torch-rb 0.4.2 → 0.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,14 @@
1
+ #include <torch/torch.h>
2
+
3
+ #include <rice/Module.hpp>
4
+
5
+ #include "utils.h"
6
+
7
+ void init_cuda(Rice::Module& m) {
8
+ Rice::define_module_under(m, "CUDA")
9
+ .add_handler<torch::Error>(handle_error)
10
+ .define_singleton_method("available?", &torch::cuda::is_available)
11
+ .define_singleton_method("device_count", &torch::cuda::device_count)
12
+ .define_singleton_method("manual_seed", &torch::cuda::manual_seed)
13
+ .define_singleton_method("manual_seed_all", &torch::cuda::manual_seed_all);
14
+ }
@@ -0,0 +1,21 @@
1
+ #include <torch/torch.h>
2
+
3
+ #include <rice/Constructor.hpp>
4
+ #include <rice/Module.hpp>
5
+
6
+ #include "utils.h"
7
+
8
+ void init_device(Rice::Module& m) {
9
+ Rice::define_class_under<torch::Device>(m, "Device")
10
+ .add_handler<torch::Error>(handle_error)
11
+ .define_constructor(Rice::Constructor<torch::Device, std::string>())
12
+ .define_method("index", &torch::Device::index)
13
+ .define_method("index?", &torch::Device::has_index)
14
+ .define_method(
15
+ "type",
16
+ *[](torch::Device& self) {
17
+ std::stringstream s;
18
+ s << self.type();
19
+ return s.str();
20
+ });
21
+ }
data/ext/torch/ext.cpp CHANGED
@@ -1,632 +1,26 @@
1
- #include <sstream>
1
+ #include <rice/Module.hpp>
2
2
 
3
- #include <torch/torch.h>
3
+ void init_nn(Rice::Module& m);
4
+ void init_tensor(Rice::Module& m);
5
+ void init_torch(Rice::Module& m);
4
6
 
5
- #include <rice/Array.hpp>
6
- #include <rice/Class.hpp>
7
- #include <rice/Constructor.hpp>
8
- #include <rice/Hash.hpp>
9
-
10
- #include "templates.h"
11
- #include "utils.h"
12
-
13
- // generated with:
14
- // rake generate:functions
15
- #include "torch_functions.h"
16
- #include "tensor_functions.h"
17
- #include "nn_functions.h"
18
-
19
- using namespace Rice;
20
- using torch::indexing::TensorIndex;
21
-
22
- // need to make a distinction between parameters and tensors
23
- class Parameter: public torch::autograd::Variable {
24
- public:
25
- Parameter(Tensor&& t) : torch::autograd::Variable(t) { }
26
- };
27
-
28
- void handle_error(torch::Error const & ex)
29
- {
30
- throw Exception(rb_eRuntimeError, ex.what_without_backtrace());
31
- }
32
-
33
- Class rb_cTensor;
34
-
35
- std::vector<TensorIndex> index_vector(Array a) {
36
- Object obj;
37
-
38
- std::vector<TensorIndex> indices;
39
- indices.reserve(a.size());
40
-
41
- for (size_t i = 0; i < a.size(); i++) {
42
- obj = a[i];
43
-
44
- if (obj.is_instance_of(rb_cInteger)) {
45
- indices.push_back(from_ruby<int64_t>(obj));
46
- } else if (obj.is_instance_of(rb_cRange)) {
47
- torch::optional<int64_t> start_index = from_ruby<int64_t>(obj.call("begin"));
48
- torch::optional<int64_t> stop_index = -1;
49
-
50
- Object end = obj.call("end");
51
- if (!end.is_nil()) {
52
- stop_index = from_ruby<int64_t>(end);
53
- }
54
-
55
- Object exclude_end = obj.call("exclude_end?");
56
- if (!exclude_end) {
57
- if (stop_index.value() == -1) {
58
- stop_index = torch::nullopt;
59
- } else {
60
- stop_index = stop_index.value() + 1;
61
- }
62
- }
63
-
64
- indices.push_back(torch::indexing::Slice(start_index, stop_index));
65
- } else if (obj.is_instance_of(rb_cTensor)) {
66
- indices.push_back(from_ruby<Tensor>(obj));
67
- } else if (obj.is_nil()) {
68
- indices.push_back(torch::indexing::None);
69
- } else if (obj == True || obj == False) {
70
- indices.push_back(from_ruby<bool>(obj));
71
- } else {
72
- throw Exception(rb_eArgError, "Unsupported index type: %s", rb_obj_classname(obj));
73
- }
74
- }
75
- return indices;
76
- }
7
+ void init_cuda(Rice::Module& m);
8
+ void init_device(Rice::Module& m);
9
+ void init_ivalue(Rice::Module& m);
10
+ void init_random(Rice::Module& m);
77
11
 
78
12
  extern "C"
79
13
  void Init_ext()
80
14
  {
81
- Module rb_mTorch = define_module("Torch");
82
