torch-rb 0.5.3 → 0.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/ext/torch/extconf.rb CHANGED
@@ -11,7 +11,6 @@ apple_clang = RbConfig::CONFIG["CC_VERSION_MESSAGE"] =~ /apple clang/i
11
11
 
12
12
  # check omp first
13
13
  if have_library("omp") || have_library("gomp")
14
- $CXXFLAGS += " -DAT_PARALLEL_OPENMP=1"
15
14
  $CXXFLAGS += " -Xclang" if apple_clang
16
15
  $CXXFLAGS += " -fopenmp"
17
16
  end
@@ -0,0 +1,134 @@
1
+ #include <torch/torch.h>
2
+
3
+ #include <rice/Array.hpp>
4
+ #include <rice/Constructor.hpp>
5
+ #include <rice/Hash.hpp>
6
+ #include <rice/Module.hpp>
7
+ #include <rice/String.hpp>
8
+
9
+ #include "utils.h"
10
+
11
+ void init_ivalue(Rice::Module& m) {
12
+ // https://pytorch.org/cppdocs/api/structc10_1_1_i_value.html
13
+ Rice::define_class_under<torch::IValue>(m, "IValue")
14
+ .add_handler<torch::Error>(handle_error)
15
+ .define_constructor(Rice::Constructor<torch::IValue>())
16
+ .define_method("bool?", &torch::IValue::isBool)
17
+ .define_method("bool_list?", &torch::IValue::isBoolList)
18
+ .define_method("capsule?", &torch::IValue::isCapsule)
19
+ .define_method("custom_class?", &torch::IValue::isCustomClass)
20
+ .define_method("device?", &torch::IValue::isDevice)
21
+ .define_method("double?", &torch::IValue::isDouble)
22
+ .define_method("double_list?", &torch::IValue::isDoubleList)
23
+ .define_method("future?", &torch::IValue::isFuture)
24
+ // .define_method("generator?", &torch::IValue::isGenerator)
25
+ .define_method("generic_dict?", &torch::IValue::isGenericDict)
26
+ .define_method("list?", &torch::IValue::isList)
27
+ .define_method("int?", &torch::IValue::isInt)
28
+ .define_method("int_list?", &torch::IValue::isIntList)
29
+ .define_method("module?", &torch::IValue::isModule)
30
+ .define_method("none?", &torch::IValue::isNone)
31
+ .define_method("object?", &torch::IValue::isObject)
32
+ .define_method("ptr_type?", &torch::IValue::isPtrType)
33
+ .define_method("py_object?", &torch::IValue::isPyObject)
34
+ .define_method("r_ref?", &torch::IValue::isRRef)
35
+ .define_method("scalar?", &torch::IValue::isScalar)
36
+ .define_method("string?", &torch::IValue::isString)
37
+ .define_method("tensor?", &torch::IValue::isTensor)
38
+ .define_method("tensor_list?", &torch::IValue::isTensorList)
39
+ .define_method("tuple?", &torch::IValue::isTuple)
40
+ .define_method(
41
+ "to_bool",
42
+ *[](torch::IValue& self) {
43
+ return self.toBool();
44
+ })
45
+ .define_method(
46
+ "to_double",
47
+ *[](torch::IValue& self) {
48
+ return self.toDouble();
49
+ })
50
+ .define_method(
51
+ "to_int",
52
+ *[](torch::IValue& self) {
53
+ return self.toInt();
54
+ })
55
+ .define_method(
56
+ "to_list",
57
+ *[](torch::IValue& self) {
58
+ auto list = self.toListRef();
59
+ Rice::Array obj;
60
+ for (auto& elem : list) {
61
+ obj.push(to_ruby<torch::IValue>(torch::IValue{elem}));
62
+ }
63
+ return obj;
64
+ })
65
+ .define_method(
66
+ "to_string_ref",
67
+ *[](torch::IValue& self) {
68
+ return self.toStringRef();
69
+ })
70
+ .define_method(
71
+ "to_tensor",
72
+ *[](torch::IValue& self) {
73
+ return self.toTensor();
74
+ })
75
+ .define_method(
76
+ "to_generic_dict",
77
+ *[](torch::IValue& self) {
78
+ auto dict = self.toGenericDict();
79
+ Rice::Hash obj;
80
+ for (auto& pair : dict) {
81
+ obj[to_ruby<torch::IValue>(torch::IValue{pair.key()})] = to_ruby<torch::IValue>(torch::IValue{pair.value()});
82
+ }
83
+ return obj;
84
+ })
85
+ .define_singleton_method(
86
+ "from_tensor",
87
+ *[](torch::Tensor& v) {
88
+ return torch::IValue(v);
89
+ })
90
+ // TODO create specialized list types?
91
+ .define_singleton_method(
92
+ "from_list",
93
+ *[](Rice::Array obj) {
94
+ c10::impl::GenericList list(c10::AnyType::get());
95
+ for (auto entry : obj) {
96
+ list.push_back(from_ruby<torch::IValue>(entry));
97
+ }
98
+ return torch::IValue(list);
99
+ })
100
+ .define_singleton_method(
101
+ "from_string",
102
+ *[](Rice::String v) {
103
+ return torch::IValue(v.str());
104
+ })
105
+ .define_singleton_method(
106
+ "from_int",
107
+ *[](int64_t v) {
108
+ return torch::IValue(v);
109
+ })
110
+ .define_singleton_method(
111
+ "from_double",
112
+ *[](double v) {
113
+ return torch::IValue(v);
114
+ })
115
+ .define_singleton_method(
116
+ "from_bool",
117
+ *[](bool v) {
118
