torch-rb 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/LICENSE.txt +46 -22
- data/README.md +14 -5
- data/ext/torch/ext.cpp +248 -31
- data/lib/torch.rb +80 -9
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +4 -3
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/conv2d.rb +12 -24
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/functional.rb +54 -12
- data/lib/torch/nn/linear.rb +2 -2
- data/lib/torch/nn/module.rb +30 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +56 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +48 -16
- data/lib/torch/tensor.rb +38 -4
- data/lib/torch/utils/data/data_loader.rb +10 -4
- data/lib/torch/utils/data/tensor_dataset.rb +3 -0
- data/lib/torch/version.rb +1 -1
- metadata +21 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e7f715179c9a84dc7399b80d93fd61f2bbb58a0156e6084dc4abb23e1d4a1b52
|
4
|
+
data.tar.gz: 6928379ae7c92a77ad9dde4f4224ec33c6f8575a9b77585c0147e4f5361021de
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 9911a9e86d93f1e410776c44fdb3cd9aa06c83d1f0e42fdab8530970bea6520aed7906e96fb8243efd6b957453ebc13678b2b92e4c85b54407030a32c6196e08
|
7
|
+
data.tar.gz: 0d080f5458a5dcf8fee19ce5e2e342bf6269432de6e78d923036232963ebb80daeea993c0bbf4af2d6da46593ac28a72a8232020a9fcb48acc3276c9e1ebebf3
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,13 @@
|
|
1
|
+
## 0.1.3 (2019-11-30)
|
2
|
+
|
3
|
+
- Changed to BSD 3-Clause license to match PyTorch
|
4
|
+
- Added many optimizers
|
5
|
+
- Added `StepLR` learning rate scheduler
|
6
|
+
- Added dropout
|
7
|
+
- Added embedding
|
8
|
+
- Added support for `bool` type
|
9
|
+
- Improved performance of `from_numo`
|
10
|
+
|
1
11
|
## 0.1.2 (2019-11-27)
|
2
12
|
|
3
13
|
- Added SGD optimizer
|
data/LICENSE.txt
CHANGED
@@ -1,22 +1,46 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
1
|
+
BSD 3-Clause License
|
2
|
+
|
3
|
+
From Torch-rb:
|
4
|
+
|
5
|
+
Copyright (c) 2019- Andrew Kane
|
6
|
+
|
7
|
+
From PyTorch (for ported code):
|
8
|
+
|
9
|
+
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
10
|
+
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
11
|
+
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
12
|
+
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
13
|
+
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
14
|
+
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
15
|
+
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
|
16
|
+
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
|
17
|
+
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
|
18
|
+
|
19
|
+
All rights reserved.
|
20
|
+
|
21
|
+
Redistribution and use in source and binary forms, with or without
|
22
|
+
modification, are permitted provided that the following conditions are met:
|
23
|
+
|
24
|
+
1. Redistributions of source code must retain the above copyright
|
25
|
+
notice, this list of conditions and the following disclaimer.
|
26
|
+
|
27
|
+
2. Redistributions in binary form must reproduce the above copyright
|
28
|
+
notice, this list of conditions and the following disclaimer in the
|
29
|
+
documentation and/or other materials provided with the distribution.
|
30
|
+
|
31
|
+
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
|
32
|
+
and IDIAP Research Institute nor the names of its contributors may be
|
33
|
+
used to endorse or promote products derived from this software without
|
34
|
+
specific prior written permission.
|
35
|
+
|
36
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
37
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
38
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
39
|
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
40
|
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
41
|
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
42
|
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
43
|
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
44
|
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
45
|
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
46
|
+
POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
CHANGED
@@ -30,7 +30,9 @@ This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.htm
|
|
30
30
|
|
31
31
|
Many methods and options are missing at the moment. PRs welcome!