- rb_mTorch.add_handler<torch::Error>(handle_error);
83
- add_torch_functions(rb_mTorch);
84
-
85
- rb_cTensor = define_class_under<torch::Tensor>(rb_mTorch, "Tensor");
86
- rb_cTensor.add_handler<torch::Error>(handle_error);
87
- add_tensor_functions(rb_cTensor);
88
- THPVariableClass = rb_cTensor.value();
89
-
90
- Module rb_mNN = define_module_under(rb_mTorch, "NN");
91
- rb_mNN.add_handler<torch::Error>(handle_error);
92
- add_nn_functions(rb_mNN);
93
-
94
- Module rb_mRandom = define_module_under(rb_mTorch, "Random")
95
- .add_handler<torch::Error>(handle_error)
96
- .define_singleton_method(
97
- "initial_seed",
98
- *[]() {
99
- return at::detail::getDefaultCPUGenerator().current_seed();
100
- })
101
- .define_singleton_method(
102
- "seed",
103
- *[]() {
104
- // TODO set for CUDA when available
105
- auto generator = at::detail::getDefaultCPUGenerator();
106
- return generator.seed();
107
- });
108
-
109
- // https://pytorch.org/cppdocs/api/structc10_1_1_i_value.html
110
- Class rb_cIValue = define_class_under<torch::IValue>(rb_mTorch, "IValue")
111
- .add_handler<torch::Error>(handle_error)
112
- .define_constructor(Constructor<torch::IValue>())
113
- .define_method("bool?", &torch::IValue::isBool)
114
- .define_method("bool_list?", &torch::IValue::isBoolList)
115
- .define_method("capsule?", &torch::IValue::isCapsule)
116
- .define_method("custom_class?", &torch::IValue::isCustomClass)
117
- .define_method("device?", &torch::IValue::isDevice)
118
- .define_method("double?", &torch::IValue::isDouble)
119
- .define_method("double_list?", &torch::IValue::isDoubleList)
120
- .define_method("future?", &torch::IValue::isFuture)
121
- // .define_method("generator?", &torch::IValue::isGenerator)
122
- .define_method("generic_dict?", &torch::IValue::isGenericDict)
123
- .define_method("list?", &torch::IValue::isList)
124
- .define_method("int?", &torch::IValue::isInt)
125
- .define_method("int_list?", &torch::IValue::isIntList)
126
- .define_method("module?", &torch::IValue::isModule)
127
- .define_method("none?", &torch::IValue::isNone)
128
- .define_method("object?", &torch::IValue::isObject)
129
- .define_method("ptr_type?", &torch::IValue::isPtrType)
130
- .define_method("py_object?", &torch::IValue::isPyObject)
131
- .define_method("r_ref?", &torch::IValue::isRRef)
132
- .define_method("scalar?", &torch::IValue::isScalar)
133
- .define_method("string?", &torch::IValue::isString)
134
- .define_method("tensor?", &torch::IValue::isTensor)
135
- .define_method("tensor_list?", &torch::IValue::isTensorList)
136
- .define_method("tuple?", &torch::IValue::isTuple)
137
- .define_method(
138
- "to_bool",
139
- *[](torch::IValue& self) {
140
- return self.toBool();
141
- })
142
- .define_method(
143
- "to_double",
144
- *[](torch::IValue& self) {
145
- return self.toDouble();
146
- })
147
- .define_method(
148
- "to_int",
149
- *[](torch::IValue& self) {
150
- return self.toInt();
151
- })
152
- .define_method(
153
- "to_list",
154
- *[](torch::IValue& self) {
155
- auto list = self.toListRef();
156
- Array obj;
157
- for (auto& elem : list) {
158
- obj.push(to_ruby<torch::IValue>(torch::IValue{elem}));
159
- }
160
- return obj;
161
- })
162
- .define_method(
163
- "to_string_ref",
164
- *[](torch::IValue& self) {
165
- return self.toStringRef();
166
- })
167
- .define_method(
168
- "to_tensor",
169
- *[](torch::IValue& self) {
170
- return self.toTensor();
171
- })
172
- .define_method(
173
- "to_generic_dict",
174
- *[](torch::IValue& self) {
175
- auto dict = self.toGenericDict();
176
- Hash obj;
177
- for (auto& pair : dict) {
178
- obj[to_ruby<torch::IValue>(torch::IValue{pair.key()})] = to_ruby<torch::IValue>(torch::IValue{pair.value()});
179
- }
180
- return obj;
181
- })
182
- .define_singleton_method(
183
- "from_tensor",
184
- *[](torch::Tensor& v) {
185
- return torch::IValue(v);
186
- })
187
- // TODO create specialized list types?
