torch-rb 0.8.3 → 0.9.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +2 -1
- data/codegen/generate_functions.rb +11 -4
- data/codegen/native_functions.yaml +1103 -373
- data/ext/torch/ruby_arg_parser.h +17 -3
- data/ext/torch/templates.h +0 -37
- data/ext/torch/tensor.cpp +8 -8
- data/lib/torch/tensor.rb +12 -0
- data/lib/torch/version.rb +1 -1
- metadata +2 -2
@@ -89,6 +89,10 @@
|
|
89
89
|
manual_cpp_binding: True
|
90
90
|
variants: method
|
91
91
|
|
92
|
+
- func: retains_grad(Tensor self) -> bool
|
93
|
+
manual_cpp_binding: True
|
94
|
+
variants: method
|
95
|
+
|
92
96
|
- func: _fw_primal(Tensor(a) self, int level) -> Tensor(a)
|
93
97
|
variants: method
|
94
98
|
dispatch:
|
@@ -278,15 +282,15 @@
|
|
278
282
|
|
279
283
|
- func: sgn(Tensor self) -> Tensor
|
280
284
|
variants: function, method
|
281
|
-
|
282
|
-
CompositeExplicitAutograd: sgn
|
285
|
+
structured_delegate: sgn.out
|
283
286
|
|
284
287
|
- func: sgn_(Tensor(a!) self) -> Tensor(a!)
|
285
288
|
variants: method
|
286
|
-
|
287
|
-
CompositeExplicitAutograd: sgn_
|
289
|
+
structured_delegate: sgn.out
|
288
290
|
|
289
291
|
- func: sgn.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
292
|
+
structured: True
|
293
|
+
structured_inherits: TensorIteratorBase
|
290
294
|
dispatch:
|
291
295
|
CPU, CUDA: sgn_out
|
292
296
|
|
@@ -298,20 +302,43 @@
|
|
298
302
|
device_check: NoCheck # TensorIterator
|
299
303
|
variants: function
|
300
304
|
|
305
|
+
- func: _conj(Tensor(a) self) -> Tensor(a)
|
306
|
+
variants: function, method
|
307
|
+
dispatch:
|
308
|
+
CompositeExplicitAutograd: _conj
|
309
|
+
|
301
310
|
- func: conj(Tensor(a) self) -> Tensor(a)
|
302
|
-
device_check: NoCheck # TensorIterator
|
303
311
|
variants: function, method
|
312
|
+
manual_cpp_binding: True
|
304
313
|
|
305
|
-
- func:
|
306
|
-
|
314
|
+
- func: _conj_physical(Tensor self) -> Tensor
|
315
|
+
variants: function, method
|
307
316
|
dispatch:
|
308
|
-
|
309
|
-
SparseCPU, SparseCUDA: conj_out_sparse
|
317
|
+
CompositeExplicitAutograd: _conj_physical
|
310
318
|
|
311
|
-
- func:
|
312
|
-
variants: function
|
319
|
+
- func: conj_physical(Tensor self) -> Tensor
|
320
|
+
variants: function, method
|
321
|
+
|
322
|
+
- func: conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
313
323
|
dispatch:
|
314
|
-
|
324
|
+
CPU, CUDA: conj_physical_out
|
325
|
+
SparseCPU, SparseCUDA: conj_physical_out_sparse
|
326
|
+
|
327
|
+
- func: conj_physical_(Tensor(a!) self) -> Tensor(a!)
|
328
|
+
variants: function, method
|
329
|
+
dispatch:
|
330
|
+
CompositeExplicitAutograd: conj_physical_
|
331
|
+
|
332
|
+
- func: resolve_conj(Tensor(a) self) -> Tensor(a)
|
333
|
+
variants: function, method
|
334
|
+
|
335
|
+
- func: resolve_neg(Tensor(a) self) -> Tensor(a)
|
336
|
+
variants: function, method
|
337
|
+
|
338
|
+
- func: _neg_view(Tensor(a) self) -> Tensor(a)
|
339
|
+
variants: function, method
|
340
|
+
dispatch:
|
341
|
+
CompositeExplicitAutograd: _neg_view
|
315
342
|
|
316
343
|
- func: acos(Tensor self) -> Tensor
|
317
344
|
device_check: NoCheck # TensorIterator
|
@@ -352,7 +379,7 @@
|
|
352
379
|
variants: function, method
|
353
380
|
dispatch:
|
354
381
|
SparseCPU, SparseCUDA: add_sparse
|
355
|
-
SparseCsrCPU: add_sparse_csr
|
382
|
+
SparseCsrCPU, SparseCsrCUDA: add_sparse_csr
|
356
383
|
MkldnnCPU: mkldnn_add
|
357
384
|
|
358
385
|
- func: add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)
|
@@ -361,7 +388,7 @@
|
|
361
388
|
structured_delegate: add.out
|
362
389
|
dispatch:
|
363
390
|
SparseCPU, SparseCUDA: add_sparse_
|
364
|
-
SparseCsrCPU: add_sparse_csr_
|
391
|
+
SparseCsrCPU, SparseCsrCUDA: add_sparse_csr_
|
365
392
|
MkldnnCPU: mkldnn_add_
|
366
393
|
|
367
394
|
- func: add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
@@ -373,6 +400,7 @@
|
|
373
400
|
SparseCPU: add_out_sparse_cpu
|
374
401
|
SparseCUDA: add_out_sparse_cuda
|
375
402
|
SparseCsrCPU: add_out_sparse_csr_cpu
|
403
|
+
SparseCsrCUDA: add_out_sparse_csr_cuda
|
376
404
|
MkldnnCPU: mkldnn_add_out
|
377
405
|
|
378
406
|
- func: _add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
|
@@ -390,6 +418,16 @@
|
|
390
418
|
dispatch:
|
391
419
|
CPU: add_relu_out
|
392
420
|
|
421
|
+
- func: _add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor
|
422
|
+
variants: function
|
423
|
+
dispatch:
|
424
|
+
CPU: add_relu
|
425
|
+
|
426
|
+
- func: _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
427
|
+
variants: function
|
428
|
+
dispatch:
|
429
|
+
CPU: add_relu_
|
430
|
+
|
393
431
|
# For C++ only, until we have conversion from C++ numbers to Tensor
|
394
432
|
- func: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor
|
395
433
|
device_check: NoCheck # TensorIterator
|
@@ -443,12 +481,14 @@
|
|
443
481
|
|
444
482
|
- func: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
|
445
483
|
device_check: NoCheck # TensorIterator
|
484
|
+
structured_delegate: all.out
|
446
485
|
variants: function, method
|
447
|
-
dispatch:
|
448
|
-
CPU, CUDA: all
|
449
486
|
|
450
487
|
- func: all.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
451
488
|
device_check: NoCheck # TensorIterator
|
489
|
+
structured: True
|
490
|
+
precomputed:
|
491
|
+
- dim -> int dim
|
452
492
|
dispatch:
|
453
493
|
CPU, CUDA: all_out
|
454
494
|
|
@@ -464,12 +504,14 @@
|
|
464
504
|
|
465
505
|
- func: any.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
|
466
506
|
device_check: NoCheck # TensorIterator
|
507
|
+
structured_delegate: any.out
|
467
508
|
variants: function, method
|
468
|
-
dispatch:
|
469
|
-
CPU, CUDA: any
|
470
509
|
|
471
510
|
- func: any.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
472
511
|
device_check: NoCheck # TensorIterator
|
512
|
+
structured: True
|
513
|
+
precomputed:
|
514
|
+
- dim -> int dim
|
473
515
|
dispatch:
|
474
516
|
CPU, CUDA: any_out
|
475
517
|
|
@@ -501,22 +543,22 @@
|
|
501
543
|
- func: _dim_arange(Tensor like, int dim) -> Tensor
|
502
544
|
|
503
545
|
- func: argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
546
|
+
structured_delegate: argmax.out
|
504
547
|
device_check: NoCheck # TensorIterator
|
505
548
|
variants: function, method
|
506
|
-
dispatch:
|
507
|
-
CPU, CUDA: argmax
|
508
549
|
|
509
550
|
- func: argmax.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
551
|
+
structured: True
|
510
552
|
dispatch:
|
511
553
|
CPU, CUDA: argmax_out
|
512
554
|
|
513
555
|
- func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
556
|
+
structured_delegate: argmin.out
|
514
557
|
device_check: NoCheck # TensorIterator
|
515
558
|
variants: function, method
|
516
|
-
dispatch:
|
517
|
-
CPU, CUDA: argmin
|
518
559
|
|
519
560
|
- func: argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
561
|
+
structured: True
|
520
562
|
dispatch:
|
521
563
|
CPU, CUDA: argmin_out
|
522
564
|
|
@@ -905,11 +947,6 @@
|
|
905
947
|
SparseCPU: bmm_sparse_cpu
|
906
948
|
SparseCUDA: bmm_sparse_cuda
|
907
949
|
|
908
|
-
- func: _bmm(Tensor self, Tensor mat2, *, bool deterministic=False) -> Tensor
|
909
|
-
variants: function
|
910
|
-
dispatch:
|
911
|
-
SparseCUDA: _bmm_sparse_cuda
|
912
|
-
|
913
950
|
- func: bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
914
951
|
variants: function
|
915
952
|
dispatch:
|
@@ -918,11 +955,6 @@
|
|
918
955
|
SparseCPU: bmm_out_sparse_cpu
|
919
956
|
SparseCUDA: bmm_out_sparse_cuda
|
920
957
|
|
921
|
-
- func: _bmm.out(Tensor self, Tensor mat2, *, bool deterministic=False, Tensor(a!) out) -> Tensor(a!)
|
922
|
-
variants: function
|
923
|
-
dispatch:
|
924
|
-
SparseCUDA: _bmm_out_sparse_cuda
|
925
|
-
|
926
958
|
- func: broadcast_tensors(Tensor[] tensors) -> Tensor[]
|
927
959
|
device_check: NoCheck
|
928
960
|
device_guard: False
|
@@ -942,6 +974,15 @@
|
|
942
974
|
|
943
975
|
- func: cat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)
|
944
976
|
|
977
|
+
# alias for torch.cat
|
978
|
+
- func: concat(Tensor[] tensors, int dim=0) -> Tensor
|
979
|
+
|
980
|
+
- func: concat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
981
|
+
|
982
|
+
- func: concat.names(Tensor[] tensors, Dimname dim) -> Tensor
|
983
|
+
|
984
|
+
- func: concat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)
|
985
|
+
|
945
986
|
- func: block_diag(Tensor[] tensors) -> Tensor
|
946
987
|
variants: function
|
947
988
|
|
@@ -996,8 +1037,8 @@
|
|
996
1037
|
device_check: NoCheck # TensorIterator
|
997
1038
|
variants: function, method
|
998
1039
|
cpp_no_default_args: ['min']
|
1040
|
+
structured_delegate: clamp.out
|
999
1041
|
dispatch:
|
1000
|
-
CPU, CUDA: clamp
|
1001
1042
|
QuantizedCPU: clamp_quantized_cpu
|
1002
1043
|
|
1003
1044
|
- func: clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor
|
@@ -1009,6 +1050,7 @@
|
|
1009
1050
|
device_check: NoCheck # TensorIterator
|
1010
1051
|
variants: function, method
|
1011
1052
|
cpp_no_default_args: ['min']
|
1053
|
+
structured_delegate: clamp.out
|
1012
1054
|
dispatch:
|
1013
1055
|
CompositeExplicitAutograd: clamp_
|
1014
1056
|
|
@@ -1020,6 +1062,8 @@
|
|
1020
1062
|
- func: clamp.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!)
|
1021
1063
|
device_check: NoCheck # TensorIterator
|
1022
1064
|
cpp_no_default_args: ['min']
|
1065
|
+
structured: True
|
1066
|
+
structured_inherits: TensorIteratorBase
|
1023
1067
|
dispatch:
|
1024
1068
|
CPU, CUDA: clamp_out
|
1025
1069
|
|
@@ -1200,6 +1244,11 @@
|
|
1200
1244
|
- func: _copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> Tensor
|
1201
1245
|
dispatch: {}
|
1202
1246
|
|
1247
|
+
# We need this to be able to properly copy from a CPU to an XLA tensor with different sizes.
|
1248
|
+
# See https://github.com/pytorch/xla/issues/2881
|
1249
|
+
- func: _copy_from_and_resize(Tensor self, Tensor dst) -> Tensor
|
1250
|
+
dispatch: {}
|
1251
|
+
|
1203
1252
|
- func: cos(Tensor self) -> Tensor
|
1204
1253
|
device_check: NoCheck # TensorIterator
|
1205
1254
|
variants: function, method
|
@@ -1239,13 +1288,20 @@
|
|
1239
1288
|
- func: count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor
|
1240
1289
|
variants: function, method
|
1241
1290
|
dispatch:
|
1242
|
-
CPU
|
1291
|
+
CPU: count_nonzero_cpu
|
1292
|
+
CUDA: count_nonzero_cuda
|
1243
1293
|
|
1244
1294
|
- func: count_nonzero(Tensor self, int? dim=None) -> Tensor
|
1245
1295
|
variants: function, method
|
1246
1296
|
dispatch:
|
1247
1297
|
CompositeExplicitAutograd: count_nonzero
|
1248
1298
|
|
1299
|
+
- func: cov(Tensor self, *, int correction=1, Tensor? fweights=None, Tensor? aweights=None) -> Tensor
|
1300
|
+
variants: function, method
|
1301
|
+
|
1302
|
+
- func: corrcoef(Tensor self) -> Tensor
|
1303
|
+
variants: function, method
|
1304
|
+
|
1249
1305
|
- func: cudnn_affine_grid_generator(Tensor theta, int N, int C, int H, int W) -> Tensor grid
|
1250
1306
|
dispatch:
|
1251
1307
|
CUDA: cudnn_affine_grid_generator_forward
|
@@ -1385,20 +1441,19 @@
|
|
1385
1441
|
device_guard: False
|
1386
1442
|
|
1387
1443
|
- func: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
1444
|
+
structured_delegate: cumprod.out
|
1388
1445
|
device_check: NoCheck # TensorIterator
|
1389
1446
|
variants: function, method
|
1390
|
-
dispatch:
|
1391
|
-
CompositeExplicitAutograd: cumprod
|
1392
1447
|
|
1393
1448
|
- func: cumprod_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!)
|
1449
|
+
structured_delegate: cumprod.out
|
1394
1450
|
variants: method
|
1395
|
-
dispatch:
|
1396
|
-
CompositeExplicitAutograd: cumprod_
|
1397
1451
|
|
1398
1452
|
- func: cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1453
|
+
structured: True
|
1399
1454
|
device_check: NoCheck # TensorIterator
|
1400
1455
|
dispatch:
|
1401
|
-
|
1456
|
+
CPU, CUDA: cumprod_out
|
1402
1457
|
|
1403
1458
|
- func: cumprod.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1404
1459
|
device_check: NoCheck # TensorIterator
|
@@ -1416,20 +1471,19 @@
|
|
1416
1471
|
device_guard: False
|
1417
1472
|
|
1418
1473
|
- func: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
1474
|
+
structured_delegate: cumsum.out
|
1419
1475
|
device_check: NoCheck # TensorIterator
|
1420
1476
|
variants: function, method
|
1421
|
-
dispatch:
|
1422
|
-
CompositeExplicitAutograd: cumsum
|
1423
1477
|
|
1424
1478
|
- func: cumsum_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!)
|
1479
|
+
structured_delegate: cumsum.out
|
1425
1480
|
variants: method
|
1426
|
-
dispatch:
|
1427
|
-
CompositeExplicitAutograd: cumsum_
|
1428
1481
|
|
1429
1482
|
- func: cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1483
|
+
structured: True
|
1430
1484
|
device_check: NoCheck # TensorIterator
|
1431
1485
|
dispatch:
|
1432
|
-
|
1486
|
+
CPU, CUDA: cumsum_out
|
1433
1487
|
|
1434
1488
|
- func: cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
1435
1489
|
device_check: NoCheck # TensorIterator
|
@@ -1441,6 +1495,10 @@
|
|
1441
1495
|
- func: cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
1442
1496
|
device_check: NoCheck # TensorIterator
|
1443
1497
|
|
1498
|
+
- func: cumulative_trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor
|
1499
|
+
|
1500
|
+
- func: cumulative_trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> Tensor
|
1501
|
+
|
1444
1502
|
- func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
1445
1503
|
|
1446
1504
|
# convenience function that converts to intlists for you
|
@@ -1470,10 +1528,12 @@
|
|
1470
1528
|
- func: diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a)
|
1471
1529
|
variants: function, method
|
1472
1530
|
|
1473
|
-
- func: diagonal_backward(Tensor
|
1531
|
+
- func: diagonal_backward(Tensor grad_output, int[] input_sizes, int offset, int dim1, int dim2) -> Tensor
|
1474
1532
|
variants: function
|
1475
1533
|
device_check: NoCheck
|
1476
1534
|
device_guard: False
|
1535
|
+
dispatch:
|
1536
|
+
CompositeExplicitAutograd: diagonal_backward
|
1477
1537
|
|
1478
1538
|
- func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)
|
1479
1539
|
variants: method
|
@@ -1734,6 +1794,9 @@
|
|
1734
1794
|
- func: new_zeros(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1735
1795
|
variants: method
|
1736
1796
|
|
1797
|
+
- func: new_ones(Tensor self, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
1798
|
+
variants: method
|
1799
|
+
|
1737
1800
|
# other overrides are to provide a more helpful error message that dtype is required
|
1738
1801
|
- func: _empty_affine_quantized(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
1739
1802
|
dispatch:
|
@@ -1758,7 +1821,8 @@
|
|
1758
1821
|
CUDA: resize_cuda_
|
1759
1822
|
QuantizedCPU: quantized_resize_cpu_
|
1760
1823
|
|
1761
|
-
- func: empty_quantized(int[] size, Tensor qtensor) -> Tensor
|
1824
|
+
- func: empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1825
|
+
category_override: factory
|
1762
1826
|
variants: function
|
1763
1827
|
dispatch:
|
1764
1828
|
QuantizedCPU, QuantizedCUDA: empty_quantized
|
@@ -2214,6 +2278,36 @@
|
|
2214
2278
|
- func: isclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> Tensor
|
2215
2279
|
variants: function, method
|
2216
2280
|
|
2281
|
+
- func: isin.Tensor_Tensor_out(Tensor elements, Tensor test_elements, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!)
|
2282
|
+
variants: function
|
2283
|
+
structured: True
|
2284
|
+
dispatch:
|
2285
|
+
CPU, CUDA: isin_Tensor_Tensor_out
|
2286
|
+
|
2287
|
+
- func: isin.Tensor_Tensor(Tensor elements, Tensor test_elements, *, bool assume_unique=False, bool invert=False) -> Tensor
|
2288
|
+
variants: function
|
2289
|
+
structured_delegate: isin.Tensor_Tensor_out
|
2290
|
+
|
2291
|
+
- func: isin.Tensor_Scalar_out(Tensor elements, Scalar test_element, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!)
|
2292
|
+
variants: function
|
2293
|
+
structured: True
|
2294
|
+
dispatch:
|
2295
|
+
CPU, CUDA: isin_Tensor_Scalar_out
|
2296
|
+
|
2297
|
+
- func: isin.Tensor_Scalar(Tensor elements, Scalar test_element, *, bool assume_unique=False, bool invert=False) -> Tensor
|
2298
|
+
variants: function
|
2299
|
+
structured_delegate: isin.Tensor_Scalar_out
|
2300
|
+
|
2301
|
+
- func: isin.Scalar_Tensor_out(Scalar element, Tensor test_elements, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!)
