torch-rb 0.3.7 → 0.5.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +23 -0
- data/README.md +2 -1
- data/codegen/function.rb +134 -0
- data/codegen/generate_functions.rb +557 -0
- data/{lib/torch/native → codegen}/native_functions.yaml +2363 -714
- data/ext/torch/ext.cpp +56 -87
- data/ext/torch/extconf.rb +2 -2
- data/ext/torch/nn_functions.h +6 -0
- data/ext/torch/ruby_arg_parser.cpp +593 -0
- data/ext/torch/ruby_arg_parser.h +397 -0
- data/ext/torch/{templates.hpp → templates.h} +31 -51
- data/ext/torch/tensor_functions.h +6 -0
- data/ext/torch/torch_functions.h +6 -0
- data/ext/torch/utils.h +42 -0
- data/ext/torch/{templates.cpp → wrap_outputs.h} +23 -15
- data/lib/torch.rb +5 -69
- data/lib/torch/nn/functional.rb +30 -16
- data/lib/torch/nn/init.rb +5 -19
- data/lib/torch/optim/adadelta.rb +4 -4
- data/lib/torch/optim/adagrad.rb +3 -3
- data/lib/torch/optim/adam.rb +4 -4
- data/lib/torch/optim/adamax.rb +3 -3
- data/lib/torch/optim/adamw.rb +3 -3
- data/lib/torch/optim/asgd.rb +2 -2
- data/lib/torch/optim/rmsprop.rb +7 -7
- data/lib/torch/optim/rprop.rb +1 -1
- data/lib/torch/optim/sgd.rb +5 -5
- data/lib/torch/tensor.rb +28 -103
- data/lib/torch/version.rb +1 -1
- metadata +18 -14
- data/lib/torch/native/dispatcher.rb +0 -70
- data/lib/torch/native/function.rb +0 -200
- data/lib/torch/native/generator.rb +0 -178
- data/lib/torch/native/parser.rb +0 -117
data/lib/torch/optim/adam.rb
CHANGED
@@ -53,12 +53,12 @@ module Torch
|
|
53
53
|
bias_correction2 = 1 - beta2 ** state[:step]
|
54
54
|
|
55
55
|
if group[:weight_decay] != 0
|
56
|
-
grad.add!(group[:weight_decay]
|
56
|
+
grad.add!(p.data, alpha: group[:weight_decay])
|
57
57
|
end
|
58
58
|
|
59
59
|
# Decay the first and second moment running average coefficient
|
60
|
-
exp_avg.mul!(beta1).add!(1 - beta1
|
61
|
-
exp_avg_sq.mul!(beta2).addcmul!(1 - beta2
|
60
|
+
exp_avg.mul!(beta1).add!(grad, alpha: 1 - beta1)
|
61
|
+
exp_avg_sq.mul!(beta2).addcmul!(grad, grad, value: 1 - beta2)
|
62
62
|
if amsgrad
|
63
63
|
# Maintains the maximum of all 2nd moment running avg. till now
|
64
64
|
Torch.max(max_exp_avg_sq, exp_avg_sq, out: max_exp_avg_sq)
|
@@ -70,7 +70,7 @@ module Torch
|
|
70
70
|
|
71
71
|
step_size = group[:lr] / bias_correction1
|
72
72
|
|
73
|
-
p.data.addcdiv!(
|
73
|
+
p.data.addcdiv!(exp_avg, denom, value: -step_size)
|
74
74
|
end
|
75
75
|
end
|
76
76
|
|
data/lib/torch/optim/adamax.rb
CHANGED
@@ -42,11 +42,11 @@ module Torch
|
|
42
42
|
state[:step] += 1
|
43
43
|
|
44
44
|
if group[:weight_decay] != 0
|
45
|
-
grad = grad.add(group[:weight_decay]
|
45
|
+
grad = grad.add(p.data, alpha: group[:weight_decay])
|
46
46
|
end
|
47
47
|
|
48
48
|
# Update biased first moment estimate.
|
49
|
-
exp_avg.mul!(beta1).add!(1 - beta1
|
49
|
+
exp_avg.mul!(beta1).add!(grad, alpha: 1 - beta1)