188
- .define_singleton_method(
189
- "from_list",
190
- *[](Array obj) {
191
- c10::impl::GenericList list(c10::AnyType::get());
192
- for (auto entry : obj) {
193
- list.push_back(from_ruby<torch::IValue>(entry));
194
- }
195
- return torch::IValue(list);
196
- })
197
- .define_singleton_method(
198
- "from_string",
199
- *[](String v) {
200
- return torch::IValue(v.str());
201
- })
202
- .define_singleton_method(
203
- "from_int",
204
- *[](int64_t v) {
205
- return torch::IValue(v);
206
- })
207
- .define_singleton_method(
208
- "from_double",
209
- *[](double v) {
210
- return torch::IValue(v);
211
- })
212
- .define_singleton_method(
213
- "from_bool",
214
- *[](bool v) {
215
- return torch::IValue(v);
216
- })
217
- // see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/python/pybind_utils.h
218
- // createGenericDict and toIValue
219
- .define_singleton_method(
220
- "from_dict",
221
- *[](Hash obj) {
222
- auto key_type = c10::AnyType::get();
223
- auto value_type = c10::AnyType::get();
224
- c10::impl::GenericDict elems(key_type, value_type);
225
- elems.reserve(obj.size());
226
- for (auto entry : obj) {
227
- elems.insert(from_ruby<torch::IValue>(entry.first), from_ruby<torch::IValue>((Object) entry.second));
228
- }
229
- return torch::IValue(std::move(elems));
230
- });
231
-
232
- rb_mTorch.define_singleton_method(
233
- "grad_enabled?",
234
- *[]() {
235
- return torch::GradMode::is_enabled();
236
- })
237
- .define_singleton_method(
238
- "_set_grad_enabled",
239
- *[](bool enabled) {
240
- torch::GradMode::set_enabled(enabled);
241
- })
242
- .define_singleton_method(
243
- "manual_seed",
244
- *[](uint64_t seed) {
245
- return torch::manual_seed(seed);
246
- })
247
- // config
248
- .define_singleton_method(
249
- "show_config",
250
- *[] {
251
- return torch::show_config();
252
- })
253
- .define_singleton_method(
254
- "parallel_info",
255
- *[] {
256
- return torch::get_parallel_info();
257
- })
258
- // begin operations
259
- .define_singleton_method(
260
- "_save",
261
- *[](const torch::IValue &value) {
262
- auto v = torch::pickle_save(value);
263
- std::string str(v.begin(), v.end());
264
- return str;
265
- })
266
- .define_singleton_method(
267
- "_load",
268
- *[](const std::string &s) {
269
- std::vector<char> v;
270
- std::copy(s.begin(), s.end(), std::back_inserter(v));
271
- // https://github.com/pytorch/pytorch/issues/20356#issuecomment-567663701
272
- return torch::pickle_load(v);
273
- })
274
- .define_singleton_method(
275
- "_from_blob",
276
- *[](String s, std::vector<int64_t> size, const torch::TensorOptions &options) {
277
- void *data = const_cast<char *>(s.c_str());
278
- return torch::from_blob(data, size, options);
279
- })
280
- .define_singleton_method(
281
- "_tensor",
282
- *[](Array a, std::vector<int64_t> size, const torch::TensorOptions &options) {
283
- auto dtype = options.dtype();
284
- torch::Tensor t;
285
- if (dtype == torch::kBool) {
286
- std::vector<uint8_t> vec;
287
- for (size_t i = 0; i < a.size(); i++) {
288
- vec.push_back(from_ruby<bool>(a[i]));
289
- }
290
- t = torch::tensor(vec, options);
291
- } else {
292
- std::vector<float> vec;
293
- for (size_t i = 0; i < a.size(); i++) {
294
- vec.push_back(from_ruby<float>(a[i]));
295
- }
296
- // hack for requires_grad error
297
- if (options.requires_grad()) {
298
- t = torch::tensor(vec, options.requires_grad(c10::nullopt));
299
- t.set_requires_grad(true);
300
- } else {
301
- t = torch::tensor(vec, options);
302