|
2302
|
+
variants: function
|
2303
|
+
structured: True
|
2304
|
+
dispatch:
|
2305
|
+
CPU, CUDA: isin_Scalar_Tensor_out
|
2306
|
+
|
2307
|
+
- func: isin.Scalar_Tensor(Scalar element, Tensor test_elements, *, bool assume_unique=False, bool invert=False) -> Tensor
|
2308
|
+
variants: function
|
2309
|
+
structured_delegate: isin.Scalar_Tensor_out
|
2310
|
+
|
2217
2311
|
- func: isnan(Tensor self) -> Tensor
|
2218
2312
|
variants: function, method
|
2219
2313
|
device_check: NoCheck
|
@@ -2239,6 +2333,16 @@
|
|
2239
2333
|
device_guard: False
|
2240
2334
|
manual_cpp_binding: True
|
2241
2335
|
|
2336
|
+
- func: is_conj(Tensor self) -> bool
|
2337
|
+
variants: function, method
|
2338
|
+
device_guard: False
|
2339
|
+
manual_cpp_binding: True
|
2340
|
+
|
2341
|
+
- func: is_neg(Tensor self) -> bool
|
2342
|
+
variants: function, method
|
2343
|
+
device_guard: False
|
2344
|
+
manual_cpp_binding: True
|
2345
|
+
|
2242
2346
|
- func: isreal(Tensor self) -> Tensor
|
2243
2347
|
variants: function, method
|
2244
2348
|
|
@@ -2258,6 +2362,12 @@
|
|
2258
2362
|
device_guard: False
|
2259
2363
|
manual_cpp_binding: True
|
2260
2364
|
|
2365
|
+
- func: is_inference(Tensor self) -> bool
|
2366
|
+
variants: function, method
|
2367
|
+
device_check: NoCheck
|
2368
|
+
device_guard: False
|
2369
|
+
manual_cpp_binding: True
|
2370
|
+
|
2261
2371
|
- func: kl_div(Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor
|
2262
2372
|
dispatch:
|
2263
2373
|
CompositeExplicitAutograd: kl_div
|
@@ -2317,6 +2427,9 @@
|
|
2317
2427
|
- func: linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor
|
2318
2428
|
python_module: nn
|
2319
2429
|
|
2430
|
+
- func: linear.out(Tensor input, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!)
|
2431
|
+
python_module: nn
|
2432
|
+
|
2320
2433
|
- func: mkldnn_linear(Tensor self, Tensor weight, Tensor? bias=None) -> Tensor
|
2321
2434
|
python_module: nn
|
2322
2435
|
dispatch:
|
@@ -2464,38 +2577,38 @@
|
|
2464
2577
|
|
2465
2578
|
- func: xlogy.Tensor(Tensor self, Tensor other) -> Tensor
|
2466
2579
|
device_check: NoCheck # TensorIterator
|
2580
|
+
structured_delegate: xlogy.OutTensor
|
2467
2581
|
variants: function, method
|
2468
|
-
dispatch:
|
2469
|
-
CPU, CUDA: xlogy
|
2470
2582
|
|
2471
2583
|
- func: xlogy.Scalar_Self(Scalar self, Tensor other) -> Tensor
|
2472
2584
|
device_check: NoCheck # TensorIterator
|
2473
2585
|
variants: function
|
2474
2586
|
dispatch:
|
2475
|
-
|
2587
|
+
CompositeExplicitAutograd: xlogy
|
2476
2588
|
|
2477
2589
|
- func: xlogy.Scalar_Other(Tensor self, Scalar other) -> Tensor
|
2478
2590
|
device_check: NoCheck # TensorIterator
|
2479
2591
|
variants: function, method
|
2480
2592
|
dispatch:
|
2481
|
-
|
2593
|
+
CompositeExplicitAutograd: xlogy
|
2482
2594
|
|
2483
2595
|
# xlogy: inplace variant
|
2484
2596
|
- func: xlogy_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
2485
2597
|
device_check: NoCheck # TensorIterator
|
2486
2598
|
variants: function, method
|
2487
|
-
|
2488
|
-
CPU, CUDA: xlogy_
|
2599
|
+
structured_delegate: xlogy.OutTensor
|
2489
2600
|
|
2490
2601
|
- func: xlogy_.Scalar_Other(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
2491
2602
|
device_check: NoCheck # TensorIterator
|
2492
2603
|
variants: function, method
|
2493
2604
|
dispatch:
|
2494
|
-
|
2605
|
+
CompositeExplicitAutograd: xlogy_
|
2495
2606
|
|
2496
2607
|
# xlogy: out variant
|
2497
2608
|
- func: xlogy.OutTensor(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
2498
2609
|
device_check: NoCheck # TensorIterator
|
2610
|
+
structured: True
|
2611
|
+
structured_inherits: TensorIteratorBase
|
2499
2612
|
variants: function
|
2500
2613
|
dispatch:
|
2501
2614
|
CPU, CUDA: xlogy_out
|
@@ -2504,13 +2617,13 @@
|
|
2504
2617
|
device_check: NoCheck # TensorIterator
|
2505
2618
|
variants: function
|
2506
2619
|
dispatch:
|
2507
|
-
|
2620
|
+
CompositeExplicitAutograd: xlogy_out
|
2508
2621
|
|
2509
2622
|
- func: xlogy.OutScalar_Other(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
2510
2623
|
device_check: NoCheck # TensorIterator
|
2511
2624
|
variants: function
|
2512
2625
|
dispatch:
|
2513
|
-
|
2626
|
+
CompositeExplicitAutograd: xlogy_out
|
2514
2627
|
|
2515
2628
|
- func: logdet(Tensor self) -> Tensor
|
2516
2629
|
variants: function, method
|
@@ -2532,14 +2645,22 @@
|
|
2532
2645
|
variants: function, method
|
2533
2646
|
|
2534
2647
|
- func: _log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor
|
2648
|
+
structured_delegate: _log_softmax.out
|
2649
|
+
|
2650
|
+
- func: _log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)
|
2651
|
+
structured: True
|
2535
2652
|
dispatch:
|
2536
|
-
CPU:
|
2537
|
-
CUDA:
|
2653
|
+
CPU: log_softmax_cpu_out
|
2654
|
+
CUDA: log_softmax_cuda_out
|
2538
2655
|
|
2539
2656
|
- func: _log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor
|
2657
|
+
structured_delegate: _log_softmax_backward_data.out
|
2658
|
+
|
2659
|
+
- func: _log_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2660
|
+
structured: True
|
2540
2661
|
dispatch:
|
2541
|
-
CPU:
|
2542
|
-
CUDA:
|
2662
|
+
CPU: log_softmax_backward_cpu_out
|
2663
|
+
CUDA: log_softmax_backward_cuda_out
|
2543
2664
|
|
2544
2665
|
- func: _logcumsumexp(Tensor self, int dim) -> Tensor
|
2545
2666
|
dispatch:
|
@@ -2608,16 +2729,27 @@
|
|
2608
2729
|
|
2609
2730
|
- func: matrix_exp_backward(Tensor self, Tensor grad) -> Tensor
|
2610
2731
|
|
2732
|
+
# DEPRECATED: Use torch.aminmax instead
|
2611
2733
|
- func: _aminmax(Tensor self) -> (Tensor, Tensor)
|
2612
|
-
variants: function
|
2613
2734
|
dispatch:
|
2614
2735
|
CPU, CUDA: _aminmax_all
|
2615
2736
|
|
2737
|
+
# DEPRECATED: Use torch.aminmax instead
|
2616
2738
|
- func: _aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
|
2617
|
-
variants: function
|
2618
2739
|
dispatch:
|
2619
2740
|
CPU, CUDA: _aminmax
|
2620
2741
|
|
2742
|
+
- func: aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max)
|
2743
|
+
device_check: NoCheck # TensorIterator
|
2744
|
+
structured_delegate: aminmax.out
|
2745
|
+
variants: function, method
|
2746
|
+
|
2747
|
+
- func: aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)
|
2748
|
+
device_check: NoCheck # TensorIterator
|
2749
|
+
structured: True
|
2750
|
+
dispatch:
|
2751
|
+
CPU, CUDA: aminmax_out
|
2752
|
+
|
2621
2753
|
- func: _compute_linear_combination(Tensor input, Tensor coefficients) -> Tensor
|
2622
2754
|
dispatch:
|
2623
2755
|
CPU, CUDA: _compute_linear_combination
|
@@ -2697,20 +2829,20 @@
|
|
2697
2829
|
device_check: NoCheck # TensorIterator
|
2698
2830
|
variants: function, method
|
2699
2831
|
dispatch:
|
2700
|
-
|
2701
|
-
QuantizedCPU: mean_quantized_cpu
|
2832
|
+
CompositeExplicitAutograd: mean
|
2702
2833
|
|
2703
2834
|
- func: mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
2835
|
+
structured_delegate: mean.out
|
2704
2836
|
device_check: NoCheck # TensorIterator
|
2705
2837
|
variants: function, method
|
2706
2838
|
dispatch:
|
2707
|
-
CPU, CUDA: mean_cpu_gpu
|
2708
2839
|
QuantizedCPU: mean_quantized_cpu
|
2709
2840
|
|
2710
2841
|
- func: mean.out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2842
|
+
structured: True
|
2711
2843
|
device_check: NoCheck # TensorIterator
|
2712
2844
|
dispatch:
|
2713
|
-
CPU, CUDA:
|
2845
|
+
CPU, CUDA: mean_out
|
2714
2846
|
QuantizedCPU: mean_out_quantized_cpu
|
2715
2847
|
|
2716
2848
|
- func: mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
@@ -2720,6 +2852,13 @@
|
|
2720
2852
|
- func: mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2721
2853
|
device_check: NoCheck # TensorIterator
|
2722
2854
|
|
2855
|
+
- func: nanmean(Tensor self, int[1] dim=[], bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
2856
|
+
device_check: NoCheck # Composite
|
2857
|
+
variants: function, method
|
2858
|
+
|
2859
|
+
- func: nanmean.out(Tensor self, int[1] dim=[], bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
2860
|
+
device_check: NoCheck # Composite
|
2861
|
+
|
2723
2862
|
- func: median(Tensor self) -> Tensor
|
2724
2863
|
variants: function, method
|
2725
2864
|
dispatch:
|
@@ -2872,18 +3011,18 @@
|
|
2872
3011
|
CUDA: miopen_rnn_backward
|
2873
3012
|
|
2874
3013
|
- func: mm(Tensor self, Tensor mat2) -> Tensor
|
3014
|
+
structured_delegate: mm.out
|
2875
3015
|
variants: function, method
|
2876
3016
|
dispatch:
|
2877
|
-
|
2878
|
-
CUDA: mm_cuda
|
2879
|
-
SparseCPU, SparseCUDA, SparseCsrCPU: _sparse_mm
|
3017
|
+
SparseCPU, SparseCUDA, SparseCsrCPU, SparseCsrCUDA: _sparse_mm
|
2880
3018
|
|
2881
3019
|
- func: mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
3020
|
+
structured: True
|
2882
3021
|
dispatch:
|
2883
|
-
CPU:
|
3022
|
+
CPU: mm_out_cpu
|
2884
3023
|
CUDA: mm_out_cuda
|
2885
3024
|
SparseCPU, SparseCUDA: _sparse_mm_out
|
2886
|
-
SparseCsrCPU: _sparse_csr_mm_out
|
3025
|
+
SparseCsrCPU, SparseCsrCUDA: _sparse_csr_mm_out
|
2887
3026
|
|
2888
3027
|
- func: _sparse_mm(Tensor sparse, Tensor dense) -> Tensor
|
2889
3028
|
|
@@ -2969,12 +3108,16 @@
|
|
2969
3108
|
variants: function, method
|
2970
3109
|
dispatch:
|
2971
3110
|
CPU, CUDA: mv
|
2972
|
-
SparseCPU, SparseCUDA, SparseCsrCPU: mv_sparse
|
3111
|
+
SparseCPU, SparseCUDA, SparseCsrCPU, SparseCsrCUDA: mv_sparse
|
2973
3112
|
|
2974
3113
|
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
2975
3114
|
dispatch:
|
2976
3115
|
CompositeExplicitAutograd: mv_out
|
2977
3116
|
|
3117
|
+
- func: mvlgamma.out(Tensor self, int p, *, Tensor(a!) out) -> Tensor(a!)
|
3118
|
+
dispatch:
|
3119
|
+
CPU, CUDA: mvlgamma_out
|
3120
|
+
|
2978
3121
|
- func: mvlgamma(Tensor self, int p) -> Tensor
|
2979
3122
|
device_check: NoCheck # TensorIterator
|
2980
3123
|
variants: function, method
|
@@ -3152,12 +3295,22 @@
|
|
3152
3295
|
CPU: channel_shuffle
|
3153
3296
|
QuantizedCPU: channel_shuffle_quantized_cpu
|
3154
3297
|
|
3155
|
-
- func: is_pinned(Tensor self) -> bool
|
3298
|
+
- func: is_pinned(Tensor self, Device? device=None) -> bool
|
3156
3299
|
variants: method
|
3300
|
+
dispatch:
|
3301
|
+
CUDA: is_pinned_cuda
|
3302
|
+
CompositeExplicitAutograd: is_pinned_default
|
3157
3303
|
|
3158
|
-
|
3304
|
+
# TODO: add a copy kwarg that guarantees that the tensor is put into fresh
|
3305
|
+
# pinned memory
|
3306
|
+
- func: pin_memory(Tensor(a) self, Device? device=None) -> Tensor(a)
|
3159
3307
|
variants: method
|
3160
3308
|
|
3309
|
+
# Unlike pin_memory, this is guaranteed to give a new non-aliasing tensor
|
3310
|
+
- func: _pin_memory(Tensor self, Device? device=None) -> Tensor
|
3311
|
+
dispatch:
|
3312
|
+
CUDA: _pin_memory_cuda
|
3313
|
+
|
3161
3314
|
- func: pinverse(Tensor self, float rcond=1e-15) -> Tensor
|
3162
3315
|
variants: function, method
|
3163
3316
|
|
@@ -3326,16 +3479,16 @@
|
|
3326
3479
|
dispatch:
|
3327
3480
|
CompositeExplicitAutograd: repeat
|
3328
3481
|
|
3329
|
-
- func: repeat_interleave.Tensor(Tensor repeats) -> Tensor
|
3482
|
+
- func: repeat_interleave.Tensor(Tensor repeats, *, int? output_size=None) -> Tensor
|
3330
3483
|
variants: function
|
3331
3484
|
dispatch:
|
3332
3485
|
CPU: repeat_interleave_cpu
|
3333
3486
|
CUDA: repeat_interleave_cuda
|
3334
3487
|
|
3335
|
-
- func: repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None) -> Tensor
|
3488
|
+
- func: repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *, int? output_size=None) -> Tensor
|
3336
3489
|
variants: function, method
|
3337
3490
|
|
3338
|
-
- func: repeat_interleave.self_int(Tensor self, int repeats, int? dim=None) -> Tensor
|
3491
|
+
- func: repeat_interleave.self_int(Tensor self, int repeats, int? dim=None, *, int? output_size=None) -> Tensor
|
3339
3492
|
variants: function, method
|
3340
3493
|
|
3341
3494
|
- func: reshape(Tensor(a) self, int[] shape) -> Tensor(a)
|
@@ -3343,6 +3496,17 @@
|
|
3343
3496
|
device_check: NoCheck
|
3344
3497
|
device_guard: False
|
3345
3498
|
|
3499
|
+
# NOTE [ _reshape_alias ] is meant to be used in the implementation of reshape.
|
3500
|
+
# They are not user-facing, hence the leading underscore. Please don't use it
|
3501
|
+
# anywhere else.
|
3502
|
+
- func: _reshape_alias(Tensor(a) self, int[] size, int[] stride) -> Tensor(a)
|
3503
|
+
variants: function, method
|
3504
|
+
device_check: NoCheck
|
3505
|
+
device_guard: False
|
3506
|
+
dispatch:
|
3507
|
+
CPU, CUDA, Meta, QuantizedCPU, QuantizedCUDA: _reshape_alias
|
3508
|
+
# We don't need to support mkldnn since this is handled explicitly by the reshape operator.
|
3509
|
+
|
3346
3510
|
- func: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor
|
3347
3511
|
device_check: NoCheck
|
3348
3512
|
device_guard: False
|
@@ -3412,19 +3576,35 @@
|
|
3412
3576
|
CPU: prelu_backward_cpu
|
3413
3577
|
CUDA: prelu_backward_cuda
|
3414
3578
|
|
3579
|
+
- func: gelu.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
3580
|
+
structured: True
|
3581
|
+
structured_inherits: TensorIteratorBase
|
3582
|
+
device_check: NoCheck # TensorIterator
|
3583
|
+
python_module: nn
|
3584
|
+
dispatch:
|
3585
|
+
CPU: gelu_out_cpu
|
3586
|
+
CUDA: gelu_out_cuda
|
3587
|
+
|
3415
3588
|
- func: gelu(Tensor self) -> Tensor
|
3589
|
+
structured_delegate: gelu.out
|
3416
3590
|
device_check: NoCheck # TensorIterator
|
3417
3591
|
python_module: nn
|
3418
3592
|
dispatch:
|
3419
3593
|
MkldnnCPU: mkldnn_gelu
|
3420
|
-
|
3421
|
-
|
3594
|
+
|
3595
|
+
- func: gelu_backward.grad_input(Tensor grad, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)
|
3596
|
+
structured: True
|
3597
|
+
structured_inherits: TensorIteratorBase
|
3598
|
+
python_module: nn
|
3599
|
+
dispatch:
|
3600
|
+
CPU: gelu_backward_out_cpu
|
3601
|
+
CUDA: gelu_backward_out_cuda
|
3422
3602
|
|
3423
3603
|
- func: gelu_backward(Tensor grad, Tensor self) -> Tensor
|
3604
|
+
structured_delegate: gelu_backward.grad_input
|
3424
3605
|
python_module: nn
|
3425
3606
|
dispatch:
|
3426
|
-
|
3427
|
-
CUDA: gelu_backward_cuda
|
3607
|
+
MkldnnCPU: mkldnn_gelu_backward
|
3428
3608
|
|
3429
3609
|
- func: infinitely_differentiable_gelu_backward(Tensor grad, Tensor self) -> Tensor
|
3430
3610
|
variants: function
|
@@ -3432,16 +3612,27 @@
|
|
3432
3612
|
device_check: NoCheck
|
3433
3613
|
device_guard: False
|
3434
3614
|
|
3615
|
+
- func: hardshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!)