|
50
50
|
# Update the exponentially weighted infinity norm.
|
51
51
|
norm_buf = Torch.cat([
|
52
52
|
exp_inf.mul!(beta2).unsqueeze(0),
|
@@ -57,7 +57,7 @@ module Torch
|
|
57
57
|
bias_correction = 1 - beta1 ** state[:step]
|
58
58
|
clr = group[:lr] / bias_correction
|
59
59
|
|
60
|
-
p.data.addcdiv!(
|
60
|
+
p.data.addcdiv!(exp_avg, exp_inf, value: -clr)
|
61
61
|
end
|
62
62
|
end
|
63
63
|
|
data/lib/torch/optim/adamw.rb
CHANGED
@@ -58,8 +58,8 @@ module Torch
|
|
58
58
|
bias_correction2 = 1 - beta2 ** state[:step]
|
59
59
|
|
60
60
|
# Decay the first and second moment running average coefficient
|
61
|
-
exp_avg.mul!(beta1).add!(1 - beta1
|
62
|
-
exp_avg_sq.mul!(beta2).addcmul!(1 - beta2
|
61
|
+
exp_avg.mul!(beta1).add!(grad, alpha: 1 - beta1)
|
62
|
+
exp_avg_sq.mul!(beta2).addcmul!(grad, grad, value: 1 - beta2)
|
63
63
|
if amsgrad
|
64
64
|
# Maintains the maximum of all 2nd moment running avg. till now
|
65
65
|
Torch.max(max_exp_avg_sq, exp_avg_sq, out: max_exp_avg_sq)
|
@@ -71,7 +71,7 @@ module Torch
|
|
71
71
|
|
72
72
|
step_size = group[:lr] / bias_correction1
|
73
73
|
|
74
|
-
p.data.addcdiv!(
|
74
|
+
p.data.addcdiv!(exp_avg, denom, value: -step_size)
|
75
75
|
end
|
76
76
|
end
|
77
77
|
|
data/lib/torch/optim/asgd.rb
CHANGED
@@ -36,14 +36,14 @@ module Torch
|
|
36
36
|
state[:step] += 1
|
37
37
|
|
38
38
|
if group[:weight_decay] != 0
|
39
|
-
grad = grad.add(group[:weight_decay]
|
39
|
+
grad = grad.add(p.data, alpha: group[:weight_decay])
|
40
40
|
end
|
41
41
|
|
42
42
|
# decay term
|
43
43
|
p.data.mul!(1 - group[:lambd] * state[:eta])
|
44
44
|
|
45
45
|
# update parameter
|
46
|
-
p.data.add!(-state[:eta]
|
46
|
+
p.data.add!(grad, alpha: -state[:eta])
|
47
47
|
|
48
48
|
# averaging
|
49
49
|
if state[:mu] != 1
|
data/lib/torch/optim/rmsprop.rb
CHANGED
@@ -46,25 +46,25 @@ module Torch
|
|
46
46
|
state[:step] += 1
|
47
47
|
|
48
48
|
if group[:weight_decay] != 0
|
49
|
-
grad = grad.add(group[:weight_decay]
|
49
|
+
grad = grad.add(p.data, alpha: group[:weight_decay])
|
50
50
|
end
|
51
51
|
|
52
|
-
square_avg.mul!(alpha).addcmul!(1 - alpha
|
52
|
+
square_avg.mul!(alpha).addcmul!(grad, grad, value: 1 - alpha)
|
53
53
|
|
54
54
|
if group[:centered]
|
55
55
|
grad_avg = state[:grad_avg]
|
56
|
-
grad_avg.mul!(alpha).add!(1 - alpha
|
57
|
-
avg = square_avg.addcmul(
|
56
|
+
grad_avg.mul!(alpha).add!(grad, alpha: 1 - alpha)
|
57
|
+
avg = square_avg.addcmul(grad_avg, grad_avg, value: -1).sqrt!.add!(group[:eps])
|
58
58
|
else
|
59
59
|
avg = square_avg.sqrt.add!(group[:eps])
|
60
60
|
end
|
61
61
|
|
62
62
|
if group[:momentum] > 0
|
63
63
|
buf = state[:momentum_buffer]
|
64
|
-
buf.mul!(group[:momentum]).addcdiv!(grad, avg)
|
65
|
-
p.data.add!(-group[:lr]
|
64
|
+
buf.mul!(group[:momentum]).addcdiv!(grad, avg, value: 1)
|
65
|
+
p.data.add!(buf, alpha: -group[:lr])
|
66
66
|
else
|
67
|
-
p.data.addcdiv!(-group[:lr]
|
67
|
+
p.data.addcdiv!(grad, avg, value: -group[:lr])
|
68
68
|
end
|
69
69
|
end
|
70
70
|
end
|
data/lib/torch/optim/rprop.rb
CHANGED
data/lib/torch/optim/sgd.rb