|
32
32
|
|
33
|
-
|
33
|
+
## Tutorial
|
34
|
+
|
35
|
+
Some examples below are from [Deep Learning with PyTorch: A 60 Minutes Blitz](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html)
|
34
36
|
|
35
37
|
### Tensors
|
36
38
|
|
@@ -145,7 +147,7 @@ Convert a Numo array to a tensor
|
|
145
147
|
|
146
148
|
```ruby
|
147
149
|
b = Numo::NArray.cast([1, 2, 3])
|
148
|
-
Torch.
|
150
|
+
Torch.from_numo(b)
|
149
151
|
```
|
150
152
|
|
151
153
|
### Autograd
|
@@ -180,10 +182,10 @@ Stop autograd from tracking history
|
|
180
182
|
|
181
183
|
```ruby
|
182
184
|
x.requires_grad # true
|
183
|
-
(x
|
185
|
+
(x**2).requires_grad # true
|
184
186
|
|
185
187
|
Torch.no_grad do
|
186
|
-
(x
|
188
|
+
(x**2).requires_grad # false
|
187
189
|
end
|
188
190
|
```
|
189
191
|
|
@@ -359,6 +361,13 @@ Here’s a list of functions to create tensors (descriptions from the [C++ docs]
|
|
359
361
|
Torch.zeros(3) # tensor([0, 0, 0])
|
360
362
|
```
|
361
363
|
|
364
|
+
## Examples
|
365
|
+
|
366
|
+
Here are a few full examples:
|
367
|
+
|
368
|
+
- [Image classification with MNIST](examples/mnist)
|
369
|
+
- [Collaborative filtering with MovieLens](examples/movielens)
|
370
|
+
|
362
371
|
## LibTorch Installation
|
363
372
|
|
364
373
|
[Download LibTorch](https://pytorch.org/). For Linux, use the `cxx11 ABI` version. Then run:
|
@@ -405,7 +414,7 @@ To get started with development:
|
|
405
414
|
git clone https://github.com/ankane/torch-rb.git
|
406
415
|
cd torch-rb
|
407
416
|
bundle install
|
408
|
-
bundle exec rake compile
|
417
|
+
bundle exec rake compile -- --with-torch-dir=/path/to/libtorch
|
409
418
|
bundle exec rake test
|
410
419
|
```
|
411
420
|
|
data/ext/torch/ext.cpp
CHANGED
@@ -88,7 +88,49 @@ IntArrayRef from_ruby<IntArrayRef>(Object x)
|
|
88
88
|
}
|
89
89
|
|
90
90
|
// for now
|
91
|
-
|
91
|
+
class Scalar {
|
92
|
+
torch::Scalar value;
|
93
|
+
public:
|
94
|
+
Scalar(Object o) {
|
95
|
+
// TODO cast based on Ruby type
|
96
|
+
if (o.rb_type() == T_FIXNUM) {
|
97
|
+
value = torch::Scalar(from_ruby<int64_t>(o));
|
98
|
+
} else {
|
99
|
+
value = torch::Scalar(from_ruby<float>(o));
|
100
|
+
}
|
101
|
+
}
|
102
|
+
operator torch::Scalar() {
|
103
|
+
return value;
|
104
|
+
}
|
105
|
+
};
|
106
|
+
|
107
|
+
template<>
|
108
|
+
inline
|
109
|
+
Scalar from_ruby<Scalar>(Object x)
|
110
|
+
{
|
111
|
+
return Scalar(x);
|
112
|
+
}
|
113
|
+
|
114
|
+
class TensorList {
|
115
|
+
std::vector<torch::Tensor> vec;
|
116
|
+
public:
|
117
|
+
TensorList(Object o) {
|
118
|
+
Array a = Array(o);
|
119
|
+
for (size_t i = 0; i < a.size(); i++) {
|
120
|
+
vec.push_back(from_ruby<torch::Tensor>(a[i]));
|
121
|
+
}
|
122
|
+
}
|
123
|
+
operator torch::TensorList() {
|
124
|
+
return torch::TensorList(vec);
|
125
|
+
}
|
126
|
+
};
|
127
|
+
|
128
|
+
template<>
|
129
|
+
inline
|
130
|
+
TensorList from_ruby<TensorList>(Object x)
