torch-rb 0.5.0 → 0.7.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +26 -0
- data/README.md +13 -4
- data/codegen/generate_functions.rb +13 -14
- data/codegen/native_functions.yaml +2355 -1396
- data/ext/torch/cuda.cpp +14 -0
- data/ext/torch/device.cpp +28 -0
- data/ext/torch/ext.cpp +26 -613
- data/ext/torch/extconf.rb +1 -4
- data/ext/torch/ivalue.cpp +132 -0
- data/ext/torch/nn.cpp +114 -0
- data/ext/torch/nn_functions.h +1 -1
- data/ext/torch/random.cpp +22 -0
- data/ext/torch/ruby_arg_parser.cpp +3 -3
- data/ext/torch/ruby_arg_parser.h +37 -16
- data/ext/torch/templates.h +110 -133
- data/ext/torch/tensor.cpp +320 -0
- data/ext/torch/tensor_functions.h +1 -1
- data/ext/torch/torch.cpp +95 -0
- data/ext/torch/torch_functions.h +1 -1
- data/ext/torch/utils.h +8 -2
- data/ext/torch/wrap_outputs.h +72 -65
- data/lib/torch.rb +19 -17
- data/lib/torch/inspector.rb +5 -2
- data/lib/torch/nn/linear.rb +2 -0
- data/lib/torch/nn/module.rb +107 -21
- data/lib/torch/nn/parameter.rb +1 -1
- data/lib/torch/tensor.rb +9 -0
- data/lib/torch/utils/data/data_loader.rb +1 -1
- data/lib/torch/version.rb +1 -1
- metadata +14 -91
data/ext/torch/extconf.rb
CHANGED
@@ -1,8 +1,6 @@
|
|
1
1
|
require "mkmf-rice"
|
2
2
|
|
3
|
-
|
4
|
-
|
5
|
-
$CXXFLAGS += " -std=c++14"
|
3
|
+
$CXXFLAGS += " -std=c++17 $(optflags)"
|
6
4
|
|
7
5
|
# change to 0 for Linux pre-cxx11 ABI version
|
8
6
|
$CXXFLAGS += " -D_GLIBCXX_USE_CXX11_ABI=1"
|
@@ -11,7 +9,6 @@ apple_clang = RbConfig::CONFIG["CC_VERSION_MESSAGE"] =~ /apple clang/i
|
|
11
9
|
|
12
10
|
# check omp first
|
13
11
|
if have_library("omp") || have_library("gomp")
|
14
|
-
$CXXFLAGS += " -DAT_PARALLEL_OPENMP=1"
|
15
12
|
$CXXFLAGS += " -Xclang" if apple_clang
|
16
13
|
$CXXFLAGS += " -fopenmp"
|
17
14
|
end
|
@@ -0,0 +1,132 @@
|
|
1
|
+
#include <torch/torch.h>
|
2
|
+
|
3
|
+
#include <rice/rice.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_ivalue(Rice::Module& m, Rice::Class& rb_cIValue) {
|
8
|
+
// https://pytorch.org/cppdocs/api/structc10_1_1_i_value.html
|
9
|
+
rb_cIValue
|
10
|
+
.add_handler<torch::Error>(handle_error)
|
11
|
+
.define_method("bool?", &torch::IValue::isBool)
|
12
|
+
.define_method("bool_list?", &torch::IValue::isBoolList)
|
13
|
+
.define_method("capsule?", &torch::IValue::isCapsule)
|
14
|
+
.define_method("custom_class?", &torch::IValue::isCustomClass)
|
15
|
+
.define_method("device?", &torch::IValue::isDevice)
|
16
|
+
.define_method("double?", &torch::IValue::isDouble)
|
17
|
+
.define_method("double_list?", &torch::IValue::isDoubleList)
|
18
|
+
.define_method("future?", &torch::IValue::isFuture)
|
19
|
+
