torch-rb 0.1.4 → 0.1.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +5 -3
- data/ext/torch/ext.cpp +22 -548
- data/ext/torch/extconf.rb +6 -0
- data/ext/torch/nn_functions.cpp +595 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.hpp +250 -0
- data/ext/torch/tensor_functions.cpp +1860 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +2875 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch.rb +68 -129
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +78 -0
- data/lib/torch/native/generator.rb +149 -0
- data/lib/torch/native/native_functions.yaml +6837 -0
- data/lib/torch/native/parser.rb +97 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/conv2d.rb +0 -2
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/functional.rb +55 -16
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +1 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/module.rb +59 -12
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/parameter.rb +4 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +154 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/tensor.rb +19 -19
- data/lib/torch/version.rb +1 -1
- metadata +26 -2
@@ -0,0 +1,13 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class MultiLabelSoftMarginLoss < WeightedLoss
|
4
|
+
def initialize(weight: nil, reduction: "mean")
|
5
|
+
super(weight, reduction)
|
6
|
+
end
|
7
|
+
|
8
|
+
def forward(input, target)
|
9
|
+
F.multilabel_soft_margin_loss(input, target, weight: @weight, reduction: @reduction)
|
10
|
+
end
|
11
|
+
end
|
12
|
+
end
|
13
|
+
end
|
@@ -0,0 +1,17 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class MultiMarginLoss < WeightedLoss
|
4
|
+
def initialize(p: 1, margin: 1.0, weight: nil, reduction: "mean")
|
5
|
+
super(weight, reduction)
|
6
|
+
raise ArgumentError, "only p == 1 and p == 2 supported" if p != 1 && p != 2
|
7
|
+
raise ArgumentError, "weight must be nil or have one dimension" unless weight.nil? || weight.dim == 1
|
8
|
+
@p = p
|
9
|
+
@margin = margin
|
10
|
+
end
|
11
|
+
|
12
|
+
def forward(input, target)
|
13
|
+
F.multi_margin_loss(input, target, p: @p, margin: @margin, weight: @weight, reduction: @reduction)
|
14
|
+
end
|
15
|
+
end
|
16
|
+
end
|
17
|
+
end
|
data/lib/torch/nn/parameter.rb
CHANGED
data/lib/torch/nn/rnn.rb
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class RNN < RNNBase
|
4
|
+
def initialize(*args, **options)
|
5
|
+
if options.key?(:nonlinearity)
|
6
|
+
if options[:nonlinearity] == "tanh"
|
7
|
+
mode = "RNN_TANH"
|
8
|
+
elsif options[:nonlinearity] == "relu"
|
9
|
+
mode = "RNN_RELU"
|
10
|
+
else
|
11
|
+
raise ArgumentError, "Unknown nonlinearity: #{options[:nonlinearity]}"
|
12
|
+
end
|
13
|
+
options.delete(:nonlinearity)
|
14
|
+
else
|
15
|
+
mode = "RNN_TANH"
|
16
|
+
end
|
17
|
+
|
18
|
+
super(mode, *args, **options)
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
@@ -0,0 +1,154 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class RNNBase < Module
|
4
|
+
def initialize(mode, input_size, hidden_size, num_layers: 1, bias: true,
|
5
|
+
batch_first: false, dropout: 0.0, bidirectional: false)
|
6
|
+
|
7
|
+
super()
|
8
|
+
@mode = mode
|
9
|
+
@input_size = input_size
|
10
|
+
@hidden_size = hidden_size
|
11
|
+
@num_layers = num_layers
|
12
|
+
@bias = bias
|
13
|
+
