rrelu_with_noise_forward
|
@@ -5875,7 +5581,6 @@
|
|
5875
5581
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_backward
|
5876
5582
|
|
5877
5583
|
- func: rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)
|
5878
|
-
use_c10_dispatcher: 'unboxed_only'
|
5879
5584
|
python_module: nn
|
5880
5585
|
dispatch:
|
5881
5586
|
CPU: legacy::cpu::_thnn_rrelu_with_noise_forward_
|
@@ -5941,17 +5646,14 @@
|
|
5941
5646
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d_out
|
5942
5647
|
|
5943
5648
|
- func: adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5944
|
-
use_c10_dispatcher: unboxed_only
|
5945
5649
|
python_module: nn
|
5946
5650
|
|
5947
5651
|
- func: mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5948
|
-
use_c10_dispatcher: unboxed_only
|
5949
5652
|
dispatch:
|
5950
5653
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d
|
5951
5654
|
requires_tensor: True
|
5952
5655
|
|
5953
5656
|
- func: _adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
5954
|
-
use_c10_dispatcher: unboxed_only
|
5955
5657
|
dispatch:
|
5956
5658
|
CPU: adaptive_avg_pool2d_cpu
|
5957
5659
|
CUDA: adaptive_avg_pool2d_cuda
|
@@ -5971,7 +5673,6 @@
|
|
5971
5673
|
CUDA: adaptive_avg_pool3d_out_cuda
|
5972
5674
|
|
5973
5675
|
- func: adaptive_avg_pool3d(Tensor self, int[3] output_size) -> Tensor
|
5974
|
-
use_c10_dispatcher: unboxed_only
|
5975
5676
|
python_module: nn
|
5976
5677
|
dispatch:
|
5977
5678
|
CPU: adaptive_avg_pool3d_cpu
|
@@ -5999,7 +5700,6 @@
|
|
5999
5700
|
|
6000
5701
|
# Return: (Tensor output, Tensor indices)
|
6001
5702
|
- func: adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
|
6002
|
-
use_c10_dispatcher: unboxed_only
|
6003
5703
|
python_module: nn
|
6004
5704
|
dispatch:
|
6005
5705
|
CPU: adaptive_max_pool2d_cpu
|
@@ -6027,7 +5727,6 @@
|
|
6027
5727
|
|
6028
5728
|
# Return: (Tensor output, Tensor indices)
|
6029
5729
|
- func: adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)
|
6030
|
-
use_c10_dispatcher: unboxed_only
|
6031
5730
|
python_module: nn
|
6032
5731
|
dispatch:
|
6033
5732
|
CPU: adaptive_max_pool3d_cpu
|
@@ -6054,7 +5753,6 @@
|
|
6054
5753
|
MkldnnCPU: mkldnn_avg_pool2d_out
|
6055
5754
|
|
6056
5755
|
- func: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
6057
|
-
use_c10_dispatcher: unboxed_only
|
6058
5756
|
python_module: nn
|
6059
5757
|
dispatch:
|
6060
5758
|
CPU: avg_pool2d_cpu
|
@@ -6069,7 +5767,6 @@
|
|
6069
5767
|
CUDA: avg_pool2d_backward_out_cuda
|
6070
5768
|
|
6071
5769
|
- func: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
6072
|
-
use_c10_dispatcher: unboxed_only
|
6073
5770
|
python_module: nn
|
6074
5771
|
dispatch:
|
6075
5772
|
CPU: avg_pool2d_backward_cpu
|
@@ -6082,7 +5779,6 @@
|
|
6082
5779
|
CUDA: avg_pool3d_out_cuda
|
6083
5780
|
|
6084
5781
|
- func: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