|
131
|
+
{
|
132
|
+
return TensorList(x);
|
133
|
+
}
|
92
134
|
|
93
135
|
extern "C"
|
94
136
|
void Init_ext()
|
@@ -206,6 +248,11 @@ void Init_ext()
|
|
206
248
|
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
207
249
|
return torch::argmax(input, dim, keepdim);
|
208
250
|
})
|
251
|
+
.define_singleton_method(
|
252
|
+
"_cat",
|
253
|
+
*[](TensorList tensors, int64_t dim) {
|
254
|
+
return torch::cat(tensors, dim);
|
255
|
+
})
|
209
256
|
.define_singleton_method(
|
210
257
|
"_norm",
|
211
258
|
*[](torch::Tensor& input) {
|
@@ -221,6 +268,17 @@ void Init_ext()
|
|
221
268
|
*[](torch::Tensor& input) {
|
222
269
|
return torch::max(input);
|
223
270
|
})
|
271
|
+
.define_singleton_method(
|
272
|
+
"_max_out",
|
273
|
+
*[](torch::Tensor &max, torch::Tensor &max_indices, const torch::Tensor &input, int64_t dim, bool keepdim) {
|
274
|
+
// TODO add return value
|
275
|
+
torch::_max_out(max, max_indices, input, dim, keepdim);
|
276
|
+
})
|
277
|
+
.define_singleton_method(
|
278
|
+
"_sqrt",
|
279
|
+
*[](torch::Tensor& input) {
|
280
|
+
return torch::sqrt(input);
|
281
|
+
})
|
224
282
|
.define_singleton_method(
|
225
283
|
"_exp",
|
226
284
|
*[](torch::Tensor& input) {
|
@@ -231,6 +289,11 @@ void Init_ext()
|
|
231
289
|
*[](torch::Tensor& input) {
|
232
290
|
return torch::log(input);
|
233
291
|
})
|
292
|
+
.define_singleton_method(
|
293
|
+
"_sign",
|
294
|
+
*[](torch::Tensor& input) {
|
295
|
+
return torch::sign(input);
|
296
|
+
})
|
234
297
|
.define_singleton_method(
|
235
298
|
"_unsqueeze",
|
236
299
|
*[](torch::Tensor& input, int64_t dim) {
|
@@ -251,6 +314,18 @@ void Init_ext()
|
|
251
314
|
*[](torch::Tensor& input, torch::Tensor& other) {
|
252
315
|
return torch::eq(input, other);
|
253
316
|
})
|
317
|
+
.define_singleton_method(
|
318
|
+
"_gt",
|
319
|
+
// TODO support tensors
|
320
|
+
*[](torch::Tensor& input, Scalar other) {
|
321
|
+
return torch::gt(input, other);
|
322
|
+
})
|
323
|
+
.define_singleton_method(
|
324
|
+
"_lt",
|
325
|
+
// TODO support tensors
|
326
|
+
*[](torch::Tensor& input, Scalar other) {
|
327
|
+
return torch::lt(input, other);
|
328
|
+
})
|
254
329
|
.define_singleton_method(
|
255
330
|
"_add",
|
256
331
|
*[](torch::Tensor& input, torch::Tensor& other) {
|
@@ -258,7 +333,7 @@ void Init_ext()
|
|
258
333
|
})
|
259
334
|
.define_singleton_method(
|
260
335
|
"_add_scalar",
|
261
|
-
*[](torch::Tensor& input,
|
336
|
+
*[](torch::Tensor& input, Scalar other) {
|
262
337
|
return torch::add(input, other);
|
263
338
|
})
|
264
339
|
.define_singleton_method(
|
@@ -273,7 +348,7 @@ void Init_ext()
|
|
273
348
|
})
|
274
349
|
.define_singleton_method(
|
275
350
|
"_sub_scalar",
|
276
|
-
*[](torch::Tensor& input,
|
351
|
+
*[](torch::Tensor& input, Scalar other) {
|
277
352
|
return torch::sub(input, other);
|
278
353
|
})
|
279
354
|
.define_singleton_method(
|