|
3616
|
+
structured: True
|
3617
|
+
structured_inherits: TensorIteratorBase
|
3618
|
+
device_check: NoCheck # TensorIterator
|
3619
|
+
dispatch:
|
3620
|
+
CPU, CUDA: hardshrink_out
|
3621
|
+
|
3435
3622
|
- func: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor
|
3623
|
+
structured_delegate: hardshrink.out
|
3436
3624
|
device_check: NoCheck # TensorIterator
|
3437
3625
|
variants: function, method
|
3626
|
+
|
3627
|
+
- func: hardshrink_backward.grad_input(Tensor grad_out, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)
|
3628
|
+
structured: True
|
3629
|
+
structured_inherits: TensorIteratorBase
|
3438
3630
|
dispatch:
|
3439
|
-
CPU, CUDA:
|
3631
|
+
CPU, CUDA: hardshrink_backward_out
|
3440
3632
|
|
3441
3633
|
- func: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor
|
3634
|
+
structured_delegate: hardshrink_backward.grad_input
|
3442
3635
|
variants: function, method
|
3443
|
-
dispatch:
|
3444
|
-
CPU, CUDA: hardshrink_backward
|
3445
3636
|
|
3446
3637
|
- func: rsqrt(Tensor self) -> Tensor
|
3447
3638
|
device_check: NoCheck # TensorIterator
|
@@ -3472,10 +3663,12 @@
|
|
3472
3663
|
dispatch:
|
3473
3664
|
CompositeExplicitAutograd: select
|
3474
3665
|
|
3475
|
-
- func: select_backward(Tensor
|
3666
|
+
- func: select_backward(Tensor grad_output, int[] input_sizes, int dim, int index) -> Tensor
|
3476
3667
|
variants: function
|
3477
3668
|
device_check: NoCheck
|
3478
3669
|
device_guard: False
|
3670
|
+
dispatch:
|
3671
|
+
CompositeExplicitAutograd: select_backward
|
3479
3672
|
|
3480
3673
|
- func: selu(Tensor self) -> Tensor
|
3481
3674
|
device_check: NoCheck # TensorIterator
|
@@ -3512,10 +3705,17 @@
|
|
3512
3705
|
dispatch:
|
3513
3706
|
CPU, CUDA: silu_out
|
3514
3707
|
|
3708
|
+
- func: silu_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)
|
3709
|
+
structured: True
|
3710
|
+
structured_inherits: TensorIteratorBase
|
3711
|
+
python_module: nn
|
3712
|
+
dispatch:
|
3713
|
+
CPU, CUDA: silu_backward_out
|
3714
|
+
|
3515
3715
|
- func: silu_backward(Tensor grad_output, Tensor self) -> Tensor
|
3716
|
+
structured_delegate: silu_backward.grad_input
|
3516
3717
|
python_module: nn
|
3517
3718
|
dispatch:
|
3518
|
-
CPU, CUDA: silu_backward
|
3519
3719
|
CompositeImplicitAutograd: math_silu_backward
|
3520
3720
|
|
3521
3721
|
- func: mish(Tensor self) -> Tensor
|
@@ -3669,10 +3869,12 @@
|
|
3669
3869
|
dispatch:
|
3670
3870
|
CompositeExplicitAutograd: slice
|
3671
3871
|
|
3672
|
-
- func: slice_backward(Tensor
|
3872
|
+
- func: slice_backward(Tensor grad_output, int[] input_sizes, int dim, int start, int end, int step) -> Tensor
|
3673
3873
|
variants: function
|
3674
3874
|
device_check: NoCheck
|
3675
3875
|
device_guard: False
|
3876
|
+
dispatch:
|
3877
|
+
CompositeExplicitAutograd: slice_backward
|
3676
3878
|
|
3677
3879
|
- func: slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)
|
3678
3880
|
variants: function, method
|
@@ -3690,15 +3892,24 @@
|
|
3690
3892
|
variants: function, method
|
3691
3893
|
|
3692
3894
|
- func: _softmax(Tensor self, int dim, bool half_to_float) -> Tensor
|
3895
|
+
structured_delegate: _softmax.out
|
3693
3896
|
dispatch:
|
3694
|
-
CPU: softmax_cpu
|
3695
|
-
CUDA: softmax_cuda
|
3696
3897
|
MkldnnCPU: mkldnn_softmax
|
3697
3898
|
|
3899
|
+
- func: _softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)
|
3900
|
+
structured: True
|
3901
|
+
dispatch:
|
3902
|
+
CPU: softmax_cpu_out
|
3903
|
+
CUDA: softmax_cuda_out
|
3904
|
+
|
3698
3905
|
- func: _softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor
|
3906
|
+
structured_delegate: _softmax_backward_data.out
|
3907
|
+
|
3908
|
+
- func: _softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)
|
3909
|
+
structured: True
|
3699
3910
|
dispatch:
|
3700
|
-
CPU:
|
3701
|
-
CUDA:
|
3911
|
+
CPU: softmax_backward_cpu_out
|
3912
|
+
CUDA: softmax_backward_cuda_out
|
3702
3913
|
|
3703
3914
|
- func: unsafe_split.Tensor(Tensor self, int split_size, int dim=0) -> Tensor[]
|
3704
3915
|
variants: function, method
|
@@ -3849,19 +4060,19 @@
|
|
3849
4060
|
device_check: NoCheck # TensorIterator
|
3850
4061
|
variants: function, method
|
3851
4062
|
dispatch:
|
3852
|
-
|
4063
|
+
CompositeExplicitAutograd: sum
|
3853
4064
|
|
3854
4065
|
- func: sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
4066
|
+
structured_delegate: sum.IntList_out
|
3855
4067
|
device_check: NoCheck # TensorIterator
|
3856
4068
|
variants: function, method
|
3857
|
-
dispatch:
|
3858
|
-
CPU, CUDA: sum
|
3859
4069
|
|
3860
4070
|
- func: sum.dim_DimnameList(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
3861
4071
|
device_check: NoCheck # TensorIterator
|
3862
4072
|
variants: function, method
|
3863
4073
|
|
3864
4074
|
- func: sum.IntList_out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
4075
|
+
structured: True
|
3865
4076
|
device_check: NoCheck # TensorIterator
|
3866
4077
|
dispatch:
|
3867
4078
|
CPU, CUDA: sum_out
|
@@ -3986,12 +4197,12 @@
|
|
3986
4197
|
CPU, CUDA: prod
|
3987
4198
|
|
3988
4199
|
- func: prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
4200
|
+
structured_delegate: prod.int_out
|
3989
4201
|
device_check: NoCheck # TensorIterator
|
3990
4202
|
variants: function, method
|
3991
|
-
dispatch:
|
3992
|
-
CPU, CUDA: prod
|
3993
4203
|
|
3994
4204
|
- func: prod.int_out(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
4205
|
+
structured: True
|
3995
4206
|
device_check: NoCheck # TensorIterator
|
3996
4207
|
dispatch:
|
3997
4208
|
CPU, CUDA: prod_out
|
@@ -4136,8 +4347,7 @@
|
|
4136
4347
|
- func: flip(Tensor self, int[] dims) -> Tensor
|
4137
4348
|
variants: function, method
|
4138
4349
|
dispatch:
|
4139
|
-
CPU, QuantizedCPU:
|
4140
|
-
CUDA: flip_cuda
|
4350
|
+
CPU, QuantizedCPU, CUDA, QuantizedCUDA: flip
|
4141
4351
|
|
4142
4352
|
- func: fliplr(Tensor self) -> Tensor
|
4143
4353
|
variants: function, method
|
@@ -4158,6 +4368,10 @@
|
|
4158
4368
|
dispatch:
|
4159
4369
|
CompositeExplicitAutograd: rot90
|
4160
4370
|
|
4371
|
+
- func: trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor
|
4372
|
+
|
4373
|
+
- func: trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> Tensor
|
4374
|
+
|
4161
4375
|
- func: trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor
|
4162
4376
|
|
4163
4377
|
- func: trapz.dx(Tensor y, *, float dx=1, int dim=-1) -> Tensor
|
@@ -4476,32 +4690,36 @@
|
|
4476
4690
|
device_check: NoCheck # TensorIterator
|
4477
4691
|
variants: function, method
|
4478
4692
|
dispatch:
|
4479
|
-
|
4693
|
+
CompositeExplicitAutograd: norm
|
4480
4694
|
|
4481
4695
|
- func: norm.Scalar(Tensor self, Scalar p=2) -> Tensor
|
4482
4696
|
device_check: NoCheck # TensorIterator
|
4483
4697
|
variants: function, method
|
4484
4698
|
dispatch:
|
4485
|
-
|
4699
|
+
CompositeExplicitAutograd: norm
|
4486
4700
|
|
4487
4701
|
- func: norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor
|
4702
|
+
structured_delegate: norm.dtype_out
|
4488
4703
|
device_check: NoCheck # TensorIterator
|
4489
4704
|
variants: function, method
|
4490
4705
|
dispatch:
|
4491
|
-
|
4706
|
+
SparseCPU, SparseCUDA: sparse_dtype_norm
|
4492
4707
|
|
4493
4708
|
- func: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor
|
4709
|
+
structured_delegate: norm.out
|
4494
4710
|
device_check: NoCheck # TensorIterator
|
4495
4711
|
variants: function, method
|
4496
4712
|
dispatch:
|
4497
|
-
|
4713
|
+
SparseCPU, SparseCUDA: sparse_norm
|
4498
4714
|
|
4499
4715
|
- func: norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)
|
4716
|
+
structured: True
|
4500
4717
|
device_check: NoCheck # TensorIterator
|
4501
4718
|
dispatch:
|
4502
|
-
CPU, CUDA:
|
4719
|
+
CPU, CUDA: norm_dtype_out
|
4503
4720
|
|
4504
4721
|
- func: norm.out(Tensor self, Scalar? p, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
4722
|
+
structured: True
|
4505
4723
|
device_check: NoCheck # TensorIterator
|
4506
4724
|
dispatch:
|
4507
4725
|
CPU, CUDA: norm_out
|
@@ -4573,7 +4791,7 @@
|
|
4573
4791
|
variants: function
|
4574
4792
|
dispatch:
|
4575
4793
|
SparseCPU, SparseCUDA: resize_as_sparse_
|
4576
|
-
SparseCsrCPU: resize_as_sparse_csr_
|
4794
|
+
SparseCsrCPU, SparseCsrCUDA: resize_as_sparse_csr_
|
4577
4795
|
|
4578
4796
|
- func: zero_(Tensor(a!) self) -> Tensor(a!)
|
4579
4797
|
device_check: NoCheck # TensorIterator
|
@@ -4679,6 +4897,7 @@
|
|
4679
4897
|
SparseCPU: addmm_out_sparse_dense_cpu
|
4680
4898
|
SparseCUDA: addmm_out_sparse_dense_cuda
|
4681
4899
|
SparseCsrCPU: addmm_out_sparse_csr_dense_cpu
|
4900
|
+
SparseCsrCUDA: addmm_out_sparse_csr_dense_cuda
|
4682
4901
|
|
4683
4902
|
- func: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
4684
4903
|
structured_delegate: addmm.out
|
@@ -4686,7 +4905,7 @@
|
|
4686
4905
|
dispatch:
|
4687
4906
|
SparseCPU: addmm_sparse_dense_cpu
|
4688
4907
|
SparseCUDA: addmm_sparse_dense_cuda
|
4689
|
-
SparseCsrCPU:
|
4908
|
+
SparseCsrCPU, SparseCsrCUDA: addmm_sparse_csr_dense
|
4690
4909
|
|
4691
4910
|
- func: addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
4692
4911
|
structured_delegate: addmm.out
|
@@ -4808,9 +5027,11 @@
|
|
4808
5027
|
# FIXME: would be nicer if TensorOptions was optional based; not adding default arguments for options given
|
4809
5028
|
# the default would never make sense.
|
4810
5029
|
|
4811
|
-
- func:
|
5030
|
+
- func: sparse_csr_tensor.crow_col_value_size(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
|
4812
5031
|
|
4813
|
-
- func:
|
5032
|
+
- func: sparse_csr_tensor.crow_col_value(Tensor crow_indices, Tensor col_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
|
5033
|
+
|
5034
|
+
- func: _sparse_csr_tensor_unsafe(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
4814
5035
|
|
4815
5036
|
- func: sparse_coo_tensor.size(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
|
4816
5037
|
|
@@ -4822,6 +5043,8 @@
|
|
4822
5043
|
|
4823
5044
|
- func: _validate_sparse_coo_tensor_args(Tensor indices, Tensor values, int[] size) -> ()
|
4824
5045
|
|
5046
|
+
- func: _validate_sparse_csr_tensor_args(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size) -> ()
|
5047
|
+
|
4825
5048
|
- func: _sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
|
4826
5049
|
dispatch:
|
4827
5050
|
SparseCPU, SparseCUDA: new_with_dims_sparse
|
@@ -4848,10 +5071,13 @@
|
|
4848
5071
|
SparseCPU: sparse_mask_cpu
|
4849
5072
|
SparseCUDA: sparse_mask_cuda
|
4850
5073
|
|
5074
|
+
- func: _to_cpu(Tensor[] tensors) -> Tensor[]
|
5075
|
+
variants: function
|
5076
|
+
|
4851
5077
|
- func: to_dense(Tensor self, ScalarType? dtype=None) -> Tensor
|
4852
5078
|
variants: method
|
4853
5079
|
dispatch:
|
4854
|
-
SparseCPU, SparseCUDA, SparseCsrCPU: sparse_to_dense
|
5080
|
+
SparseCPU, SparseCUDA, SparseCsrCPU, SparseCsrCUDA: sparse_to_dense
|
4855
5081
|
MkldnnCPU: mkldnn_to_dense
|
4856
5082
|
|
4857
5083
|
- func: to_dense_backward(Tensor grad, Tensor input) -> Tensor
|
@@ -4890,7 +5116,7 @@
|
|
4890
5116
|
variants: method
|
4891
5117
|
dispatch:
|
4892
5118
|
SparseCPU, SparseCUDA: _nnz_sparse
|
4893
|
-
SparseCsrCPU: _nnz_sparse_csr
|
5119
|
+
SparseCsrCPU, SparseCsrCUDA: _nnz_sparse_csr
|
4894
5120
|
device_check: NoCheck
|
4895
5121
|
device_guard: False
|
4896
5122
|
|
@@ -4949,21 +5175,21 @@
|
|
4949
5175
|
variants: method
|
4950
5176
|
dispatch:
|
4951
5177
|
SparseCPU, SparseCUDA: values_sparse
|
4952
|
-
SparseCsrCPU: values_sparse_csr
|
5178
|
+
SparseCsrCPU, SparseCsrCUDA: values_sparse_csr
|
4953
5179
|
device_check: NoCheck
|
4954
5180
|
device_guard: False
|
4955
5181
|
|
4956
5182
|
- func: crow_indices(Tensor(a) self) -> Tensor(a)
|
4957
5183
|
variants: method
|
4958
5184
|
dispatch:
|
4959
|
-
SparseCsrCPU: crow_indices_sparse_csr
|
5185
|
+
SparseCsrCPU, SparseCsrCUDA: crow_indices_sparse_csr
|
4960
5186
|
device_check: NoCheck
|
4961
5187
|
device_guard: False
|
4962
5188
|
|
4963
5189
|
- func: col_indices(Tensor(a) self) -> Tensor(a)
|
4964
5190
|
variants: method
|
4965
5191
|
dispatch:
|
4966
|
-
SparseCsrCPU: col_indices_sparse_csr
|
5192
|
+
SparseCsrCPU, SparseCsrCUDA: col_indices_sparse_csr
|
4967
5193
|
device_check: NoCheck
|
4968
5194
|
device_guard: False
|
4969
5195
|
|
@@ -5025,6 +5251,11 @@
|
|
5025
5251
|
dispatch:
|
5026
5252
|
CPU, CUDA: quantize_per_tensor
|
5027
5253
|
|
5254
|
+
- func: quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, ScalarType dtype) -> Tensor
|
5255
|
+
variants: function
|
5256
|
+
dispatch:
|
5257
|
+
CPU, CUDA: quantize_per_tensor_tensor_qparams
|
5258
|
+
|
5028
5259
|
- func: quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, ScalarType dtype) -> Tensor[]
|
5029
5260
|
variants: function
|
5030
5261
|
dispatch:
|
@@ -5033,13 +5264,13 @@
|
|
5033
5264
|
- func: quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, ScalarType dtype) -> Tensor
|
5034
5265
|
variants: function
|
5035
5266
|
dispatch:
|
5036
|
-
CPU:
|
5267
|
+
CPU, CUDA: quantize_per_channel
|
5037
5268
|
|
5038
5269
|
- func: dequantize.self(Tensor self) -> Tensor
|
5039
5270
|
variants: function, method
|
5040
5271
|
dispatch:
|
5041
5272
|
CPU: dequantize_cpu
|
5042
|
-
QuantizedCPU, QuantizedCUDA:
|
5273
|
+
QuantizedCPU, QuantizedCUDA: dequantize_quantized
|
5043
5274
|
|
5044
5275
|
- func: dequantize.tensors(Tensor[] tensors) -> Tensor[]
|
5045
5276
|
variants: function
|
@@ -5086,6 +5317,7 @@
|
|
5086
5317
|
- func: _make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor
|
5087
5318
|
dispatch:
|
5088
5319
|
CPU: make_per_channel_quantized_tensor_cpu
|
5320
|
+
CUDA: make_per_channel_quantized_tensor_cuda
|
5089
5321
|
|
5090
5322
|
- func: qscheme(Tensor self) -> QScheme
|
5091
5323
|
variants: method
|
@@ -5096,11 +5328,20 @@
|
|
5096
5328
|
device_check: NoCheck # TensorIterator
|
5097
5329
|
variants: function
|
5098
5330
|
|
5331
|
+
- func: fake_quantize_per_tensor_affine.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max) -> Tensor
|
5332
|
+
device_check: NoCheck # TensorIterator
|
5333
|
+
variants: function
|
5334
|
+
|
5099
5335
|
- func: fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask)
|
5100
5336
|
variants: function
|
5101
5337
|
dispatch:
|
5102
5338
|
CPU, CUDA: fake_quantize_per_tensor_affine_cachemask
|
5103
5339
|
|
5340
|
+
- func: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask)
|
5341
|
+
variants: function
|
5342
|
+
dispatch:
|
5343
|
+
CPU, CUDA: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams
|
5344
|
+
|
5104
5345
|
- func: fake_quantize_per_tensor_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor
|
5105
5346
|
variants: function
|
5106
5347
|
|
@@ -5132,6 +5373,15 @@
|
|
5132
5373
|
- func: _fake_quantize_learnable_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor)
|
5133
5374
|
variants: function
|
5134
5375
|
|
5376
|
+
- func: fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> Tensor
|
5377
|
+
variants: function
|
5378
|
+
|
5379
|
+
- func: _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask)
|
5380
|
+
dispatch:
|
5381
|
+
CPU: fused_moving_avg_obs_fake_quant_cpu
|
5382
|
+
CUDA: fused_moving_avg_obs_fake_quant_cuda
|
5383
|
+
|
5384
|
+
|
5135
5385
|
- func: _choose_qparams_per_tensor(Tensor self, bool reduce_range=False) -> (float, int)
|
5136
5386
|
variants: function
|
5137
5387
|
|
@@ -5141,31 +5391,42 @@
|
|
5141
5391
|
- func: choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor)
|
5142
5392
|
variants: function
|
5143
5393
|
|
5394
|
+
- func: _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
|
5395
|
+
device_check: NoCheck
|
5396
|
+
device_guard: False
|
5397
|
+
dispatch:
|
5398
|
+
CompositeExplicitAutograd: _to_copy
|
5399
|
+
|
5144
5400
|
# to(Device) must not exist because all constructors of Device also works for
|
5145
5401
|
# TensorOptions. Otherwise, an ambiguity error is thrown.
|
5146
5402
|
# See NOTE [ TensorOptions Constructors ].
|
5147
|
-
- func: to.dtype_layout(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
5403
|
+
- func: to.dtype_layout(Tensor(a) self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)
|
5148
5404
|
variants: method
|
5149
5405
|
device_check: NoCheck
|
5150
5406
|
device_guard: False
|
5151
5407
|
|
5152
|
-
- func: to.device(Tensor self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
5408
|
+
- func: to.device(Tensor(a) self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)
|
5153
5409
|
variants: method
|
5154
5410
|
device_check: NoCheck
|
5155
5411
|
device_guard: False
|
5156
5412
|
|
5157
|
-
- func: to.dtype(Tensor self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
5413
|
+
- func: to.dtype(Tensor(a) self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)
|
5158
5414
|
variants: method
|
5159
5415
|
device_check: NoCheck
|
5160
5416
|
device_guard: False
|
5161
5417
|
|
5162
|
-
- func: to.other(Tensor self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor
|
5418
|
+
- func: to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)
|
5163
5419
|
variants: method
|
5164
5420
|
device_check: NoCheck
|
5165
5421
|
device_guard: False
|
5166
5422
|
|
5167
5423
|
- func: meshgrid(Tensor[] tensors) -> Tensor[]
|
5168
5424
|
|
5425
|
+
# TODO: Two weeks after this lands, combine these two overloads,
|
5426
|
+
# making "indexing" optional. These are temporarily distinct for
|
5427
|
+
# forward-compatibility reasons.
|
5428
|
+
- func: meshgrid.indexing(Tensor[] tensors, *, str indexing) -> Tensor[]
|
5429
|
+
|
5169
5430
|
- func: cartesian_prod(Tensor[] tensors) -> Tensor
|
5170
5431
|
variants: function
|
5171
5432
|
|
@@ -5433,56 +5694,94 @@
|
|
5433
5694
|
device_check: NoCheck # TensorIterator
|
5434
5695
|
variants: function, method
|
5435
5696
|
|
5436
|
-
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
5437
|
-
variants: method
|
5438
|
-
dispatch:
|
5439
|
-
CPU, CUDA: scatter_
|
5440
|
-
|
5441
5697
|
- func: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
5698
|
+
structured_delegate: scatter.src_out
|
5442
5699
|
variants: function, method
|
5443
5700
|
|
5444
|
-
- func: scatter_.
|
5701
|
+
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
5702
|
+
structured_delegate: scatter.src_out
|
5445
5703
|
variants: method
|
5704
|
+
|
5705
|
+
- func: scatter.src_out(Tensor self, int dim, Tensor index, Tensor src, *, Tensor(a!) out) -> Tensor(a!)