+ return torch::IValue(v);
119
+ })
120
+ // see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/python/pybind_utils.h
121
+ // createGenericDict and toIValue
122
+ .define_singleton_method(
123
+ "from_dict",
124
+ *[](Rice::Hash obj) {
125
+ auto key_type = c10::AnyType::get();
126
+ auto value_type = c10::AnyType::get();
127
+ c10::impl::GenericDict elems(key_type, value_type);
128
+ elems.reserve(obj.size());
129
+ for (auto entry : obj) {
130
+ elems.insert(from_ruby<torch::IValue>(entry.first), from_ruby<torch::IValue>((Rice::Object) entry.second));
131
+ }
132
+ return torch::IValue(std::move(elems));
133
+ });
134
+ }
data/ext/torch/nn.cpp ADDED
@@ -0,0 +1,114 @@
1
+ #include <torch/torch.h>
2
+
3
+ #include <rice/Module.hpp>
4
+
5
+ #include "nn_functions.h"
6
+ #include "templates.h"
7
+ #include "utils.h"
8
+
9
+ // need to make a distinction between parameters and tensors
10
+ class Parameter: public torch::autograd::Variable {
11
+ public:
12
+ Parameter(Tensor&& t) : torch::autograd::Variable(t) { }
13
+ };
14
+
15
+ void init_nn(Rice::Module& m) {
16
+ auto rb_mNN = Rice::define_module_under(m, "NN");
17
+ rb_mNN.add_handler<torch::Error>(handle_error);
18
+ add_nn_functions(rb_mNN);
19
+
20
+ Rice::define_module_under(rb_mNN, "Init")
21
+ .add_handler<torch::Error>(handle_error)
22
+ .define_singleton_method(
23
+ "_calculate_gain",
24
+ *[](NonlinearityType nonlinearity, double param) {
25
+ return torch::nn::init::calculate_gain(nonlinearity, param);
26
+ })
27
+ .define_singleton_method(
28
+ "_uniform!",
29
+ *[](Tensor tensor, double low, double high) {
30
+ return torch::nn::init::uniform_(tensor, low, high);
31
+ })
32
+ .define_singleton_method(
33
+ "_normal!",
34
+ *[](Tensor tensor, double mean, double std) {
35
+ return torch::nn::init::normal_(tensor, mean, std);
36
+ })
37
+ .define_singleton_method(
38
+ "_constant!",
39
+ *[](Tensor tensor, Scalar value) {
40
+ return torch::nn::init::constant_(tensor, value);
41
+ })
42
+ .define_singleton_method(
43
+ "_ones!",
44
+ *[](Tensor tensor) {
45
+ return torch::nn::init::ones_(tensor);
46
+ })
47
+ .define_singleton_method(
48
+ "_zeros!",
49
+ *[](Tensor tensor) {
50
+ return torch::nn::init::zeros_(tensor);
51
+ })
52
+ .define_singleton_method(
53
+ "_eye!",
54
+ *[](Tensor tensor) {
55
+ return torch::nn::init::eye_(tensor);
56
+ })
57
+ .define_singleton_method(
58
+ "_dirac!",
59
+ *[](Tensor tensor) {
60
+ return torch::nn::init::dirac_(tensor);
61
+ })
62
+ .define_singleton_method(
63
+ "_xavier_uniform!",
64
+ *[](Tensor tensor, double gain) {
65
+ return torch::nn::init::xavier_uniform_(tensor, gain);
66
+ })
67
+ .define_singleton_method(
68
+ "_xavier_normal!",
69
+ *[](Tensor tensor, double gain) {
70
+ return torch::nn::init::xavier_normal_(tensor, gain);
71
+ })
72
+ .define_singleton_method(
73
+ "_kaiming_uniform!",
74
+ *[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
75
+ return torch::nn::init::kaiming_uniform_(tensor, a, mode, nonlinearity);
76
+ })
77
+ .define_singleton_method(
78
+ "_kaiming_normal!",
79
+ *[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
80
+ return torch::nn::init::kaiming_normal_(tensor, a, mode, nonlinearity);
81
+ })
82
+ .define_singleton_method(
83
+ "_orthogonal!",
84
+ *[](Tensor tensor, double gain) {
85
+ return torch::nn::init::orthogonal_(tensor, gain);
86
+ })
87
+ .define_singleton_method(
88
+ "_sparse!",
89
+ *[](Tensor tensor, double sparsity, double std) {
90
+ return torch::nn::init::sparse_(tensor, sparsity, std);
91
+ });
92
+
93
+ Rice::define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter")
94
+ .add_handler<torch::Error>(handle_error)
95
+ .define_method(
96
+ "grad",
97
+ *[](Parameter& self) {
98
+ auto grad = self.grad();
99
+ return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
100
+ })
101
+ .define_method(
102
+ "grad=",
103
+ *[](Parameter& self, torch::Tensor& grad) {
104
+ self.mutable_grad() = grad;
105
+ })
106
+ .define_singleton_method(
107
+ "_make_subclass",
108
+ *[](Tensor& rd, bool requires_grad) {
109
+ auto data = rd.detach();
110
+ data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
111
+ auto var = data.set_requires_grad(requires_grad);
112
+ return Parameter(std::move(var));
113
+ });
114
+ }
@@ -3,4 +3,4 @@
3
3
 