@batch_first = batch_first
|
14
|
+
@dropout = dropout.to_f
|
15
|
+
@bidirectional = bidirectional
|
16
|
+
num_directions = bidirectional ? 2 : 1
|
17
|
+
|
18
|
+
if !dropout.is_a?(Numeric) || !(dropout >= 0 && dropout <= 1)
|
19
|
+
raise ArgumentError, "dropout should be a number in range [0, 1] " +
|
20
|
+
"representing the probability of an element being " +
|
21
|
+
"zeroed"
|
22
|
+
end
|
23
|
+
if dropout > 0 && num_layers == 1
|
24
|
+
warn "dropout option adds dropout after all but last " +
|
25
|
+
"recurrent layer, so non-zero dropout expects " +
|
26
|
+
"num_layers greater than 1, but got dropout=#{dropout} and " +
|
27
|
+
"num_layers=#{num_layers}"
|
28
|
+
end
|
29
|
+
|
30
|
+
gate_size =
|
31
|
+
case mode
|
32
|
+
when "LSTM"
|
33
|
+
4 * hidden_size
|
34
|
+
when "GRU"
|
35
|
+
3 * hidden_size
|
36
|
+
when "RNN_TANH"
|
37
|
+
hidden_size
|
38
|
+
when "RNN_RELU"
|
39
|
+
hidden_size
|
40
|
+
else
|
41
|
+
raise ArgumentError, "Unrecognized RNN mode: #{mode}"
|
42
|
+
end
|
43
|
+
|
44
|
+
@all_weights = []
|
45
|
+
num_layers.times do |layer|
|
46
|
+
num_directions.times do |direction|
|
47
|
+
layer_input_size = layer == 0 ? input_size : hidden_size * num_directions
|
48
|
+
|
49
|
+
w_ih = Parameter.new(Torch::Tensor.new(gate_size, layer_input_size))
|
50
|
+
w_hh = Parameter.new(Torch::Tensor.new(gate_size, hidden_size))
|
51
|
+
b_ih = Parameter.new(Torch::Tensor.new(gate_size))
|
52
|
+
# Second bias vector included for CuDNN compatibility. Only one
|
53
|
+
# bias vector is needed in standard definition.
|
54
|
+
b_hh = Parameter.new(Torch::Tensor.new(gate_size))
|
55
|
+
layer_params = [w_ih, w_hh, b_ih, b_hh]
|
56
|
+
|
57
|
+
suffix = direction == 1 ? "_reverse" : ""
|
58
|
+
param_names = ["weight_ih_l%s%s", "weight_hh_l%s%s"]
|
59
|
+
if bias
|
60
|
+
param_names += ["bias_ih_l%s%s", "bias_hh_l%s%s"]
|
61
|
+
end
|
62
|
+
param_names.map! { |x| x % [layer, suffix] }
|
63
|
+
|
64
|
+
param_names.zip(layer_params) do |name, param|
|
65
|
+
instance_variable_set("@#{name}", param)
|
66
|
+
end
|
67
|
+
@all_weights << param_names
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
71
|
+
flatten_parameters
|
72
|
+
reset_parameters
|
73
|
+
end
|
74
|
+
|
75
|
+
def flatten_parameters
|
76
|
+
# no-op unless module is on the GPU and cuDNN is enabled
|
77
|
+
end
|
78
|
+
|
79
|
+
def _apply(fn)
|
80
|
+
ret = super
|
81
|
+
flatten_parameters
|
82
|
+
ret
|
83
|
+
end
|
84
|
+
|
85
|
+
def reset_parameters
|
86
|
+
stdv = 1.0 / Math.sqrt(@hidden_size)
|
87
|
+
parameters.each do |weight|
|
88
|
+
Init.uniform!(weight, a: -stdv, b: stdv)
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
def permute_hidden(hx, permutation)
|
93
|
+
raise NotImplementedYet
|
94
|
+
end
|
95
|
+
|
96
|
+
def forward(input, hx: nil)
|
97
|
+
raise NotImplementedYet
|
98
|
+
|
99
|
+
is_packed = false # TODO isinstance(input, PackedSequence)
|
100
|
+
if is_packed
|
101
|
+
input, batch_sizes, sorted_indices, unsorted_indices = input
|
102
|
+
max_batch_size = batch_sizes[0]
|
103
|
+
max_batch_size = max_batch_size.to_i
|
104
|
+
else
|
105
|
+
batch_sizes = nil
|
106
|
+
max_batch_size = @batch_first ? input.size(0) : input.size(1)
|
107
|
+
sorted_indices = nil
|
108
|
+
unsorted_indices = nil
|
109
|
+
end
|
110
|
+
|
111
|
+
if hx.nil?