CHANGED
@@ -32,24 +32,24 @@ module Torch
|
|
32
32
|
next unless p.grad
|
33
33
|
d_p = p.grad.data
|
34
34
|
if weight_decay != 0
|
35
|
-
d_p.add!(
|
35
|
+
d_p.add!(p.data, alpha: weight_decay)
|
36
36
|
end
|
37
37
|
if momentum != 0
|
38
38
|
param_state = @state[p]
|
39
|
-
if !param_state.key(:momentum_buffer)
|
39
|
+
if !param_state.key?(:momentum_buffer)
|
40
40
|
buf = param_state[:momentum_buffer] = Torch.clone(d_p).detach
|
41
41
|
else
|
42
42
|
buf = param_state[:momentum_buffer]
|
43
|
-
buf.mul!(momentum).add!(1 - dampening
|
43
|
+
buf.mul!(momentum).add!(d_p, alpha: 1 - dampening)
|
44
44
|
end
|
45
45
|
if nesterov
|
46
|
-
d_p = d_p.add(
|
46
|
+
d_p = d_p.add(buf, alpha: momentum)
|
47
47
|
else
|
48
48
|
d_p = buf
|
49
49
|
end
|
50
50
|
end
|
51
51
|
|
52
|
-
p.data.add!(-group[:lr]
|
52
|
+
p.data.add!(d_p, alpha: -group[:lr])
|
53
53
|
end
|
54
54
|
end
|
55
55
|
|
data/lib/torch/tensor.rb
CHANGED
@@ -8,6 +8,18 @@ module Torch
|
|
8
8
|
alias_method :ndim, :dim
|
9
9
|
alias_method :ndimension, :dim
|
10
10
|
|
11
|
+
# use alias_method for performance
|
12
|
+
alias_method :+, :add
|
13
|
+
alias_method :-, :sub
|
14
|
+
alias_method :*, :mul
|
15
|
+
alias_method :/, :div
|
16
|
+
alias_method :%, :remainder
|
17
|
+
alias_method :**, :pow
|
18
|
+
alias_method :-@, :neg
|
19
|
+
alias_method :&, :logical_and
|
20
|
+
alias_method :|, :logical_or
|
21
|
+
alias_method :^, :logical_xor
|
22
|
+
|
11
23
|
def self.new(*args)
|
12
24
|
FloatTensor.new(*args)
|
13
25
|
end
|
@@ -73,12 +85,20 @@ module Torch
|
|
73
85
|
|
74
86
|
def size(dim = nil)
|
75
87
|
if dim
|
76
|
-
|
88
|
+
_size(dim)
|
77
89
|
else
|
78
90
|
shape
|
79
91
|
end
|
80
92
|
end
|
81
93
|
|
94
|
+
def stride(dim = nil)
|
95
|
+
if dim
|
96
|
+
_stride(dim)
|
97
|
+
else
|
98
|
+
_strides
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
82
102
|
# mirror Python len()
|
83
103
|
def length
|
84
104
|
size(0)
|
@@ -130,57 +150,6 @@ module Torch
|
|
130
150
|
end
|
131
151
|
end
|
132
152
|
|
133
|
-
def reshape(*size)
|
134
|
-
# Python doesn't check if size == 1, just ignores later arguments
|
135
|
-
size = size.first if size.size == 1 && size.first.is_a?(Array)
|
136
|
-
_reshape(size)
|
137
|
-
end
|
138
|
-
|
139
|
-
def view(*size)
|
140
|
-
size = size.first if size.size == 1 && size.first.is_a?(Array)
|
141
|
-
_view(size)
|
142
|
-
end
|
143
|
-
|
144
|
-
def +(other)
|
145
|
-
add(other)
|
146
|
-
end
|
147
|
-
|
148
|
-
def -(other)
|
149
|
-
sub(other)
|
150
|
-
end
|
151
|
-
|
152
|
-
def *(other)
|
153
|
-
mul(other)
|
154
|
-
end
|
155
|
-
|
156
|
-
def /(other)
|
157
|
-
div(other)
|
158
|
-
end
|
159
|
-
|
160
|
-
def %(other)
|
161
|
-
remainder(other)
|
162
|
-
end
|
163
|
-
|
164
|
-
def **(other)
|
165
|
-
pow(other)
|
166
|
-
end
|
167
|
-
|
168
|
-
def -@
|
169
|
-
neg
|
170
|
-
end
|
171
|
-
|
172
|
-
def &(other)
|
173
|
-
logical_and(other)
|
174
|
-
end
|
175
|
-
|
176
|
-
def |(other)
|
177
|
-
logical_or(other)
|
178
|
-
end
|
179
|
-
|
180
|
-
def ^(other)
|
181
|
-
logical_xor(other)