4
4
  #pragma once
5
5
 
6
- void add_nn_functions(Module m);
6
+ void add_nn_functions(Rice::Module& m);
@@ -0,0 +1,22 @@
1
+ #include <torch/torch.h>
2
+
3
+ #include <rice/Module.hpp>
4
+
5
+ #include "utils.h"
6
+
7
+ void init_random(Rice::Module& m) {
8
+ Rice::define_module_under(m, "Random")
9
+ .add_handler<torch::Error>(handle_error)
10
+ .define_singleton_method(
11
+ "initial_seed",
12
+ *[]() {
13
+ return at::detail::getDefaultCPUGenerator().current_seed();
14
+ })
15
+ .define_singleton_method(
16
+ "seed",
17
+ *[]() {
18
+ // TODO set for CUDA when available
19
+ auto generator = at::detail::getDefaultCPUGenerator();
20
+ return generator.seed();
21
+ });
22
+ }
@@ -487,7 +487,7 @@ static void extra_kwargs(FunctionSignature& signature, VALUE kwargs, ssize_t num
487
487
 
488
488
  VALUE missing = Qundef;
489
489
 
490
- bool FunctionSignature::parse(VALUE self, VALUE args, VALUE kwargs, std::vector<VALUE> &dst, // NOLINT
490
+ bool FunctionSignature::parse(VALUE self, VALUE args, VALUE kwargs, VALUE dst[], // NOLINT
491
491
  bool raise_exception) {
492
492
  auto nargs = NIL_P(args) ? 0 : RARRAY_LEN(args);
493
493
  ssize_t remaining_kwargs = NIL_P(kwargs) ? 0 : RHASH_SIZE(kwargs);
@@ -2,6 +2,8 @@
2
2
 
