torch-rb 0.1.4 → 0.1.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +5 -3
- data/ext/torch/ext.cpp +22 -548
- data/ext/torch/extconf.rb +6 -0
- data/ext/torch/nn_functions.cpp +595 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.hpp +250 -0
- data/ext/torch/tensor_functions.cpp +1860 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +2875 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch.rb +68 -129
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +78 -0
- data/lib/torch/native/generator.rb +149 -0
- data/lib/torch/native/native_functions.yaml +6837 -0
- data/lib/torch/native/parser.rb +97 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/conv2d.rb +0 -2
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/functional.rb +55 -16
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +1 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/module.rb +59 -12
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/parameter.rb +4 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +154 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/tensor.rb +19 -19
- data/lib/torch/version.rb +1 -1
- metadata +26 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 6b47306ed525e1a20d25cb8324d4658f750c18afa5704c9b7bafc215d8f568c1
|
4
|
+
data.tar.gz: dad6ddf955b111989b061e5af146006a32c83dc1ea1ca5005a6b6e34bc9a4892
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 5d26e3642bf7cd921b9b570052df353d4c32b1bd955a6fbbf5f30249631fa4c0d4624f4fa91a1c06f61b3b0d6461cd117ab4df185cf013e915d2f63e52dbcf7c
|
7
|
+
data.tar.gz: 1728ce9b579f41f7a567e63d7256c82bb352840b67f16d88aac930a99e5abbf5a5f4061c5f9da16fb47d1664567e7956d276a8b2b44f13d2263032486afb53e8
|
data/CHANGELOG.md
CHANGED
data/README.md
CHANGED
@@ -20,6 +20,8 @@ Add this line to your application’s Gemfile:
|
|
20
20
|
gem 'torch-rb'
|
21
21
|
```
|
22
22
|
|
23
|
+
It can take a few minutes to compile the extension.
|
24
|
+
|
23
25
|
## Getting Started
|
24
26
|
|
25
27
|
This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.html). There are a few changes to make it more Ruby-like:
|
@@ -28,7 +30,7 @@ This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.htm
|
|
28
30
|
- Methods that return booleans use `?` instead of `is_` (`tensor?` instead of `is_tensor`)
|
29
31
|
- Numo is used instead of NumPy (`x.numo` instead of `x.numpy()`)
|
30
32
|
|
31
|
-
|
33
|
+
Some methods and options are missing at the moment. PRs welcome!
|
32
34
|
|
33
35
|
## Tutorial
|
34
36
|
|
@@ -365,9 +367,9 @@ Here’s a list of functions to create tensors (descriptions from the [C++ docs]
|
|
365
367
|
|
366
368
|
Here are a few full examples:
|
367
369
|
|
368
|
-
- [Image classification with MNIST](examples/mnist)
|
370
|
+
- [Image classification with MNIST](examples/mnist) ([日本語版](https://qiita.com/kojix2/items/c19c36dc1bf73ea93409))
|
369
371
|
- [Collaborative filtering with MovieLens](examples/movielens)
|
370
|
-
- [Word embeddings](examples/nlp)
|
372
|
+
- [Word embeddings](examples/nlp)
|
371
373
|
|
372
374
|
## LibTorch Installation
|
373
375
|
|
data/ext/torch/ext.cpp
CHANGED
@@ -6,230 +6,15 @@
|
|
6
6
|
#include <rice/Class.hpp>
|
7
7
|