@@ -283,7 +358,7 @@ void Init_ext()
|
|
283
358
|
})
|
284
359
|
.define_singleton_method(
|
285
360
|
"_mul_scalar",
|
286
|
-
*[](torch::Tensor& input,
|
361
|
+
*[](torch::Tensor& input, Scalar other) {
|
287
362
|
return torch::mul(input, other);
|
288
363
|
})
|
289
364
|
.define_singleton_method(
|
@@ -293,7 +368,7 @@ void Init_ext()
|
|
293
368
|
})
|
294
369
|
.define_singleton_method(
|
295
370
|
"_div_scalar",
|
296
|
-
*[](torch::Tensor& input,
|
371
|
+
*[](torch::Tensor& input, Scalar other) {
|
297
372
|
return torch::div(input, other);
|
298
373
|
})
|
299
374
|
.define_singleton_method(
|
@@ -303,7 +378,7 @@ void Init_ext()
|
|
303
378
|
})
|
304
379
|
.define_singleton_method(
|
305
380
|
"_remainder_scalar",
|
306
|
-
*[](torch::Tensor& input,
|
381
|
+
*[](torch::Tensor& input, Scalar other) {
|
307
382
|
return torch::remainder(input, other);
|
308
383
|
})
|
309
384
|
.define_singleton_method(
|
@@ -311,6 +386,11 @@ void Init_ext()
|
|
311
386
|
*[](torch::Tensor& input, Scalar exponent) {
|
312
387
|
return torch::pow(input, exponent);
|
313
388
|
})
|
389
|
+
.define_singleton_method(
|
390
|
+
"_abs",
|
391
|
+
*[](torch::Tensor& input) {
|
392
|
+
return torch::abs(input);
|
393
|
+
})
|
314
394
|
.define_singleton_method(
|
315
395
|
"_neg",
|
316
396
|
*[](torch::Tensor& input) {
|
@@ -321,25 +401,20 @@ void Init_ext()
|
|
321
401
|
*[](torch::Tensor& input, IntArrayRef shape) {
|
322
402
|
return torch::reshape(input, shape);
|
323
403
|
})
|
404
|
+
.define_singleton_method(
|
405
|
+
"_flatten",
|
406
|
+
*[](torch::Tensor& input, int64_t start_dim, int64_t end_dim) {
|
407
|
+
return torch::flatten(input, start_dim, end_dim);
|
408
|
+
})
|
324
409
|
.define_singleton_method(
|
325
410
|
"relu",
|
326
411
|
*[](torch::Tensor& input) {
|
327
412
|
return torch::relu(input);
|
328
413
|
})
|
329
|
-
.define_singleton_method(
|
330
|
-
"prelu",
|
331
|
-
*[](torch::Tensor& input, torch::Tensor& weight) {
|
332
|
-
return torch::prelu(input, weight);
|
333
|
-
})
|
334
|
-
.define_singleton_method(
|
335
|
-
"leaky_relu",
|
336
|
-
*[](torch::Tensor& input, Scalar negative_slope = 0.01) {
|
337
|
-
return torch::leaky_relu(input, negative_slope);
|
338
|
-
})
|
339
414
|
.define_singleton_method(
|
340
415
|
"conv2d",
|
341
|
-
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias, IntArrayRef stride, IntArrayRef padding) {
|
342
|
-
return torch::conv2d(input, weight, bias, stride, padding);
|
416
|
+
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
|
417
|
+
return torch::conv2d(input, weight, bias, stride, padding, dilation, groups);
|
343
418
|
})
|
344
419
|
.define_singleton_method(
|
345
420
|
"linear",
|
@@ -356,6 +431,52 @@ void Init_ext()
|
|
356
431
|
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
357
432
|
return torch::avg_pool2d(input, kernel_size);
|
358
433
|
})
|
434
|
+
.define_singleton_method(