6085
|
-
use_c10_dispatcher: unboxed_only
|
6086
5782
|
python_module: nn
|
6087
5783
|
dispatch:
|
6088
5784
|
CPU: avg_pool3d_cpu
|
@@ -6095,7 +5791,6 @@
|
|
6095
5791
|
CUDA: avg_pool3d_backward_out_cuda
|
6096
5792
|
|
6097
5793
|
- func: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
6098
|
-
use_c10_dispatcher: unboxed_only
|
6099
5794
|
python_module: nn
|
6100
5795
|
dispatch:
|
6101
5796
|
CPU: avg_pool3d_backward_cpu
|
@@ -6110,7 +5805,6 @@
|
|
6110
5805
|
|
6111
5806
|
# Return: (Tensor output, Tensor indices)
|
6112
5807
|
- func: fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor)
|
6113
|
-
use_c10_dispatcher: unboxed_only
|
6114
5808
|
python_module: nn
|
6115
5809
|
dispatch:
|
6116
5810
|
CPU: fractional_max_pool2d_cpu
|
@@ -6123,7 +5817,6 @@
|
|
6123
5817
|
CUDA: fractional_max_pool2d_backward_out_cuda
|
6124
5818
|
|
6125
5819
|
- func: fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor
|
6126
|
-
use_c10_dispatcher: unboxed_only
|
6127
5820
|
python_module: nn
|
6128
5821
|
dispatch:
|
6129
5822
|
CPU: fractional_max_pool2d_backward_cpu
|
@@ -6138,7 +5831,6 @@
|
|
6138
5831
|
|
6139
5832
|
# Return: (Tensor output, Tensor indices)
|
6140
5833
|
- func: fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor)
|
6141
|
-
use_c10_dispatcher: unboxed_only
|
6142
5834
|
python_module: nn
|
6143
5835
|
dispatch:
|
6144
5836
|
CPU: fractional_max_pool3d_cpu
|
@@ -6151,7 +5843,6 @@
|
|
6151
5843
|
CUDA: fractional_max_pool3d_backward_out_cuda
|
6152
5844
|
|
6153
5845
|
- func: fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor
|
6154
|
-
use_c10_dispatcher: unboxed_only
|
6155
5846
|
python_module: nn
|
6156
5847
|
dispatch:
|
6157
5848
|
CPU: fractional_max_pool3d_backward_cpu
|
@@ -6166,7 +5857,6 @@
|
|
6166
5857
|
|
6167
5858
|
# Return: (Tensor output, Tensor indices)
|
6168
5859
|
- func: max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
6169
|
-
use_c10_dispatcher: unboxed_only
|
6170
5860
|
python_module: nn
|
6171
5861
|
dispatch:
|
6172
5862
|
CPU: max_pool2d_with_indices_cpu
|
@@ -6179,7 +5869,6 @@
|
|
6179
5869
|
CUDA: max_pool2d_with_indices_backward_out_cuda
|
6180
5870
|
|
6181
5871
|
- func: max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor
|
6182
|
-
use_c10_dispatcher: unboxed_only
|
6183
5872
|
python_module: nn
|
6184
5873
|
dispatch:
|
6185
5874
|
CPU: max_pool2d_with_indices_backward_cpu
|
@@ -6194,7 +5883,6 @@
|
|
6194
5883
|
|
6195
5884
|
# Return: (Tensor output, Tensor indices)
|
6196
5885
|
- func: max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
6197
|
-
use_c10_dispatcher: unboxed_only
|
6198
5886
|
python_module: nn
|
6199
5887
|
dispatch:
|
6200
5888
|
CPU: max_pool3d_with_indices_cpu
|
@@ -6207,7 +5895,6 @@
|
|
6207
5895
|
CUDA: max_pool3d_with_indices_backward_out_cuda
|
6208
5896