// .define_method("generator?", &torch::IValue::isGenerator)
|
20
|
+
.define_method("generic_dict?", &torch::IValue::isGenericDict)
|
21
|
+
.define_method("list?", &torch::IValue::isList)
|
22
|
+
.define_method("int?", &torch::IValue::isInt)
|
23
|
+
.define_method("int_list?", &torch::IValue::isIntList)
|
24
|
+
.define_method("module?", &torch::IValue::isModule)
|
25
|
+
.define_method("none?", &torch::IValue::isNone)
|
26
|
+
.define_method("object?", &torch::IValue::isObject)
|
27
|
+
.define_method("ptr_type?", &torch::IValue::isPtrType)
|
28
|
+
.define_method("py_object?", &torch::IValue::isPyObject)
|
29
|
+
.define_method("r_ref?", &torch::IValue::isRRef)
|
30
|
+
.define_method("scalar?", &torch::IValue::isScalar)
|
31
|
+
.define_method("string?", &torch::IValue::isString)
|
32
|
+
.define_method("tensor?", &torch::IValue::isTensor)
|
33
|
+
.define_method("tensor_list?", &torch::IValue::isTensorList)
|
34
|
+
.define_method("tuple?", &torch::IValue::isTuple)
|
35
|
+
.define_method(
|
36
|
+
"to_bool",
|
37
|
+
[](torch::IValue& self) {
|
38
|
+
return self.toBool();
|
39
|
+
})
|
40
|
+
.define_method(
|
41
|
+
"to_double",
|
42
|
+
[](torch::IValue& self) {
|
43
|
+
return self.toDouble();
|
44
|
+
})
|
45
|
+
.define_method(
|
46
|
+
"to_int",
|
47
|
+
[](torch::IValue& self) {
|
48
|
+
return self.toInt();
|
49
|
+
})
|
50
|
+
.define_method(
|
51
|
+
"to_list",
|
52
|
+
[](torch::IValue& self) {
|
53
|
+
auto list = self.toListRef();
|
54
|
+
Rice::Array obj;
|
55
|
+
for (auto& elem : list) {
|
56
|
+
auto v = torch::IValue{elem};
|
57
|
+
obj.push(Rice::Object(Rice::detail::To_Ruby<torch::IValue>().convert(v)));
|
58
|
+
}
|
59
|
+
return obj;
|
60
|
+
})
|
61
|
+
.define_method(
|
62
|
+
"to_string_ref",
|
63
|
+
[](torch::IValue& self) {
|
64
|
+
return self.toStringRef();
|
65
|
+
})
|
66
|
+
.define_method(
|
67
|
+
"to_tensor",
|
68
|
+
[](torch::IValue& self) {
|
69
|
+
return self.toTensor();
|
70
|
+
})
|
71
|
+
.define_method(
|
72
|
+
"to_generic_dict",
|
73
|
+
[](torch::IValue& self) {
|
74
|
+
auto dict = self.toGenericDict();
|
75
|
+
Rice::Hash obj;
|
76
|
+
for (auto& pair : dict) {
|
77
|
+
auto k = torch::IValue{pair.key()};
|
78
|
+
auto v = torch::IValue{pair.value()};
|
79
|
+
obj[Rice::Object(Rice::detail::To_Ruby<torch::IValue>().convert(k))] = Rice::Object(Rice::detail::To_Ruby<torch::IValue>().convert(v));
|
80
|
+
}
|
81
|
+
return obj;
|
82
|
+
})
|
83
|
+
.define_singleton_function(
|
84
|
+
"from_tensor",
|
85
|
+
[](torch::Tensor& v) {
|
86
|
+
return torch::IValue(v);
|
87
|
+
})
|
88
|
+
// TODO create specialized list types?