3
3
  #pragma once
4
4
 
5
+ #include <sstream>
6
+
5
7
  #include <torch/torch.h>
6
8
  #include <rice/Exception.hpp>
7
9
 
@@ -46,7 +48,7 @@ struct FunctionParameter {
46
48
  struct FunctionSignature {
47
49
  explicit FunctionSignature(const std::string& fmt, int index);
48
50
 
49
- bool parse(VALUE self, VALUE args, VALUE kwargs, std::vector<VALUE>& dst, bool raise_exception);
51
+ bool parse(VALUE self, VALUE args, VALUE kwargs, VALUE dst[], bool raise_exception);
50
52
 
51
53
  std::string toString() const;
52
54
 
@@ -63,13 +65,13 @@ struct FunctionSignature {
63
65
  };
64
66
 
65
67
  struct RubyArgs {
66
- RubyArgs(const FunctionSignature& signature, std::vector<VALUE> &args)
68
+ RubyArgs(const FunctionSignature& signature, VALUE* args)
67
69
  : signature(signature)
68
70
  , args(args)
69
71
  , idx(signature.index) {}
70
72
 
71
73
  const FunctionSignature& signature;
72
- std::vector<VALUE> args;
74
+ VALUE* args;
73
75
  int idx;
74
76
 
75
77
  inline at::Tensor tensor(int i);
@@ -328,6 +330,12 @@ inline bool RubyArgs::isNone(int i) {
328
330
  return NIL_P(args[i]);
329
331
  }
330
332
 
333
+ template<int N>
334
+ struct ParsedArgs {
335
+ ParsedArgs() : args() { }
336
+ VALUE args[N];
337
+ };
338
+
331
339
  struct RubyArgParser {
332
340
  std::vector<FunctionSignature> signatures_;
333
341
  std::string function_name;
@@ -356,7 +364,15 @@ struct RubyArgParser {
356
364
  });
357
365
  }
358
366
 
359
- RubyArgs parse(VALUE self, int argc, VALUE* argv, std::vector<VALUE> &parsed_args) {
367
+ template<int N>
368
+ inline RubyArgs parse(VALUE self, int argc, VALUE* argv, ParsedArgs<N> &dst) {
369
+ if (N < max_args) {
370
+ rb_raise(rb_eArgError, "RubyArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)", (int)max_args, N);
371
+ }
372
+ return raw_parse(self, argc, argv, dst.args);
373
+ }
374
+
375
+ inline RubyArgs raw_parse(VALUE self, int argc, VALUE* argv, VALUE parsed_args[]) {
360
376
  VALUE args, kwargs;
361
377
  rb_scan_args(argc, argv, "*:", &args, &kwargs);
362
378
 
@@ -378,7 +394,7 @@ struct RubyArgParser {
378
394
  rb_raise(rb_eArgError, "No matching signatures");
379
395
  }
380
396
 