|
5706
|
+
structured: True
|
5707
|
+
variants: function
|
5446
5708
|
dispatch:
|
5447
|
-
CPU, CUDA:
|
5709
|
+
CPU, CUDA: scatter_src_out
|
5448
5710
|
|
5449
5711
|
- func: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
5712
|
+
structured_delegate: scatter.value_out
|
5450
5713
|
variants: function, method
|
5451
5714
|
|
5452
|
-
- func:
|
5453
|
-
|
5715
|
+
- func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
5716
|
+
structured_delegate: scatter.value_out
|
5717
|
+
variants: method
|
5454
5718
|
|
5455
|
-
- func: scatter.
|
5719
|
+
- func: scatter.value_out(Tensor self, int dim, Tensor index, Scalar value, *, Tensor(a!) out) -> Tensor(a!)
|
5720
|
+
structured: True
|
5721
|
+
variants: function
|
5722
|
+
dispatch:
|
5723
|
+
CPU, CUDA: scatter_value_out
|
5724
|
+
|
5725
|
+
- func: scatter.reduce(Tensor self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor
|
5726
|
+
structured_delegate: scatter.reduce_out
|
5456
5727
|
variants: function, method
|
5457
5728
|
|
5458
5729
|
- func: scatter_.reduce(Tensor(a!) self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor(a!)
|
5730
|
+
structured_delegate: scatter.reduce_out
|
5459
5731
|
variants: method
|
5732
|
+
|
5733
|
+
- func: scatter.reduce_out(Tensor self, int dim, Tensor index, Tensor src, *, str reduce, Tensor(a!) out) -> Tensor(a!)
|
5734
|
+
structured: True
|
5735
|
+
variants: function
|
5460
5736
|
dispatch:
|
5461
|
-
CPU, CUDA:
|
5737
|
+
CPU, CUDA: scatter_reduce_out
|
5738
|
+
|
5739
|
+
- func: scatter.value_reduce(Tensor self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor
|
5740
|
+
structured_delegate: scatter.value_reduce_out
|
5741
|
+
variants: function, method
|
5462
5742
|
|
5463
5743
|
- func: scatter_.value_reduce(Tensor(a!) self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor(a!)
|
5744
|
+
structured_delegate: scatter.value_reduce_out
|
5464
5745
|
variants: method
|
5465
|
-
dispatch:
|
5466
|
-
CPU, CUDA: scatter_scalar_reduce_
|
5467
5746
|
|
5468
|
-
- func:
|
5469
|
-
|
5747
|
+
- func: scatter.value_reduce_out(Tensor self, int dim, Tensor index, Scalar value, *, str reduce, Tensor(a!) out) -> Tensor(a!)
|
5748
|
+
structured: True
|
5749
|
+
variants: function
|
5470
5750
|
dispatch:
|
5471
|
-
CPU, CUDA:
|
5751
|
+
CPU, CUDA: scatter_value_reduce_out
|
5752
|
+
|
5753
|
+
- func: scatter.dimname_src(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor
|
5754
|
+
variants: function, method
|
5755
|
+
|
5756
|
+
- func: scatter.dimname_value(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor
|
5757
|
+
variants: function, method
|
5472
5758
|
|
5473
5759
|
- func: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
5760
|
+
structured_delegate: scatter_add.out
|
5474
5761
|
variants: function, method
|
5475
5762
|
|
5763
|
+
- func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
5764
|
+
structured_delegate: scatter_add.out
|
5765
|
+
variants: method
|
5766
|
+
|
5767
|
+
- func: scatter_add.out(Tensor self, int dim, Tensor index, Tensor src, *, Tensor(a!) out) -> Tensor(a!)
|
5768
|
+
structured: True
|
5769
|
+
variants: function
|
5770
|
+
dispatch:
|
5771
|
+
CPU, CUDA: scatter_add
|
5772
|
+
|
5476
5773
|
- func: scatter_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor
|
5477
5774
|
variants: function, method
|
5478
5775
|
|
5479
5776
|
- func: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
5777
|
+
structured_delegate: eq.Scalar_out
|
5480
5778
|
device_check: NoCheck # TensorIterator
|
5481
5779
|
variants: method
|
5482
5780
|
dispatch:
|
5483
5781
|
CompositeExplicitAutograd: eq_
|
5484
5782
|
|
5485
5783
|
- func: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
5784
|
+
structured_delegate: eq.Tensor_out
|
5486
5785
|
device_check: NoCheck # TensorIterator
|
5487
5786
|
variants: method
|
5488
5787
|
dispatch:
|
@@ -5490,6 +5789,8 @@
|
|
5490
5789
|
|
5491
5790
|
- func: bitwise_and.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
5492
5791
|
device_check: NoCheck # TensorIterator
|
5792
|
+
structured: True
|
5793
|
+
structured_inherits: TensorIteratorBase
|
5493
5794
|
variants: function
|
5494
5795
|
dispatch:
|
5495
5796
|
CPU, CUDA: bitwise_and_out
|
@@ -5498,15 +5799,18 @@
|
|
5498
5799
|
device_check: NoCheck # TensorIterator
|
5499
5800
|
variants: function
|
5500
5801
|
dispatch:
|
5501
|
-
|
5802
|
+
CompositeExplicitAutograd: bitwise_and_out
|
5502
5803
|
|
5503
5804
|
- func: bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor
|
5504
5805
|
device_check: NoCheck # TensorIterator
|
5505
5806
|
variants: method, function
|
5807
|
+
dispatch:
|
5808
|
+
CompositeExplicitAutograd: bitwise_and
|
5506
5809
|
|
5507
5810
|
- func: bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor
|
5508
5811
|
device_check: NoCheck # TensorIterator
|
5509
5812
|
variants: method, function
|
5813
|
+
structured_delegate: bitwise_and.Tensor_out
|
5510
5814
|
|
5511
5815
|
- func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
5512
5816
|
device_check: NoCheck # TensorIterator
|
@@ -5515,6 +5819,7 @@
|
|
5515
5819
|
- func: bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
5516
5820
|
device_check: NoCheck # TensorIterator
|
5517
5821
|
variants: method
|
5822
|
+
structured_delegate: bitwise_and.Tensor_out
|
5518
5823
|
|
5519
5824
|
- func: __and__.Scalar(Tensor self, Scalar other) -> Tensor
|
5520
5825
|
device_check: NoCheck # TensorIterator
|
@@ -5534,6 +5839,8 @@
|
|
5534
5839
|
|
5535
5840
|
- func: bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
5536
5841
|
device_check: NoCheck # TensorIterator
|
5842
|
+
structured: True
|
5843
|
+
structured_inherits: TensorIteratorBase
|
5537
5844
|
variants: function
|
5538
5845
|
dispatch:
|
5539
5846
|
CPU, CUDA: bitwise_or_out
|
@@ -5542,7 +5849,7 @@
|
|
5542
5849
|
device_check: NoCheck # TensorIterator
|
5543
5850
|
variants: function
|
5544
5851
|
dispatch:
|
5545
|
-
|
5852
|
+
CompositeExplicitAutograd: bitwise_or_out
|
5546
5853
|
|
5547
5854
|
- func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor
|
5548
5855
|
device_check: NoCheck # TensorIterator
|
@@ -5551,6 +5858,7 @@
|
|
5551
5858
|
- func: bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor
|
5552
5859
|
device_check: NoCheck # TensorIterator
|
5553
5860
|
variants: method, function
|
5861
|
+
structured_delegate: bitwise_or.Tensor_out
|
5554
5862
|
|
5555
5863
|
- func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
5556
5864
|
device_check: NoCheck # TensorIterator
|
@@ -5559,6 +5867,7 @@
|
|
5559
5867
|
- func: bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
5560
5868
|
device_check: NoCheck # TensorIterator
|
5561
5869
|
variants: method
|
5870
|
+
structured_delegate: bitwise_or.Tensor_out
|
5562
5871
|
|
5563
5872
|
- func: __or__.Scalar(Tensor self, Scalar other) -> Tensor
|
5564
5873
|
device_check: NoCheck # TensorIterator
|
@@ -5578,6 +5887,8 @@
|
|
5578
5887
|
|
5579
5888
|
- func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
5580
5889
|
device_check: NoCheck # TensorIterator
|
5890
|
+
structured: True
|
5891
|
+
structured_inherits: TensorIteratorBase
|
5581
5892
|
variants: function
|
5582
5893
|
dispatch:
|
5583
5894
|
CPU, CUDA: bitwise_xor_out
|
@@ -5586,7 +5897,7 @@
|
|
5586
5897
|
device_check: NoCheck # TensorIterator
|
5587
5898
|
variants: function
|
5588
5899
|
dispatch:
|
5589
|
-
|
5900
|
+
CompositeExplicitAutograd: bitwise_xor_out
|
5590
5901
|
|
5591
5902
|
- func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor
|
5592
5903
|
device_check: NoCheck # TensorIterator
|
@@ -5595,6 +5906,7 @@
|
|
5595
5906
|
- func: bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor
|
5596
5907
|
device_check: NoCheck # TensorIterator
|
5597
5908
|
variants: method, function
|
5909
|
+
structured_delegate: bitwise_xor.Tensor_out
|
5598
5910
|
|
5599
5911
|
- func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
5600
5912
|
device_check: NoCheck # TensorIterator
|
@@ -5603,6 +5915,7 @@
|
|
5603
5915
|
- func: bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
5604
5916
|
device_check: NoCheck # TensorIterator
|
5605
5917
|
variants: method
|
5918
|
+
structured_delegate: bitwise_xor.Tensor_out
|
5606
5919
|
|
5607
5920
|
- func: __xor__.Scalar(Tensor self, Scalar other) -> Tensor
|
5608
5921
|
device_check: NoCheck # TensorIterator
|
@@ -5644,6 +5957,47 @@
|
|
5644
5957
|
dispatch:
|
5645
5958
|
CPU, CUDA: __ilshift__
|
5646
5959
|
|
5960
|
+
- func: bitwise_left_shift.Tensor(Tensor self, Tensor other) -> Tensor
|
5961
|
+
device_check: NoCheck # TensorIterator
|
5962
|
+
variants: function, method
|
5963
|
+
structured_delegate: bitwise_left_shift.Tensor_out
|
5964
|
+
|
5965
|
+
- func: bitwise_left_shift_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
5966
|
+
device_check: NoCheck # TensorIterator
|
5967
|
+
variants: method
|
5968
|
+
structured_delegate: bitwise_left_shift.Tensor_out
|
5969
|
+
|
5970
|
+
- func: bitwise_left_shift.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
5971
|
+
device_check: NoCheck # TensorIterator
|
5972
|
+
structured: True
|
5973
|
+
structured_inherits: TensorIteratorBase
|
5974
|
+
dispatch:
|
5975
|
+
CPU, CUDA: bitwise_left_shift_out
|
5976
|
+
|
5977
|
+
- func: bitwise_left_shift.Tensor_Scalar(Tensor self, Scalar other) -> Tensor
|
5978
|
+
device_check: NoCheck # TensorIterator
|
5979
|
+
variants: method, function
|
5980
|
+
dispatch:
|
5981
|
+
CPU, CUDA: bitwise_left_shift
|
5982
|
+
|
5983
|
+
- func: bitwise_left_shift_.Tensor_Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
5984
|
+
device_check: NoCheck # TensorIterator
|
5985
|
+
variants: method
|
5986
|
+
dispatch:
|
5987
|
+
CPU, CUDA: bitwise_left_shift_
|
5988
|
+
|
5989
|
+
- func: bitwise_left_shift.Tensor_Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
5990
|
+
device_check: NoCheck # TensorIterator
|
5991
|
+
variants: function
|
5992
|
+
dispatch:
|
5993
|
+
CPU, CUDA: bitwise_left_shift_out
|
5994
|
+
|
5995
|
+
- func: bitwise_left_shift.Scalar_Tensor(Scalar self, Tensor other) -> Tensor
|
5996
|
+
device_check: NoCheck # TensorIterator
|
5997
|
+
variants: function
|
5998
|
+
dispatch:
|
5999
|
+
CPU, CUDA: bitwise_left_shift
|
6000
|
+
|
5647
6001
|
- func: __rshift__.Scalar(Tensor self, Scalar other) -> Tensor
|
5648
6002
|
device_check: NoCheck # TensorIterator
|
5649
6003
|
variants: method, function
|
@@ -5668,67 +6022,77 @@
|
|
5668
6022
|
dispatch:
|
5669
6023
|
CPU, CUDA: __irshift__
|
5670
6024
|
|
5671
|
-
- func:
|
5672
|
-
|
5673
|
-
|
5674
|
-
|
5675
|
-
CUDA: tril_cuda_
|
6025
|
+
- func: bitwise_right_shift.Tensor(Tensor self, Tensor other) -> Tensor
|
6026
|
+
device_check: NoCheck # TensorIterator
|
6027
|
+
variants: function, method
|
6028
|
+
structured_delegate: bitwise_right_shift.Tensor_out
|
5676
6029
|
|
5677
|
-
- func:
|
6030
|
+
- func: bitwise_right_shift_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
6031
|
+
device_check: NoCheck # TensorIterator
|
5678
6032
|
variants: method
|
6033
|
+
structured_delegate: bitwise_right_shift.Tensor_out
|
6034
|
+
|
6035
|
+
- func: bitwise_right_shift.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6036
|
+
device_check: NoCheck # TensorIterator
|
6037
|
+
structured: True
|
6038
|
+
structured_inherits: TensorIteratorBase
|
5679
6039
|
dispatch:
|
5680
|
-
CPU:
|
5681
|
-
CUDA: triu_cuda_
|
6040
|
+
CPU, CUDA: bitwise_right_shift_out
|
5682
6041
|
|
5683
|
-
- func:
|
6042
|
+
- func: bitwise_right_shift.Tensor_Scalar(Tensor self, Scalar other) -> Tensor
|
5684
6043
|
device_check: NoCheck # TensorIterator
|
5685
|
-
|
5686
|
-
|
6044
|
+
variants: method, function
|
6045
|
+
dispatch:
|
6046
|
+
CPU, CUDA: bitwise_right_shift
|
5687
6047
|
|
5688
|
-
- func:
|
6048
|
+
- func: bitwise_right_shift_.Tensor_Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
5689
6049
|
device_check: NoCheck # TensorIterator
|
5690
6050
|
variants: method
|
5691
6051
|
dispatch:
|
5692
|
-
CPU:
|
5693
|
-
CUDA: legacy::cuda::_th_renorm_
|
6052
|
+
CPU, CUDA: bitwise_right_shift_
|
5694
6053
|
|
5695
|
-
- func:
|
6054
|
+
- func: bitwise_right_shift.Tensor_Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
5696
6055
|
device_check: NoCheck # TensorIterator
|
5697
|
-
variants:
|
6056
|
+
variants: function
|
5698
6057
|
dispatch:
|
5699
|
-
CPU:
|
5700
|
-
CUDA: lerp_cuda_scalar_
|
6058
|
+
CPU, CUDA: bitwise_right_shift_out
|
5701
6059
|
|
5702
|
-
- func:
|
6060
|
+
- func: bitwise_right_shift.Scalar_Tensor(Scalar self, Tensor other) -> Tensor
|
5703
6061
|
device_check: NoCheck # TensorIterator
|
6062
|
+
variants: function
|
6063
|
+
dispatch:
|
6064
|
+
CPU, CUDA: bitwise_right_shift
|
6065
|
+
|
6066
|
+
- func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
5704
6067
|
variants: method
|
5705
6068
|
dispatch:
|
5706
|
-
CPU:
|
5707
|
-
CUDA:
|
6069
|
+
CPU: tril_cpu_
|
6070
|
+
CUDA: tril_cuda_
|
5708
6071
|
|
5709
|
-
- func:
|
5710
|
-
device_check: NoCheck # TensorIterator
|
6072
|
+
- func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
|
5711
6073
|
variants: method
|
5712
6074
|
dispatch:
|
5713
|
-
CPU
|
6075
|
+
CPU: triu_cpu_
|
6076
|
+
CUDA: triu_cuda_
|
5714
6077
|
|
5715
|
-
- func:
|
6078
|
+
- func: digamma_(Tensor(a!) self) -> Tensor(a!)
|
5716
6079
|
device_check: NoCheck # TensorIterator
|
6080
|
+
structured_delegate: digamma.out
|
5717
6081
|
variants: method
|
5718
|
-
dispatch:
|
5719
|
-
CPU, CUDA: fmod_
|
5720
6082
|
|
5721
|
-
- func:
|
6083
|
+
- func: lerp_.Scalar(Tensor(a!) self, Tensor end, Scalar weight) -> Tensor(a!)
|
5722
6084
|
device_check: NoCheck # TensorIterator
|
5723
6085
|
variants: method
|
5724
6086
|
dispatch:
|
5725
|
-
CPU
|
6087
|
+
CPU: lerp_cpu_scalar_
|
6088
|
+
CUDA: lerp_cuda_scalar_
|
5726
6089
|
|
5727
|
-
- func:
|
6090
|
+
- func: lerp_.Tensor(Tensor(a!) self, Tensor end, Tensor weight) -> Tensor(a!)
|
5728
6091
|
device_check: NoCheck # TensorIterator
|
5729
6092
|
variants: method
|
5730
6093
|
dispatch:
|
5731
|
-
CPU
|
6094
|
+
CPU: lerp_cpu_tensor_
|
6095
|
+
CUDA: lerp_cuda_tensor_
|
5732
6096
|
|
5733
6097
|
- func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
5734
6098
|
variants: method
|
@@ -5744,12 +6108,6 @@
|
|
5744
6108
|
dispatch:
|
5745
6109
|
CPU, CUDA: addbmm
|
5746
6110
|
|
5747
|
-
- func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
5748
|
-
device_check: NoCheck # TensorIterator
|
5749
|
-
variants: method
|
5750
|
-
dispatch:
|
5751
|
-
CompositeExplicitAutograd: addcdiv_
|
5752
|
-
|
5753
6111
|
- func: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!)