- }
303
- }
304
- return t.reshape(size);
305
- });
306
-
307
- rb_cTensor
308
- .define_method("cuda?", &torch::Tensor::is_cuda)
309
- .define_method("sparse?", &torch::Tensor::is_sparse)
310
- .define_method("quantized?", &torch::Tensor::is_quantized)
311
- .define_method("dim", &torch::Tensor::dim)
312
- .define_method("numel", &torch::Tensor::numel)
313
- .define_method("element_size", &torch::Tensor::element_size)
314
- .define_method("requires_grad", &torch::Tensor::requires_grad)
315
- // in C++ for performance
316
- .define_method(
317
- "shape",
318
- *[](Tensor& self) {
319
- Array a;
320
- for (auto &size : self.sizes()) {
321
- a.push(size);
322
- }
323
- return a;
324
- })
325
- .define_method(
326
- "_strides",
327
- *[](Tensor& self) {
328
- Array a;
329
- for (auto &stride : self.strides()) {
330
- a.push(stride);
331
- }
332
- return a;
333
- })
334
- .define_method(
335
- "_index",
336
- *[](Tensor& self, Array indices) {
337
- auto vec = index_vector(indices);
338
- return self.index(vec);
339
- })
340
- .define_method(
341
- "_index_put_custom",
342
- *[](Tensor& self, Array indices, torch::Tensor& value) {
343
- auto vec = index_vector(indices);
344
- return self.index_put_(vec, value);
345
- })
346
- .define_method(
347
- "contiguous?",
348
- *[](Tensor& self) {
349
- return self.is_contiguous();
350
- })
351
- .define_method(
352
- "addcmul!",
353
- *[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
354
- return self.addcmul_(tensor1, tensor2, value);
355
- })
356
- .define_method(
357
- "addcdiv!",
358
- *[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
359
- return self.addcdiv_(tensor1, tensor2, value);
360
- })
361
- .define_method(
362
- "_requires_grad!",
363
- *[](Tensor& self, bool requires_grad) {
364
- return self.set_requires_grad(requires_grad);
365
- })
366
- .define_method(
367
- "grad",
368
- *[](Tensor& self) {
369
- auto grad = self.grad();
370
- return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
371
- })
372
- .define_method(
373
- "grad=",
374
- *[](Tensor& self, torch::Tensor& grad) {
375
- self.grad() = grad;
376
- })
377
- .define_method(
378
- "_dtype",
379
- *[](Tensor& self) {
380
- return (int) at::typeMetaToScalarType(self.dtype());
381
- })
382
- .define_method(
383
- "_type",
384
- *[](Tensor& self, int dtype) {
385
- return self.toType((torch::ScalarType) dtype);
386
- })
387
- .define_method(
388
- "_layout",
389
- *[](Tensor& self) {
390
- std::stringstream s;
391
- s << self.layout();
392
- return s.str();
393
- })
394
- .define_method(
395
- "device",
396
- *[](Tensor& self) {
397
- std::stringstream s;
398
- s << self.device();
399
- return s.str();
400
- })
401
- .define_method(
402
- "_data_str",
403
- *[](Tensor& self) {
404
- Tensor tensor = self;
405
-
406
- // move to CPU to get data
407
- if (tensor.device().type() != torch::kCPU) {
408
- torch::Device device("cpu");
409
- tensor = tensor.to(device);
410
- }
411
-
412
- if (!tensor.is_contiguous()) {
413
- tensor = tensor.contiguous();
414
- }
415
-
416
- auto data_ptr = (const char *) tensor.data_ptr();
417
- return std::string(data_ptr, tensor.numel() * tensor.element_size());
418
- })
419
- // for TorchVision
420
- .define_method(
421
- "_data_ptr",
422
- *[](Tensor& self) {
423
- return reinterpret_cast<uintptr_t>(self.data_ptr());
424
- })
425
- // TODO figure out a better way to do this
426
- .define_method(
427
- "_flat_data",
428
- *[](Tensor& self) {
429
- Tensor tensor = self;
430
-
431