|
89
|
+
.define_singleton_function(
|
90
|
+
"from_list",
|
91
|
+
[](Rice::Array obj) {
|
92
|
+
c10::impl::GenericList list(c10::AnyType::get());
|
93
|
+
for (auto entry : obj) {
|
94
|
+
list.push_back(Rice::detail::From_Ruby<torch::IValue>().convert(entry.value()));
|
95
|
+
}
|
96
|
+
return torch::IValue(list);
|
97
|
+
})
|
98
|
+
.define_singleton_function(
|
99
|
+
"from_string",
|
100
|
+
[](Rice::String v) {
|
101
|
+
return torch::IValue(v.str());
|
102
|
+
})
|
103
|
+
.define_singleton_function(
|
104
|
+
"from_int",
|
105
|
+
[](int64_t v) {
|
106
|
+
return torch::IValue(v);
|
107
|
+
})
|
108
|
+
.define_singleton_function(
|
109
|
+
"from_double",
|
110
|
+
[](double v) {
|
111
|
+
return torch::IValue(v);
|
112
|
+
})
|
113
|
+
.define_singleton_function(
|
114
|
+
"from_bool",
|
115
|
+
[](bool v) {
|
116
|
+
return torch::IValue(v);
|
117
|
+
})
|
118
|
+
// see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/python/pybind_utils.h
|
119
|
+
// createGenericDict and toIValue
|
120
|
+
.define_singleton_function(
|
121
|
+
"from_dict",
|
122
|
+
[](Rice::Hash obj) {
|
123
|
+
auto key_type = c10::AnyType::get();
|
124
|
+
auto value_type = c10::AnyType::get();
|
125
|
+
c10::impl::GenericDict elems(key_type, value_type);
|
126
|
+
elems.reserve(obj.size());
|
127
|
+
for (auto entry : obj) {
|
128
|
+
elems.insert(Rice::detail::From_Ruby<torch::IValue>().convert(entry.first), Rice::detail::From_Ruby<torch::IValue>().convert((Rice::Object) entry.second));
|
129
|
+
}
|
130
|
+
return torch::IValue(std::move(elems));
|
131
|
+
});
|
132
|
+
}
|
data/ext/torch/nn.cpp
ADDED
@@ -0,0 +1,114 @@
|
|
1
|
+
#include <torch/torch.h>
|
2
|
+
|
3
|
+
#include <rice/rice.hpp>
|
4
|
+
|
5
|
+
#include "nn_functions.h"
|
6
|
+
#include "templates.h"
|
7
|
+
#include "utils.h"
|
8
|
+
|
9
|
+
// need to make a distinction between parameters and tensors
|
10
|
+
class Parameter: public torch::autograd::Variable {
|
11
|
+
public:
|
12
|
+
Parameter(Tensor&& t) : torch::autograd::Variable(t) { }
|
13
|
+
};
|
14
|
+
|
15
|
+
void init_nn(Rice::Module& m) {
|
16
|
+
auto rb_mNN = Rice::define_module_under(m, "NN");
|
17
|
+
rb_mNN.add_handler<torch::Error>(handle_error);
|
18
|
+
add_nn_functions(rb_mNN);
|
19
|
+
|
20
|
+
Rice::define_module_under(rb_mNN, "Init")
|
21
|
+
.add_handler<torch::Error>(handle_error)
|
22
|
+
.define_singleton_function(
|
23
|
+
"_calculate_gain",
|
24
|
+
[](NonlinearityType nonlinearity, double param) {
|
25
|
+
return torch::nn::init::calculate_gain(nonlinearity, param);
|
26
|
+
})
|
27
|
+
.define_singleton_function(
|
28
|
+
"_uniform!",
|
29
|
+
[](Tensor tensor, double low, double high) {
|
30
|
+
return torch::nn::init::uniform_(tensor, low, high);
|
31
|
+
})
|
32
|
+
.define_singleton_function(
|
33
|
+
"_normal!",
|
34
|
+
[](Tensor tensor, double mean, double std) {
|
35
|
+
return torch::nn::init::normal_(tensor, mean, std);
|
36
|
+
})
|
37
|
+
