torch-rb 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/LICENSE.txt +46 -22
- data/README.md +14 -5
- data/ext/torch/ext.cpp +248 -31
- data/lib/torch.rb +80 -9
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +4 -3
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/conv2d.rb +12 -24
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/functional.rb +54 -12
- data/lib/torch/nn/linear.rb +2 -2
- data/lib/torch/nn/module.rb +30 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +56 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +48 -16
- data/lib/torch/tensor.rb +38 -4
- data/lib/torch/utils/data/data_loader.rb +10 -4
- data/lib/torch/utils/data/tensor_dataset.rb +3 -0
- data/lib/torch/version.rb +1 -1
- metadata +21 -3
data/lib/torch.rb
CHANGED
@@ -8,18 +8,40 @@ require "torch/version"
|
|
8
8
|
|
9
9
|
# optim
|
10
10
|
require "torch/optim/optimizer"
|
11
|
+
require "torch/optim/adadelta"
|
12
|
+
require "torch/optim/adagrad"
|
13
|
+
require "torch/optim/adam"
|
14
|
+
require "torch/optim/adamax"
|
15
|
+
require "torch/optim/adamw"
|
16
|
+
require "torch/optim/asgd"
|
17
|
+
require "torch/optim/rmsprop"
|
18
|
+
require "torch/optim/rprop"
|
11
19
|
require "torch/optim/sgd"
|
12
20
|
|
13
|
-
#
|
21
|
+
# optim lr_scheduler
|
22
|
+
require "torch/optim/lr_scheduler/lr_scheduler"
|
23
|
+
require "torch/optim/lr_scheduler/step_lr"
|
24
|
+
|
25
|
+
# nn base classes
|
14
26
|
require "torch/nn/module"
|
15
|
-
require "torch/nn/
|
27
|
+
require "torch/nn/convnd"
|
28
|
+
require "torch/nn/dropoutnd"
|
29
|
+
|
30
|
+
# nn
|
31
|
+
require "torch/nn/alpha_dropout"
|
16
32
|
require "torch/nn/conv2d"
|
33
|
+
require "torch/nn/dropout"
|
34
|
+
require "torch/nn/dropout2d"
|
35
|
+
require "torch/nn/dropout3d"
|
36
|
+
require "torch/nn/embedding"
|
37
|
+
require "torch/nn/feature_alpha_dropout"
|
17
38
|
require "torch/nn/functional"
|
39
|
+
require "torch/nn/init"
|
18
40
|
require "torch/nn/linear"
|
41
|
+
require "torch/nn/mse_loss"
|
19
42
|
require "torch/nn/parameter"
|
20
|
-
require "torch/nn/sequential"
|
21
43
|
require "torch/nn/relu"
|
22
|
-
require "torch/nn/
|
44
|
+
require "torch/nn/sequential"
|
23
45
|
|
24
46
|
# utils
|
25
47
|
require "torch/utils/data/data_loader"
|
@@ -27,6 +49,11 @@ require "torch/utils/data/tensor_dataset"
|
|
27
49
|
|
28
50
|
module Torch
|
29
51
|
class Error < StandardError; end
|
52
|
+
class NotImplementedYet < StandardError
|
53
|
+
def message
|
54
|
+
"This feature has not been implemented yet. Consider submitting a PR."