|
435
|
+
"_dropout",
|
436
|
+
*[](torch::Tensor& input, float p, bool train) {
|
437
|
+
return torch::dropout(input, p, train);
|
438
|
+
})
|
439
|
+
.define_singleton_method(
|
440
|
+
"_dropout!",
|
441
|
+
*[](torch::Tensor& input, float p, bool train) {
|
442
|
+
return torch::dropout_(input, p, train);
|
443
|
+
})
|
444
|
+
.define_singleton_method(
|
445
|
+
"_feature_dropout",
|
446
|
+
*[](torch::Tensor& input, float p, bool train) {
|
447
|
+
return torch::feature_dropout(input, p, train);
|
448
|
+
})
|
449
|
+
.define_singleton_method(
|
450
|
+
"_feature_dropout!",
|
451
|
+
*[](torch::Tensor& input, float p, bool train) {
|
452
|
+
return torch::feature_dropout_(input, p, train);
|
453
|
+
})
|
454
|
+
.define_singleton_method(
|
455
|
+
"_alpha_dropout",
|
456
|
+
*[](torch::Tensor& input, float p, bool train) {
|
457
|
+
return torch::alpha_dropout(input, p, train);
|
458
|
+
})
|
459
|
+
.define_singleton_method(
|
460
|
+
"_alpha_dropout!",
|
461
|
+
*[](torch::Tensor& input, float p, bool train) {
|
462
|
+
return torch::alpha_dropout_(input, p, train);
|
463
|
+
})
|
464
|
+
.define_singleton_method(
|
465
|
+
"_feature_alpha_dropout",
|
466
|
+
*[](torch::Tensor& input, float p, bool train) {
|
467
|
+
return torch::feature_alpha_dropout(input, p, train);
|
468
|
+
})
|
469
|
+
.define_singleton_method(
|
470
|
+
"_feature_alpha_dropout!",
|
471
|
+
*[](torch::Tensor& input, float p, bool train) {
|
472
|
+
return torch::feature_alpha_dropout_(input, p, train);
|
473
|
+
})
|
474
|
+
.define_singleton_method(
|
475
|
+
"_embedding",
|
476
|
+
// weight and indices are swapped from Python interface
|
477
|
+
*[](const torch::Tensor &indices, const torch::Tensor &weight, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
|
478
|
+
return torch::embedding(weight, indices, padding_idx, scale_grad_by_freq, sparse);
|
479
|
+
})
|
359
480
|
.define_singleton_method(
|
360
481
|
"mse_loss",
|
361
482
|
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
@@ -364,8 +485,16 @@ void Init_ext()
|
|
364
485
|
})
|
365
486
|
.define_singleton_method(
|
366
487
|
"nll_loss",
|
367
|
-
*[](torch::Tensor& input, torch::Tensor& target) {
|
368
|
-
|
488
|
+
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
489
|
+
auto red = reduction == "mean" ? Reduction::Mean : Reduction::Sum;
|
490
|
+
return torch::nll_loss(input, target, {}, red);
|
491
|
+
})
|
492
|
+
.define_singleton_method("numel", &torch::numel)
|
493
|
+
.define_singleton_method(
|
494
|
+
"_from_blob",
|
495
|
+
*[](String s, IntArrayRef size, const torch::TensorOptions &options) {
|
496
|
+
void *data = const_cast<char *>(s.c_str());
|
497
|
+
return torch::from_blob(data, size, options);
|
369
498
|
})
|
370
499
|
.define_singleton_method(
|
371
500
|
"_tensor",
|
@@ -387,9 +516,19 @@ void Init_ext()
|
|
387
516
|
.define_method("sparse?", &torch::Tensor::is_sparse)