.define_singleton_function(
|
38
|
+
"_constant!",
|
39
|
+
[](Tensor tensor, Scalar value) {
|
40
|
+
return torch::nn::init::constant_(tensor, value);
|
41
|
+
})
|
42
|
+
.define_singleton_function(
|
43
|
+
"_ones!",
|
44
|
+
[](Tensor tensor) {
|
45
|
+
return torch::nn::init::ones_(tensor);
|
46
|
+
})
|
47
|
+
.define_singleton_function(
|
48
|
+
"_zeros!",
|
49
|
+
[](Tensor tensor) {
|
50
|
+
return torch::nn::init::zeros_(tensor);
|
51
|
+
})
|
52
|
+
.define_singleton_function(
|
53
|
+
"_eye!",
|
54
|
+
[](Tensor tensor) {
|
55
|
+
return torch::nn::init::eye_(tensor);
|
56
|
+
})
|
57
|
+
.define_singleton_function(
|
58
|
+
"_dirac!",
|
59
|
+
[](Tensor tensor) {
|
60
|
+
return torch::nn::init::dirac_(tensor);
|
61
|
+
})
|
62
|
+
.define_singleton_function(
|
63
|
+
"_xavier_uniform!",
|
64
|
+
[](Tensor tensor, double gain) {
|
65
|
+
return torch::nn::init::xavier_uniform_(tensor, gain);
|
66
|
+
})
|
67
|
+
.define_singleton_function(
|
68
|
+
"_xavier_normal!",
|
69
|
+
[](Tensor tensor, double gain) {
|
70
|
+
return torch::nn::init::xavier_normal_(tensor, gain);
|
71
|
+
})
|
72
|
+
.define_singleton_function(
|
73
|
+
"_kaiming_uniform!",
|
74
|
+
[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
|
75
|
+
return torch::nn::init::kaiming_uniform_(tensor, a, mode, nonlinearity);
|
76
|
+
})
|
77
|
+
.define_singleton_function(
|
78
|
+
"_kaiming_normal!",
|
79
|
+
[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
|
80
|
+
return torch::nn::init::kaiming_normal_(tensor, a, mode, nonlinearity);
|
81
|
+
})
|
82
|
+
.define_singleton_function(
|
83
|
+
"_orthogonal!",
|
84
|
+
[](Tensor tensor, double gain) {
|
85
|
+
return torch::nn::init::orthogonal_(tensor, gain);
|
86
|
+
})
|
87
|
+
.define_singleton_function(
|
88
|
+
"_sparse!",
|
89
|
+
[](Tensor tensor, double sparsity, double std) {
|
90
|
+
return torch::nn::init::sparse_(tensor, sparsity, std);
|
91
|
+
});
|
92
|
+
|
93
|
+
Rice::define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter")
|
94
|
+
.add_handler<torch::Error>(handle_error)
|
95
|
+
.define_method(
|
96
|
+
"grad",
|
97
|
+
[](Parameter& self) {
|
98
|
+
auto grad = self.grad();
|
99
|
+
return grad.defined() ? Object(Rice::detail::To_Ruby<torch::Tensor>().convert(grad)) : Nil;
|
100
|
+
})
|
101
|
+
.define_method(
|
102
|
+
"grad=",
|
103
|
+
[](Parameter& self, torch::Tensor& grad) {
|
104
|
+
self.mutable_grad() = grad;
|
105
|
+
})
|
106
|
+
.define_singleton_function(
|
107
|
+
"_make_subclass",
|
108
|
+
[](Tensor& rd, bool requires_grad) {
|
109
|
+
auto data = rd.detach();
|
110
|
+
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
111
|
+
auto var = data.set_requires_grad(requires_grad);
|
112
|
+
return Parameter(std::move(var));
|
113
|
+
});
|
114
|
+
}
|
data/ext/torch/nn_functions.h
CHANGED
@@ -0,0 +1,22 @@
|
|
1
|
+
#include <torch/torch.h>
|
2
|
+
|
3
|
+
#include <rice/rice.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_random(Rice::Module& m) {