#include <rice/Constructor.hpp>
|
8
8
|
|
9
|
-
|
10
|
-
|
11
|
-
template<>
|
12
|
-
inline
|
13
|
-
long long from_ruby<long long>(Object x)
|
14
|
-
{
|
15
|
-
return NUM2LL(x);
|
16
|
-
}
|
17
|
-
|
18
|
-
template<>
|
19
|
-
inline
|
20
|
-
Object to_ruby<long long>(long long const & x)
|
21
|
-
{
|
22
|
-
return LL2NUM(x);
|
23
|
-
}
|
24
|
-
|
25
|
-
template<>
|
26
|
-
inline
|
27
|
-
unsigned long long from_ruby<unsigned long long>(Object x)
|
28
|
-
{
|
29
|
-
return NUM2ULL(x);
|
30
|
-
}
|
31
|
-
|
32
|
-
template<>
|
33
|
-
inline
|
34
|
-
Object to_ruby<unsigned long long>(unsigned long long const & x)
|
35
|
-
{
|
36
|
-
return ULL2NUM(x);
|
37
|
-
}
|
38
|
-
|
39
|
-
template<>
|
40
|
-
inline
|
41
|
-
short from_ruby<short>(Object x)
|
42
|
-
{
|
43
|
-
return NUM2SHORT(x);
|
44
|
-
}
|
45
|
-
|
46
|
-
template<>
|
47
|
-
inline
|
48
|
-
Object to_ruby<short>(short const & x)
|
49
|
-
{
|
50
|
-
return INT2NUM(x);
|
51
|
-
}
|
52
|
-
|
53
|
-
template<>
|
54
|
-
inline
|
55
|
-
unsigned short from_ruby<unsigned short>(Object x)
|
56
|
-
{
|
57
|
-
return NUM2USHORT(x);
|
58
|
-
}
|
59
|
-
|
60
|
-
template<>
|
61
|
-
inline
|
62
|
-
Object to_ruby<unsigned short>(unsigned short const & x)
|
63
|
-
{
|
64
|
-
return UINT2NUM(x);
|
65
|
-
}
|
9
|
+
#include "templates.hpp"
|
66
10
|
|
67
|
-
//
|
68
|
-
//
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
IntArrayRef(Object o) {
|
73
|
-
Array a = Array(o);
|
74
|
-
for (size_t i = 0; i < a.size(); i++) {
|
75
|
-
vec.push_back(from_ruby<int64_t>(a[i]));
|
76
|
-
}
|
77
|
-
}
|
78
|
-
operator torch::IntArrayRef() {
|
79
|
-
return torch::IntArrayRef(vec);
|
80
|
-
}
|
81
|
-
};
|
11
|
+
// generated with:
|
12
|
+
// rake generate:functions
|
13
|
+
#include "torch_functions.hpp"
|
14
|
+
#include "tensor_functions.hpp"
|
15
|
+
#include "nn_functions.hpp"
|
82
16
|
|
83
|
-
|
84
|
-
inline
|
85
|
-
IntArrayRef from_ruby<IntArrayRef>(Object x)
|
86
|
-
{
|
87
|
-
return IntArrayRef(x);
|
88
|
-
}
|
89
|
-
|
90
|
-
// for now
|
91
|
-
class Scalar {
|
92
|
-
torch::Scalar value;
|
93
|
-
public:
|
94
|
-
Scalar(Object o) {
|
95
|
-
// TODO cast based on Ruby type
|
96
|
-
if (o.rb_type() == T_FIXNUM) {
|
97
|
-
value = torch::Scalar(from_ruby<int64_t>(o));
|
98
|
-
} else {
|
99
|
-
value = torch::Scalar(from_ruby<float>(o));
|
100
|
-
}
|
101
|
-
}
|
102
|
-
operator torch::Scalar() {
|
103
|
-
return value;
|
104
|
-
}
|
105
|
-
};
|
106
|
-
|
107
|
-
template<>
|
108
|
-
inline
|
109
|
-
Scalar from_ruby<Scalar>(Object x)
|
110
|
-
{
|
111
|
-
return Scalar(x);
|
112
|
-
}
|
113
|
-
|
114
|
-
class TensorList {
|
115
|
-
std::vector<torch::Tensor> vec;
|
116
|
-
public:
|
117
|
-
TensorList(Object o) {
|
118
|
-
Array a = Array(o);
|
119
|
-
for (size_t i = 0; i < a.size(); i++) {
|
120
|
-
vec.push_back(from_ruby<torch::Tensor>(a[i]));
|
121
|
-
}
|
122
|
-
}
|
123
|
-
operator torch::TensorList() {
|
124
|
-
return torch::TensorList(vec);
|
125
|
-
}
|
126
|
-
};
|
127
|
-
|
128
|
-
template<>
|
129
|
-
inline
|
130
|
-
TensorList from_ruby<TensorList>(Object x)
|
131
|
-
{
|
132
|
-
return TensorList(x);
|
133
|
-
}
|
134
|
-
|
135
|
-
class FanModeType {