|
112
|
+
num_directions = @bidirectional ? 2 : 1
|
113
|
+
hx = Torch.zeros(@num_layers * num_directions, max_batch_size,
|
114
|
+
@hidden_size, dtype: input.dtype, device: input.device)
|
115
|
+
else
|
116
|
+
# Each batch of the hidden state should match the input sequence that
|
117
|
+
# the user believes he/she is passing in.
|
118
|
+
hx = permute_hidden(hx, sorted_indices)
|
119
|
+
end
|
120
|
+
|
121
|
+
check_forward_args(input, hx, batch_sizes)
|
122
|
+
_rnn_impls = {
|
123
|
+
"RNN_TANH" => Torch.method(:_rnn_tanh),
|
124
|
+
"RNN_RELU" => Torch.method(:_rnn_relu)
|
125
|
+
}
|
126
|
+
_impl = _rnn_impls[@mode]
|
127
|
+
if batch_sizes.nil?
|
128
|
+
result = _impl.call(input, hx, _get_flat_weights, @bias, @num_layers,
|
129
|
+
@dropout, @training, @bidirectional, @batch_first)
|
130
|
+
else
|
131
|
+
result = _impl.call(input, batch_sizes, hx, _get_flat_weights, @bias,
|
132
|
+
@num_layers, @dropout, @training, @bidirectional)
|
133
|
+
end
|
134
|
+
output = result[0]
|
135
|
+
hidden = result[1]
|
136
|
+
|
137
|
+
if is_packed
|
138
|
+
raise NotImplementedYet
|
139
|
+
# output = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
|
140
|
+
end
|
141
|
+
[output, permute_hidden(hidden, unsorted_indices)]
|
142
|
+
end
|
143
|
+
|
144
|
+
# TODO add more parameters
|
145
|
+
def extra_inspect
|
146
|
+
s = String.new("%{input_size}, %{hidden_size}")
|
147
|
+
if @num_layers != 1
|
148
|
+
s += ", num_layers: %{num_layers}"
|
149
|
+
end
|
150
|
+
format(s, input_size: @input_size, hidden_size: @hidden_size, num_layers: @num_layers)
|
151
|
+
end
|
152
|
+
end
|
153
|
+
end
|
154
|
+
end
|
@@ -0,0 +1,18 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class TripletMarginLoss < Loss
|
4
|
+
def initialize(margin: 1.0, p: 2.0, eps: 1e-6, swap: false, reduction: "mean")
|
5
|
+
super(reduction)
|
6
|
+
@margin = margin
|
7
|
+
@p = p
|
8
|
+
@eps = eps
|
9
|
+
@swap = swap
|
10
|
+
end
|
11
|
+
|
12
|
+
def forward(anchor, positive, negative)
|
13
|
+
F.triplet_margin_loss(anchor, positive, negative, margin: @margin, p: @p,
|
14
|
+
eps: @eps, swap: @swap, reduction: @reduction)
|
15
|
+
end
|
16
|
+
end
|
17
|
+
end
|
18
|
+
end
|
data/lib/torch/tensor.rb
CHANGED
@@ -5,12 +5,8 @@ module Torch
|
|
5
5
|
|
6
6
|
alias_method :requires_grad?, :requires_grad
|
7
7
|
|
8
|
-
def self.new(*
|
9
|
-
|
10
|
-
size.first
|
11
|
-
else
|
12
|
-
Torch.empty(*size)
|
13
|
-
end
|
8
|
+
def self.new(*args)
|
9
|
+
FloatTensor.new(*args)
|
14
10
|
end
|
15
11
|
|
16
12
|
def dtype
|
@@ -28,7 +24,7 @@ module Torch
|
|
28
24
|
end
|
29
25
|
|
30
26
|
def to_a
|
31
|
-
reshape_arr(
|
27
|
+
reshape_arr(_flat_data, shape)
|