|
55
|
+
end
|
56
|
+
end
|
30
57
|
|
31
58
|
# keys: https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.dtype
|
32
59
|
# values: https://github.com/pytorch/pytorch/blob/master/c10/core/ScalarType.h
|
@@ -75,11 +102,18 @@ module Torch
|
|
75
102
|
obj.is_a?(Tensor)
|
76
103
|
end
|
77
104
|
|
78
|
-
# TODO don't copy
|
79
105
|
def from_numo(ndarray)
|
80
106
|
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
|
81
107
|
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
|
82
|
-
|
108
|
+
options = tensor_options(device: "cpu", dtype: dtype[0])
|
109
|
+
# TODO pass pointer to array instead of creating string
|
110
|
+
str = ndarray.to_string
|
111
|
+
tensor = _from_blob(str, ndarray.shape, options)
|
112
|
+
# from_blob does not own the data, so we need to keep
|
113
|
+
# a reference to it for duration of tensor
|
114
|
+
# can remove when passing pointer directly
|
115
|
+
tensor.instance_variable_set("@_numo_str", str)
|
116
|
+
tensor
|
83
117
|
end
|
84
118
|
|
85
119
|
# private
|
@@ -197,7 +231,7 @@ module Torch
|
|
197
231
|
high = low
|
198
232
|
low = 0
|
199
233
|
end
|
200
|
-
|
234
|
+
randint(low, high, input.size, like_options(input, options))
|
201
235
|
end
|
202
236
|
|
203
237
|
def randn_like(input, **options)
|
@@ -272,8 +306,13 @@ module Torch
|
|
272
306
|
_min(input)
|
273
307
|
end
|
274
308
|
|
275
|
-
def max(input)
|
276
|
-
|
309
|
+
def max(input, dim = nil, keepdim: false, out: nil)
|
310
|
+
if dim
|
311
|
+
raise NotImplementedYet unless out
|
312
|
+
_max_out(out[0], out[1], input, dim, keepdim)
|
313
|
+
else
|
314
|
+
_max(input)
|
315
|
+
end
|
277
316
|
end
|
278
317
|
|
279
318
|
def exp(input)
|
@@ -284,6 +323,18 @@ module Torch
|
|
284
323
|
_log(input)
|
285
324
|
end
|
286
325
|
|
326
|
+
def sign(input)
|
327
|
+
_sign(input)
|
328
|
+
end
|
329
|
+
|
330
|
+
def gt(input, other)
|
331
|
+
_gt(input, other)
|
332
|
+
end
|
333
|
+
|
334
|
+
def lt(input, other)
|
335
|
+
_lt(input, other)
|
336
|
+
end
|
337
|
+
|
287
338
|
def unsqueeze(input, dim)
|
288
339
|
_unsqueeze(input, dim)
|
289
340
|
end
|
@@ -292,6 +343,10 @@ module Torch
|
|
292
343
|
_dot(input, tensor)
|
293
344
|
end
|
294
345
|
|
346
|
+
def cat(tensors, dim = 0)
|
347
|
+
_cat(tensors, dim)
|
348
|
+
end
|
349
|
+
|
295
350
|
def matmul(input, other)
|
296
351
|
_matmul(input, other)
|
297
352
|
end
|
@@ -300,6 +355,22 @@ module Torch
|
|
300
355
|
_reshape(input, shape)
|
301
356
|
end
|
302
357
|
|
358
|
+
def flatten(input, start_dim: 0, end_dim: -1)
|
359
|
+
_flatten(input, start_dim, end_dim)
|
360
|
+
end
|
361
|
+
|
362
|
+
def sqrt(input)
|
363
|
+
_sqrt(input)
|
364
|
+
end
|
365
|
+
|
366
|
+
def abs(input)
|
367
|
+
_abs(input)
|
368
|
+
end
|
369
|
+
|
370
|
+
def device(str)
|
371
|
+
Device.new(str)
|
372
|
+
end
|
373
|
+
|
303
374
|
private
|
304
375
|
|
305
376
|
def execute_op(op, input, other, out: nil)
|
data/lib/torch/ext.bundle
CHANGED
Binary file
|
data/lib/torch/inspector.rb
CHANGED
@@ -1,13 +1,16 @@
|
|
1
1
|
module Torch
|
2
2
|