|
8
|
+
Rice::define_module_under(m, "Random")
|
9
|
+
.add_handler<torch::Error>(handle_error)
|
10
|
+
.define_singleton_function(
|
11
|
+
"initial_seed",
|
12
|
+
[]() {
|
13
|
+
return at::detail::getDefaultCPUGenerator().current_seed();
|
14
|
+
})
|
15
|
+
.define_singleton_function(
|
16
|
+
"seed",
|
17
|
+
[]() {
|
18
|
+
// TODO set for CUDA when available
|
19
|
+
auto generator = at::detail::getDefaultCPUGenerator();
|
20
|
+
return generator.seed();
|
21
|
+
});
|
22
|
+
}
|
@@ -137,7 +137,7 @@ auto FunctionParameter::check(VALUE obj, int argnum) -> bool
|
|
137
137
|
return true;
|
138
138
|
}
|
139
139
|
if (THPVariable_Check(obj)) {
|
140
|
-
auto var =
|
140
|
+
auto var = Rice::detail::From_Ruby<torch::Tensor>().convert(obj);
|
141
141
|
return !var.requires_grad() && var.dim() == 0;
|
142
142
|
}
|
143
143
|
return false;
|
@@ -147,7 +147,7 @@ auto FunctionParameter::check(VALUE obj, int argnum) -> bool
|
|
147
147
|
return true;
|
148
148
|
}
|
149
149
|
if (THPVariable_Check(obj)) {
|
150
|
-
auto var =
|
150
|
+
auto var = Rice::detail::From_Ruby<torch::Tensor>().convert(obj);
|
151
151
|
return at::isIntegralType(var.scalar_type(), /*includeBool=*/false) && !var.requires_grad() && var.dim() == 0;
|
152
152
|
}
|
153
153
|
return false;
|
@@ -487,7 +487,7 @@ static void extra_kwargs(FunctionSignature& signature, VALUE kwargs, ssize_t num
|
|
487
487
|
|
488
488
|
VALUE missing = Qundef;
|
489
489
|
|
490
|
-
bool FunctionSignature::parse(VALUE self, VALUE args, VALUE kwargs,
|
490
|
+
bool FunctionSignature::parse(VALUE self, VALUE args, VALUE kwargs, VALUE dst[], // NOLINT
|
491
491
|
bool raise_exception) {
|
492
492
|
auto nargs = NIL_P(args) ? 0 : RARRAY_LEN(args);
|
493
493
|
ssize_t remaining_kwargs = NIL_P(kwargs) ? 0 : RHASH_SIZE(kwargs);
|
data/ext/torch/ruby_arg_parser.h
CHANGED
@@ -2,8 +2,10 @@
|
|
2
2
|
|
3
3
|
#pragma once
|
4
4
|
|
5
|
+
#include <sstream>
|
6
|
+
|
5
7
|
#include <torch/torch.h>
|
6
|
-
#include <rice/
|
8
|
+
#include <rice/rice.hpp>
|
7
9
|
|
8
10
|
#include "templates.h"
|
9
11
|
#include "utils.h"
|
@@ -46,7 +48,7 @@ struct FunctionParameter {
|
|
46
48
|
struct FunctionSignature {
|
47
49
|
explicit FunctionSignature(const std::string& fmt, int index);
|
48
50
|
|
49
|
-
bool parse(VALUE self, VALUE args, VALUE kwargs,
|
51
|
+
bool parse(VALUE self, VALUE args, VALUE kwargs, VALUE dst[], bool raise_exception);
|
50
52
|
|
51
53
|
std::string toString() const;
|
52
54
|
|
@@ -63,13 +65,13 @@ struct FunctionSignature {
|
|
63
65
|
};
|
64
66
|
|
65
67
|
struct RubyArgs {
|
66
|
-
RubyArgs(const FunctionSignature& signature,
|
68
|
+
RubyArgs(const FunctionSignature& signature, VALUE* args)
|
67
69
|
: signature(signature)
|
68
70
|
, args(args)
|
69
71
|
, idx(signature.index) {}
|
70
72
|
|
71
73
|
const FunctionSignature& signature;
|
72
|
-
|
74
|
+
VALUE* args;
|
73
75
|
int idx;
|
74
76
|
|
75
77
|