32
28
|
end
|
33
29
|
|
34
30
|
# TODO support dtype
|
@@ -39,7 +35,7 @@ module Torch
|
|
39
35
|
|
40
36
|
def size(dim = nil)
|
41
37
|
if dim
|
42
|
-
|
38
|
+
_size_int(dim)
|
43
39
|
else
|
44
40
|
shape
|
45
41
|
end
|
@@ -57,7 +53,7 @@ module Torch
|
|
57
53
|
if numel != 1
|
58
54
|
raise Error, "only one element tensors can be converted to Ruby scalars"
|
59
55
|
end
|
60
|
-
|
56
|
+
_flat_data.first
|
61
57
|
end
|
62
58
|
|
63
59
|
# unsure if this is correct
|
@@ -73,7 +69,7 @@ module Torch
|
|
73
69
|
def numo
|
74
70
|
cls = Torch._dtype_to_numo[dtype]
|
75
71
|
raise Error, "Cannot convert #{dtype} to Numo" unless cls
|
76
|
-
cls.cast(
|
72
|
+
cls.cast(_flat_data).reshape(*shape)
|
77
73
|
end
|
78
74
|
|
79
75
|
def new_ones(*size, **options)
|
@@ -90,25 +86,27 @@ module Torch
|
|
90
86
|
_type(enum)
|
91
87
|
end
|
92
88
|
|
89
|
+
# start temp operations
|
90
|
+
|
93
91
|
def add!(value = 1, other)
|
94
92
|
if other.is_a?(Numeric)
|
95
|
-
|
93
|
+
_add__scalar(other, value)
|
96
94
|
else
|
97
95
|
# need to use alpha for sparse tensors instead of multiplying
|
98
|
-
|
96
|
+
_add__tensor(other, value)
|
99
97
|
end
|
100
98
|
end
|
101
99
|
|
102
100
|
def mul!(other)
|
103
101
|
if other.is_a?(Numeric)
|
104
|
-
|
102
|
+
_mul__scalar(other)
|
105
103
|
else
|
106
|
-
|
104
|
+
_mul__tensor(other)
|
107
105
|
end
|
108
106
|
end
|
109
107
|
|
110
108
|
# operations
|
111
|
-
%w(
|
109
|
+
%w(log_softmax mean softmax sum topk).each do |op|
|
112
110
|
define_method(op) do |*args, **options, &block|
|
113
111
|
if options.any?
|
114
112
|
Torch.send(op, self, *args, **options, &block)
|
@@ -118,6 +116,8 @@ module Torch
|
|
118
116
|
end
|
119
117
|
end
|
120
118
|
|
119
|
+
# end temp operations
|
120
|
+
|
121
121
|
def +(other)
|
122
122
|
add(other)
|
123
123
|
end
|
@@ -156,11 +156,11 @@ module Torch
|
|
156
156
|
dim = 0
|
157
157
|
indexes.each do |index|
|
158
158
|
if index.is_a?(Numeric)
|
159
|
-
result = result.
|
159
|
+
result = result._select_int(dim, index)
|
160
160
|
elsif index.is_a?(Range)
|
161
161
|
finish = index.end
|
162
162
|
finish += 1 unless index.exclude_end?
|
163
|
-
result = result.
|
163
|
+
result = result._slice_tensor(dim, index.begin, finish, 1)
|
164
164
|
dim += 1
|
165
165
|
elsif index.nil?
|
166
166
|
result = result.unsqueeze(dim)
|
@@ -183,11 +183,11 @@ module Torch
|
|
183
183
|
value = Torch.tensor(value) unless value.is_a?(Tensor)
|
184
184
|
|
185
185
|
if index.is_a?(Numeric)
|
186
|
-
copy_to(
|
186
|
+
copy_to(_select_int(0, index), value)
|
187
187
|
elsif index.is_a?(Range)
|
188
188
|
finish = index.end
|
189
189
|
finish += 1 unless index.exclude_end?