module Inspector
|
3
3
|
# TODO make more performance, especially when summarizing
|
4
|
+
# how? only read data that will be displayed
|
4
5
|
def inspect
|
5
6
|
data =
|
6
7
|
if numel == 0
|
7
8
|
"[]"
|
8
9
|
elsif dim == 0
|
9
|
-
|
10
|
+
item
|
10
11
|
else
|
12
|
+
summarize = numel > 1000
|
13
|
+
|
11
14
|
values = to_a.flatten
|
12
15
|
abs = values.select { |v| v != 0 }.map(&:abs)
|
13
16
|
max = abs.max || 1
|
@@ -36,8 +39,6 @@ module Torch
|
|
36
39
|
fmt = "%#{total}d"
|
37
40
|
end
|
38
41
|
|
39
|
-
summarize = numel > 1000
|
40
|
-
|
41
42
|
inspect_level(to_a, fmt, dim - 1, 0, summarize)
|
42
43
|
end
|
43
44
|
|
data/lib/torch/nn/conv2d.rb
CHANGED
@@ -1,36 +1,24 @@
|
|
1
1
|
module Torch
|
2
2
|
module NN
|
3
|
-
class Conv2d <
|
3
|
+
class Conv2d < ConvNd
|
4
4
|
attr_reader :bias, :weight
|
5
5
|
|
6
|
-
def initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
# @dilation = pair(dilation)
|
13
|
-
|
14
|
-
# TODO divide by groups
|
15
|
-
@weight = Parameter.new(Tensor.new(out_channels, in_channels, *@kernel_size))
|
16
|
-
@bias = Parameter.new(Tensor.new(out_channels))
|
17
|
-
|
18
|
-
reset_parameters
|
6
|
+
def initialize(in_channels, out_channels, kernel_size, stride: 1, padding: 0, dilation: 1, groups: 1, bias: true, padding_mode: "zeros")
|
7
|
+
kernel_size = pair(kernel_size)
|
8
|
+
stride = pair(stride)
|
9
|
+
padding = pair(padding)
|
10
|
+
dilation = pair(dilation)
|
11
|
+
super(in_channels, out_channels, kernel_size, stride, padding, dilation, false, pair(0), groups, bias, padding_mode)
|
19
12
|
end
|
20
13
|
|
21
|
-
def
|
22
|
-
|
23
|
-
|
24
|
-
fan_in, _ = Init.calculate_fan_in_and_fan_out(@weight)
|
25
|
-
bound = 1 / Math.sqrt(fan_in)
|
26
|
-
Init.uniform_(@bias, -bound, bound)
|
14
|
+
def forward(input)
|
15
|
+
if @padding_mode == "circular"
|
16
|
+
raise NotImplementedError
|
27
17
|
end
|
18
|
+
F.conv2d(input, @weight, @bias, stride: @stride, padding: @padding, dilation: @dilation, groups: @groups)
|
28
19
|
end
|
29
20
|
|
30
|
-
|
31
|
-
F.conv2d(input, @weight, @bias, stride: @stride, padding: @padding) #, @dilation, @groups)
|
32
|
-
end
|
33
|
-
|
21
|
+
# TODO add more parameters
|
34
22
|
def inspect
|
35
23
|
"Conv2d(#{@in_channels}, #{@out_channels}, kernel_size: #{@kernel_size.inspect}, stride: #{@stride.inspect})"
|
36
24
|
end
|
@@ -0,0 +1,41 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class ConvNd < Module
|
4
|
+
def initialize(in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode)
|
5
|
+
super()
|
6
|
+
raise ArgumentError, "in_channels must be divisible by groups" if in_channels % groups != 0
|
7
|
+
raise ArgumentError, "out_channels must be divisible by groups" if out_channels % groups != 0
|
8
|
+
@in_channels = in_channels
|
9
|
+
@out_channels = out_channels
|
10
|
+
@kernel_size = kernel_size
|
11
|
+
@stride = stride
|
12
|
+
@padding = padding
|
13
|
+
@dilation = dilation
|
14
|
+
@transposed = transposed
|
15
|
+
@output_padding = output_padding
|
16
|
+
@groups = groups
|
17
|
+