|
136
|
-
std::string s;
|
137
|
-
public:
|
138
|
-
FanModeType(Object o) {
|
139
|
-
s = String(o).str();
|
140
|
-
}
|
141
|
-
// TODO switch NonlinearityType after LibTorch 1.4 release
|
142
|
-
operator torch::nn::init::FanMode() {
|
143
|
-
if (s == "fan_in") {
|
144
|
-
return torch::nn::init::FanMode::FanIn;
|
145
|
-
} else if (s == "fan_out") {
|
146
|
-
return torch::nn::init::FanMode::FanOut;
|
147
|
-
} else {
|
148
|
-
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
149
|
-
}
|
150
|
-
}
|
151
|
-
};
|
152
|
-
|
153
|
-
template<>
|
154
|
-
inline
|
155
|
-
FanModeType from_ruby<FanModeType>(Object x)
|
156
|
-
{
|
157
|
-
return FanModeType(x);
|
158
|
-
}
|
159
|
-
|
160
|
-
class NonlinearityType {
|
161
|
-
std::string s;
|
162
|
-
public:
|
163
|
-
NonlinearityType(Object o) {
|
164
|
-
s = String(o).str();
|
165
|
-
}
|
166
|
-
// TODO switch NonlinearityType after LibTorch 1.4 release
|
167
|
-
operator torch::nn::init::Nonlinearity() {
|
168
|
-
if (s == "linear") {
|
169
|
-
return torch::nn::init::Nonlinearity::Linear;
|
170
|
-
} else if (s == "conv1d") {
|
171
|
-
return torch::nn::init::Nonlinearity::Conv1D;
|
172
|
-
} else if (s == "conv2d") {
|
173
|
-
return torch::nn::init::Nonlinearity::Conv2D;
|
174
|
-
} else if (s == "conv3d") {
|
175
|
-
return torch::nn::init::Nonlinearity::Conv3D;
|
176
|
-
} else if (s == "conv_transpose1d") {
|
177
|
-
return torch::nn::init::Nonlinearity::ConvTranspose1D;
|
178
|
-
} else if (s == "conv_transpose2d") {
|
179
|
-
return torch::nn::init::Nonlinearity::ConvTranspose2D;
|
180
|
-
} else if (s == "conv_transpose3d") {
|
181
|
-
return torch::nn::init::Nonlinearity::ConvTranspose3D;
|
182
|
-
} else if (s == "sigmoid") {
|
183
|
-
return torch::nn::init::Nonlinearity::Sigmoid;
|
184
|
-
} else if (s == "tanh") {
|
185
|
-
return torch::nn::init::Nonlinearity::Tanh;
|
186
|
-
} else if (s == "relu") {
|
187
|
-
return torch::nn::init::Nonlinearity::ReLU;
|
188
|
-
} else if (s == "leaky_relu") {
|
189
|
-
return torch::nn::init::Nonlinearity::LeakyReLU;
|
190
|
-
} else {
|
191
|
-
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
192
|
-
}
|
193
|
-
}
|
194
|
-
};
|
195
|
-
|
196
|
-
template<>
|
197
|
-
inline
|
198
|
-
NonlinearityType from_ruby<NonlinearityType>(Object x)
|
199
|
-
{
|
200
|
-
return NonlinearityType(x);
|
201
|
-
}
|
202
|
-
|
203
|
-
class MyReduction {
|
204
|
-
Object value;
|
205
|
-
public:
|
206
|
-
MyReduction(Object o) {
|
207
|
-
value = o;
|
208
|
-
}
|
209
|
-
operator int64_t() {
|
210
|
-
if (value.is_nil()) {
|
211
|
-
return Reduction::None;
|
212
|
-
}
|
213
|
-
|
214
|
-
std::string s = String(value).str();
|
215
|
-
if (s == "mean") {
|
216
|
-
return Reduction::Mean;
|
217
|
-
} else if (s == "sum") {
|
218
|
-
return Reduction::Sum;
|
219
|
-
} else {
|
220
|
-
throw std::runtime_error("Unsupported reduction: " + s);
|
221
|
-
}
|
222
|
-
}
|
223
|
-
};
|
224
|
-
|
225
|
-
template<>
|
226
|
-
inline
|
227
|
-
MyReduction from_ruby<MyReduction>(Object x)
|
228
|
-
{
|
229
|
-
return MyReduction(x);
|
230
|
-
}
|
231
|
-
|
232
|
-
typedef torch::Tensor Tensor;
|
17
|
+
using namespace Rice;