|
5754
6112
|
device_check: NoCheck # TensorIterator
|
5755
6113
|
variants: method
|
@@ -5870,38 +6228,44 @@
|
|
5870
6228
|
device_guard: False
|
5871
6229
|
|
5872
6230
|
- func: ne.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6231
|
+
structured: True
|
6232
|
+
structured_inherits: TensorIteratorBase
|
5873
6233
|
device_check: NoCheck # TensorIterator
|
5874
6234
|
dispatch:
|
5875
|
-
CPU, CUDA:
|
6235
|
+
CPU, CUDA: ne_Scalar_out
|
5876
6236
|
QuantizedCPU: ne_out_quantized_cpu
|
5877
6237
|
|
5878
6238
|
- func: ne.Scalar(Tensor self, Scalar other) -> Tensor
|
6239
|
+
structured_delegate: ne.Scalar_out
|
5879
6240
|
device_check: NoCheck # TensorIterator
|
5880
6241
|
variants: method, function
|
5881
6242
|
dispatch:
|
5882
|
-
CPU, CUDA: ne
|
5883
6243
|
QuantizedCPU: ne_quantized_cpu
|
5884
6244
|
|
5885
6245
|
- func: ne.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6246
|
+
structured: True
|
6247
|
+
structured_inherits: TensorIteratorBase
|
5886
6248
|
device_check: NoCheck # TensorIterator
|
5887
6249
|
dispatch:
|
5888
|
-
CPU, CUDA:
|
6250
|
+
CPU, CUDA: ne_Tensor_out
|
5889
6251
|
QuantizedCPU: ne_out_quantized_cpu
|
5890
6252
|
|
5891
6253
|
- func: ne.Tensor(Tensor self, Tensor other) -> Tensor
|
6254
|
+
structured_delegate: ne.Tensor_out
|
5892
6255
|
device_check: NoCheck # TensorIterator
|
5893
6256
|
variants: method, function
|
5894
6257
|
dispatch:
|
5895
|
-
CPU, CUDA: ne
|
5896
6258
|
QuantizedCPU: ne_quantized_cpu
|
5897
6259
|
|
5898
6260
|
- func: ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
6261
|
+
structured_delegate: ne.Scalar_out
|
5899
6262
|
device_check: NoCheck # TensorIterator
|
5900
6263
|
variants: method
|
5901
6264
|
dispatch:
|
5902
6265
|
CompositeExplicitAutograd: ne_
|
5903
6266
|
|
5904
6267
|
- func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
6268
|
+
structured_delegate: ne.Tensor_out
|
5905
6269
|
device_check: NoCheck # TensorIterator
|
5906
6270
|
variants: method
|
5907
6271
|
dispatch:
|
@@ -5925,64 +6289,74 @@
|
|
5925
6289
|
variants: method
|
5926
6290
|
|
5927
6291
|
- func: eq.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6292
|
+
structured: True
|
6293
|
+
structured_inherits: TensorIteratorBase
|
5928
6294
|
device_check: NoCheck # TensorIterator
|
5929
6295
|
dispatch:
|
5930
|
-
CPU, CUDA:
|
6296
|
+
CPU, CUDA: eq_Scalar_out
|
5931
6297
|
QuantizedCPU: eq_out_quantized_cpu
|
5932
6298
|
|
5933
6299
|
- func: eq.Scalar(Tensor self, Scalar other) -> Tensor
|
6300
|
+
structured_delegate: eq.Scalar_out
|
5934
6301
|
device_check: NoCheck # TensorIterator
|
5935
6302
|
variants: method, function
|
5936
6303
|
dispatch:
|
5937
|
-
CPU, CUDA: eq
|
5938
6304
|
QuantizedCPU: eq_quantized_cpu
|
5939
6305
|
|
5940
6306
|
- func: eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6307
|
+
structured: True
|
6308
|
+
structured_inherits: TensorIteratorBase
|
5941
6309
|
device_check: NoCheck # TensorIterator
|
5942
6310
|
dispatch:
|
5943
|
-
CPU, CUDA:
|
6311
|
+
CPU, CUDA: eq_Tensor_out
|
5944
6312
|
QuantizedCPU: eq_out_quantized_cpu
|
5945
6313
|
|
5946
6314
|
- func: eq.Tensor(Tensor self, Tensor other) -> Tensor
|
6315
|
+
structured_delegate: eq.Tensor_out
|
5947
6316
|
device_check: NoCheck # TensorIterator
|
5948
6317
|
variants: method, function
|
5949
6318
|
dispatch:
|
5950
|
-
CPU, CUDA: eq
|
5951
6319
|
QuantizedCPU: eq_quantized_cpu
|
5952
6320
|
|
5953
6321
|
- func: ge.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6322
|
+
structured: True
|
6323
|
+
structured_inherits: TensorIteratorBase
|
5954
6324
|
device_check: NoCheck # TensorIterator
|
5955
6325
|
dispatch:
|
5956
|
-
CPU, CUDA:
|
6326
|
+
CPU, CUDA: ge_Scalar_out
|
5957
6327
|
QuantizedCPU: ge_out_quantized_cpu
|
5958
6328
|
|
5959
6329
|
- func: ge.Scalar(Tensor self, Scalar other) -> Tensor
|
6330
|
+
structured_delegate: ge.Scalar_out
|
5960
6331
|
device_check: NoCheck # TensorIterator
|
5961
6332
|
variants: method, function
|
5962
6333
|
dispatch:
|
5963
|
-
CPU, CUDA: ge
|
5964
6334
|
QuantizedCPU: ge_quantized_cpu
|
5965
6335
|
|
5966
6336
|
- func: ge.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6337
|
+
structured: True
|
6338
|
+
structured_inherits: TensorIteratorBase
|
5967
6339
|
device_check: NoCheck # TensorIterator
|
5968
6340
|
dispatch:
|
5969
|
-
CPU, CUDA:
|
6341
|
+
CPU, CUDA: ge_Tensor_out
|
5970
6342
|
QuantizedCPU: ge_out_quantized_cpu
|
5971
6343
|
|
5972
6344
|
- func: ge.Tensor(Tensor self, Tensor other) -> Tensor
|
6345
|
+
structured_delegate: ge.Tensor_out
|
5973
6346
|
device_check: NoCheck # TensorIterator
|
5974
6347
|
variants: method, function
|
5975
6348
|
dispatch:
|
5976
|
-
CPU, CUDA: ge
|
5977
6349
|
QuantizedCPU: ge_quantized_cpu
|
5978
6350
|
|
5979
6351
|
- func: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
6352
|
+
structured_delegate: ge.Scalar_out
|
5980
6353
|
device_check: NoCheck # TensorIterator
|
5981
6354
|
variants: method
|
5982
6355
|
dispatch:
|
5983
6356
|
CompositeExplicitAutograd: ge_
|
5984
6357
|
|
5985
6358
|
- func: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
6359
|
+
structured_delegate: ge.Tensor_out
|
5986
6360
|
device_check: NoCheck # TensorIterator
|
5987
6361
|
variants: method
|
5988
6362
|
dispatch:
|
@@ -6006,38 +6380,44 @@
|
|
6006
6380
|
variants: method
|
6007
6381
|
|
6008
6382
|
- func: le.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6383
|
+
structured: True
|
6384
|
+
structured_inherits: TensorIteratorBase
|
6009
6385
|
device_check: NoCheck # TensorIterator
|
6010
6386
|
dispatch:
|
6011
|
-
CPU, CUDA:
|
6387
|
+
CPU, CUDA: le_Scalar_out
|
6012
6388
|
QuantizedCPU: le_out_quantized_cpu
|
6013
6389
|
|
6014
6390
|
- func: le.Scalar(Tensor self, Scalar other) -> Tensor
|
6391
|
+
structured_delegate: le.Scalar_out
|
6015
6392
|
device_check: NoCheck # TensorIterator
|
6016
6393
|
variants: method, function
|
6017
6394
|
dispatch:
|
6018
|
-
CPU, CUDA: le
|
6019
6395
|
QuantizedCPU: le_quantized_cpu
|
6020
6396
|
|
6021
6397
|
- func: le.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6398
|
+
structured: True
|
6399
|
+
structured_inherits: TensorIteratorBase
|
6022
6400
|
device_check: NoCheck # TensorIterator
|
6023
6401
|
dispatch:
|
6024
|
-
CPU, CUDA:
|
6402
|
+
CPU, CUDA: le_Tensor_out
|
6025
6403
|
QuantizedCPU: le_out_quantized_cpu
|
6026
6404
|
|
6027
6405
|
- func: le.Tensor(Tensor self, Tensor other) -> Tensor
|
6406
|
+
structured_delegate: le.Tensor_out
|
6028
6407
|
device_check: NoCheck # TensorIterator
|
6029
6408
|
variants: method, function
|
6030
6409
|
dispatch:
|
6031
|
-
CPU, CUDA: le
|
6032
6410
|
QuantizedCPU: le_quantized_cpu
|
6033
6411
|
|
6034
6412
|
- func: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
6413
|
+
structured_delegate: le.Scalar_out
|
6035
6414
|
device_check: NoCheck # TensorIterator
|
6036
6415
|
variants: method
|
6037
6416
|
dispatch:
|
6038
6417
|
CompositeExplicitAutograd: le_
|
6039
6418
|
|
6040
6419
|
- func: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
6420
|
+
structured_delegate: le.Tensor_out
|
6041
6421
|
device_check: NoCheck # TensorIterator
|
6042
6422
|
variants: method
|
6043
6423
|
dispatch:
|
@@ -6061,38 +6441,44 @@
|
|
6061
6441
|
variants: method
|
6062
6442
|
|
6063
6443
|
- func: gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6444
|
+
structured: True
|
6445
|
+
structured_inherits: TensorIteratorBase
|
6064
6446
|
device_check: NoCheck # TensorIterator
|
6065
6447
|
dispatch:
|
6066
|
-
CPU, CUDA:
|
6448
|
+
CPU, CUDA: gt_Scalar_out
|
6067
6449
|
QuantizedCPU: gt_out_quantized_cpu
|
6068
6450
|
|
6069
6451
|
- func: gt.Scalar(Tensor self, Scalar other) -> Tensor
|
6452
|
+
structured_delegate: gt.Scalar_out
|
6070
6453
|
device_check: NoCheck # TensorIterator
|
6071
6454
|
variants: method, function
|
6072
6455
|
dispatch:
|
6073
|
-
CPU, CUDA: gt
|
6074
6456
|
QuantizedCPU: gt_quantized_cpu
|
6075
6457
|
|
6076
6458
|
- func: gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6459
|
+
structured: True
|
6460
|
+
structured_inherits: TensorIteratorBase
|
6077
6461
|
device_check: NoCheck # TensorIterator
|
6078
6462
|
dispatch:
|
6079
|
-
CPU, CUDA:
|
6463
|
+
CPU, CUDA: gt_Tensor_out
|
6080
6464
|
QuantizedCPU: gt_out_quantized_cpu
|
6081
6465
|
|
6082
6466
|
- func: gt.Tensor(Tensor self, Tensor other) -> Tensor
|
6467
|
+
structured_delegate: gt.Tensor_out
|
6083
6468
|
device_check: NoCheck # TensorIterator
|
6084
6469
|
variants: method, function
|
6085
6470
|
dispatch:
|
6086
|
-
CPU, CUDA: gt
|
6087
6471
|
QuantizedCPU: gt_quantized_cpu
|
6088
6472
|
|
6089
6473
|
- func: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
6474
|
+
structured_delegate: gt.Scalar_out
|
6090
6475
|
device_check: NoCheck # TensorIterator
|
6091
6476
|
variants: method
|
6092
6477
|
dispatch:
|
6093
6478
|
CompositeExplicitAutograd: gt_
|
6094
6479
|
|
6095
6480
|
- func: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
6481
|
+
structured_delegate: gt.Tensor_out
|
6096
6482
|
device_check: NoCheck # TensorIterator
|
6097
6483
|
variants: method
|
6098
6484
|
dispatch:
|
@@ -6116,38 +6502,44 @@
|
|
6116
6502
|
variants: method
|
6117
6503
|
|
6118
6504
|
- func: lt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6505
|
+
structured: True
|
6506
|
+
structured_inherits: TensorIteratorBase
|
6119
6507
|
device_check: NoCheck # TensorIterator
|
6120
6508
|
dispatch:
|
6121
|
-
CPU, CUDA:
|
6509
|
+
CPU, CUDA: lt_Scalar_out
|
6122
6510
|
QuantizedCPU: lt_out_quantized_cpu
|
6123
6511
|
|
6124
6512
|
- func: lt.Scalar(Tensor self, Scalar other) -> Tensor
|
6513
|
+
structured_delegate: lt.Scalar_out
|
6125
6514
|
device_check: NoCheck # TensorIterator
|
6126
6515
|
variants: method, function
|
6127
6516
|
dispatch:
|
6128
|
-
CPU, CUDA: lt
|
6129
6517
|
QuantizedCPU: lt_quantized_cpu
|
6130
6518
|
|
6131
6519
|
- func: lt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6520
|
+
structured: True
|
6521
|
+
structured_inherits: TensorIteratorBase
|
6132
6522
|
device_check: NoCheck # TensorIterator
|
6133
6523
|
dispatch:
|
6134
|
-
CPU, CUDA:
|
6524
|
+
CPU, CUDA: lt_Tensor_out
|
6135
6525
|
QuantizedCPU: lt_out_quantized_cpu
|
6136
6526
|
|
6137
6527
|
- func: lt.Tensor(Tensor self, Tensor other) -> Tensor
|
6528
|
+
structured_delegate: lt.Tensor_out
|
6138
6529
|
device_check: NoCheck # TensorIterator
|
6139
6530
|
variants: method, function
|
6140
6531
|
dispatch:
|
6141
|
-
CPU, CUDA: lt
|
6142
6532
|
QuantizedCPU: lt_quantized_cpu
|
6143
6533
|
|
6144
6534
|
- func: lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
6535
|
+
structured_delegate: lt.Scalar_out
|
6145
6536
|
device_check: NoCheck # TensorIterator
|
6146
6537
|
variants: method
|
6147
6538
|
dispatch:
|
6148
6539
|
CompositeExplicitAutograd: lt_
|
6149
6540
|
|
6150
6541
|
- func: lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
6542
|
+
structured_delegate: lt.Tensor_out
|
6151
6543
|
device_check: NoCheck # TensorIterator
|
6152
6544
|
variants: method
|
6153
6545
|
dispatch:
|
@@ -6186,14 +6578,14 @@
|
|
6186
6578
|
|
6187
6579
|
- func: index_select.out(Tensor self, int dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!)
|
6188
6580
|
dispatch:
|
6189
|
-
CPU: index_select_out_cpu_
|
6190
|
-
CUDA: index_select_out_cuda
|
6581
|
+
CPU, QuantizedCPU: index_select_out_cpu_
|
6582
|
+
CUDA, QuantizedCUDA: index_select_out_cuda
|
6191
6583
|
|
6192
6584
|
- func: index_select(Tensor self, int dim, Tensor index) -> Tensor
|
6193
6585
|
variants: method, function
|
6194
6586
|
dispatch:
|
6195
|
-
CPU: index_select_cpu_
|
6196
|
-
CUDA: index_select_cuda
|
6587
|
+
CPU, QuantizedCPU: index_select_cpu_
|
6588
|
+
CUDA, QuantizedCUDA: index_select_cuda
|
6197
6589
|
SparseCPU: index_select_sparse
|
6198
6590
|
SparseCUDA: index_select_sparse
|
6199
6591
|
|
@@ -6225,27 +6617,26 @@
|
|
6225
6617
|
|
6226
6618
|
- func: nonzero.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
6227
6619
|
dispatch:
|
6228
|
-
CPU:
|
6620
|
+
CPU: nonzero_out_cpu
|
6229
6621
|
CUDA: nonzero_out_cuda
|
6230
6622
|
|
6231
6623
|
- func: nonzero(Tensor self) -> Tensor
|
6232
6624
|
variants: method, function
|
6233
6625
|
dispatch:
|
6234
|
-
CPU:
|
6626
|
+
CPU: nonzero_cpu
|
6235
6627
|
CUDA: nonzero_cuda
|
6236
6628
|
|
6237
6629
|
- func: nonzero_numpy(Tensor self) -> Tensor[]
|
6238
6630
|
variants: method, function
|
6239
6631
|
|
6240
6632
|
- func: gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)
|
6633
|
+
structured: True
|
6241
6634
|
dispatch:
|
6242
|
-
CPU:
|
6243
|
-
CUDA: gather_out_cpu_cuda
|
6635
|
+
CPU, CUDA: gather_out
|
6244
6636
|
|
6245
6637
|
- func: gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor
|
6246
6638
|
variants: method, function
|
6247
|
-
|
6248
|
-
CPU, CUDA: gather
|
6639
|
+
structured_delegate: gather.out
|
6249
6640
|
|
6250
6641
|
- func: gather_backward(Tensor grad, Tensor self, int dim, Tensor index, bool sparse_grad) -> Tensor
|
6251
6642
|
variants: function
|
@@ -6260,46 +6651,52 @@
|
|
6260
6651
|
- func: _gather_sparse_backward(Tensor self, int dim, Tensor index, Tensor grad) -> Tensor
|
6261
6652
|
|
6262
6653
|
- func: addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
6654
|
+
structured: True
|
6655
|
+
structured_inherits: TensorIteratorBase
|
6263
6656
|
device_check: NoCheck # TensorIterator
|
6264
6657
|
dispatch:
|
6265
6658
|
CPU, CUDA: addcmul_out
|
6266
6659
|
|
6267
6660
|
- func: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
6661
|
+
structured_delegate: addcmul.out
|
6268
6662
|
device_check: NoCheck # TensorIterator
|
6269
6663
|
variants: method, function
|
6270
|
-
dispatch:
|
6271
|
-
CompositeExplicitAutograd: addcmul
|
6272
6664
|
|
6273
6665
|
- func: addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
6666
|
+
structured_delegate: addcmul.out
|
6274
6667
|
device_check: NoCheck # TensorIterator
|
6275
6668
|
variants: method
|
6276
|
-
dispatch:
|
6277
|
-
CompositeExplicitAutograd: addcmul_
|
6278
6669
|
|
6279
6670
|
- func: addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)
|
6671
|
+
structured: True
|
6672
|
+
structured_inherits: TensorIteratorBase
|
6280
6673
|
device_check: NoCheck # TensorIterator
|
6281
6674
|
dispatch:
|
6282
6675
|
CPU, CUDA: addcdiv_out
|
6283
6676
|
|
6284
6677
|
- func: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
|
6678
|
+
structured_delegate: addcdiv.out
|
6285
6679
|
device_check: NoCheck # TensorIterator
|
6286
6680
|
variants: method, function
|
6287
|
-
dispatch:
|
6288
|
-
CompositeExplicitAutograd: addcdiv
|
6289
6681
|
|
6290
|
-
- func:
|
6682
|
+
- func: addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)
|
6683
|
+
structured_delegate: addcdiv.out
|
6684
|
+
device_check: NoCheck # TensorIterator
|
6685
|
+
variants: method
|
6686
|
+
|
6687
|
+
- func: cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, float label_smoothing=0.0) -> Tensor
|
6291
6688
|
python_module: nn
|
6292
6689
|
|
6293
6690
|
- func: lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)
|
6294
6691
|
dispatch:
|
6295
|
-
CPU:
|
6296
|
-
CUDA:
|
6692
|
+
CPU: legacy_lstsq_out
|
6693
|
+
CUDA: legacy_lstsq_out_cuda
|
6297
6694
|
|
6298
6695
|
- func: lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR)
|
6299
6696
|
variants: method, function
|
6300
6697
|
dispatch:
|
6301
|
-
CPU:
|
6302
|
-
CUDA:
|
6698
|
+
CPU: legacy_lstsq
|
6699
|
+
CUDA: legacy_lstsq_cuda
|
6303
6700
|
|
6304
6701
|
- func: triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)
|
6305
6702
|
dispatch:
|
@@ -6444,19 +6841,19 @@
|
|
6444
6841
|
dispatch:
|
6445
6842
|
CPU, CUDA: ormqr
|
6446
6843
|
|
6447
|
-
- func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor, Tensor, Tensor)
|
6844
|
+
- func: _lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor LU, Tensor pivots, Tensor info)
|
6448
6845
|
variants: function
|
6449
6846
|
dispatch:
|
6450
6847
|
CPU, CUDA: _lu_with_info
|
6451
6848
|
|
6452
6849
|
- func: lu_solve.out(Tensor self, Tensor LU_data, Tensor LU_pivots, *, Tensor(a!) out) -> Tensor(a!)
|
6453
6850
|
dispatch:
|
6454
|
-
|
6851
|
+
CPU, CUDA: lu_solve_out
|
6455
6852
|
|
6456
6853
|
- func: lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> Tensor
|
6457
6854
|
variants: method, function
|
6458
6855
|
dispatch:
|
6459
|
-
|
6856
|
+
CPU, CUDA: lu_solve
|
6460
6857
|
|
6461
6858
|
- func: lu_unpack(Tensor LU_data, Tensor LU_pivots, bool unpack_data=True, bool unpack_pivots=True) -> (Tensor P, Tensor L, Tensor U)
|
6462
6859
|
variants: function
|
@@ -6579,8 +6976,11 @@
|
|
6579
6976
|
|
6580
6977
|
- func: signbit(Tensor self) -> Tensor
|
6581
6978
|
variants: function, method
|
6979
|
+
structured_delegate: signbit.out
|
6582
6980
|
|
6583
6981
|
- func: signbit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
6982
|
+
structured: True
|
6983
|
+
structured_inherits: TensorIteratorBase
|
6584
6984
|
dispatch:
|
6585
6985
|
CPU: signbit_out
|
6586
6986
|
CUDA: signbit_out
|
@@ -6636,36 +7036,67 @@
|
|
6636
7036
|
|
6637
7037
|
- func: histc.out(Tensor self, int bins=100, Scalar min=0, Scalar max=0, *, Tensor(a!) out) -> Tensor(a!)