|
182
|
-
end
|
183
|
-
|
184
153
|
# TODO better compare?
|
185
154
|
def <=>(other)
|
186
155
|
item <=> other
|
@@ -189,7 +158,7 @@ module Torch
|
|
189
158
|
# based on python_variable_indexing.cpp and
|
190
159
|
# https://pytorch.org/cppdocs/notes/tensor_indexing.html
|
191
160
|
def [](*indexes)
|
192
|
-
_index(
|
161
|
+
_index(indexes)
|
193
162
|
end
|
194
163
|
|
195
164
|
# based on python_variable_indexing.cpp and
|
@@ -197,62 +166,18 @@ module Torch
|
|
197
166
|
def []=(*indexes, value)
|
198
167
|
raise ArgumentError, "Tensor does not support deleting items" if value.nil?
|
199
168
|
value = Torch.tensor(value, dtype: dtype) unless value.is_a?(Tensor)
|
200
|
-
_index_put_custom(
|
201
|
-
end
|
202
|
-
|
203
|
-
# native functions that need manually defined
|
204
|
-
|
205
|
-
# value and other are swapped for some methods
|
206
|
-
def add!(value = 1, other)
|
207
|
-
if other.is_a?(Numeric)
|
208
|
-
_add__scalar(other, value)
|
209
|
-
else
|
210
|
-
_add__tensor(other, value)
|
211
|
-
end
|
169
|
+
_index_put_custom(indexes, value)
|
212
170
|
end
|
213
171
|
|
214
172
|
# parser can't handle overlap, so need to handle manually
|
215
173
|
def random!(*args)
|
216
|
-
|
217
|
-
|
218
|
-
_random__to(*args)
|
219
|
-
when 2
|
220
|
-
_random__from(*args)
|
221
|
-
else
|
222
|
-
_random_(*args)
|
223
|
-
end
|
174
|
+
return _random!(0, *args) if args.size == 1
|
175
|
+
_random!(*args)
|
224
176
|
end
|
225
177
|
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
end
|
230
|
-
|
231
|
-
private
|
232
|
-
|
233
|
-
def tensor_indexes(indexes)
|
234
|
-
indexes.map do |index|
|
235
|
-
case index
|
236
|
-
when Integer
|
237
|
-
TensorIndex.integer(index)
|
238
|
-
when Range
|
239
|
-
finish = index.end || -1
|
240
|
-
if finish == -1 && !index.exclude_end?
|
241
|
-
finish = nil
|
242
|
-
else
|
243
|
-
finish += 1 unless index.exclude_end?
|
244
|
-
end
|
245
|
-
TensorIndex.slice(index.begin, finish)
|
246
|
-
when Tensor
|
247
|
-
TensorIndex.tensor(index)
|
248
|
-
when nil
|
249
|
-
TensorIndex.none
|
250
|
-
when true, false
|
251
|
-
TensorIndex.boolean(index)
|
252
|
-
else
|
253
|
-
raise Error, "Unsupported index type: #{index.class.name}"
|
254
|
-
end
|
255
|
-
end
|
178
|
+
# center option
|
179
|
+
def stft(*args)
|
180
|
+
Torch.stft(*args)
|
256
181
|
end
|
257
182
|
end
|
258
183
|
end
|
data/lib/torch/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: torch-rb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.5.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-10-29 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rice
|
@@ -108,7 +108,7 @@ dependencies:
|
|
108
108
|
- - ">="
|
109
109
|
- !ruby/object:Gem::Version
|
110
110
|
version: 0.1.1
|
111
|
-
description:
|
111
|
+
description:
|
112
112
|
email: andrew@chartkick.com
|
113
113
|
executables: []
|
114
114
|
extensions:
|
@@ -118,19 +118,23 @@ files:
|
|
118
118
|
- CHANGELOG.md
|
119
119
|
- LICENSE.txt
|
120
120
|
- README.md
|
121
|
+
- codegen/function.rb
|
122
|
+
- codegen/generate_functions.rb
|
123
|
+
- codegen/native_functions.yaml
|
121
124
|
- ext/torch/ext.cpp
|
122
125
|
- ext/torch/extconf.rb
|
123
|
-
- ext/torch/
|
124
|
-
- ext/torch/
|
126
|
+
- ext/torch/nn_functions.h
|
127
|
+
- ext/torch/ruby_arg_parser.cpp
|
128
|
+