|
233
18
|
|
234
19
|
Object tensor_array(std::tuple<torch::Tensor, torch::Tensor> x) {
|
235
20
|
Array a;
|
@@ -241,8 +26,16 @@ Object tensor_array(std::tuple<torch::Tensor, torch::Tensor> x) {
|
|
241
26
|
extern "C"
|
242
27
|
void Init_ext()
|
243
28
|
{
|
244
|
-
Module rb_mTorch = define_module("Torch")
|
245
|
-
|
29
|
+
Module rb_mTorch = define_module("Torch");
|
30
|
+
add_torch_functions(rb_mTorch);
|
31
|
+
|
32
|
+
Class rb_cTensor = define_class_under<torch::Tensor>(rb_mTorch, "Tensor");
|
33
|
+
add_tensor_functions(rb_cTensor);
|
34
|
+
|
35
|
+
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
36
|
+
add_nn_functions(rb_mNN);
|
37
|
+
|
38
|
+
rb_mTorch.define_singleton_method(
|
246
39
|
"grad_enabled?",
|
247
40
|
*[]() {
|
248
41
|
return torch::GradMode::is_enabled();
|
@@ -252,11 +45,6 @@ void Init_ext()
|
|
252
45
|
*[](bool enabled) {
|
253
46
|
torch::GradMode::set_enabled(enabled);
|
254
47
|
})
|
255
|
-
.define_singleton_method(
|
256
|
-
"floating_point?",
|
257
|
-
*[](Tensor& input) {
|
258
|
-
return torch::is_floating_point(input);
|
259
|
-
})
|
260
48
|
.define_singleton_method(
|
261
49
|
"manual_seed",
|
262
50
|
*[](uint64_t seed) {
|
@@ -344,168 +132,16 @@ void Init_ext()
|
|
344
132
|
*[](Tensor& input, int64_t dim, bool keepdim) {
|
345
133
|
return torch::sum(input, dim, keepdim);
|
346
134
|
})
|
347
|
-
.define_singleton_method(
|
348
|
-
"_argmax",
|
349
|
-
*[](Tensor& input) {
|
350
|
-
return torch::argmax(input);
|
351
|
-
})
|
352
|
-
.define_singleton_method(
|
353
|
-
"_argmax_dim",
|
354
|
-
*[](Tensor& input, int64_t dim, bool keepdim) {
|
355
|
-
return torch::argmax(input, dim, keepdim);
|
356
|
-
})
|
357
|
-
.define_singleton_method(
|
358
|
-
"_cat",
|
359
|
-
*[](TensorList tensors, int64_t dim) {
|
360
|
-
return torch::cat(tensors, dim);
|
361
|
-
})
|
362
|
-
.define_singleton_method(
|
363
|
-
"_norm",
|
364
|
-
*[](Tensor& input) {
|
365
|
-
return torch::norm(input);
|
366
|
-
})
|
367
|
-
.define_singleton_method(
|
368
|
-
"_min",
|
369
|
-
*[](Tensor& input) {
|
370
|
-
return torch::min(input);
|
371
|
-
})
|
372
|
-
.define_singleton_method(
|
373
|
-
"_max",
|
374
|
-
*[](Tensor& input) {
|
375
|
-
return torch::max(input);
|
376
|
-
})
|
377
135
|
.define_singleton_method(
|
378
136
|
"_max_out",
|
379
137
|
*[](Tensor &max, Tensor &max_indices, const Tensor &input, int64_t dim, bool keepdim) {
|
380
138
|
return tensor_array(torch::_max_out(max, max_indices, input, dim, keepdim));
|
381
139
|
})
|
382
|
-
.define_singleton_method(
|
383
|
-
"_sqrt",
|
384
|
-
*[](Tensor& input) {
|
385
|
-
return torch::sqrt(input);
|
386
|
-
})
|
387
|
-
.define_singleton_method(
|
388
|
-
"_exp",
|
389
|
-
*[](Tensor& input) {
|
390
|
-
return torch::exp(input);
|
391
|
-
})
|
392
|
-
.define_singleton_method(
|
393
|
-
"_log",
|
394
|
-
*[](Tensor& input) {
|
395
|
-
return torch::log(input);
|
396
|
-
})
|
397
|
-
.define_singleton_method(
|
398
|
-
"_sign",
|
399
|
-
*[](Tensor& input) {
|
400
|
-
return torch::sign(input);
|
401
|
-
})
|
402
|
-
.define_singleton_method(
|
403
|
-
"_unsqueeze",
|
404
|
-
*[](Tensor& input, int64_t dim) {
|
405
|