|
|
6209
5897
|
- func: max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor
|
6210
|
-
use_c10_dispatcher: unboxed_only
|
6211
5898
|
python_module: nn
|
6212
5899
|
dispatch:
|
6213
5900
|
CPU: max_pool3d_with_indices_backward_cpu
|
@@ -6220,7 +5907,6 @@
|
|
6220
5907
|
CUDA: max_unpooling2d_forward_out_cuda
|
6221
5908
|
|
6222
5909
|
- func: max_unpool2d(Tensor self, Tensor indices, int[2] output_size) -> Tensor
|
6223
|
-
use_c10_dispatcher: unboxed_only
|
6224
5910
|
python_module: nn
|
6225
5911
|
dispatch:
|
6226
5912
|
CPU: max_unpooling2d_forward_cpu
|
@@ -6233,7 +5919,6 @@
|
|
6233
5919
|
CUDA: max_unpooling2d_backward_out_cuda
|
6234
5920
|
|
6235
5921
|
- func: max_unpool2d_backward(Tensor grad_output, Tensor self, Tensor indices, int[2] output_size) -> Tensor
|
6236
|
-
use_c10_dispatcher: unboxed_only
|
6237
5922
|
python_module: nn
|
6238
5923
|
dispatch:
|
6239
5924
|
CPU: max_unpooling2d_backward_cpu
|
@@ -6246,7 +5931,6 @@
|
|
6246
5931
|
CUDA: max_unpooling3d_forward_out_cuda
|
6247
5932
|
|
6248
5933
|
- func: max_unpool3d(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor
|
6249
|
-
use_c10_dispatcher: unboxed_only
|
6250
5934
|
python_module: nn
|
6251
5935
|
dispatch:
|
6252
5936
|
CPU: max_unpooling3d_forward_cpu
|
@@ -6259,7 +5943,6 @@
|
|
6259
5943
|
CUDA: max_unpooling3d_backward_out_cuda
|
6260
5944
|
|
6261
5945
|
- func: max_unpool3d_backward(Tensor grad_output, Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> Tensor
|
6262
|
-
use_c10_dispatcher: unboxed_only
|
6263
5946
|
python_module: nn
|
6264
5947
|
dispatch:
|
6265
5948
|
CPU: max_unpooling3d_backward_cpu
|
@@ -6272,7 +5955,6 @@
|
|
6272
5955
|
CUDA: reflection_pad1d_out_cuda
|
6273
5956
|
|
6274
5957
|
- func: reflection_pad1d(Tensor self, int[2] padding) -> Tensor
|
6275
|
-
use_c10_dispatcher: unboxed_only
|
6276
5958
|
python_module: nn
|
6277
5959
|
dispatch:
|
6278
5960
|
CPU: reflection_pad1d_cpu
|
@@ -6285,7 +5967,6 @@
|
|
6285
5967
|
CUDA: reflection_pad1d_backward_out_cuda
|
6286
5968
|
|
6287
5969
|
- func: reflection_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
6288
|
-
use_c10_dispatcher: unboxed_only
|
6289
5970
|
python_module: nn
|
6290
5971
|
dispatch:
|
6291
5972
|
CPU: reflection_pad1d_backward_cpu
|
@@ -6298,7 +5979,6 @@
|
|
6298
5979
|
CUDA: reflection_pad2d_out_cuda
|
6299
5980
|
|
6300
5981
|
- func: reflection_pad2d(Tensor self, int[4] padding) -> Tensor
|
6301
|
-
use_c10_dispatcher: unboxed_only
|
6302
5982
|
python_module: nn
|
6303
5983
|
dispatch:
|
6304
5984
|
CPU: reflection_pad2d_cpu
|
@@ -6311,7 +5991,6 @@
|
|
6311
5991
|
CUDA: reflection_pad2d_backward_out_cuda
|
6312
5992
|
|
6313
5993
|
- func: reflection_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor
|
6314
|
-
use_c10_dispatcher: unboxed_only
|
6315
5994
|
python_module: nn
|
6316