|
6638
7038
|
dispatch:
|
6639
|
-
CPU:
|
7039
|
+
CPU: histogram_histc_cpu_out
|
6640
7040
|
CUDA: _histc_out_cuda
|
6641
7041
|
|
6642
7042
|
- func: histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> Tensor
|
6643
7043
|
variants: method, function
|
6644
7044
|
dispatch:
|
6645
|
-
CPU:
|
7045
|
+
CPU: histogram_histc_cpu
|
6646
7046
|
CUDA: _histc_cuda
|
6647
7047
|
|
7048
|
+
- func: histogram.bins_tensor_out(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)
|
7049
|
+
dispatch:
|
7050
|
+
CPU: histogram_out_cpu
|
7051
|
+
|
7052
|
+
- func: histogram.bins_tensor(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)
|
7053
|
+
variants: method, function
|
7054
|
+
dispatch:
|
7055
|
+
CPU: histogram_cpu
|
7056
|
+
|
7057
|
+
- func: histogram.bin_ct_out(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)
|
7058
|
+
dispatch:
|
7059
|
+
CPU: histogram_out_cpu
|
7060
|
+
|
7061
|
+
- func: histogram.bin_ct(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)
|
7062
|
+
variants: method, function
|
7063
|
+
dispatch:
|
7064
|
+
CPU: histogram_cpu
|
7065
|
+
|
6648
7066
|
- func: fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6649
7067
|
device_check: NoCheck # TensorIterator
|
6650
7068
|
dispatch:
|
6651
|
-
|
7069
|
+
CompositeExplicitAutograd: fmod_out
|
6652
7070
|
|
6653
7071
|
- func: fmod.Scalar(Tensor self, Scalar other) -> Tensor
|
6654
7072
|
device_check: NoCheck # TensorIterator
|
6655
7073
|
variants: method, function
|
6656
7074
|
dispatch:
|
6657
|
-
|
7075
|
+
CompositeExplicitAutograd: fmod
|
7076
|
+
|
7077
|
+
- func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
7078
|
+
device_check: NoCheck # TensorIterator
|
7079
|
+
variants: method
|
7080
|
+
dispatch:
|
7081
|
+
CompositeExplicitAutograd: fmod_
|
6658
7082
|
|
6659
7083
|
- func: fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6660
7084
|
device_check: NoCheck # TensorIterator
|
7085
|
+
structured: True
|
7086
|
+
structured_inherits: TensorIteratorBase
|
6661
7087
|
dispatch:
|
6662
7088
|
CPU, CUDA: fmod_out
|
6663
7089
|
|
6664
7090
|
- func: fmod.Tensor(Tensor self, Tensor other) -> Tensor
|
6665
7091
|
device_check: NoCheck # TensorIterator
|
7092
|
+
structured_delegate: fmod.Tensor_out
|
6666
7093
|
variants: method, function
|
6667
|
-
|
6668
|
-
|
7094
|
+
|
7095
|
+
|
7096
|
+
- func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
7097
|
+
device_check: NoCheck # TensorIterator
|
7098
|
+
variants: method
|
7099
|
+
structured_delegate: fmod.Tensor_out
|
6669
7100
|
|
6670
7101
|
- func: hypot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6671
7102
|
structured: True
|
@@ -6728,24 +7159,39 @@
|
|
6728
7159
|
CompositeExplicitAutograd: nextafter_
|
6729
7160
|
|
6730
7161
|
- func: remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
6731
|
-
device_check: NoCheck # TensorIterator
|
6732
7162
|
dispatch:
|
6733
|
-
|
7163
|
+
CompositeExplicitAutograd: remainder_out
|
6734
7164
|
|
6735
7165
|
- func: remainder.Scalar(Tensor self, Scalar other) -> Tensor
|
6736
|
-
device_check: NoCheck # TensorIterator
|
6737
7166
|
variants: method, function
|
6738
7167
|
dispatch:
|
6739
|
-
|
7168
|
+
CompositeExplicitAutograd: remainder
|
7169
|
+
|
7170
|
+
- func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
7171
|
+
variants: method
|
7172
|
+
dispatch:
|
7173
|
+
CompositeExplicitAutograd: remainder_
|
6740
7174
|
|
6741
7175
|
- func: remainder.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
6742
7176
|
device_check: NoCheck # TensorIterator
|
7177
|
+
structured: True
|
7178
|
+
structured_inherits: TensorIteratorBase
|
6743
7179
|
dispatch:
|
6744
7180
|
CPU, CUDA: remainder_out
|
6745
7181
|
|
6746
7182
|
- func: remainder.Tensor(Tensor self, Tensor other) -> Tensor
|
6747
7183
|
device_check: NoCheck # TensorIterator
|
7184
|
+
structured_delegate: remainder.Tensor_out
|
6748
7185
|
variants: method, function
|
7186
|
+
|
7187
|
+
- func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
7188
|
+
device_check: NoCheck # TensorIterator
|
7189
|
+
structured_delegate: remainder.Tensor_out
|
7190
|
+
variants: method
|
7191
|
+
|
7192
|
+
- func: remainder.Scalar_Tensor(Scalar self, Tensor other) -> Tensor
|
7193
|
+
device_check: NoCheck # TensorIterator
|
7194
|
+
variants: function
|
6749
7195
|
dispatch:
|
6750
7196
|
CPU, CUDA: remainder
|
6751
7197
|
|
@@ -6757,11 +7203,14 @@
|
|
6757
7203
|
QuantizedCPU: min_quantized_cpu
|
6758
7204
|
|
6759
7205
|
- func: fmin(Tensor self, Tensor other) -> Tensor
|
7206
|
+
structured_delegate: fmin.out
|
7207
|
+
device_check: NoCheck # TensorIterator
|
6760
7208
|
variants: method, function
|
6761
|
-
dispatch:
|
6762
|
-
CPU, CUDA: fmin
|
6763
7209
|
|
6764
7210
|
- func: fmin.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
7211
|
+
structured: True
|
7212
|
+
structured_inherits: TensorIteratorBase
|
7213
|
+
device_check: NoCheck # TensorIterator
|
6765
7214
|
dispatch:
|
6766
7215
|
CPU, CUDA: fmin_out
|
6767
7216
|
|
@@ -6773,11 +7222,14 @@
|
|
6773
7222
|
QuantizedCPU: max_quantized_cpu
|
6774
7223
|
|
6775
7224
|
- func: fmax(Tensor self, Tensor other) -> Tensor
|
7225
|
+
structured_delegate: fmax.out
|
7226
|
+
device_check: NoCheck # TensorIterator
|
6776
7227
|
variants: method, function
|
6777
|
-
dispatch:
|
6778
|
-
CPU, CUDA: fmax
|
6779
7228
|
|
6780
7229
|
- func: fmax.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
7230
|
+
structured: True
|
7231
|
+
structured_inherits: TensorIteratorBase
|
7232
|
+
device_check: NoCheck # TensorIterator
|
6781
7233
|
dispatch:
|
6782
7234
|
CPU, CUDA: fmax_out
|
6783
7235
|
|
@@ -6928,29 +7380,43 @@
|
|
6928
7380
|
|
6929
7381
|
- func: all(Tensor self) -> Tensor
|
6930
7382
|
device_check: NoCheck # TensorIterator
|
7383
|
+
structured_delegate: all.all_out
|
6931
7384
|
variants: method, function
|
7385
|
+
|
7386
|
+
- func: all.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
7387
|
+
device_check: NoCheck
|
7388
|
+
structured: True
|
6932
7389
|
dispatch:
|
6933
|
-
CPU, CUDA:
|
7390
|
+
CPU, CUDA: all_all_out
|
6934
7391
|
|
6935
7392
|
- func: any(Tensor self) -> Tensor
|
6936
7393
|
device_check: NoCheck # TensorIterator
|
7394
|
+
structured_delegate: any.all_out
|
6937
7395
|
variants: method, function
|
6938
7396
|
dispatch:
|
6939
|
-
CPU, CUDA: any
|
6940
7397
|
SparseCPU, SparseCUDA: any_sparse
|
6941
7398
|
|
7399
|
+
- func: any.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
7400
|
+
device_check: NoCheck
|
7401
|
+
structured: True
|
7402
|
+
dispatch:
|
7403
|
+
CPU, CUDA: any_all_out
|
7404
|
+
|
6942
7405
|
- func: renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!)
|
6943
7406
|
device_check: NoCheck # TensorIterator
|
7407
|
+
structured: True
|
6944
7408
|
dispatch:
|
6945
|
-
CPU:
|
6946
|
-
CUDA: legacy::cuda::_th_renorm_out
|
7409
|
+
CPU, CUDA: renorm_out
|
6947
7410
|
|
6948
7411
|
- func: renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> Tensor
|
6949
7412
|
device_check: NoCheck # TensorIterator
|
6950
7413
|
variants: method, function
|
6951
|
-
|
6952
|
-
|
6953
|
-
|
7414
|
+
structured_delegate: renorm.out
|
7415
|
+
|
7416
|
+
- func: renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!)
|
7417
|
+
device_check: NoCheck # TensorIterator
|
7418
|
+
variants: method
|
7419
|
+
structured_delegate: renorm.out
|
6954
7420
|
|
6955
7421
|
- func: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a)
|
6956
7422
|
variants: method
|
@@ -7084,26 +7550,6 @@
|
|
7084
7550
|
CPU: _index_copy_impl_
|
7085
7551
|
CUDA: _index_copy_impl_
|
7086
7552
|
|
7087
|
-
- func: _cumsum(Tensor self, int dim) -> Tensor
|
7088
|
-
dispatch:
|
7089
|
-
CPU: _cumsum_cpu
|
7090
|
-
CUDA: _cumsum_cuda
|
7091
|
-
|
7092
|
-
- func: _cumsum.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
7093
|
-
dispatch:
|
7094
|
-
CPU: _cumsum_out_cpu
|
7095
|
-
CUDA: _cumsum_out_cuda
|
7096
|
-
|
7097
|
-
- func: _cumprod(Tensor self, int dim) -> Tensor
|
7098
|
-
dispatch:
|
7099
|
-
CPU: _cumprod_cpu
|
7100
|
-
CUDA: _cumprod_cuda
|
7101
|
-
|
7102
|
-
- func: _cumprod.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
7103
|
-
dispatch:
|
7104
|
-
CPU: _cumprod_out_cpu
|
7105
|
-
CUDA: _cumprod_out_cuda
|
7106
|
-
|
7107
7553
|
- func: _amp_foreach_non_finite_check_and_unscale_(Tensor(a!)[] self, Tensor(b!) found_inf, Tensor inv_scale) -> ()
|
7108
7554
|
variants: function
|
7109
7555
|
dispatch:
|
@@ -7793,6 +8239,15 @@
|
|
7793
8239
|
CPU: searchsorted_cpu
|
7794
8240
|
CUDA: searchsorted_cuda
|
7795
8241
|
|
8242
|
+
- func: _convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> Tensor
|
8243
|
+
structured_delegate: _convert_indices_from_coo_to_csr.out
|
8244
|
+
|
8245
|
+
- func: _convert_indices_from_coo_to_csr.out(Tensor self, int size, *, bool out_int32=False, Tensor(a!) out) -> Tensor(a!)
|
8246
|
+
structured: True
|
8247
|
+
dispatch:
|
8248
|
+
CPU: _convert_indices_from_coo_to_csr_structured_cpu
|
8249
|
+
CUDA: _convert_indices_from_coo_to_csr_structured_cuda
|
8250
|
+
|
7796
8251
|
## NN wrappers
|
7797
8252
|
|
7798
8253
|
- func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -7841,25 +8296,25 @@
|
|
7841
8296
|
python_module: nn
|
7842
8297
|
dispatch:
|
7843
8298
|
CPU: multi_margin_loss_cpu_out
|
7844
|
-
CUDA:
|
8299
|
+
CUDA: multi_margin_loss_cuda_out
|
7845
8300
|
|
7846
8301
|
- func: multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor
|
7847
8302
|
python_module: nn
|
7848
8303
|
dispatch:
|
7849
8304
|
CPU: multi_margin_loss_cpu
|
7850
|
-
CUDA:
|
8305
|
+
CUDA: multi_margin_loss_cuda
|
7851
8306
|
|
7852
8307
|
- func: multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
7853
8308
|
python_module: nn
|
7854
8309
|
dispatch:
|
7855
8310
|
CPU: multi_margin_loss_cpu_backward_out
|
7856
|
-
CUDA:
|
8311
|
+
CUDA: multi_margin_loss_cuda_backward_out
|
7857
8312
|
|
7858
8313
|
- func: multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor
|
7859
8314
|
python_module: nn
|
7860
8315
|
dispatch:
|
7861
8316
|
CPU: multi_margin_loss_cpu_backward
|
7862
|
-
CUDA:
|
8317
|
+
CUDA: multi_margin_loss_cuda_backward
|
7863
8318
|
|
7864
8319
|
- func: multilabel_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
7865
8320
|
python_module: nn
|
@@ -7871,25 +8326,25 @@
|
|
7871
8326
|
python_module: nn
|
7872
8327
|
dispatch:
|
7873
8328
|
CPU: multilabel_margin_loss_forward_out_cpu
|
7874
|
-
CUDA:
|
8329
|
+
CUDA: multilabel_margin_loss_forward_out_cuda
|
7875
8330
|
|
7876
8331
|
- func: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target)
|
7877
8332
|
python_module: nn
|
7878
8333
|
dispatch:
|
7879
8334
|
CPU: multilabel_margin_loss_forward_cpu
|
7880
|
-
CUDA:
|
8335
|
+
CUDA: multilabel_margin_loss_forward_cuda
|
7881
8336
|
|
7882
8337
|
- func: multilabel_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target, *, Tensor(a!) grad_input) -> Tensor(a!)
|
7883
8338
|
python_module: nn
|
7884
8339
|
dispatch:
|
7885
8340
|
CPU: multilabel_margin_loss_backward_cpu_out
|
7886
|
-
CUDA:
|
8341
|
+
CUDA: multilabel_margin_loss_backward_cuda_out
|
7887
8342
|
|
7888
8343
|
- func: multilabel_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target) -> Tensor
|
7889
8344
|
python_module: nn
|
7890
8345
|
dispatch:
|
7891
8346
|
CPU: multilabel_margin_loss_backward_cpu
|
7892
|
-
CUDA:
|
8347
|
+
CUDA: multilabel_margin_loss_backward_cuda
|
7893
8348
|
|
7894
8349
|
- func: nll_loss.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)
|
7895
8350
|
python_module: nn
|
@@ -7902,27 +8357,25 @@
|
|
7902
8357
|
|
7903
8358
|
- func: nll_loss_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))
|
7904
8359
|
python_module: nn
|
8360
|
+
structured: True
|
7905
8361
|
dispatch:
|
7906
8362
|
CPU: nll_loss_forward_out_cpu
|
7907
|
-
CUDA:
|
8363
|
+
CUDA: nll_loss_forward_out_cuda
|
7908
8364
|
|
7909
8365
|
- func: nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)
|
7910
8366
|
python_module: nn
|
7911
|
-
|
7912
|
-
CPU: nll_loss_forward_cpu
|
7913
|
-
CUDA: legacy::cuda::_thnn_nll_loss_forward
|
8367
|
+
structured_delegate: nll_loss_forward.output
|
7914
8368
|
|
7915
8369
|
- func: nll_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
|
7916
8370
|
python_module: nn
|
8371
|
+
structured: True
|
7917
8372
|
dispatch:
|
7918
8373
|
CPU: nll_loss_backward_out_cpu
|
7919
|
-
CUDA:
|
8374
|
+
CUDA: nll_loss_backward_out_cuda
|
7920
8375
|
|
7921
8376
|
- func: nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor
|
7922
8377
|
python_module: nn
|
7923
|
-
|
7924
|
-
CPU: nll_loss_backward_cpu
|
7925
|
-
CUDA: legacy::cuda::_thnn_nll_loss_backward
|
8378
|
+
structured_delegate: nll_loss_backward.grad_input
|
7926
8379
|
|
7927
8380
|
- func: nll_loss2d.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, int ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)
|
7928
8381
|
python_module: nn
|
@@ -7934,25 +8387,25 @@
|
|
7934
8387
|
python_module: nn
|
7935
8388
|
dispatch:
|
7936
8389
|
CPU: nll_loss2d_forward_out_cpu
|
7937
|
-
CUDA:
|
8390
|
+
CUDA: nll_loss2d_forward_out_cuda
|
7938
8391
|
|
7939
8392
|
- func: nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index) -> (Tensor output, Tensor total_weight)
|
7940
8393
|
python_module: nn
|
7941
8394
|
dispatch:
|
7942
8395
|
CPU: nll_loss2d_forward_cpu
|
7943
|
-
CUDA:
|
8396
|
+
CUDA: nll_loss2d_forward_cuda
|
7944
8397
|
|
7945
8398
|
- func: nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
|
7946
8399
|
python_module: nn
|
7947
8400
|
dispatch:
|
7948
8401
|
CPU: nll_loss2d_backward_out_cpu
|
7949
|
-
CUDA:
|
8402
|
+
CUDA: nll_loss2d_backward_out_cuda
|
7950
8403
|
|
7951
8404
|
- func: nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, int ignore_index, Tensor total_weight) -> Tensor
|
7952
8405
|
python_module: nn
|
7953
8406
|
dispatch:
|
7954
8407
|
CPU: nll_loss2d_backward_cpu
|
7955
|
-
CUDA:
|
8408
|
+
CUDA: nll_loss2d_backward_cuda
|
7956
8409
|
|
7957
8410
|
- func: smooth_l1_loss.out(Tensor self, Tensor target, int reduction=Mean, float beta=1.0, *, Tensor(a!) out) -> Tensor(a!)
|
7958
8411
|
device_check: NoCheck # TensorIterator
|
@@ -8031,10 +8484,16 @@
|
|
8031
8484
|
device_check: NoCheck # TensorIterator
|
8032
8485
|
python_module: nn
|
8033
8486
|
|
8034
|
-
- func: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result) -> Tensor
|
8487
|
+
- func: elu_backward.grad_input(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8488
|
+
structured: True
|
8489
|
+
structured_inherits: TensorIteratorBase
|
8035
8490
|
python_module: nn
|
8036
8491
|
dispatch:
|
8037
|
-
CPU, CUDA:
|
8492
|
+
CPU, CUDA: elu_backward_out
|
8493
|
+
|
8494
|
+
- func: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result) -> Tensor
|
8495
|
+
structured_delegate: elu_backward.grad_input
|
8496
|
+
python_module: nn
|
8038
8497
|
|
8039
8498
|
- func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)
|
8040
8499
|
structured_delegate: elu.out
|
@@ -8044,28 +8503,28 @@
|
|
8044
8503
|
CompositeExplicitAutograd: elu_
|
8045
8504
|
|
8046
8505
|
- func: glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!)
|
8506
|
+
structured: True
|
8507
|
+
structured_inherits: TensorIteratorBase
|
8047
8508
|
python_module: nn
|
8048
8509
|
dispatch:
|
8049
|
-
CPU: glu_out
|
8050
|
-
CUDA: legacy::cuda::_thnn_glu_forward_out
|
8510
|
+
CPU, CUDA: glu_out
|
8051
8511
|
|
8052
8512
|
- func: glu(Tensor self, int dim=-1) -> Tensor
|
8513
|
+
structured_delegate: glu.out
|
8514
|
+
device_check: NoCheck # TensorIterator
|
8053
8515
|
python_module: nn
|
8054
|
-
dispatch:
|
8055
|
-
CPU: glu
|
8056
|
-
CUDA: legacy::cuda::_thnn_glu_forward
|
8057
8516
|
|
8058
8517
|
- func: glu_backward.grad_input(Tensor grad_output, Tensor self, int dim, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8059
8518
|
python_module: nn
|
8060
8519
|
dispatch:
|
8061
|
-
CPU:
|
8062
|
-
CUDA:
|
8520
|
+
CPU: glu_backward_cpu_out
|
8521
|
+
CUDA: glu_backward_cuda_out
|
8063
8522
|
|
8064
8523
|
- func: glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor
|
8065
8524
|
python_module: nn
|
8066
8525
|
dispatch:
|
8067
|
-
CPU:
|
8068
|
-
CUDA:
|
8526
|
+
CPU: glu_backward_cpu
|
8527
|
+
CUDA: glu_backward_cuda
|
8069
8528
|
|
8070
8529
|
- func: hardsigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
8071
8530
|
structured: True
|
@@ -8087,10 +8546,16 @@
|
|
8087
8546
|
device_check: NoCheck # TensorIterator
|
8088
8547
|
python_module: nn
|
8089
8548
|
|
8090
|
-
- func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor
|
8549
|
+
- func: hardsigmoid_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8550
|
+
structured: True
|
8551
|
+
structured_inherits: TensorIteratorBase
|
8091
8552
|
python_module: nn
|
8092
8553
|
dispatch:
|
8093
|
-
CPU, CUDA:
|
8554
|
+
CPU, CUDA: hardsigmoid_backward_out
|
8555
|
+
|
8556
|
+
- func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor
|
8557
|
+
structured_delegate: hardsigmoid_backward.grad_input
|
8558
|
+
python_module: nn
|
8094
8559
|
|
8095
8560
|
- func: hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!)