-
return torch::unsqueeze(input, dim);
|
406
|
-
})
|
407
|
-
.define_singleton_method(
|
408
|
-
"_dot",
|
409
|
-
*[](Tensor& input, Tensor& tensor) {
|
410
|
-
return torch::dot(input, tensor);
|
411
|
-
})
|
412
|
-
.define_singleton_method(
|
413
|
-
"_matmul",
|
414
|
-
*[](Tensor& input, Tensor& other) {
|
415
|
-
return torch::matmul(input, other);
|
416
|
-
})
|
417
|
-
.define_singleton_method(
|
418
|
-
"_eq",
|
419
|
-
*[](Tensor& input, Tensor& other) {
|
420
|
-
return torch::eq(input, other);
|
421
|
-
})
|
422
|
-
.define_singleton_method(
|
423
|
-
"_gt",
|
424
|
-
// TODO support tensors
|
425
|
-
*[](Tensor& input, Scalar other) {
|
426
|
-
return torch::gt(input, other);
|
427
|
-
})
|
428
|
-
.define_singleton_method(
|
429
|
-
"_lt",
|
430
|
-
// TODO support tensors
|
431
|
-
*[](Tensor& input, Scalar other) {
|
432
|
-
return torch::lt(input, other);
|
433
|
-
})
|
434
|
-
.define_singleton_method(
|
435
|
-
"_add",
|
436
|
-
*[](Tensor& input, Tensor& other) {
|
437
|
-
return torch::add(input, other);
|
438
|
-
})
|
439
|
-
.define_singleton_method(
|
440
|
-
"_add_scalar",
|
441
|
-
*[](Tensor& input, Scalar other) {
|
442
|
-
return torch::add(input, other);
|
443
|
-
})
|
444
|
-
.define_singleton_method(
|
445
|
-
"_add_out",
|
446
|
-
*[](Tensor& out, Tensor& input, Tensor& other) {
|
447
|
-
return torch::add_out(out, input, other);
|
448
|
-
})
|
449
|
-
.define_singleton_method(
|
450
|
-
"_sub",
|
451
|
-
*[](Tensor& input, Tensor& other) {
|
452
|
-
return torch::sub(input, other);
|
453
|
-
})
|
454
|
-
.define_singleton_method(
|
455
|
-
"_sub_scalar",
|
456
|
-
*[](Tensor& input, Scalar other) {
|
457
|
-
return torch::sub(input, other);
|
458
|
-
})
|
459
|
-
.define_singleton_method(
|
460
|
-
"_mul",
|
461
|
-
*[](Tensor& input, Tensor& other) {
|
462
|
-
return torch::mul(input, other);
|
463
|
-
})
|
464
|
-
.define_singleton_method(
|
465
|
-
"_mul_scalar",
|
466
|
-
*[](Tensor& input, Scalar other) {
|
467
|
-
return torch::mul(input, other);
|
468
|
-
})
|
469
|
-
.define_singleton_method(
|
470
|
-
"_div",
|
471
|
-
*[](Tensor& input, Tensor& other) {
|
472
|
-
return torch::div(input, other);
|
473
|
-
})
|
474
|
-
.define_singleton_method(
|
475
|
-
"_div_scalar",
|
476
|
-
*[](Tensor& input, Scalar other) {
|
477
|
-
return torch::div(input, other);
|
478
|
-
})
|
479
|
-
.define_singleton_method(
|
480
|
-
"_remainder",
|
481
|
-
*[](Tensor& input, Tensor& other) {
|
482
|
-
return torch::remainder(input, other);
|
483
|
-
})
|
484
|
-
.define_singleton_method(
|
485
|
-
"_remainder_scalar",
|
486
|
-
*[](Tensor& input, Scalar other) {
|
487
|
-
return torch::remainder(input, other);
|
488
|
-
})
|
489
|
-
.define_singleton_method(
|
490
|
-
"_pow",
|
491
|
-
*[](Tensor& input, Scalar exponent) {
|
492
|
-
return torch::pow(input, exponent);
|
493
|
-
})
|
494
140
|
.define_singleton_method(
|
495
141
|
"_topk",
|
496
142
|
*[](Tensor& input, int64_t k) {
|
497
143
|
return tensor_array(torch::topk(input, k));
|
498
144
|
})
|
499
|
-
.define_singleton_method(
|
500
|
-
"_sigmoid",
|
501
|
-
*[](Tensor& input) {
|
502
|
-
return torch::sigmoid(input);
|
503
|