5995
|
dispatch:
|
6317
5996
|
CPU: reflection_pad2d_backward_cpu
|
@@ -6324,7 +6003,6 @@
|
|
6324
6003
|
CUDA: replication_pad1d_out_cuda
|
6325
6004
|
|
6326
6005
|
- func: replication_pad1d(Tensor self, int[2] padding) -> Tensor
|
6327
|
-
use_c10_dispatcher: unboxed_only
|
6328
6006
|
python_module: nn
|
6329
6007
|
dispatch:
|
6330
6008
|
CPU: replication_pad1d_cpu
|
@@ -6337,7 +6015,6 @@
|
|
6337
6015
|
CUDA: replication_pad1d_backward_out_cuda
|
6338
6016
|
|
6339
6017
|
- func: replication_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
6340
|
-
use_c10_dispatcher: unboxed_only
|
6341
6018
|
python_module: nn
|
6342
6019
|
dispatch:
|
6343
6020
|
CPU: replication_pad1d_backward_cpu
|
@@ -6350,7 +6027,6 @@
|
|
6350
6027
|
CUDA: replication_pad2d_out_cuda
|
6351
6028
|
|
6352
6029
|
- func: replication_pad2d(Tensor self, int[4] padding) -> Tensor
|
6353
|
-
use_c10_dispatcher: unboxed_only
|
6354
6030
|
python_module: nn
|
6355
6031
|
dispatch:
|
6356
6032
|
CPU: replication_pad2d_cpu
|
@@ -6363,7 +6039,6 @@
|
|
6363
6039
|
CUDA: replication_pad2d_backward_out_cuda
|
6364
6040
|
|
6365
6041
|
- func: replication_pad2d_backward(Tensor grad_output, Tensor self, int[4] padding) -> Tensor
|
6366
|
-
use_c10_dispatcher: unboxed_only
|
6367
6042
|
python_module: nn
|
6368
6043
|
dispatch:
|
6369
6044
|
CPU: replication_pad2d_backward_cpu
|
@@ -6376,7 +6051,6 @@
|
|
6376
6051
|
CUDA: replication_pad3d_out_cuda
|
6377
6052
|
|
6378
6053
|
- func: replication_pad3d(Tensor self, int[6] padding) -> Tensor
|
6379
|
-
use_c10_dispatcher: unboxed_only
|
6380
6054
|
python_module: nn
|
6381
6055
|
dispatch:
|
6382
6056
|
CPU: replication_pad3d_cpu
|
@@ -6389,12 +6063,14 @@
|
|
6389
6063
|
CUDA: replication_pad3d_backward_out_cuda
|
6390
6064
|
|
6391
6065
|
- func: replication_pad3d_backward(Tensor grad_output, Tensor self, int[6] padding) -> Tensor
|
6392
|
-
use_c10_dispatcher: unboxed_only
|
6393
6066
|
python_module: nn
|
6394
6067
|
dispatch:
|
6395
6068
|
CPU: replication_pad3d_backward_cpu
|
6396
6069
|
CUDA: replication_pad3d_backward_cuda
|
6397
6070
|
|
6071
|
+
- func: _test_optional_float(Tensor self, *, float? scale=None) -> Tensor
|
6072
|
+
variants: function
|
6073
|
+
|
6398
6074
|
- func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6399
6075
|
python_module: nn
|
6400
6076
|
dispatch:
|
@@ -6402,7 +6078,6 @@
|
|
6402
6078
|
CUDA: upsample_linear1d_out_cuda
|
6403
6079
|
|
6404
6080
|
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners) -> Tensor
|
6405
|
-
use_c10_dispatcher: unboxed_only
|
6406
6081
|
python_module: nn
|
6407
6082
|
dispatch:
|
6408
6083
|
CPU: upsample_linear1d_cpu
|
@@ -6415,7 +6090,6 @@
|
|
6415
6090
|
CUDA: upsample_linear1d_backward_out_cuda
|
6416
6091
|
|
6417
6092
|
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners) -> Tensor
|