- // move to CPU to get data
432
- if (tensor.device().type() != torch::kCPU) {
433
- torch::Device device("cpu");
434
- tensor = tensor.to(device);
435
- }
436
-
437
- Array a;
438
- auto dtype = tensor.dtype();
439
-
440
- Tensor view = tensor.reshape({tensor.numel()});
441
-
442
- // TODO DRY if someone knows C++
443
- if (dtype == torch::kByte) {
444
- for (int i = 0; i < tensor.numel(); i++) {
445
- a.push(view[i].item().to<uint8_t>());
446
- }
447
- } else if (dtype == torch::kChar) {
448
- for (int i = 0; i < tensor.numel(); i++) {
449
- a.push(to_ruby<int>(view[i].item().to<int8_t>()));
450
- }
451
- } else if (dtype == torch::kShort) {
452
- for (int i = 0; i < tensor.numel(); i++) {
453
- a.push(view[i].item().to<int16_t>());
454
- }
455
- } else if (dtype == torch::kInt) {
456
- for (int i = 0; i < tensor.numel(); i++) {
457
- a.push(view[i].item().to<int32_t>());
458
- }
459
- } else if (dtype == torch::kLong) {
460
- for (int i = 0; i < tensor.numel(); i++) {
461
- a.push(view[i].item().to<int64_t>());
462
- }
463
- } else if (dtype == torch::kFloat) {
464
- for (int i = 0; i < tensor.numel(); i++) {
465
- a.push(view[i].item().to<float>());
466
- }
467
- } else if (dtype == torch::kDouble) {
468
- for (int i = 0; i < tensor.numel(); i++) {
469
- a.push(view[i].item().to<double>());
470
- }
471
- } else if (dtype == torch::kBool) {
472
- for (int i = 0; i < tensor.numel(); i++) {
473
- a.push(view[i].item().to<bool>() ? True : False);
474
- }
475
- } else {
476
- throw std::runtime_error("Unsupported type");
477
- }
478
- return a;
479
- })
480
- .define_method(
481
- "_to",
482
- *[](Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
483
- return self.to(device, (torch::ScalarType) dtype, non_blocking, copy);
484
- })
485
- .define_singleton_method(
486
- "_make_subclass",
487
- *[](Tensor& rd, bool requires_grad) {
488
- auto data = rd.detach();
489
- data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
490
- auto var = data.set_requires_grad(requires_grad);
491
- return Parameter(std::move(var));
492
- });
493
-
494
- Class rb_cTensorOptions = define_class_under<torch::TensorOptions>(rb_mTorch, "TensorOptions")
495
- .add_handler<torch::Error>(handle_error)
496
- .define_constructor(Constructor<torch::TensorOptions>())
497
- .define_method(
498
- "dtype",
499
- *[](torch::TensorOptions& self, int dtype) {
500
- return self.dtype((torch::ScalarType) dtype);
501
- })
502
- .define_method(
503
- "layout",
504
- *[](torch::TensorOptions& self, std::string layout) {
505
- torch::Layout l;
506
- if (layout == "strided") {
507
- l = torch::kStrided;
508
- } else if (layout == "sparse") {
509
- l = torch::kSparse;
510
- throw std::runtime_error("Sparse layout not supported yet");
511
- } else {
512
- throw std::runtime_error("Unsupported layout: " + layout);
513
- }
514
- return self.layout(l);
515
- })
516
- .define_method(
517
- "device",
518
- *[](torch::TensorOptions& self, std::string device) {
519
- torch::Device d(device);
520
- return self.device(d);
521
- })
522
- .define_method(
523
- "requires_grad",
524
- *[](torch::TensorOptions& self, bool requires_grad) {
525
- return self.requires_grad(requires_grad);
526
- });
527
-
528
- Module rb_mInit = define_module_under(rb_mNN, "Init")
529
- .add_handler<torch::Error>(handle_error)
530
- .define_singleton_method(
531
- "_calculate_gain",
532
- *[](NonlinearityType nonlinearity, double param) {
533
- return torch::nn::init::calculate_gain(nonlinearity, param);
534
- })