|
8096
8561
|
device_check: NoCheck # TensorIterator
|
@@ -8162,10 +8627,16 @@
|
|
8162
8627
|
dispatch:
|
8163
8628
|
QuantizedCPU: leaky_relu_quantized_cpu
|
8164
8629
|
|
8165
|
-
- func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor
|
8630
|
+
- func: leaky_relu_backward.grad_input(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8631
|
+
structured: True
|
8632
|
+
structured_inherits: TensorIteratorBase
|
8166
8633
|
python_module: nn
|
8167
8634
|
dispatch:
|
8168
|
-
CPU, CUDA:
|
8635
|
+
CPU, CUDA: leaky_relu_backward_out
|
8636
|
+
|
8637
|
+
- func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor
|
8638
|
+
structured_delegate: leaky_relu_backward.grad_input
|
8639
|
+
python_module: nn
|
8169
8640
|
|
8170
8641
|
- func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!)
|
8171
8642
|
structured_delegate: leaky_relu.out
|
@@ -8187,38 +8658,38 @@
|
|
8187
8658
|
python_module: nn
|
8188
8659
|
dispatch:
|
8189
8660
|
CPU: log_sigmoid_forward_out_cpu
|
8190
|
-
CUDA:
|
8661
|
+
CUDA: log_sigmoid_forward_out_cuda
|
8191
8662
|
|
8192
8663
|
- func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)
|
8193
8664
|
device_check: NoCheck # TensorIterator
|
8194
8665
|
python_module: nn
|
8195
8666
|
dispatch:
|
8196
8667
|
CPU: log_sigmoid_forward_cpu
|
8197
|
-
CUDA:
|
8668
|
+
CUDA: log_sigmoid_forward_cuda
|
8198
8669
|
|
8199
8670
|
- func: log_sigmoid_backward.grad_input(Tensor grad_output, Tensor self, Tensor buffer, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8200
8671
|
python_module: nn
|
8201
8672
|
dispatch:
|
8202
|
-
CPU:
|
8203
|
-
CUDA:
|
8673
|
+
CPU: log_sigmoid_backward_cpu_out
|
8674
|
+
CUDA: log_sigmoid_backward_cuda_out
|
8204
8675
|
|
8205
8676
|
- func: log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor
|
8206
8677
|
python_module: nn
|
8207
8678
|
dispatch:
|
8208
8679
|
CPU: log_sigmoid_backward_cpu
|
8209
|
-
CUDA:
|
8680
|
+
CUDA: log_sigmoid_backward_cuda
|
8210
8681
|
|
8211
8682
|
- func: rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)
|
8212
8683
|
python_module: nn
|
8213
8684
|
dispatch:
|
8214
8685
|
CPU: rrelu_with_noise_out_cpu
|
8215
|
-
CUDA:
|
8686
|
+
CUDA: rrelu_with_noise_out_cuda
|
8216
8687
|
|
8217
8688
|
- func: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
8218
8689
|
python_module: nn
|
8219
8690
|
dispatch:
|
8220
8691
|
CPU: rrelu_with_noise_cpu
|
8221
|
-
CUDA:
|
8692
|
+
CUDA: rrelu_with_noise_cuda
|
8222
8693
|
|
8223
8694
|
- func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor
|
8224
8695
|
python_module: nn
|
@@ -8229,7 +8700,7 @@
|
|
8229
8700
|
python_module: nn
|
8230
8701
|
dispatch:
|
8231
8702
|
CPU: rrelu_with_noise_cpu_
|
8232
|
-
CUDA:
|
8703
|
+
CUDA: rrelu_with_noise_cuda_
|
8233
8704
|
|
8234
8705
|
- func: softplus.out(Tensor self, Scalar beta=1, Scalar threshold=20, *, Tensor(a!) out) -> Tensor(a!)
|
8235
8706
|
structured: True
|
@@ -8245,14 +8716,15 @@
|
|
8245
8716
|
python_module: nn
|
8246
8717
|
|
8247
8718
|
- func: softplus_backward.grad_input(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8719
|
+
structured: True
|
8720
|
+
structured_inherits: TensorIteratorBase
|
8248
8721
|
python_module: nn
|
8249
8722
|
dispatch:
|
8250
8723
|
CPU, CUDA: softplus_backward_out
|
8251
8724
|
|
8252
8725
|
- func: softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output) -> Tensor
|
8726
|
+
structured_delegate: softplus_backward.grad_input
|
8253
8727
|
python_module: nn
|
8254
|
-
dispatch:
|
8255
|
-
CPU, CUDA: softplus_backward
|
8256
8728
|
|
8257
8729
|
- func: softshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!)
|
8258
8730
|
structured: True
|
@@ -8268,19 +8740,21 @@
|
|
8268
8740
|
python_module: nn
|
8269
8741
|
|
8270
8742
|
- func: softshrink_backward.grad_input(Tensor grad_output, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8743
|
+
structured: True
|
8744
|
+
structured_inherits: TensorIteratorBase
|
8271
8745
|
python_module: nn
|
8272
8746
|
dispatch:
|
8273
8747
|
CPU, CUDA: softshrink_backward_out
|
8274
8748
|
|
8275
8749
|
- func: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor
|
8750
|
+
structured_delegate: softshrink_backward.grad_input
|
8276
8751
|
python_module: nn
|
8277
|
-
dispatch:
|
8278
|
-
CPU, CUDA: softshrink_backward
|
8279
8752
|
|
8280
8753
|
- func: adaptive_avg_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
8281
8754
|
python_module: nn
|
8282
8755
|
dispatch:
|
8283
|
-
CPU
|
8756
|
+
CPU: adaptive_avg_pool2d_out_cpu
|
8757
|
+
CUDA: adaptive_avg_pool2d_out_cuda
|
8284
8758
|
MkldnnCPU: mkldnn_adaptive_avg_pool2d_out
|
8285
8759
|
|
8286
8760
|
- func: adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor
|
@@ -8384,6 +8858,11 @@
|
|
8384
8858
|
|
8385
8859
|
- func: avg_pool2d.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!)
|
8386
8860
|
python_module: nn
|
8861
|
+
structured: True
|
8862
|
+
precomputed:
|
8863
|
+
- kernel_size -> int kH, int kW
|
8864
|
+
- stride -> int dH, int dW
|
8865
|
+
- padding -> int padH, int padW
|
8387
8866
|
dispatch:
|
8388
8867
|
CPU: avg_pool2d_out_cpu
|
8389
8868
|
CUDA: avg_pool2d_out_cuda
|
@@ -8391,14 +8870,14 @@
|
|
8391
8870
|
|
8392
8871
|
- func: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
8393
8872
|
python_module: nn
|
8873
|
+
structured_delegate: avg_pool2d.out
|
8394
8874
|
dispatch:
|
8395
|
-
CPU: avg_pool2d_cpu
|
8396
|
-
CUDA: avg_pool2d_cuda
|
8397
8875
|
MkldnnCPU: mkldnn_avg_pool2d
|
8398
8876
|
QuantizedCPU: avg_pool2d_quantized_cpu
|
8399
8877
|
|
8400
8878
|
- func: avg_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8401
8879
|
python_module: nn
|
8880
|
+
structured: True
|
8402
8881
|
dispatch:
|
8403
8882
|
CPU: avg_pool2d_backward_out_cpu
|
8404
8883
|
CUDA: avg_pool2d_backward_out_cuda
|
@@ -8406,13 +8885,13 @@
|
|
8406
8885
|
|
8407
8886
|
- func: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
8408
8887
|
python_module: nn
|
8888
|
+
structured_delegate: avg_pool2d_backward.grad_input
|
8409
8889
|
dispatch:
|
8410
|
-
CPU: avg_pool2d_backward_cpu
|
8411
|
-
CUDA: avg_pool2d_backward_cuda
|
8412
8890
|
MkldnnCPU: mkldnn_avg_pool2d_backward
|
8413
8891
|
|
8414
8892
|
- func: avg_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!)
|
8415
8893
|
python_module: nn
|
8894
|
+
structured: True
|
8416
8895
|
dispatch:
|
8417
8896
|
CPU: avg_pool3d_out_cpu
|
8418
8897
|
CUDA: avg_pool3d_out_cuda
|
@@ -8420,14 +8899,14 @@
|
|
8420
8899
|
|
8421
8900
|
- func: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor
|
8422
8901
|
python_module: nn
|
8902
|
+
structured_delegate: avg_pool3d.out
|
8423
8903
|
dispatch:
|
8424
|
-
CPU: avg_pool3d_cpu
|
8425
|
-
CUDA: avg_pool3d_cuda
|
8426
8904
|
MkldnnCPU: mkldnn_avg_pool3d
|
8427
8905
|
QuantizedCPU: avg_pool3d_quantized_cpu
|
8428
8906
|
|
8429
8907
|
- func: avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8430
8908
|
python_module: nn
|
8909
|
+
structured: True
|
8431
8910
|
dispatch:
|
8432
8911
|
CPU: avg_pool3d_backward_out_cpu
|
8433
8912
|
CUDA: avg_pool3d_backward_out_cuda
|
@@ -8435,9 +8914,8 @@
|
|
8435
8914
|
|
8436
8915
|
- func: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor
|
8437
8916
|
python_module: nn
|
8917
|
+
structured_delegate: avg_pool3d_backward.grad_input
|
8438
8918
|
dispatch:
|
8439
|
-
CPU: avg_pool3d_backward_cpu
|
8440
|
-
CUDA: avg_pool3d_backward_cuda
|
8441
8919
|
MkldnnCPU: mkldnn_avg_pool3d_backward
|
8442
8920
|
|
8443
8921
|
# Return: (Tensor output, Tensor indices)
|
@@ -8604,15 +9082,14 @@
|
|
8604
9082
|
|
8605
9083
|
- func: reflection_pad1d_backward.grad_input(Tensor grad_output, Tensor self, int[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8606
9084
|
python_module: nn
|
9085
|
+
structured: True
|
8607
9086
|
dispatch:
|
8608
9087
|
CPU: reflection_pad1d_backward_out_cpu
|
8609
9088
|
CUDA: reflection_pad1d_backward_out_cuda
|
8610
9089
|
|
8611
9090
|
- func: reflection_pad1d_backward(Tensor grad_output, Tensor self, int[2] padding) -> Tensor
|
8612
9091
|
python_module: nn
|
8613
|
-
|
8614
|
-
CPU: reflection_pad1d_backward_cpu
|
8615
|
-
CUDA: reflection_pad1d_backward_cuda
|
9092
|
+
structured_delegate: reflection_pad1d_backward.grad_input
|
8616
9093
|
|
8617
9094
|
- func: reflection_pad2d.out(Tensor self, int[4] padding, *, Tensor(a!) out) -> Tensor(a!)
|
8618
9095
|
python_module: nn
|
@@ -8638,6 +9115,28 @@
|
|
8638
9115
|
CPU: reflection_pad2d_backward_cpu
|
8639
9116
|
CUDA: reflection_pad2d_backward_cuda
|
8640
9117
|
|
9118
|
+
- func: reflection_pad3d.out(Tensor self, int[6] padding, *, Tensor(a!) out) -> Tensor(a!)
|
9119
|
+
python_module: nn
|
9120
|
+
structured: True
|
9121
|
+
dispatch:
|
9122
|
+
CPU: reflection_pad3d_out_cpu
|
9123
|
+
CUDA: reflection_pad3d_out_cuda
|
9124
|
+
|
9125
|
+
- func: reflection_pad3d(Tensor self, int[6] padding) -> Tensor
|
9126
|
+
python_module: nn
|
9127
|
+
structured_delegate: reflection_pad3d.out
|
9128
|
+
|
9129
|
+
- func: reflection_pad3d_backward.grad_input(Tensor grad_output, Tensor self, int[6] padding, *, Tensor(a!) grad_input) -> Tensor(a!)
|
9130
|
+
python_module: nn
|
9131
|
+
structured: True
|
9132
|
+
dispatch:
|
9133
|
+
CPU: reflection_pad3d_backward_out_cpu
|
9134
|
+
CUDA: reflection_pad3d_backward_out_cuda
|
9135
|
+
|
9136
|
+
- func: reflection_pad3d_backward(Tensor grad_output, Tensor self, int[6] padding) -> Tensor
|
9137
|
+
python_module: nn
|
9138
|
+
structured_delegate: reflection_pad3d_backward.grad_input
|
9139
|
+
|
8641
9140
|
- func: replication_pad1d.out(Tensor self, int[2] padding, *, Tensor(a!) out) -> Tensor(a!)
|
8642
9141
|
python_module: nn
|
8643
9142
|
structured: True
|
@@ -8942,33 +9441,36 @@
|
|
8942
9441
|
|
8943
9442
|
- func: sigmoid_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8944
9443
|
python_module: nn
|
9444
|
+
structured: True
|
9445
|
+
structured_inherits: TensorIteratorBase
|
8945
9446
|
dispatch:
|
8946
9447
|
CPU, CUDA: sigmoid_backward_out
|
8947
9448
|
|
8948
9449
|
- func: sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor
|
8949
9450
|
python_module: nn
|
8950
|
-
|
8951
|
-
CPU, CUDA: sigmoid_backward
|
9451
|
+
structured_delegate: sigmoid_backward.grad_input
|
8952
9452
|
|
8953
9453
|
- func: logit_backward.grad_input(Tensor grad_output, Tensor self, float? eps=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8954
9454
|
python_module: nn
|
9455
|
+
structured: True
|
9456
|
+
structured_inherits: TensorIteratorBase
|
8955
9457
|
dispatch:
|
8956
9458
|
CPU, CUDA: logit_backward_out
|
8957
9459
|
|
8958
9460
|
- func: logit_backward(Tensor grad_output, Tensor self, float? eps=None) -> Tensor
|
8959
9461
|
python_module: nn
|
8960
|
-
|
8961
|
-
CPU, CUDA: logit_backward
|
9462
|
+
structured_delegate: logit_backward.grad_input
|
8962
9463
|
|
8963
9464
|
- func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
8964
9465
|
python_module: nn
|
9466
|
+
structured: True
|
9467
|
+
structured_inherits: TensorIteratorBase
|
8965
9468
|
dispatch:
|
8966
9469
|
CPU, CUDA: tanh_backward_out
|
8967
9470
|
|
8968
9471
|
- func: tanh_backward(Tensor grad_output, Tensor output) -> Tensor
|
8969
9472
|
python_module: nn
|
8970
|
-
|
8971
|
-
CPU, CUDA: tanh_backward
|
9473
|
+
structured_delegate: tanh_backward.grad_input
|
8972
9474
|
|
8973
9475
|
# What's a thnn_conv_ versus a slow_conv_?
|
8974
9476
|
#
|
@@ -8990,15 +9492,14 @@
|
|
8990
9492
|
|
8991
9493
|
- func: slow_conv_transpose2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)
|
8992
9494
|
python_module: nn
|
9495
|
+
structured: True
|
8993
9496
|
dispatch:
|
8994
|
-
CPU:
|
8995
|
-
CUDA:
|
9497
|
+
CPU: slow_conv_transpose2d_structured_cpu
|
9498
|
+
CUDA: slow_conv_transpose2d_structured_cuda
|
8996
9499
|
|
8997
9500
|
- func: slow_conv_transpose2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] output_padding=0, int[2] dilation=1) -> Tensor
|
8998
9501
|
python_module: nn
|
8999
|
-
|
9000
|
-
CPU: slow_conv_transpose2d_cpu
|
9001
|
-
CUDA: slow_conv_transpose2d_cuda
|
9502
|
+
structured_delegate: slow_conv_transpose2d.out
|
9002
9503
|
|
9003
9504
|
- func: slow_conv_transpose2d_backward.grad_output(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] output_padding, int[2] dilation, Tensor columns, Tensor ones, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
9004
9505
|
python_module: nn
|
@@ -9046,13 +9547,13 @@
|
|
9046
9547
|
python_module: nn
|
9047
9548
|
dispatch:
|
9048
9549
|
CPU: slow_conv2d_forward_out_cpu
|
9049
|
-
CUDA:
|
9550
|
+
CUDA: slow_conv2d_forward_out_cuda
|
9050
9551
|
|
9051
9552
|
- func: thnn_conv2d_forward(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding) -> (Tensor output, Tensor finput, Tensor fgrad_input)
|
9052
9553
|
python_module: nn
|
9053
9554
|
dispatch:
|
9054
9555
|
CPU: slow_conv2d_forward_cpu
|
9055
|
-
CUDA:
|
9556
|
+
CUDA: slow_conv2d_forward_cuda
|
9056
9557
|
|
9057
9558
|
- func: thnn_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, Tensor finput, Tensor fgrad_input, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
9058
9559
|
python_module: nn
|
@@ -9066,31 +9567,26 @@
|
|
9066
9567
|
CPU: slow_conv2d_backward_cpu
|
9067
9568
|
CUDA: slow_conv2d_backward_cuda
|
9068
9569
|
|
9069
|
-
- func:
|
9070
|
-
|
9071
|
-
|
9072
|
-
- func: thnn_conv_depthwise2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1) -> Tensor
|
9073
|
-
python_module: nn
|
9074
|
-
|
9075
|
-
- func: thnn_conv_depthwise2d_forward.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
9570
|
+
- func: _conv_depthwise2d.out(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
9571
|
+
use_const_ref_for_mutable_tensors: True
|
9076
9572
|
python_module: nn
|
9077
9573
|
dispatch:
|
9078
|
-
CUDA:
|
9574
|
+
CUDA: conv_depthwise2d_cuda_out
|
9079
9575
|
|
9080
|
-
- func:
|
9576
|
+
- func: _conv_depthwise2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation) -> Tensor
|
9081
9577
|
python_module: nn
|
9082
9578
|
dispatch:
|
9083
|
-
CUDA:
|
9579
|
+
CUDA: conv_depthwise2d_cuda
|
9084
9580
|
|
9085
|
-
- func:
|
9581
|
+
- func: _conv_depthwise2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, *, Tensor(a!) grad_input, Tensor(b!) grad_weight) -> (Tensor(a!), Tensor(b!))