|
190
|
-
copy_to(
|
190
|
+
copy_to(_slice_tensor(0, index.begin, finish, 1), value)
|
191
191
|
else
|
192
192
|
raise Error, "Unsupported index type: #{index.class.name}"
|
193
193
|
end
|
data/lib/torch/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: torch-rb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.5
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-12-
|
11
|
+
date: 2019-12-07 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rice
|
@@ -106,17 +106,31 @@ files:
|
|
106
106
|
- README.md
|
107
107
|
- ext/torch/ext.cpp
|
108
108
|
- ext/torch/extconf.rb
|
109
|
+
- ext/torch/nn_functions.cpp
|
110
|
+
- ext/torch/nn_functions.hpp
|
111
|
+
- ext/torch/templates.hpp
|
112
|
+
- ext/torch/tensor_functions.cpp
|
113
|
+
- ext/torch/tensor_functions.hpp
|
114
|
+
- ext/torch/torch_functions.cpp
|
115
|
+
- ext/torch/torch_functions.hpp
|
109
116
|
- lib/torch-rb.rb
|
110
117
|
- lib/torch.rb
|
111
118
|
- lib/torch/ext.bundle
|
112
119
|
- lib/torch/inspector.rb
|
120
|
+
- lib/torch/native/dispatcher.rb
|
121
|
+
- lib/torch/native/function.rb
|
122
|
+
- lib/torch/native/generator.rb
|
123
|
+
- lib/torch/native/native_functions.yaml
|
124
|
+
- lib/torch/native/parser.rb
|
113
125
|
- lib/torch/nn/alpha_dropout.rb
|
114
126
|
- lib/torch/nn/avg_pool2d.rb
|
115
127
|
- lib/torch/nn/avg_poolnd.rb
|
116
128
|
- lib/torch/nn/bce_loss.rb
|
129
|
+
- lib/torch/nn/bce_with_logits_loss.rb
|
117
130
|
- lib/torch/nn/bilinear.rb
|
118
131
|
- lib/torch/nn/conv2d.rb
|
119
132
|
- lib/torch/nn/convnd.rb
|
133
|
+
- lib/torch/nn/cosine_embedding_loss.rb
|
120
134
|
- lib/torch/nn/cosine_similarity.rb
|
121
135
|
- lib/torch/nn/cross_entropy_loss.rb
|
122
136
|
- lib/torch/nn/ctc_loss.rb
|
@@ -128,6 +142,7 @@ files:
|
|
128
142
|
- lib/torch/nn/embedding_bag.rb
|
129
143
|
- lib/torch/nn/feature_alpha_dropout.rb
|
130
144
|
- lib/torch/nn/functional.rb
|
145
|
+
- lib/torch/nn/hinge_embedding_loss.rb
|
131
146
|
- lib/torch/nn/identity.rb
|
132
147
|
- lib/torch/nn/init.rb
|
133
148
|
- lib/torch/nn/kl_div_loss.rb
|
@@ -136,22 +151,31 @@ files:
|
|
136
151
|
- lib/torch/nn/linear.rb
|
137
152
|
- lib/torch/nn/log_softmax.rb
|
138
153
|
- lib/torch/nn/loss.rb
|
154
|
+
- lib/torch/nn/margin_ranking_loss.rb
|
139
155
|
- lib/torch/nn/max_pool2d.rb
|
140
156
|
- lib/torch/nn/max_poolnd.rb
|
141
157
|
- lib/torch/nn/module.rb
|
142
158
|
- lib/torch/nn/mse_loss.rb
|
159
|
+
- lib/torch/nn/multi_label_margin_loss.rb
|
160
|
+
- lib/torch/nn/multi_label_soft_margin_loss.rb
|
161
|
+
- lib/torch/nn/multi_margin_loss.rb
|
143
162
|
- lib/torch/nn/nll_loss.rb
|
144
163
|
- lib/torch/nn/pairwise_distance.rb
|
145
164
|
- lib/torch/nn/parameter.rb
|
146
165
|
- lib/torch/nn/poisson_nll_loss.rb
|
147
166
|
- lib/torch/nn/prelu.rb
|
148
167
|
- lib/torch/nn/relu.rb
|
168
|
+
- lib/torch/nn/rnn.rb
|
169
|
+
- lib/torch/nn/rnn_base.rb
|
149
170
|
- lib/torch/nn/sequential.rb
|
150
171
|
- lib/torch/nn/sigmoid.rb
|
172
|
+
- lib/torch/nn/smooth_l1_loss.rb
|
173
|
+
- lib/torch/nn/soft_margin_loss.rb
|
151
174
|
- lib/torch/nn/softmax.rb
|
152
175
|
- lib/torch/nn/softmax2d.rb
|
153
176
|
- lib/torch/nn/softmin.rb
|
154
177
|
- lib/torch/nn/softplus.rb
|
178
|
+
- lib/torch/nn/triplet_margin_loss.rb
|
155
179
|
- lib/torch/nn/weighted_loss.rb
|
156
180
|
- lib/torch/optim/adadelta.rb
|
157
181
|
- lib/torch/optim/adagrad.rb
|