inline at::Tensor tensor(int i);
|
@@ -119,7 +121,7 @@ struct RubyArgs {
|
|
119
121
|
};
|
120
122
|
|
121
123
|
inline at::Tensor RubyArgs::tensor(int i) {
|
122
|
-
return
|
124
|
+
return Rice::detail::From_Ruby<torch::Tensor>().convert(args[i]);
|
123
125
|
}
|
124
126
|
|
125
127
|
inline OptionalTensor RubyArgs::optionalTensor(int i) {
|
@@ -129,12 +131,12 @@ inline OptionalTensor RubyArgs::optionalTensor(int i) {
|
|
129
131
|
|
130
132
|
inline at::Scalar RubyArgs::scalar(int i) {
|
131
133
|
if (NIL_P(args[i])) return signature.params[i].default_scalar;
|
132
|
-
return
|
134
|
+
return Rice::detail::From_Ruby<torch::Scalar>().convert(args[i]);
|
133
135
|
}
|
134
136
|
|
135
137
|
inline std::vector<at::Tensor> RubyArgs::tensorlist(int i) {
|
136
138
|
if (NIL_P(args[i])) return std::vector<at::Tensor>();
|
137
|
-
return
|
139
|
+
return Rice::detail::From_Ruby<std::vector<Tensor>>().convert(args[i]);
|
138
140
|
}
|
139
141
|
|
140
142
|
template<int N>
|
@@ -149,7 +151,7 @@ inline std::array<at::Tensor, N> RubyArgs::tensorlist_n(int i) {
|
|
149
151
|
}
|
150
152
|
for (int idx = 0; idx < size; idx++) {
|
151
153
|
VALUE obj = rb_ary_entry(arg, idx);
|
152
|
-
res[idx] =
|
154
|
+
res[idx] = Rice::detail::From_Ruby<Tensor>().convert(obj);
|
153
155
|
}
|
154
156
|
return res;
|
155
157
|
}
|
@@ -168,7 +170,7 @@ inline std::vector<int64_t> RubyArgs::intlist(int i) {
|
|
168
170
|
for (idx = 0; idx < size; idx++) {
|
169
171
|
VALUE obj = rb_ary_entry(arg, idx);
|
170
172
|
if (FIXNUM_P(obj)) {
|
171
|
-
res[idx] =
|
173
|
+
res[idx] = Rice::detail::From_Ruby<int64_t>().convert(obj);
|
172
174
|
} else {
|
173
175
|
rb_raise(rb_eArgError, "%s(): argument '%s' must be %s, but found element of type %s at pos %d",
|
174
176
|
signature.name.c_str(), signature.params[i].name.c_str(),
|
@@ -208,8 +210,13 @@ inline ScalarType RubyArgs::scalartype(int i) {
|
|
208
210
|
{ID2SYM(rb_intern("double")), ScalarType::Double},
|
209
211
|
{ID2SYM(rb_intern("float64")), ScalarType::Double},
|
210
212
|
{ID2SYM(rb_intern("complex_half")), ScalarType::ComplexHalf},
|
213
|
+
{ID2SYM(rb_intern("complex32")), ScalarType::ComplexHalf},
|
211
214
|
{ID2SYM(rb_intern("complex_float")), ScalarType::ComplexFloat},
|
215
|
+
{ID2SYM(rb_intern("cfloat")), ScalarType::ComplexFloat},
|
216
|
+
{ID2SYM(rb_intern("complex64")), ScalarType::ComplexFloat},
|
212
217
|
{ID2SYM(rb_intern("complex_double")), ScalarType::ComplexDouble},
|
218
|
+
{ID2SYM(rb_intern("cdouble")), ScalarType::ComplexDouble},
|
219
|
+
{ID2SYM(rb_intern("complex128")), ScalarType::ComplexDouble},
|
213
220
|
{ID2SYM(rb_intern("bool")), ScalarType::Bool},
|
214
221
|
{ID2SYM(rb_intern("qint8")), ScalarType::QInt8},
|
215
222
|
{ID2SYM(rb_intern("quint8")), ScalarType::QUInt8},
|
@@ -258,7 +265,7 @@ inline c10::OptionalArray<double> RubyArgs::doublelistOptional(int i) {
|
|
258
265
|
for (idx = 0; idx < size; idx++) {
|
259
266
|
VALUE obj = rb_ary_entry(arg, idx);