381
- void print_error(VALUE self, VALUE args, VALUE kwargs, std::vector<VALUE>& parsed_args) {
397
+ void print_error(VALUE self, VALUE args, VALUE kwargs, VALUE parsed_args[]) {
382
398
  ssize_t num_args = (NIL_P(args) ? 0 : RARRAY_LEN(args)) + (NIL_P(kwargs) ? 0 : RHASH_SIZE(kwargs));
383
399
  std::vector<int> plausible_idxs;
384
400
  ssize_t i = 0;
@@ -44,7 +44,7 @@ std::vector<int64_t> from_ruby<std::vector<int64_t>>(Object x)
44
44
  {
45
45
  Array a = Array(x);
46
46
  std::vector<int64_t> vec(a.size());
47
- for (size_t i = 0; i < a.size(); i++) {
47
+ for (long i = 0; i < a.size(); i++) {
48
48
  vec[i] = from_ruby<int64_t>(a[i]);
49
49
  }
50
50
  return vec;
@@ -56,7 +56,7 @@ std::vector<Tensor> from_ruby<std::vector<Tensor>>(Object x)
56
56
  {
57
57
  Array a = Array(x);
58
58
  std::vector<Tensor> vec(a.size());
59
- for (size_t i = 0; i < a.size(); i++) {
59
+ for (long i = 0; i < a.size(); i++) {
60
60
  vec[i] = from_ruby<Tensor>(a[i]);
61
61
  }
62
62
  return vec;
@@ -0,0 +1,307 @@
1
+ #include <torch/torch.h>
2
+
3
+ #include <rice/Constructor.hpp>
4
+ #include <rice/Module.hpp>
5
+
6
+ #include "tensor_functions.h"
7
+ #include "ruby_arg_parser.h"
8
+ #include "templates.h"
9
+ #include "utils.h"
10
+
11
+ using namespace Rice;
12
+ using torch::indexing::TensorIndex;
13
+
14
+ Class rb_cTensor;
15
+
16
+ std::vector<TensorIndex> index_vector(Array a) {
17
+ Object obj;
18
+
19
+ std::vector<TensorIndex> indices;
20
+ indices.reserve(a.size());
21
+
22
+ for (long i = 0; i < a.size(); i++) {
23
+ obj = a[i];
24
+
25
+ if (obj.is_instance_of(rb_cInteger)) {
26
+ indices.push_back(from_ruby<int64_t>(obj));
27
+ } else if (obj.is_instance_of(rb_cRange)) {
28
+ torch::optional<int64_t> start_index = torch::nullopt;
29
+ torch::optional<int64_t> stop_index = torch::nullopt;
30
+
31
+ Object begin = obj.call("begin");
32
+ if (!begin.is_nil()) {
33
+ start_index = from_ruby<int64_t>(begin);
34
+ }
35
+
36
+ Object end = obj.call("end");
37
+ if (!end.is_nil()) {
38
+ stop_index = from_ruby<int64_t>(end);
39
+ }
40
+
41
+ Object exclude_end = obj.call("exclude_end?");
42
+ if (stop_index.has_value() && !exclude_end) {
43
+ if (stop_index.value() == -1) {
44
+ stop_index = torch::nullopt;
45
+ } else {
46
+ stop_index = stop_index.value() + 1;
47
+ }
48
+ }
49
+
50
+ indices.push_back(torch::indexing::Slice(start_index, stop_index));
51
+ } else if (obj.is_instance_of(rb_cTensor)) {
52
+ indices.push_back(from_ruby<Tensor>(obj));
53
+ } else if (obj.is_nil()) {
54
+ indices.push_back(torch::indexing::None);
55
+ } else if (obj == True || obj == False) {
56
+ indices.push_back(from_ruby<bool>(obj));
57
+ } else {
58
+ throw Exception(rb_eArgError, "Unsupported index type: %s", rb_obj_classname(obj));
59
+ }
60
+ }
61
+ return indices;
62
+ }
63
+
64
+ // hack (removes inputs argument)
65
+ // https://github.com/pytorch/pytorch/commit/2e5bfa9824f549be69a28e4705a72b4cf8a4c519
66
+ // TODO add support for inputs argument
67
+ // _backward
68
+ static VALUE tensor__backward(int argc, VALUE* argv, VALUE self_)
69
+ {
70
+ HANDLE_TH_ERRORS
71
+ Tensor& self = from_ruby<Tensor&>(self_);
72
+ static RubyArgParser parser({
73
+ "_backward(Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False)"
74
+ });
75
+ ParsedArgs<4> parsed_args;
76
+ auto _r = parser.parse(self_, argc, argv, parsed_args);
77
+ // _backward(Tensor self, Tensor[] inputs, Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False) -> ()
78