535
- .define_singleton_method(
536
- "_uniform!",
537
- *[](Tensor tensor, double low, double high) {
538
- return torch::nn::init::uniform_(tensor, low, high);
539
- })
540
- .define_singleton_method(
541
- "_normal!",
542
- *[](Tensor tensor, double mean, double std) {
543
- return torch::nn::init::normal_(tensor, mean, std);
544
- })
545
- .define_singleton_method(
546
- "_constant!",
547
- *[](Tensor tensor, Scalar value) {
548
- return torch::nn::init::constant_(tensor, value);
549
- })
550
- .define_singleton_method(
551
- "_ones!",
552
- *[](Tensor tensor) {
553
- return torch::nn::init::ones_(tensor);
554
- })
555
- .define_singleton_method(
556
- "_zeros!",
557
- *[](Tensor tensor) {
558
- return torch::nn::init::zeros_(tensor);
559
- })
560
- .define_singleton_method(
561
- "_eye!",
562
- *[](Tensor tensor) {
563
- return torch::nn::init::eye_(tensor);
564
- })
565
- .define_singleton_method(
566
- "_dirac!",
567
- *[](Tensor tensor) {
568
- return torch::nn::init::dirac_(tensor);
569
- })
570
- .define_singleton_method(
571
- "_xavier_uniform!",
572
- *[](Tensor tensor, double gain) {
573
- return torch::nn::init::xavier_uniform_(tensor, gain);
574
- })
575
- .define_singleton_method(
576
- "_xavier_normal!",
577
- *[](Tensor tensor, double gain) {
578
- return torch::nn::init::xavier_normal_(tensor, gain);
579
- })
580
- .define_singleton_method(
581
- "_kaiming_uniform!",
582
- *[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
583
- return torch::nn::init::kaiming_uniform_(tensor, a, mode, nonlinearity);
584
- })
585
- .define_singleton_method(
586
- "_kaiming_normal!",
587
- *[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
588
- return torch::nn::init::kaiming_normal_(tensor, a, mode, nonlinearity);
589
- })
590
- .define_singleton_method(
591
- "_orthogonal!",
592
- *[](Tensor tensor, double gain) {
593
- return torch::nn::init::orthogonal_(tensor, gain);
594
- })
595
- .define_singleton_method(
596
- "_sparse!",
597
- *[](Tensor tensor, double sparsity, double std) {
598
- return torch::nn::init::sparse_(tensor, sparsity, std);
599
- });
600
-
601
- Class rb_cParameter = define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter")
602
- .add_handler<torch::Error>(handle_error)
603
- .define_method(
604
- "grad",
605
- *[](Parameter& self) {
606
- auto grad = self.grad();
607
- return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
608
- })
609
- .define_method(
610
- "grad=",
611
- *[](Parameter& self, torch::Tensor& grad) {
612
- self.grad() = grad;
613
- });
15
+ auto m = Rice::define_module("Torch");
614
16
 
615
- Class rb_cDevice = define_class_under<torch::Device>(rb_mTorch, "Device")
616
- .add_handler<torch::Error>(handle_error)
617
- .define_constructor(Constructor<torch::Device, std::string>())
618
- .define_method("index", &torch::Device::index)
619
- .define_method("index?", &torch::Device::has_index)
620
- .define_method(
621
- "type",
622
- *[](torch::Device& self) {
623
- std::stringstream s;
624
- s << self.type();
625
- return s.str();
626
- });
17
+ // keep this order
18
+ init_torch(m);
19
+ init_tensor(m);
20
+ init_nn(m);
627
21
 
628
- Module rb_mCUDA = define_module_under(rb_mTorch, "CUDA")
629
- .add_handler<torch::Error>(handle_error)
630
- .define_singleton_method("available?", &torch::cuda::is_available)
631
- .define_singleton_method("device_count", &torch::cuda::device_count);
22
+ init_cuda(m);
23
+ init_device(m);
24
+ init_ivalue(m);
25
+ init_random(m);
632
26
  }