6418
|
-
use_c10_dispatcher: unboxed_only
|
6419
6093
|
python_module: nn
|
6420
6094
|
dispatch:
|
6421
6095
|
CPU: upsample_linear1d_backward_cpu
|
@@ -6428,7 +6102,6 @@
|
|
6428
6102
|
CUDA: upsample_bilinear2d_out_cuda
|
6429
6103
|
|
6430
6104
|
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6431
|
-
use_c10_dispatcher: unboxed_only
|
6432
6105
|
python_module: nn
|
6433
6106
|
dispatch:
|
6434
6107
|
CPU: upsample_bilinear2d_cpu
|
@@ -6442,7 +6115,6 @@
|
|
6442
6115
|
CUDA: upsample_bilinear2d_backward_out_cuda
|
6443
6116
|
|
6444
6117
|
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6445
|
-
use_c10_dispatcher: unboxed_only
|
6446
6118
|
python_module: nn
|
6447
6119
|
dispatch:
|
6448
6120
|
CPU: upsample_bilinear2d_backward_cpu
|
@@ -6455,7 +6127,6 @@
|
|
6455
6127
|
CUDA: upsample_bicubic2d_out_cuda
|
6456
6128
|
|
6457
6129
|
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6458
|
-
use_c10_dispatcher: unboxed_only
|
6459
6130
|
python_module: nn
|
6460
6131
|
dispatch:
|
6461
6132
|
CPU: upsample_bicubic2d_cpu
|
@@ -6468,7 +6139,6 @@
|
|
6468
6139
|
CUDA: upsample_bicubic2d_backward_out_cuda
|
6469
6140
|
|
6470
6141
|
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6471
|
-
use_c10_dispatcher: unboxed_only
|
6472
6142
|
python_module: nn
|
6473
6143
|
dispatch:
|
6474
6144
|
CPU: upsample_bicubic2d_backward_cpu
|
@@ -6481,7 +6151,6 @@
|
|
6481
6151
|
CUDA: upsample_trilinear3d_out_cuda
|
6482
6152
|
|
6483
6153
|
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners) -> Tensor
|
6484
|
-
use_c10_dispatcher: unboxed_only
|
6485
6154
|
python_module: nn
|
6486
6155
|
dispatch:
|
6487
6156
|
CPU: upsample_trilinear3d_cpu
|
@@ -6494,7 +6163,6 @@
|
|
6494
6163
|
CUDA: upsample_trilinear3d_backward_out_cuda
|
6495
6164
|
|
6496
6165
|
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners) -> Tensor
|
6497
|
-
use_c10_dispatcher: unboxed_only
|
6498
6166
|
python_module: nn
|
6499
6167
|
dispatch:
|
6500
6168
|
CPU: upsample_trilinear3d_backward_cpu
|
@@ -6507,7 +6175,6 @@
|
|
6507
6175
|
CUDA: upsample_nearest1d_out_cuda
|
6508
6176
|
|
6509
6177
|
- func: upsample_nearest1d(Tensor self, int[1] output_size) -> Tensor
|
6510
|
-
use_c10_dispatcher: unboxed_only
|
6511
6178
|
python_module: nn
|
6512
6179
|
dispatch:
|
6513
6180
|
CPU: upsample_nearest1d_cpu
|
@@ -6520,7 +6187,6 @@
|
|
6520
6187
|
CUDA: upsample_nearest1d_backward_out_cuda
|
6521
6188
|
|
6522
6189
|
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size) -> Tensor
|
6523
|
-
use_c10_dispatcher: unboxed_only
|
6524
6190
|
python_module: nn
|
6525
6191
|
dispatch:
|
6526
6192
|
CPU: upsample_nearest1d_backward_cpu
|
@@ -6533,7 +6199,6 @@
|
|
6533
6199
|
CUDA: upsample_nearest2d_out_cuda
|
6534
6200
|
|
6535
6201
|
- func: upsample_nearest2d(Tensor self, int[2] output_size) -> Tensor
|