@padding_mode = padding_mode
|
18
|
+
if transposed
|
19
|
+
@weight = Parameter.new(Tensor.new(in_channels, out_channels / groups, *kernel_size))
|
20
|
+
else
|
21
|
+
@weight = Parameter.new(Tensor.new(out_channels, in_channels / groups, *kernel_size))
|
22
|
+
end
|
23
|
+
if bias
|
24
|
+
@bias = Parameter.new(Tensor.new(out_channels))
|
25
|
+
else
|
26
|
+
raise NotImplementedError
|
27
|
+
end
|
28
|
+
reset_parameters
|
29
|
+
end
|
30
|
+
|
31
|
+
def reset_parameters
|
32
|
+
Init.kaiming_uniform!(@weight, Math.sqrt(5))
|
33
|
+
if @bias
|
34
|
+
fan_in, _ = Init.calculate_fan_in_and_fan_out(@weight)
|
35
|
+
bound = 1 / Math.sqrt(fan_in)
|
36
|
+
Init.uniform!(@bias, -bound, bound)
|
37
|
+
end
|
38
|
+
end
|
39
|
+
end
|
40
|
+
end
|
41
|
+
end
|
@@ -0,0 +1,15 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class DropoutNd < Module
|
4
|
+
def initialize(p: 0.5, inplace: false)
|
5
|
+
super()
|
6
|
+
@p = p
|
7
|
+
@inplace = inplace
|
8
|
+
end
|
9
|
+
|
10
|
+
def inspect
|
11
|
+
"#{self.class.name.split("::").last}(p: #{@p.inspect}, inplace: #{@inplace.inspect})"
|
12
|
+
end
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
@@ -0,0 +1,52 @@
|
|
1
|
+
# ported from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/sparse.py
|
2
|
+
module Torch
|
3
|
+
module NN
|
4
|
+
class Embedding < Module
|
5
|
+
def initialize(num_embeddings, embedding_dim, padding_idx: nil, max_norm: nil,
|
6
|
+
norm_type: 2.0, scale_grad_by_freq: false, sparse: false, _weight: nil)
|
7
|
+
|
8
|
+
super()
|
9
|
+
@num_embeddings = num_embeddings
|
10
|
+
@embedding_dim = embedding_dim
|
11
|
+
|
12
|
+
if padding_idx
|
13
|
+
if padding_idx > 0
|
14
|
+
raise ArgumentError, "Padding_idx must be within num_embeddings" unless padding_idx < @num_embeddings
|
15
|
+
elsif padding_idx < 0
|
16
|
+
raise ArgumentError, "Padding_idx must be within num_embeddings" unless padding_idx >= -@num_embeddings
|
17
|
+
padding_idx = @num_embeddings + padding_idx
|
18
|
+
end
|
19
|
+
end
|
20
|
+
@padding_idx = padding_idx
|
21
|
+
@max_norm = max_norm
|
22
|
+
@norm_type = norm_type
|
23
|
+
@scale_grad_by_freq = scale_grad_by_freq
|
24
|
+
if _weight.nil?
|
25
|
+
@weight = Parameter.new(Tensor.new(num_embeddings, embedding_dim))
|
26
|
+
reset_parameters
|
27
|
+
else
|
28
|
+
raise ArgumentError, "Shape of weight does not match num_embeddings and embedding_dim" unless _weight.shape == [num_embeddings, embedding_dim]
|
29
|
+
@weight = Parameter.new(_weight)
|
30
|
+
end
|
31
|
+
@sparse = sparse
|
32
|
+
end
|
33
|
+
|
34
|
+
def reset_parameters
|
35
|
+
Init.normal!(@weight)
|
36
|
+
if @padding_idx
|
37
|
+
Torch.no_grad do
|
38
|
+
@weight[@padding_idx].fill!(0)
|
39
|
+
end
|
40
|
+
end
|
41
|
+
end
|
42
|
+
|
43
|
+
def forward(input)
|
44
|
+
F.embedding(input, @weight, padding_idx: @padding_idx, max_norm: @max_norm, norm_type: @norm_type, scale_grad_by_freq: @scale_grad_by_freq, sparse: @sparse)
|
45
|
+
end
|
46
|
+
|
47
|
+
def inspect
|
48
|
+
"Embedding(#{@num_embeddings}, #{@embedding_dim})"
|