-
})
|
504
|
-
.define_singleton_method(
|
505
|
-
"_softplus",
|
506
|
-
*[](const Tensor &input, Scalar beta, Scalar threshold) {
|
507
|
-
return torch::softplus(input, beta, threshold);
|
508
|
-
})
|
509
145
|
.define_singleton_method(
|
510
146
|
"_softmax",
|
511
147
|
*[](const Tensor &input, int64_t dim) {
|
@@ -516,26 +152,6 @@ void Init_ext()
|
|
516
152
|
*[](Tensor& input, int64_t dim) {
|
517
153
|
return torch::log_softmax(input, dim);
|
518
154
|
})
|
519
|
-
.define_singleton_method(
|
520
|
-
"_abs",
|
521
|
-
*[](Tensor& input) {
|
522
|
-
return torch::abs(input);
|
523
|
-
})
|
524
|
-
.define_singleton_method(
|
525
|
-
"_neg",
|
526
|
-
*[](Tensor& input) {
|
527
|
-
return torch::neg(input);
|
528
|
-
})
|
529
|
-
.define_singleton_method(
|
530
|
-
"_reshape",
|
531
|
-
*[](Tensor& input, IntArrayRef shape) {
|
532
|
-
return torch::reshape(input, shape);
|
533
|
-
})
|
534
|
-
.define_singleton_method(
|
535
|
-
"_flatten",
|
536
|
-
*[](Tensor& input, int64_t start_dim, int64_t end_dim) {
|
537
|
-
return torch::flatten(input, start_dim, end_dim);
|
538
|
-
})
|
539
155
|
.define_singleton_method(
|
540
156
|
"relu",
|
541
157
|
*[](Tensor& input) {
|
@@ -579,104 +195,9 @@ void Init_ext()
|
|
579
195
|
return torch::avg_pool2d(input, kernel_size);
|
580
196
|
})
|
581
197
|
.define_singleton_method(
|
582
|
-
"
|
583
|
-
*[](Tensor&
|
584
|
-
return torch::
|
585
|
-
})
|
586
|
-
.define_singleton_method(
|
587
|
-
"_dropout!",
|
588
|
-
*[](Tensor& input, float p, bool train) {
|
589
|
-
return torch::dropout_(input, p, train);
|
590
|
-
})
|
591
|
-
.define_singleton_method(
|
592
|
-
"_feature_dropout",
|
593
|
-
*[](Tensor& input, float p, bool train) {
|
594
|
-
return torch::feature_dropout(input, p, train);
|
595
|
-
})
|
596
|
-
.define_singleton_method(
|
597
|
-
"_feature_dropout!",
|
598
|
-
*[](Tensor& input, float p, bool train) {
|
599
|
-
return torch::feature_dropout_(input, p, train);
|
600
|
-
})
|
601
|
-
.define_singleton_method(
|
602
|
-
"_alpha_dropout",
|
603
|
-
*[](Tensor& input, float p, bool train) {
|
604
|
-
return torch::alpha_dropout(input, p, train);
|
605
|
-
})
|
606
|
-
.define_singleton_method(
|
607
|
-
"_alpha_dropout!",
|
608
|
-
*[](Tensor& input, float p, bool train) {
|
609
|
-
return torch::alpha_dropout_(input, p, train);
|
610
|
-
})
|
611
|
-
.define_singleton_method(
|
612
|
-
"_feature_alpha_dropout",
|
613
|
-
*[](Tensor& input, float p, bool train) {
|
614
|
-
return torch::feature_alpha_dropout(input, p, train);
|
615
|
-
})
|
616
|
-
.define_singleton_method(
|
617
|
-
"_feature_alpha_dropout!",
|
618
|
-
*[](Tensor& input, float p, bool train) {
|
619
|
-
return torch::feature_alpha_dropout_(input, p, train);
|
620
|
-
})
|
621
|
-
// sparse layers
|
622
|
-
.define_singleton_method(
|
623
|
-
"_embedding",
|
624
|
-
// weight and indices are swapped from Python interface
|
625
|
-
*[](const Tensor &indices, const Tensor &weight, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
|
626
|
-
return torch::embedding(weight, indices, padding_idx, scale_grad_by_freq, sparse);
|
627
|
-
})
|
628
|
-
.define_singleton_method(
|
629
|
-