6536
|
-
use_c10_dispatcher: unboxed_only
|
6537
6202
|
python_module: nn
|
6538
6203
|
dispatch:
|
6539
6204
|
CPU: upsample_nearest2d_cpu
|
@@ -6547,7 +6212,6 @@
|
|
6547
6212
|
CUDA: upsample_nearest2d_backward_out_cuda
|
6548
6213
|
|
6549
6214
|
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size) -> Tensor
|
6550
|
-
use_c10_dispatcher: unboxed_only
|
6551
6215
|
python_module: nn
|
6552
6216
|
dispatch:
|
6553
6217
|
CPU: upsample_nearest2d_backward_cpu
|
@@ -6560,7 +6224,6 @@
|
|
6560
6224
|
CUDA: upsample_nearest3d_out_cuda
|
6561
6225
|
|
6562
6226
|
- func: upsample_nearest3d(Tensor self, int[3] output_size) -> Tensor
|
6563
|
-
use_c10_dispatcher: unboxed_only
|
6564
6227
|
python_module: nn
|
6565
6228
|
dispatch:
|
6566
6229
|
CPU: upsample_nearest3d_cpu
|
@@ -6573,7 +6236,6 @@
|
|
6573
6236
|
CUDA: upsample_nearest3d_backward_out_cuda
|
6574
6237
|
|
6575
6238
|
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size) -> Tensor
|
6576
|
-
use_c10_dispatcher: unboxed_only
|
6577
6239
|
python_module: nn
|
6578
6240
|
dispatch:
|
6579
6241
|
CPU: upsample_nearest3d_backward_cpu
|
@@ -6582,15 +6244,12 @@
|
|
6582
6244
|
- func: sigmoid_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6583
6245
|
python_module: nn
|
6584
6246
|
dispatch:
|
6585
|
-
CPU:
|
6586
|
-
CUDA:
|
6247
|
+
CPU: sigmoid_backward_out
|
6248
|
+
CUDA: sigmoid_backward_out
|
6587
6249
|
|
6588
6250
|
- func: sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor
|
6589
6251
|
use_c10_dispatcher: full
|
6590
6252
|
python_module: nn
|
6591
|
-
dispatch:
|
6592
|
-
CPU: legacy::cpu::_thnn_sigmoid_backward
|
6593
|
-
CUDA: legacy::cuda::_thnn_sigmoid_backward
|
6594
6253
|
|
6595
6254
|
- func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6596
6255
|
python_module: nn
|
@@ -6635,14 +6294,13 @@
|
|
6635
6294
|
CPU: slow_conv_transpose2d_cpu
|
6636
6295
|
CUDA: slow_conv_transpose2d_cuda
|
6637
6296
|
|
6638
|
-
- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor
|
6297
|
+
- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6639
6298
|
python_module: nn
|
6640
6299
|
dispatch:
|
6641
6300
|
CPU: slow_conv_transpose2d_backward_out_cpu
|
6642
6301
|
CUDA: slow_conv_transpose2d_backward_out_cuda
|
6643
6302
|
|
6644
6303
|
- func: slow_conv_transpose2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6645
|
-
use_c10_dispatcher: unboxed_only
|
6646
6304
|
python_module: nn
|
6647
6305
|
dispatch:
|
6648
6306
|
CPU: slow_conv_transpose2d_backward_cpu
|
@@ -6660,14 +6318,13 @@
|
|
6660
6318
|
CPU: slow_conv_transpose3d_cpu
|
6661
6319
|
CUDA: slow_conv_transpose3d_cuda
|
6662
6320
|
|
6663
|
-
- func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor
|
6321
|
+
- func: slow_conv_transpose3d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6664
6322
|
python_module: nn
|
6665
6323
|