|
260
267
|
if (FIXNUM_P(obj) || RB_FLOAT_TYPE_P(obj)) {
|
261
|
-
res[idx] =
|
268
|
+
res[idx] = Rice::detail::From_Ruby<double>().convert(obj);
|
262
269
|
} else {
|
263
270
|
rb_raise(rb_eArgError, "%s(): argument '%s' must be %s, but found element of type %s at pos %d",
|
264
271
|
signature.name.c_str(), signature.params[i].name.c_str(),
|
@@ -301,22 +308,22 @@ inline c10::optional<at::MemoryFormat> RubyArgs::memoryformatOptional(int i) {
|
|
301
308
|
}
|
302
309
|
|
303
310
|
inline std::string RubyArgs::string(int i) {
|
304
|
-
return
|
311
|
+
return Rice::detail::From_Ruby<std::string>().convert(args[i]);
|
305
312
|
}
|
306
313
|
|
307
314
|
inline c10::optional<std::string> RubyArgs::stringOptional(int i) {
|
308
315
|
if (!args[i]) return c10::nullopt;
|
309
|
-
return
|
316
|
+
return Rice::detail::From_Ruby<std::string>().convert(args[i]);
|
310
317
|
}
|
311
318
|
|
312
319
|
inline int64_t RubyArgs::toInt64(int i) {
|
313
320
|
if (NIL_P(args[i])) return signature.params[i].default_int;
|
314
|
-
return
|
321
|
+
return Rice::detail::From_Ruby<int64_t>().convert(args[i]);
|
315
322
|
}
|
316
323
|
|
317
324
|
inline double RubyArgs::toDouble(int i) {
|
318
325
|
if (NIL_P(args[i])) return signature.params[i].default_double;
|
319
|
-
return
|
326
|
+
return Rice::detail::From_Ruby<double>().convert(args[i]);
|
320
327
|
}
|
321
328
|
|
322
329
|
inline bool RubyArgs::toBool(int i) {
|
@@ -328,6 +335,12 @@ inline bool RubyArgs::isNone(int i) {
|
|
328
335
|
return NIL_P(args[i]);
|
329
336
|
}
|
330
337
|
|
338
|
+
template<int N>
|
339
|
+
struct ParsedArgs {
|
340
|
+
ParsedArgs() : args() { }
|
341
|
+
VALUE args[N];
|
342
|
+
};
|
343
|
+
|
331
344
|
struct RubyArgParser {
|
332
345
|
std::vector<FunctionSignature> signatures_;
|
333
346
|
std::string function_name;
|
@@ -356,7 +369,15 @@ struct RubyArgParser {
|
|
356
369
|
});
|
357
370
|
}
|
358
371
|
|
359
|
-
|
372
|
+
template<int N>
|
373
|
+
inline RubyArgs parse(VALUE self, int argc, VALUE* argv, ParsedArgs<N> &dst) {
|
374
|
+
if (N < max_args) {
|
375
|
+
rb_raise(rb_eArgError, "RubyArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)", (int)max_args, N);
|
376
|
+
}
|
377
|
+
return raw_parse(self, argc, argv, dst.args);
|
378
|
+
}
|
379
|
+
|
380
|
+
inline RubyArgs raw_parse(VALUE self, int argc, VALUE* argv, VALUE parsed_args[]) {
|
360
381
|
VALUE args, kwargs;
|
361
382
|
rb_scan_args(argc, argv, "*:", &args, &kwargs);
|
362
383
|
|
@@ -378,7 +399,7 @@ struct RubyArgParser {
|
|
378
399
|
rb_raise(rb_eArgError, "No matching signatures");
|
379
400
|
}
|
380
401
|
|
381
|
-
void print_error(VALUE self, VALUE args, VALUE kwargs,
|
402
|
+
void print_error(VALUE self, VALUE args, VALUE kwargs, VALUE parsed_args[]) {
|
382
403
|
ssize_t num_args = (NIL_P(args) ? 0 : RARRAY_LEN(args)) + (NIL_P(kwargs) ? 0 : RHASH_SIZE(kwargs));
|
383
404
|
std::vector<int> plausible_idxs;
|
384
405
|
ssize_t i = 0;
|