|
388
517
|
.define_method("quantized?", &torch::Tensor::is_quantized)
|
389
518
|
.define_method("dim", &torch::Tensor::dim)
|
390
|
-
.define_method("numel", &torch::Tensor::numel)
|
391
519
|
.define_method("element_size", &torch::Tensor::element_size)
|
392
520
|
.define_method("requires_grad", &torch::Tensor::requires_grad)
|
521
|
+
.define_method("view_as", &torch::Tensor::view_as)
|
522
|
+
.define_method(
|
523
|
+
"addcmul!",
|
524
|
+
*[](torch::Tensor& self, Scalar value, const torch::Tensor & tensor1, const torch::Tensor & tensor2) {
|
525
|
+
return self.addcmul_(tensor1, tensor2, value);
|
526
|
+
})
|
527
|
+
.define_method(
|
528
|
+
"addcdiv!",
|
529
|
+
*[](torch::Tensor& self, Scalar value, const torch::Tensor & tensor1, const torch::Tensor & tensor2) {
|
530
|
+
return self.addcdiv_(tensor1, tensor2, value);
|
531
|
+
})
|
393
532
|
.define_method(
|
394
533
|
"zero!",
|
395
534
|
*[](torch::Tensor& self) {
|
@@ -460,24 +599,74 @@ void Init_ext()
|
|
460
599
|
return self.view(size);
|
461
600
|
})
|
462
601
|
.define_method(
|
463
|
-
"
|
602
|
+
"resize_as!",
|
464
603
|
*[](torch::Tensor& self, torch::Tensor& other) {
|
465
|
-
self.
|
604
|
+
return self.resize_as_(other);
|
605
|
+
})
|
606
|
+
.define_method(
|
607
|
+
"fill!",
|
608
|
+
*[](torch::Tensor& self, Scalar value) {
|
609
|
+
return self.fill_(value);
|
610
|
+
})
|
611
|
+
.define_method(
|
612
|
+
"_add!",
|
613
|
+
*[](torch::Tensor& self, torch::Tensor& other) {
|
614
|
+
return self.add_(other);
|
615
|
+
})
|
616
|
+
.define_method(
|
617
|
+
"_add_alpha!",
|
618
|
+
*[](torch::Tensor& self, torch::Tensor& other, Scalar alpha) {
|
619
|
+
return self.add_(other, alpha);
|
620
|
+
})
|
621
|
+
.define_method(
|
622
|
+
"_add_scalar!",
|
623
|
+
*[](torch::Tensor& self, Scalar other) {
|
624
|
+
return self.add_(other);
|
625
|
+
})
|
626
|
+
.define_method(
|
627
|
+
"normal!",
|
628
|
+
*[](torch::Tensor& self, double mean, double std) {
|
629
|
+
return self.normal_(mean, std);
|
466
630
|
})
|
467
631
|
.define_method(
|
468
632
|
"sub!",
|
469
633
|
*[](torch::Tensor& self, torch::Tensor& other) {
|
470
|
-
self.sub_(other);
|
634
|
+
return self.sub_(other);
|
471
635
|
})
|
472
636
|
.define_method(
|
473
|
-
"
|
637
|
+
"_mul!",
|
474
638
|
*[](torch::Tensor& self, torch::Tensor& other) {
|
475
|
-
self.mul_(other);
|
639
|
+
return self.mul_(other);
|
640
|
+
})
|
641
|
+
.define_method(
|
642
|
+
"_mul_scalar!",
|
643
|
+
*[](torch::Tensor& self, Scalar other) {
|
644
|
+
return self.mul_(other);
|
476
645
|
})
|
477
646
|
.define_method(
|
478
647
|
"div!",
|
479
648
|
*[](torch::Tensor& self, torch::Tensor& other) {
|
480
|
-
self.div_(other);
|
649
|
+
return self.div_(other);
|
650
|
+
})
|
651
|
+
.define_method(
|
652
|
+
"sqrt!",
|
653
|
+
*[](torch::Tensor& self) {
|
654
|
+
return self.sqrt_();
|
655
|
+
})
|
656
|
+
.define_method(