dispatch:
|
6666
6324
|
CPU: slow_conv_transpose3d_backward_out_cpu
|
6667
6325
|
CUDA: slow_conv_transpose3d_backward_out_cuda
|
6668
6326
|
|
6669
6327
|
- func: slow_conv_transpose3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] output_padding, int[3] dilation, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6670
|
-
use_c10_dispatcher: unboxed_only
|
6671
6328
|
python_module: nn
|
6672
6329
|
dispatch:
|
6673
6330
|
CPU: slow_conv_transpose3d_backward_cpu
|
@@ -6682,26 +6339,25 @@
|
|
6682
6339
|
- func: thnn_conv2d_forward.output(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, *, Tensor(a!) output, Tensor(b!) finput, Tensor(c!) fgrad_input) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6683
6340
|
python_module: nn
|
6684
6341
|
dispatch:
|
6685
|
-
CPU:
|
6342
|
+
CPU: slow_conv2d_forward_out_cpu
|
6686
6343
|
CUDA: legacy::cuda::_thnn_conv2d_forward_out
|
6687
6344
|
|
6688
6345
|
- func: thnn_conv2d_forward(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input)
|
6689
6346
|
python_module: nn
|
6690
6347
|
dispatch:
|
6691
|
-
CPU:
|
6348
|
+
CPU: slow_conv2d_forward_cpu
|
6692
6349
|
CUDA: legacy::cuda::_thnn_conv2d_forward
|
6693
6350
|
|
6694
|
-
- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor
|
6351
|
+
- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6695
6352
|
python_module: nn
|
6696
6353
|
dispatch:
|
6697
|
-
CPU:
|
6354
|
+
CPU: slow_conv2d_backward_out_cpu
|
6698
6355
|
CUDA: legacy::cuda::_thnn_conv2d_backward_out
|
6699
6356
|
|
6700
6357
|
- func: thnn_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6701
|
-
use_c10_dispatcher: unboxed_only
|
6702
6358
|
python_module: nn
|
6703
6359
|
dispatch:
|
6704
|
-
CPU:
|
6360
|
+
CPU: slow_conv2d_backward_cpu
|
6705
6361
|
CUDA: legacy::cuda::_thnn_conv2d_backward
|
6706
6362
|
|
6707
6363
|
- func: thnn_conv_depthwise2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -6720,43 +6376,41 @@
|
|
6720
6376
|
dispatch:
|
6721
6377
|
CUDA: legacy::cuda::_thnn_conv_depthwise2d_forward
|
6722
6378
|
|
6723
|
-
- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor
|
6379
|
+
- func: thnn_conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight) -> (Tensor(a!), Tensor(b!))
|
6724
6380
|
python_module: nn
|
6725
6381
|
dispatch:
|
6726
6382
|
CUDA: legacy::cuda::_thnn_conv_depthwise2d_backward_out
|
6727
6383
|
|
6728
6384
|
- func: thnn_conv_depthwise2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[2] output_mask) -> (Tensor grad_input, Tensor grad_weight)
|
6729
|
-
use_c10_dispatcher: unboxed_only
|
6730
6385
|
python_module: nn
|
6731
6386
|
dispatch:
|
6732
6387
|
CUDA: legacy::cuda::_thnn_conv_depthwise2d_backward
|
6733
6388
|
|
6734
|
-
- func:
|
6389
|
+
- func: slow_conv3d.out(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0, *, Tensor(a!) out) -> Tensor(a!)