+ auto dispatch__backward = [](const Tensor & self, TensorList inputs, const OptionalTensor & gradient, c10::optional<bool> retain_graph, bool create_graph) -> void {
79
+ // in future, release GVL
80
+ self._backward(inputs, gradient, retain_graph, create_graph);
81
+ };
82
+ dispatch__backward(self, {}, _r.optionalTensor(0), _r.toBoolOptional(1), _r.toBool(2));
83
+ RETURN_NIL
84
+ END_HANDLE_TH_ERRORS
85
+ }
86
+
87
+ void init_tensor(Rice::Module& m) {
88
+ rb_cTensor = Rice::define_class_under<torch::Tensor>(m, "Tensor");
89
+ rb_cTensor.add_handler<torch::Error>(handle_error);
90
+ add_tensor_functions(rb_cTensor);
91
+ THPVariableClass = rb_cTensor.value();
92
+
93
+ rb_define_method(rb_cTensor, "backward", (VALUE (*)(...)) tensor__backward, -1);
94
+
95
+ rb_cTensor
96
+ .define_method("cuda?", &torch::Tensor::is_cuda)
97
+ .define_method("sparse?", &torch::Tensor::is_sparse)
98
+ .define_method("quantized?", &torch::Tensor::is_quantized)
99
+ .define_method("dim", &torch::Tensor::dim)
100
+ .define_method("numel", &torch::Tensor::numel)
101
+ .define_method("element_size", &torch::Tensor::element_size)
102
+ .define_method("requires_grad", &torch::Tensor::requires_grad)
103
+ .define_method(
104
+ "_size",
105
+ *[](Tensor& self, int64_t dim) {
106
+ return self.size(dim);
107
+ })
108
+ .define_method(
109
+ "_stride",
110
+ *[](Tensor& self, int64_t dim) {
111
+ return self.stride(dim);
112
+ })
113
+ // in C++ for performance
114
+ .define_method(
115
+ "shape",
116
+ *[](Tensor& self) {
117
+ Array a;
118
+ for (auto &size : self.sizes()) {
119
+ a.push(size);
120
+ }
121
+ return a;
122
+ })
123
+ .define_method(
124
+ "_strides",
125
+ *[](Tensor& self) {
126
+ Array a;
127
+ for (auto &stride : self.strides()) {
128
+ a.push(stride);
129
+ }
130
+ return a;
131
+ })
132
+ .define_method(
133
+ "_index",
134
+ *[](Tensor& self, Array indices) {
135
+ auto vec = index_vector(indices);
136
+ return self.index(vec);
137
+ })
138
+ .define_method(
139
+ "_index_put_custom",
140
+ *[](Tensor& self, Array indices, torch::Tensor& value) {
141
+ auto vec = index_vector(indices);
142
+ return self.index_put_(vec, value);
143
+ })
144
+ .define_method(
145
+ "contiguous?",
146
+ *[](Tensor& self) {
147
+ return self.is_contiguous();
148
+ })
149
+ .define_method(
150
+ "_requires_grad!",
151
+ *[](Tensor& self, bool requires_grad) {
152
+ return self.set_requires_grad(requires_grad);
153
+ })
154
+ .define_method(
155
+ "grad",
156
+ *[](Tensor& self) {
157
+ auto grad = self.grad();
158
+ return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
159
+ })
160
+ .define_method(
161
+ "grad=",
162
+ *[](Tensor& self, torch::Tensor& grad) {
163
+ self.mutable_grad() = grad;
164
+ })
165
+ .define_method(
166
+ "_dtype",
167
+ *[](Tensor& self) {
168
+ return (int) at::typeMetaToScalarType(self.dtype());
169
+ })
170
+ .define_method(
171
+ "_type",
172
+ *[](Tensor& self, int dtype) {
173
+ return self.toType((torch::ScalarType) dtype);
174
+ })
175
+ .define_method(
176
+ "_layout",
177
+ *[](Tensor& self) {
178
+ std::stringstream s;
179
+ s << self.layout();
180
+ return s.str();
181
+ })
182
+ .define_method(
183
+ "device",
184
+ *[](Tensor& self) {
185
+ std::stringstream s;
186
+ s << self.device();
187
+ return s.str();
188
+ })
189
+ .define_method(
190
+ "_data_str",
191
+ *[](Tensor& self) {
192
+ Tensor tensor = self;
193
+
194
+ // move to CPU to get data
195
+ if (tensor.device().type() != torch::kCPU) {
196
+ torch::Device device("cpu");