|
657
|
+
"unsqueeze!",
|
658
|
+
*[](torch::Tensor& self, int64_t dim) {
|
659
|
+
return self.unsqueeze_(dim);
|
660
|
+
})
|
661
|
+
.define_method(
|
662
|
+
"copy!",
|
663
|
+
*[](torch::Tensor& self, torch::Tensor& src) {
|
664
|
+
return self.copy_(src);
|
665
|
+
})
|
666
|
+
.define_method(
|
667
|
+
"clone",
|
668
|
+
*[](torch::Tensor& self) {
|
669
|
+
return self.clone();
|
481
670
|
})
|
482
671
|
.define_method(
|
483
672
|
"log_softmax",
|
@@ -532,8 +721,10 @@ void Init_ext()
|
|
532
721
|
a.push(data[i]);
|
533
722
|
}
|
534
723
|
} else if (dtype == torch::kBool) {
|
535
|
-
|
536
|
-
|
724
|
+
bool* data = self.data_ptr<bool>();
|
725
|
+
for (int i = 0; i < self.numel(); i++) {
|
726
|
+
a.push(data[i] ? True : False);
|
727
|
+
}
|
537
728
|
} else {
|
538
729
|
throw std::runtime_error("Unsupported type");
|
539
730
|
}
|
@@ -544,6 +735,11 @@ void Init_ext()
|
|
544
735
|
*[](torch::Tensor& self, int i) {
|
545
736
|
return self.size(i);
|
546
737
|
})
|
738
|
+
.define_method(
|
739
|
+
"_to",
|
740
|
+
*[](torch::Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
|
741
|
+
return self.to(device, (torch::ScalarType) dtype, non_blocking, copy);
|
742
|
+
})
|
547
743
|
.define_singleton_method(
|
548
744
|
"_make_subclass",
|
549
745
|
*[](torch::Tensor& rd, bool requires_grad) {
|
@@ -597,12 +793,17 @@ void Init_ext()
|
|
597
793
|
|
598
794
|
Module rb_mInit = define_module_under(rb_mNN, "Init")
|
599
795
|
.define_singleton_method(
|
600
|
-
"
|
796
|
+
"kaiming_uniform!",
|
601
797
|
*[](torch::Tensor& input, double a) {
|
602
798
|
return torch::nn::init::kaiming_uniform_(input, a);
|
603
799
|
})
|
604
800
|
.define_singleton_method(
|
605
|
-
"
|
801
|
+
"normal!",
|
802
|
+
*[](torch::Tensor& input) {
|
803
|
+
return torch::nn::init::normal_(input);
|
804
|
+
})
|
805
|
+
.define_singleton_method(
|
806
|
+
"uniform!",
|
606
807
|
*[](torch::Tensor& input, double to, double from) {
|
607
808
|
return torch::nn::init::uniform_(input, to, from);
|
608
809
|
});
|
@@ -619,4 +820,20 @@ void Init_ext()
|
|
619
820
|
*[](torch::autograd::Variable& self) {
|
620
821
|
return self.grad().defined();
|
621
822
|
});
|
823
|
+
|
824
|
+
Class rb_cDevice = define_class_under<torch::Device>(rb_mTorch, "Device")
|
825
|
+
.define_constructor(Constructor<torch::Device, std::string>())
|
826
|
+
.define_method("index", &torch::Device::index)
|
827
|
+
.define_method("index?", &torch::Device::has_index)
|
828
|
+
.define_method(
|
829
|
+
"type",
|
830
|
+
*[](torch::Device& self) {
|
831
|
+
std::stringstream s;
|
832
|
+
s << self.type();
|
833
|
+
return s.str();
|
834
|
+
});
|
835
|
+
|
836
|
+
Module rb_mCUDA = define_module_under(rb_mTorch, "CUDA")
|
837
|
+
.define_singleton_method("available?", &torch::cuda::is_available)
|
838
|
+
.define_singleton_method("device_count", &torch::cuda::device_count);
|
622
839
|
}
|