49
|
+
end
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
data/lib/torch/nn/functional.rb
CHANGED
@@ -6,17 +6,9 @@ module Torch
|
|
6
6
|
Torch.relu(input)
|
7
7
|
end
|
8
8
|
|
9
|
-
def conv2d(input, weight, bias, stride: 1, padding: 0)
|
9
|
+
def conv2d(input, weight, bias, stride: 1, padding: 0, dilation: 1, groups: 1)
|
10
10
|
# TODO pair stride and padding when needed
|
11
|
-
Torch.conv2d(input, weight, bias, stride, padding)
|
12
|
-
end
|
13
|
-
|
14
|
-
def prelu(input, weight)
|
15
|
-
Torch.prelu(input, weight)
|
16
|
-
end
|
17
|
-
|
18
|
-
def leaky_relu(input, negative_slope = 0.01)
|
19
|
-
Torch.leaky_relu(input, negative_slope)
|
11
|
+
Torch.conv2d(input, weight, bias, stride, padding, dilation, groups)
|
20
12
|
end
|
21
13
|
|
22
14
|
def max_pool2d(input, kernel_size)
|
@@ -41,14 +33,64 @@ module Torch
|
|
41
33
|
nll_loss(log_softmax(input, 1), target)
|
42
34
|
end
|
43
35
|
|
44
|
-
def nll_loss(input, target)
|
36
|
+
def nll_loss(input, target, reduction: "mean")
|
45
37
|
# TODO fix for non-1d
|
46
|
-
Torch.nll_loss(input, target)
|
38
|
+
Torch.nll_loss(input, target, reduction)
|
47
39
|
end
|
48
40
|
|
49
41
|
def log_softmax(input, dim)
|
50
42
|
input.log_softmax(dim)
|
51
43
|
end
|
44
|
+
|
45
|
+
def dropout(input, p: 0.5, training: true, inplace: false)
|
46
|
+
if inplace
|
47
|
+
Torch._dropout!(input, p, training)
|
48
|
+
else
|
49
|
+
Torch._dropout(input, p, training)
|
50
|
+
end
|
51
|
+
end
|
52
|
+
|
53
|
+
def dropout2d(input, p: 0.5, training: true, inplace: false)
|
54
|
+
raise ArgumentError, "dropout probability has to be between 0 and 1, but got #{p}" if p < 0 || p > 1
|
55
|
+
|
56
|
+
if inplace
|
57
|
+
Torch._feature_dropout!(input, p, training)
|
58
|
+
else
|
59
|
+
Torch._feature_dropout(input, p, training)
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
def dropout3d(input, p: 0.5, training: true, inplace: false)
|
64
|
+
if inplace
|
65
|
+
Torch._feature_dropout!(input, p, training)
|
66
|
+
else
|
67
|
+
Torch._feature_dropout(input, p, training)
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
71
|
+
def alpha_dropout(input, p: 0.5, training: true, inplace: false)
|
72
|
+
if inplace
|
73
|
+
Torch._alpha_dropout!(input, p, training)
|
74
|
+
else
|
75
|
+
Torch._alpha_dropout(input, p, training)
|
76
|
+
end
|
77
|
+
end
|
78
|
+
|
79
|
+
def feature_alpha_dropout(input, p: 0.5, training: true, inplace: false)
|
80
|
+
if inplace
|
81
|
+
Torch._feature_alpha_dropout!(input, p, training)
|
82
|
+
else
|
83
|
+
Torch._feature_alpha_dropout(input, p, training)
|
84
|
+
end
|
85
|
+
end
|
86
|
+
|
87
|
+
def embedding(input, weight, padding_idx: nil, max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, sparse: false)
|
88
|
+
# TODO handle max_norm and norm_type
|
89
|
+
raise NotImplementedYet unless max_norm.nil? && norm_type == 2.0
|
90
|
+
|
91
|
+
padding_idx ||= -1
|
92
|
+
Torch._embedding(input, weight, padding_idx, scale_grad_by_freq, sparse)
|
93
|
+
end
|
52
94
|
end
|
53
95
|
end
|
54
96
|
|