197
+ tensor = tensor.to(device);
198
+ }
199
+
200
+ if (!tensor.is_contiguous()) {
201
+ tensor = tensor.contiguous();
202
+ }
203
+
204
+ auto data_ptr = (const char *) tensor.data_ptr();
205
+ return std::string(data_ptr, tensor.numel() * tensor.element_size());
206
+ })
207
+ // for TorchVision
208
+ .define_method(
209
+ "_data_ptr",
210
+ *[](Tensor& self) {
211
+ return reinterpret_cast<uintptr_t>(self.data_ptr());
212
+ })
213
+ // TODO figure out a better way to do this
214
+ .define_method(
215
+ "_flat_data",
216
+ *[](Tensor& self) {
217
+ Tensor tensor = self;
218
+
219
+ // move to CPU to get data
220
+ if (tensor.device().type() != torch::kCPU) {
221
+ torch::Device device("cpu");
222
+ tensor = tensor.to(device);
223
+ }
224
+
225
+ Array a;
226
+ auto dtype = tensor.dtype();
227
+
228
+ Tensor view = tensor.reshape({tensor.numel()});
229
+
230
+ // TODO DRY if someone knows C++
231
+ if (dtype == torch::kByte) {
232
+ for (int i = 0; i < tensor.numel(); i++) {
233
+ a.push(view[i].item().to<uint8_t>());
234
+ }
235
+ } else if (dtype == torch::kChar) {
236
+ for (int i = 0; i < tensor.numel(); i++) {
237
+ a.push(to_ruby<int>(view[i].item().to<int8_t>()));
238
+ }
239
+ } else if (dtype == torch::kShort) {
240
+ for (int i = 0; i < tensor.numel(); i++) {
241
+ a.push(view[i].item().to<int16_t>());
242
+ }
243
+ } else if (dtype == torch::kInt) {
244
+ for (int i = 0; i < tensor.numel(); i++) {
245
+ a.push(view[i].item().to<int32_t>());
246
+ }
247
+ } else if (dtype == torch::kLong) {
248
+ for (int i = 0; i < tensor.numel(); i++) {
249
+ a.push(view[i].item().to<int64_t>());
250
+ }
251
+ } else if (dtype == torch::kFloat) {
252
+ for (int i = 0; i < tensor.numel(); i++) {
253
+ a.push(view[i].item().to<float>());
254
+ }
255
+ } else if (dtype == torch::kDouble) {
256
+ for (int i = 0; i < tensor.numel(); i++) {
257
+ a.push(view[i].item().to<double>());
258
+ }
259
+ } else if (dtype == torch::kBool) {
260
+ for (int i = 0; i < tensor.numel(); i++) {
261
+ a.push(view[i].item().to<bool>() ? True : False);
262
+ }
263
+ } else {
264
+ throw std::runtime_error("Unsupported type");
265
+ }
266
+ return a;
267
+ })
268
+ .define_method(
269
+ "_to",
270
+ *[](Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
271
+ return self.to(device, (torch::ScalarType) dtype, non_blocking, copy);
272
+ });
273
+
274
+ Rice::define_class_under<torch::TensorOptions>(m, "TensorOptions")
275
+ .add_handler<torch::Error>(handle_error)
276
+ .define_constructor(Rice::Constructor<torch::TensorOptions>())
277
+ .define_method(
278
+ "dtype",
279
+ *[](torch::TensorOptions& self, int dtype) {
280
+ return self.dtype((torch::ScalarType) dtype);
281
+ })
282
+ .define_method(
283
+ "layout",
284
+ *[](torch::TensorOptions& self, const std::string& layout) {
285
+ torch::Layout l;
286
+ if (layout == "strided") {
287
+ l = torch::kStrided;
288
+ } else if (layout == "sparse") {
289
+ l = torch::kSparse;
290
+ throw std::runtime_error("Sparse layout not supported yet");
291
+ } else {
292
+ throw std::runtime_error("Unsupported layout: " + layout);
293
+ }
294
+ return self.layout(l);
295
+ })
296
+ .define_method(
297
+ "device",
298
+ *[](torch::TensorOptions& self, const std::string& device) {
299
+ torch::Device d(device);
300
+ return self.device(d);
301
+ })
302
+ .define_method(
303
+ "requires_grad",
304
+ *[](torch::TensorOptions& self, bool requires_grad) {
305
+ return self.requires_grad(requires_grad);
306
+ });
307
+ }