"_embedding_bag",
|
630
|
-
// weight and indices are swapped from Python interface
|
631
|
-
*[](const Tensor &weight, const Tensor &indices, const Tensor &offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const Tensor &per_sample_weights) {
|
632
|
-
return torch::embedding_bag(weight, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights);
|
633
|
-
})
|
634
|
-
// distance functions
|
635
|
-
.define_singleton_method(
|
636
|
-
"_cosine_similarity",
|
637
|
-
*[](const Tensor &x1, const Tensor &x2, int64_t dim, double eps) {
|
638
|
-
return torch::cosine_similarity(x1, x2, dim, eps);
|
639
|
-
})
|
640
|
-
.define_singleton_method(
|
641
|
-
"_pairwise_distance",
|
642
|
-
*[](const Tensor &x1, const Tensor &x2, double p, double eps, bool keepdim) {
|
643
|
-
return torch::pairwise_distance(x1, x2, p, eps, keepdim);
|
644
|
-
})
|
645
|
-
// loss functions
|
646
|
-
.define_singleton_method(
|
647
|
-
"binary_cross_entropy",
|
648
|
-
*[](Tensor& input, Tensor& target, MyReduction reduction) {
|
649
|
-
return torch::binary_cross_entropy(input, target, {}, reduction);
|
650
|
-
})
|
651
|
-
.define_singleton_method(
|
652
|
-
"ctc_loss",
|
653
|
-
*[](const Tensor &log_probs, const Tensor &targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, MyReduction reduction, bool zero_infinity) {
|
654
|
-
return torch::ctc_loss(log_probs, targets, input_lengths, target_lengths, blank, reduction, zero_infinity);
|
655
|
-
})
|
656
|
-
.define_singleton_method(
|
657
|
-
"kl_div",
|
658
|
-
*[](Tensor& input, Tensor& target, MyReduction reduction) {
|
659
|
-
return torch::kl_div(input, target, reduction);
|
660
|
-
})
|
661
|
-
.define_singleton_method(
|
662
|
-
"l1_loss",
|
663
|
-
*[](Tensor& input, Tensor& target, MyReduction reduction) {
|
664
|
-
return torch::l1_loss(input, target, reduction);
|
665
|
-
})
|
666
|
-
.define_singleton_method(
|
667
|
-
"mse_loss",
|
668
|
-
*[](Tensor& input, Tensor& target, MyReduction reduction) {
|
669
|
-
return torch::mse_loss(input, target, reduction);
|
670
|
-
})
|
671
|
-
.define_singleton_method(
|
672
|
-
"nll_loss",
|
673
|
-
*[](Tensor& input, Tensor& target, MyReduction reduction, int64_t ignore_index) {
|
674
|
-
return torch::nll_loss(input, target, {}, reduction, ignore_index);
|
675
|
-
})
|
676
|
-
.define_singleton_method(
|
677
|
-
"poisson_nll_loss",
|
678
|
-
*[](const Tensor &input, const Tensor &target, bool log_input, bool full, double eps, MyReduction reduction) {
|
679
|
-
return torch::poisson_nll_loss(input, target, log_input, full, eps, reduction);
|
198
|
+
"_binary_cross_entropy_with_logits",
|
199
|
+
*[](const Tensor &input, const Tensor &target, OptionalTensor weight, OptionalTensor pos_weight, MyReduction reduction) {
|
200
|
+
return torch::binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction);
|
680
201
|
})
|
681
202
|
.define_singleton_method("numel", &torch::numel)
|
682
203
|
.define_singleton_method(
|
@@ -703,7 +224,7 @@ void Init_ext()
|
|
703
224
|
return t.reshape(size);
|
704
225
|
});
|
705
226
|
|
706
|
-
|
227
|
+
rb_cTensor
|
707
228
|
.define_method("cuda?", &torch::Tensor::is_cuda)
|
708
229
|