|
9086
9582
|
python_module: nn
|
9087
9583
|
dispatch:
|
9088
|
-
CUDA:
|
9584
|
+
CUDA: conv_depthwise2d_backward_cuda_out
|
9089
9585
|
|
9090
|
-
- func:
|
9586
|
+
- func: _conv_depthwise2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool[2] output_mask) -> (Tensor grad_input, Tensor grad_weight)
|
9091
9587
|
python_module: nn
|
9092
9588
|
dispatch:
|
9093
|
-
CUDA:
|
9589
|
+
CUDA: conv_depthwise2d_backward_cuda
|
9094
9590
|
|
9095
9591
|
- func: conv_depthwise3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, int[3] dilation) -> Tensor
|
9096
9592
|
python_module: nn
|
@@ -9226,15 +9722,21 @@
|
|
9226
9722
|
|
9227
9723
|
- func: isposinf(Tensor self) -> Tensor
|
9228
9724
|
variants: function, method
|
9725
|
+
structured_delegate: isposinf.out
|
9229
9726
|
|
9230
9727
|
- func: isposinf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9728
|
+
structured: True
|
9729
|
+
structured_inherits: TensorIteratorBase
|
9231
9730
|
dispatch:
|
9232
9731
|
CPU, CUDA: isposinf_out
|
9233
9732
|
|
9234
9733
|
- func: isneginf(Tensor self) -> Tensor
|
9235
9734
|
variants: function, method
|
9735
|
+
structured_delegate: isneginf.out
|
9236
9736
|
|
9237
9737
|
- func: isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9738
|
+
structured: True
|
9739
|
+
structured_inherits: TensorIteratorBase
|
9238
9740
|
dispatch:
|
9239
9741
|
CPU, CUDA: isneginf_out
|
9240
9742
|
|
@@ -9269,6 +9771,19 @@
|
|
9269
9771
|
dispatch:
|
9270
9772
|
CPU, CUDA: special_entr_out
|
9271
9773
|
|
9774
|
+
- func: special_ndtri(Tensor self) -> Tensor
|
9775
|
+
structured_delegate: special_ndtri.out
|
9776
|
+
python_module: special
|
9777
|
+
variants: function
|
9778
|
+
|
9779
|
+
- func: special_ndtri.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9780
|
+
structured: True
|
9781
|
+
structured_inherits: TensorIteratorBase
|
9782
|
+
python_module: special
|
9783
|
+
variants: function
|
9784
|
+
dispatch:
|
9785
|
+
CPU, CUDA: special_ndtri_out
|
9786
|
+
|
9272
9787
|
- func: special_expm1(Tensor self) -> Tensor
|
9273
9788
|
python_module: special
|
9274
9789
|
variants: function
|
@@ -9285,6 +9800,22 @@
|
|
9285
9800
|
python_module: special
|
9286
9801
|
variants: function
|
9287
9802
|
|
9803
|
+
- func: special_psi(Tensor self) -> Tensor
|
9804
|
+
python_module: special
|
9805
|
+
variants: function
|
9806
|
+
|
9807
|
+
- func: special_psi.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9808
|
+
python_module: special
|
9809
|
+
variants: function
|
9810
|
+
|
9811
|
+
- func: special_digamma(Tensor self) -> Tensor
|
9812
|
+
python_module: special
|
9813
|
+
variants: function
|
9814
|
+
|
9815
|
+
- func: special_digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9816
|
+
python_module: special
|
9817
|
+
variants: function
|
9818
|
+
|
9288
9819
|
- func: special_gammaln(Tensor self) -> Tensor
|
9289
9820
|
python_module: special
|
9290
9821
|
variants: function
|
@@ -9308,6 +9839,18 @@
|
|
9308
9839
|
- func: special_erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9309
9840
|
python_module: special
|
9310
9841
|
|
9842
|
+
- func: special_erfcx(Tensor self) -> Tensor
|
9843
|
+
python_module: special
|
9844
|
+
variants: function
|
9845
|
+
structured_delegate: special_erfcx.out
|
9846
|
+
|
9847
|
+
- func: special_erfcx.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9848
|
+
python_module: special
|
9849
|
+
structured: True
|
9850
|
+
structured_inherits: TensorIteratorBase
|
9851
|
+
dispatch:
|
9852
|
+
CPU, CUDA: special_erfcx_out
|
9853
|
+
|
9311
9854
|
- func: special_erfinv(Tensor self) -> Tensor
|
9312
9855
|
python_module: special
|
9313
9856
|
variants: function
|
@@ -9315,6 +9858,14 @@
|
|
9315
9858
|
- func: special_erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9316
9859
|
python_module: special
|
9317
9860
|
|
9861
|
+
- func: special_ndtr(Tensor self) -> Tensor
|
9862
|
+
python_module: special
|
9863
|
+
variants: function
|
9864
|
+
|
9865
|
+
- func: special_ndtr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9866
|
+
python_module: special
|
9867
|
+
variants: function
|
9868
|
+
|
9318
9869
|
- func: special_xlog1py(Tensor self, Tensor other) -> Tensor
|
9319
9870
|
device_check: NoCheck # TensorIterator
|
9320
9871
|
python_module: special
|
@@ -9358,6 +9909,89 @@
|
|
9358
9909
|
dispatch:
|
9359
9910
|
CompositeExplicitAutograd: special_xlog1py_out
|
9360
9911
|
|
9912
|
+
- func: special_xlogy(Tensor self, Tensor other) -> Tensor
|
9913
|
+
device_check: NoCheck # TensorIterator
|
9914
|
+
python_module: special
|
9915
|
+
variants: function
|
9916
|
+
|
9917
|
+
- func: special_xlogy.self_scalar(Scalar self, Tensor other) -> Tensor
|
9918
|
+
device_check: NoCheck # TensorIterator
|
9919
|
+
python_module: special
|
9920
|
+
variants: function
|
9921
|
+
|
9922
|
+
- func: special_xlogy.other_scalar(Tensor self, Scalar other) -> Tensor
|
9923
|
+
device_check: NoCheck # TensorIterator
|
9924
|
+
python_module: special
|
9925
|
+
variants: function
|
9926
|
+
|
9927
|
+
- func: special_xlogy.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
9928
|
+
device_check: NoCheck # TensorIterator
|
9929
|
+
python_module: special
|
9930
|
+
variants: function
|
9931
|
+
|
9932
|
+
- func: special_xlogy.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
9933
|
+
device_check: NoCheck # TensorIterator
|
9934
|
+
python_module: special
|
9935
|
+
variants: function
|
9936
|
+
|
9937
|
+
- func: special_xlogy.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
9938
|
+
device_check: NoCheck # TensorIterator
|
9939
|
+
python_module: special
|
9940
|
+
variants: function
|
9941
|
+
|
9942
|
+
- func: special_zeta(Tensor self, Tensor other) -> Tensor
|
9943
|
+
device_check: NoCheck # TensorIterator
|
9944
|
+
python_module: special
|
9945
|
+
variants: function
|
9946
|
+
structured_delegate: special_zeta.out
|
9947
|
+
dispatch:
|
9948
|
+
CompositeExplicitAutograd: special_zeta
|
9949
|
+
|
9950
|
+
- func: special_zeta.self_scalar(Scalar self, Tensor other) -> Tensor
|
9951
|
+
device_check: NoCheck # TensorIterator
|
9952
|
+
python_module: special
|
9953
|
+
variants: function
|
9954
|
+
dispatch:
|
9955
|
+
CompositeExplicitAutograd: special_zeta
|
9956
|
+
|
9957
|
+
- func: special_zeta.other_scalar(Tensor self, Scalar other) -> Tensor
|
9958
|
+
device_check: NoCheck # TensorIterator
|
9959
|
+
python_module: special
|
9960
|
+
variants: function
|
9961
|
+
dispatch:
|
9962
|
+
CompositeExplicitAutograd: special_zeta
|
9963
|
+
|
9964
|
+
- func: special_zeta.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
9965
|
+
device_check: NoCheck # TensorIterator
|
9966
|
+
structured: True
|
9967
|
+
structured_inherits: TensorIteratorBase
|
9968
|
+
python_module: special
|
9969
|
+
variants: function
|
9970
|
+
dispatch:
|
9971
|
+
CPU, CUDA: special_zeta_out
|
9972
|
+
|
9973
|
+
- func: special_zeta.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
9974
|
+
device_check: NoCheck # TensorIterator
|
9975
|
+
python_module: special
|
9976
|
+
variants: function
|
9977
|
+
dispatch:
|
9978
|
+
CompositeExplicitAutograd: special_zeta_out
|
9979
|
+
|
9980
|
+
- func: special_zeta.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
9981
|
+
device_check: NoCheck # TensorIterator
|
9982
|
+
python_module: special
|
9983
|
+
variants: function
|
9984
|
+
dispatch:
|
9985
|
+
CompositeExplicitAutograd: special_zeta_out
|
9986
|
+
|
9987
|
+
- func: special_i0(Tensor self) -> Tensor
|
9988
|
+
python_module: special
|
9989
|
+
variants: function
|
9990
|
+
|
9991
|
+
- func: special_i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9992
|
+
python_module: special
|
9993
|
+
variants: function
|
9994
|
+
|
9361
9995
|
- func: special_i0e(Tensor self) -> Tensor
|
9362
9996
|
python_module: special
|
9363
9997
|
variants: function
|
@@ -9370,6 +10004,30 @@
|
|
9370
10004
|
dispatch:
|
9371
10005
|
CPU, CUDA: special_i0e_out
|
9372
10006
|
|
10007
|
+
- func: special_i1(Tensor self) -> Tensor
|
10008
|
+
python_module: special
|
10009
|
+
variants: function
|
10010
|
+
structured_delegate: special_i1.out
|
10011
|
+
|
10012
|
+
- func: special_i1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10013
|
+
python_module: special
|
10014
|
+
structured: True
|
10015
|
+
structured_inherits: TensorIteratorBase
|
10016
|
+
dispatch:
|
10017
|
+
CPU, CUDA: special_i1_out
|
10018
|
+
|
10019
|
+
- func: special_i1e(Tensor self) -> Tensor
|
10020
|
+
python_module: special
|
10021
|
+
variants: function
|
10022
|
+
structured_delegate: special_i1e.out
|
10023
|
+
|
10024
|
+
- func: special_i1e.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10025
|
+
python_module: special
|
10026
|
+
structured: True
|
10027
|
+
structured_inherits: TensorIteratorBase
|
10028
|
+
dispatch:
|
10029
|
+
CPU, CUDA: special_i1e_out
|
10030
|
+
|
9373
10031
|
- func: special_logit(Tensor self, float? eps=None) -> Tensor
|
9374
10032
|
python_module: special
|
9375
10033
|
variants: function
|
@@ -9377,6 +10035,20 @@
|
|
9377
10035
|
- func: special_logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!)
|
9378
10036
|
python_module: special
|
9379
10037
|
|
10038
|
+
- func: special_polygamma(int n, Tensor self) -> Tensor
|
10039
|
+
python_module: special
|
10040
|
+
variants: function, method
|
10041
|
+
|
10042
|
+
- func: special_polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10043
|
+
python_module: special
|
10044
|
+
|
10045
|
+
- func: special_logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
10046
|
+
python_module: special
|
10047
|
+
variants: function
|
10048
|
+
|
10049
|
+
- func: special_logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
10050
|
+
python_module: special
|
10051
|
+
|
9380
10052
|
- func: special_expit(Tensor self) -> Tensor
|
9381
10053
|
python_module: special
|
9382
10054
|
variants: function
|
@@ -9385,6 +10057,58 @@
|
|
9385
10057
|
python_module: special
|
9386
10058
|
variants: function
|
9387
10059
|
|
10060
|
+
- func: special_sinc(Tensor self) -> Tensor
|
10061
|
+
python_module: special
|
10062
|
+
variants: function
|
10063
|
+
|
10064
|
+
- func: special_sinc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10065
|
+
python_module: special
|
10066
|
+
variants: function
|
10067
|
+
|
10068
|
+
- func: special_round(Tensor self) -> Tensor
|
10069
|
+
python_module: special
|
10070
|
+
variants: function
|
10071
|
+
|
10072
|
+
- func: special_round.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10073
|
+
python_module: special
|
10074
|
+
variants: function
|
10075
|
+
|
10076
|
+
- func: special_log1p(Tensor self) -> Tensor
|
10077
|
+
python_module: special
|
10078
|
+
variants: function
|
10079
|
+
|
10080
|
+
- func: special_log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10081
|
+
python_module: special
|
10082
|
+
variants: function
|
10083
|
+
|
10084
|
+
- func: special_log_softmax(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
10085
|
+
python_module: special
|
10086
|
+
variants: function
|
10087
|
+
|
10088
|
+
- func: special_gammainc.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
10089
|
+
python_module: special
|
10090
|
+
variants: function
|
10091
|
+
|
10092
|
+
- func: special_gammainc(Tensor self, Tensor other) -> Tensor
|
10093
|
+
python_module: special
|
10094
|
+
variants: function
|
10095
|
+
|
10096
|
+
- func: special_gammaincc.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
10097
|
+
python_module: special
|
10098
|
+
variants: function
|
10099
|
+
|
10100
|
+
- func: special_gammaincc(Tensor self, Tensor other) -> Tensor
|
10101
|
+
python_module: special
|
10102
|
+
variants: function
|
10103
|
+
|
10104
|
+
- func: special_multigammaln(Tensor self, int p) -> Tensor
|
10105
|
+
python_module: special
|
10106
|
+
variants: function
|
10107
|
+
|
10108
|
+
- func: special_multigammaln.out(Tensor self, int p, *, Tensor(a!) out) -> Tensor(a!)
|
10109
|
+
python_module: special
|
10110
|
+
variants: function
|
10111
|
+
|
9388
10112
|
## Functions related to the fast Fourier transform and the torch.fft namespace
|
9389
10113
|
# Note [FFT namespace binding]
|
9390
10114
|
# Functions in the fft python module should have their names start with
|
@@ -9542,41 +10266,47 @@
|
|
9542
10266
|
# See linalg_det as an example.
|
9543
10267
|
|
9544
10268
|
# "_ex" stands for experimental
|
9545
|
-
- func: linalg_cholesky_ex(Tensor self, *, bool check_errors=False) -> (Tensor L, Tensor info)
|
10269
|
+
- func: linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)
|
9546
10270
|
python_module: linalg
|
9547
10271
|
variants: function
|
9548
10272
|
dispatch:
|
9549
10273
|
CPU, CUDA: linalg_cholesky_ex
|
9550
10274
|
|
9551
|
-
- func: linalg_cholesky_ex.L(Tensor self, *, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
|
10275
|
+
- func: linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)
|
9552
10276
|
python_module: linalg
|
9553
10277
|
variants: function
|
9554
10278
|
dispatch:
|
9555
10279
|
CPU, CUDA: linalg_cholesky_ex_out
|
9556
10280
|
|
9557
|
-
- func: linalg_cholesky(Tensor self) -> Tensor
|
10281
|
+
- func: linalg_cholesky(Tensor self, *, bool upper=False) -> Tensor
|
9558
10282
|
python_module: linalg
|
9559
10283
|
variants: function
|
9560
10284
|
|
9561
|
-
- func: linalg_cholesky.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
10285
|
+
- func: linalg_cholesky.out(Tensor self, *, bool upper=False, Tensor(a!) out) -> Tensor(a!)
|
9562
10286
|
python_module: linalg
|
9563
10287
|
variants: function
|
9564
10288
|
|
9565
10289
|
- func: linalg_det(Tensor self) -> Tensor
|
9566
10290
|
python_module: linalg
|
9567
10291
|
variants: function
|
9568
|
-
dispatch:
|
9569
|
-
CompositeExplicitAutograd: linalg_det
|
9570
10292
|
|
9571
10293
|
- func: linalg_det.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
9572
10294
|
python_module: linalg
|
9573
|
-
dispatch:
|
9574
|
-
CompositeExplicitAutograd: linalg_det_out
|
9575
10295
|
|
9576
10296
|
# torch.det, alias for torch.linalg.det
|
9577
10297
|
- func: det(Tensor self) -> Tensor
|
9578
10298
|
variants: function, method
|
9579
10299
|
|
10300
|
+
- func: _det_lu_based_helper(Tensor self) -> (Tensor det, Tensor lu, Tensor pivs)
|
10301
|
+
variants: function
|
10302
|
+
dispatch:
|
10303
|
+
CPU, CUDA: _det_lu_based_helper
|
10304
|
+
|
10305
|
+
- func: _det_lu_based_helper_backward_helper(Tensor det_grad, Tensor det, Tensor self, Tensor lu, Tensor pivs) -> Tensor
|
10306
|
+
variants: function
|
10307
|
+
dispatch:
|
10308
|
+
CPU, CUDA: _det_lu_based_helper_backward_helper
|
10309
|
+
|
9580
10310
|
- func: linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values)
|
9581
10311
|
python_module: linalg
|
9582
10312
|
variants: function
|
@@ -9589,6 +10319,14 @@
|
|
9589
10319
|
dispatch:
|
9590
10320
|
CPU, CUDA: linalg_lstsq_out
|
9591
10321
|
|
10322
|
+
# torch.linalg.matmul, alias for torch.matmul
|
10323
|
+
- func: linalg_matmul(Tensor self, Tensor other) -> Tensor
|
10324
|
+
python_module: linalg
|
10325
|
+
variants: function
|
10326
|
+
|
10327
|
+
- func: linalg_matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
10328
|
+
python_module: linalg
|
10329
|
+
|
9592
10330
|
- func: linalg_slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)
|
9593
10331
|
python_module: linalg
|
9594
10332
|
variants: function
|
@@ -9621,12 +10359,12 @@
|
|
9621
10359
|
python_module: linalg
|
9622
10360
|
variants: function
|
9623
10361
|
dispatch:
|
9624
|
-
|
10362
|
+
CPU, CUDA: linalg_eigh
|
9625
10363
|
|
9626
10364
|
- func: linalg_eigh.eigvals(Tensor self, str UPLO="L", *, Tensor(a!) eigvals, Tensor(b!) eigvecs) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)
|
9627
10365
|
python_module: linalg
|
9628
10366
|
dispatch:
|
9629
|
-
|
10367
|
+
CPU, CUDA: linalg_eigh_out
|
9630
10368
|
|
9631
10369
|
- func: linalg_eigvalsh(Tensor self, str UPLO="L") -> Tensor
|
9632
10370
|
python_module: linalg
|
@@ -9634,6 +10372,8 @@
|
|
9634
10372
|
|
9635
10373
|
- func: linalg_eigvalsh.out(Tensor self, str UPLO='L', *, Tensor(a!) out) -> Tensor(a!)
|
9636
10374
|
python_module: linalg
|
10375
|
+
dispatch:
|
10376
|
+
CPU, CUDA: linalg_eigvalsh_out
|
9637
10377
|
|
9638
10378
|
- func: linalg_householder_product(Tensor input, Tensor tau) -> Tensor
|
9639
10379
|
python_module: linalg
|
@@ -9677,20 +10417,16 @@
|
|
9677
10417
|
|
9678
10418
|
- func: inner.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
9679
10419
|
|
9680
|
-
# torch.outer, alias for torch.ger
|
9681
10420
|
- func: outer(Tensor self, Tensor vec2) -> Tensor
|
9682
10421
|
variants: function, method
|
9683
10422
|
|
9684
10423
|
- func: outer.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)
|
9685
10424
|
|
10425
|
+
# torch.ger, alias for torch.outer
|
9686
10426
|
- func: ger(Tensor self, Tensor vec2) -> Tensor
|
9687
10427
|
variants: function, method
|
9688
|
-
dispatch:
|
9689
|
-
CompositeExplicitAutograd: ger
|
9690
10428
|
|
9691
10429
|
- func: ger.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)
|
9692
|
-
dispatch:
|
9693
|
-
CompositeExplicitAutograd: ger_out
|
9694
10430
|
|
9695
10431
|
- func: linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor
|
9696
10432
|
python_module: linalg
|
@@ -9778,22 +10514,16 @@
|
|
9778
10514
|
python_module: linalg
|
9779
10515
|
variants: function
|
9780
10516
|
|
9781
|
-
- func: _linalg_solve_out_helper_(Tensor(a!) self, Tensor(b!) other, Tensor(c!) infos) -> Tensor(a!)
|
9782
|
-
variants: function
|
9783
|
-
dispatch:
|
9784
|
-
CPU: _linalg_solve_out_helper_cpu
|
9785
|
-
CUDA: _linalg_solve_out_helper_cuda
|
9786
|
-
|
9787
10517
|
- func: linalg_solve(Tensor input, Tensor other) -> Tensor
|
9788
10518
|
python_module: linalg
|
9789
10519
|
variants: function
|
9790
10520
|
dispatch:
|
9791
|
-
|
10521
|
+
CPU, CUDA: linalg_solve
|
9792
10522
|
|
9793
10523
|
- func: linalg_solve.out(Tensor input, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
9794
10524
|
python_module: linalg
|
9795
10525
|
dispatch:
|
9796
|
-
|
10526
|
+
CPU, CUDA: linalg_solve_out
|
9797
10527
|
|
9798
10528
|
- func: linalg_tensorinv(Tensor self, int ind=2) -> Tensor
|
9799
10529
|
python_module: linalg
|
@@ -9897,10 +10627,10 @@
|
|
9897
10627
|
dispatch:
|
9898
10628
|
CPU, CUDA: segment_reduce_kernel
|
9899
10629
|
|
9900
|
-
- func:
|
10630
|
+
- func: _segment_reduce_backward(Tensor grad, Tensor output, Tensor data, str reduce, *, Tensor? lengths=None, int axis=0) -> Tensor
|
9901
10631
|
variants: function
|
9902
10632
|
dispatch:
|
9903
|
-
CPU, CUDA:
|
10633
|
+
CPU, CUDA: _segment_reduce_backward_kernel
|
9904
10634
|
|
9905
10635
|
- func: pad_sequence(Tensor[] sequences, bool batch_first=False, float padding_value=0.0) -> Tensor
|
9906
10636
|
python_module: nn
|