|
6735
6390
|
python_module: nn
|
6736
6391
|
|
6737
|
-
- func:
|
6392
|
+
- func: slow_conv3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=1, int[3] padding=0) -> Tensor
|
6738
6393
|
python_module: nn
|
6739
6394
|
|
6740
|
-
- func:
|
6395
|
+
- func: slow_conv3d_forward.output(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, *, Tensor(a!) output, Tensor(b!) finput, Tensor(c!) fgrad_input) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6741
6396
|
python_module: nn
|
6742
6397
|
dispatch:
|
6743
|
-
CPU:
|
6398
|
+
CPU: slow_conv3d_forward_out_cpu
|
6744
6399
|
|
6745
|
-
- func:
|
6400
|
+
- func: slow_conv3d_forward(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input)
|
6746
6401
|
python_module: nn
|
6747
6402
|
dispatch:
|
6748
|
-
CPU:
|
6403
|
+
CPU: slow_conv3d_forward_cpu
|
6749
6404
|
|
6750
|
-
- func:
|
6405
|
+
- func: slow_conv3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!)? grad_input, Tensor(b!)? grad_weight, Tensor(c!)? grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
6751
6406
|
python_module: nn
|
6752
6407
|
dispatch:
|
6753
|
-
CPU:
|
6408
|
+
CPU: slow_conv3d_backward_out_cpu
|
6754
6409
|
|
6755
|
-
- func:
|
6756
|
-
use_c10_dispatcher: unboxed_only
|
6410
|
+
- func: slow_conv3d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, Tensor finput, Tensor fgrad_input, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6757
6411
|
python_module: nn
|
6758
6412
|
dispatch:
|
6759
|
-
CPU:
|
6413
|
+
CPU: slow_conv3d_backward_cpu
|
6760
6414
|
|
6761
6415
|
- func: slow_conv_dilated2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1) -> Tensor
|
6762
6416
|
python_module: nn
|
@@ -6765,7 +6419,6 @@
|
|
6765
6419
|
CUDA: slow_conv_dilated2d_cuda
|
6766
6420
|
|
6767
6421
|
- func: slow_conv_dilated2d_backward(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6768
|
-
use_c10_dispatcher: unboxed_only
|
6769
6422
|
python_module: nn
|
6770
6423
|
dispatch:
|
6771
6424
|
CPU: slow_conv_dilated2d_backward_cpu
|
@@ -6778,7 +6431,6 @@
|
|
6778
6431
|
CUDA: slow_conv_dilated3d_cuda
|
6779
6432
|
|
6780
6433
|
- func: slow_conv_dilated3d_backward(Tensor grad_output, Tensor self, Tensor weight, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
6781
|
-
use_c10_dispatcher: unboxed_only
|
6782
6434
|
python_module: nn
|
6783
6435
|
dispatch:
|
6784
6436
|
CPU: slow_conv_dilated3d_backward_cpu
|
@@ -6791,7 +6443,6 @@
|
|
6791
6443
|
CUDA: col2im_out_cuda
|
6792
6444
|
|
6793
6445
|
- func: col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6794
|
-
use_c10_dispatcher: unboxed_only
|
6795
6446
|
python_module: nn
|
6796
6447
|
dispatch:
|
6797
6448
|
CPU: col2im_cpu
|
@@ -6804,7 +6455,6 @@
|
|
6804
6455
|
CUDA: col2im_backward_out_cuda
|
6805
6456
|
|
6806
6457
|
- func: col2im_backward(Tensor grad_output, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6807
|
-
use_c10_dispatcher: unboxed_only
|
6808
6458
|
python_module: nn
|
6809
6459
|
dispatch:
|
6810
6460
|
CPU: col2im_backward_cpu
|
@@ -6817,7 +6467,6 @@
|
|
6817
6467
|
CUDA: im2col_out_cuda
|
6818
6468
|
|
6819
6469
|
- func: im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6820
|
-
use_c10_dispatcher: unboxed_only
|
6821
6470
|
python_module: nn
|
6822
6471
|
dispatch:
|
6823
6472
|
CPU: im2col_cpu
|
@@ -6830,8 +6479,13 @@
|
|
6830
6479
|
CUDA: im2col_backward_out_cuda
|
6831
6480
|
|
6832
6481
|
- func: im2col_backward(Tensor grad_output, int[2] input_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
|
6833
|
-
use_c10_dispatcher: unboxed_only
|
6834
6482
|
python_module: nn
|
6835
6483
|
dispatch:
|
6836
6484
|
CPU: im2col_backward_cpu
|
6837
6485
|
CUDA: im2col_backward_cuda
|
6486
|
+
|
6487
|
+
- func: isfinite(Tensor self) -> Tensor
|
6488
|
+
use_c10_dispatcher: full
|
6489
|
+
variants: function
|
6490
|
+
device_guard: False
|
6491
|
+
supports_named_tensor: True
|