.define_method("distributed?", &torch::Tensor::is_distributed)
|
709
230
|
.define_method("complex?", &torch::Tensor::is_complex)
|
@@ -740,16 +261,6 @@ void Init_ext()
|
|
740
261
|
*[](Tensor& self) {
|
741
262
|
return self.detach_();
|
742
263
|
})
|
743
|
-
.define_method(
|
744
|
-
"_select",
|
745
|
-
*[](Tensor& self, int64_t dim, int64_t index) {
|
746
|
-
return self.select(dim, index);
|
747
|
-
})
|
748
|
-
.define_method(
|
749
|
-
"_slice",
|
750
|
-
*[](Tensor& self, int64_t dim, int64_t start, int64_t end, int64_t step) {
|
751
|
-
return self.slice(dim, start, end, step);
|
752
|
-
})
|
753
264
|
.define_method(
|
754
265
|
"_requires_grad!",
|
755
266
|
*[](Tensor& self, bool requires_grad) {
|
@@ -789,11 +300,6 @@ void Init_ext()
|
|
789
300
|
s << self.device();
|
790
301
|
return s.str();
|
791
302
|
})
|
792
|
-
.define_method(
|
793
|
-
"_view",
|
794
|
-
*[](Tensor& self, IntArrayRef size) {
|
795
|
-
return self.view(size);
|
796
|
-
})
|
797
303
|
.define_method(
|
798
304
|
"resize_as!",
|
799
305
|
*[](Tensor& self, Tensor& other) {
|
@@ -809,21 +315,6 @@ void Init_ext()
|
|
809
315
|
*[](Tensor& self) {
|
810
316
|
return self.relu_();
|
811
317
|
})
|
812
|
-
.define_method(
|
813
|
-
"_add!",
|
814
|
-
*[](Tensor& self, Tensor& other) {
|
815
|
-
return self.add_(other);
|
816
|
-
})
|
817
|
-
.define_method(
|
818
|
-
"_add_alpha!",
|
819
|
-
*[](Tensor& self, Tensor& other, Scalar alpha) {
|
820
|
-
return self.add_(other, alpha);
|
821
|
-
})
|
822
|
-
.define_method(
|
823
|
-
"_add_scalar!",
|
824
|
-
*[](Tensor& self, Scalar other) {
|
825
|
-
return self.add_(other);
|
826
|
-
})
|
827
318
|
.define_method(
|
828
319
|
"normal!",
|
829
320
|
*[](Tensor& self, double mean, double std) {
|
@@ -839,16 +330,6 @@ void Init_ext()
|
|
839
330
|
*[](Tensor& self, Tensor& other) {
|
840
331
|
return self.sub_(other);
|
841
332
|
})
|
842
|
-
.define_method(
|
843
|
-
"_mul!",
|
844
|
-
*[](Tensor& self, Tensor& other) {
|
845
|
-
return self.mul_(other);
|
846
|
-
})
|
847
|
-
.define_method(
|
848
|
-
"_mul_scalar!",
|
849
|
-
*[](Tensor& self, Scalar other) {
|
850
|
-
return self.mul_(other);
|
851
|
-
})
|
852
333
|
.define_method(
|
853
334
|
"div!",
|
854
335
|
*[](Tensor& self, Tensor& other) {
|
@@ -880,7 +361,7 @@ void Init_ext()
|
|
880
361
|
return self.data();
|
881
362
|
})
|
882
363
|
.define_method(
|
883
|
-
"
|
364
|
+
"_flat_data",
|
884
365
|
*[](Tensor& self) {
|
885
366
|
Array a;
|
886
367
|
auto dtype = self.dtype();
|
@@ -931,11 +412,6 @@ void Init_ext()
|
|
931
412
|
}
|
932
413
|
return a;
|
933
414
|
})
|
934
|
-
.define_method(
|
935
|
-
"_size",
|
936
|
-
*[](Tensor& self, int i) {
|
937
|
-
return self.size(i);
|
938
|
-
})
|
939
415
|
.define_method(
|
940
416
|
"_to",
|
941
417
|
*[](Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
|
@@ -990,8 +466,6 @@ void Init_ext()
|
|
990
466
|
return self.requires_grad(requires_grad);
|
991
467
|
});
|
992
468
|
|
993
|
-
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
994
|
-
|
995
469
|
Module rb_mInit = define_module_under(rb_mNN, "Init")
|
996
470
|
.define_singleton_method(
|
997
471
|
"_calculate_gain",
|