- ext/torch/ruby_arg_parser.h
|
129
|
+
- ext/torch/templates.h
|
130
|
+
- ext/torch/tensor_functions.h
|
131
|
+
- ext/torch/torch_functions.h
|
132
|
+
- ext/torch/utils.h
|
133
|
+
- ext/torch/wrap_outputs.h
|
125
134
|
- lib/torch-rb.rb
|
126
135
|
- lib/torch.rb
|
127
136
|
- lib/torch/hub.rb
|
128
137
|
- lib/torch/inspector.rb
|
129
|
-
- lib/torch/native/dispatcher.rb
|
130
|
-
- lib/torch/native/function.rb
|
131
|
-
- lib/torch/native/generator.rb
|
132
|
-
- lib/torch/native/native_functions.yaml
|
133
|
-
- lib/torch/native/parser.rb
|
134
138
|
- lib/torch/nn/adaptive_avg_pool1d.rb
|
135
139
|
- lib/torch/nn/adaptive_avg_pool2d.rb
|
136
140
|
- lib/torch/nn/adaptive_avg_pool3d.rb
|
@@ -270,7 +274,7 @@ homepage: https://github.com/ankane/torch.rb
|
|
270
274
|
licenses:
|
271
275
|
- BSD-3-Clause
|
272
276
|
metadata: {}
|
273
|
-
post_install_message:
|
277
|
+
post_install_message:
|
274
278
|
rdoc_options: []
|
275
279
|
require_paths:
|
276
280
|
- lib
|
@@ -285,8 +289,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
285
289
|
- !ruby/object:Gem::Version
|
286
290
|
version: '0'
|
287
291
|
requirements: []
|
288
|
-
rubygems_version: 3.1.
|
289
|
-
signing_key:
|
292
|
+
rubygems_version: 3.1.4
|
293
|
+
signing_key:
|
290
294
|
specification_version: 4
|
291
295
|
summary: Deep learning for Ruby, powered by LibTorch
|
292
296
|
test_files: []
|
@@ -1,70 +0,0 @@
|
|
1
|
-
# We use a generic interface for methods (*args, **options)
|
2
|
-
# and this class to determine the C++ method to call
|
3
|
-
#
|
4
|
-
# This is needed since LibTorch uses function overloading,
|
5
|
-
# which isn't available in Ruby or Python
|
6
|
-
#
|
7
|
-
# PyTorch uses this approach, but the parser/dispatcher is written in C++
|
8
|
-
#
|
9
|
-
# We could generate Ruby methods directly, but an advantage of this approach is
|
10
|
-
# arguments and keyword arguments can be used interchangably like in Python,
|
11
|
-
# making it easier to port code
|
12
|
-
|
13
|
-
module Torch
|
14
|
-
module Native
|
15
|
-
module Dispatcher
|
16
|
-
class << self
|
17
|
-
def bind
|
18
|
-
functions = Generator.grouped_functions
|
19
|
-
bind_functions(::Torch, :define_singleton_method, functions[:torch])
|
20
|
-
bind_functions(::Torch::Tensor, :define_method, functions[:tensor])
|
21
|
-
bind_functions(::Torch::NN, :define_singleton_method, functions[:nn])
|
22
|
-
end
|
23
|
-
|
24
|
-
def bind_functions(context, def_method, functions)
|
25
|
-
instance_method = def_method == :define_method
|
26
|
-
functions.group_by(&:ruby_name).sort_by { |g, _| g }.each do |name, funcs|
|
27
|
-
if instance_method
|
28
|
-
funcs.map! { |f| Function.new(f.function) }
|
29
|
-
funcs.each { |f| f.args.reject! { |a| a[:name] == :self } }
|
30
|
-
end
|
31
|
-
|
32
|
-
defined = instance_method ? context.method_defined?(name) : context.respond_to?(name)
|
33
|
-
next if defined && name != "clone"
|
34
|
-
|
35
|
-
# skip parser when possible for performance
|
36
|
-
if funcs.size == 1 && funcs.first.args.size == 0
|
37
|
-
# functions with no arguments
|
38
|
-
if instance_method
|
39
|
-
context.send(:alias_method, name, funcs.first.cpp_name)
|
40
|
-
else
|
41
|
-
context.singleton_class.send(:alias_method, name, funcs.first.cpp_name)
|
42
|
-
end
|
43
|
-
elsif funcs.size == 2 && funcs.map { |f| f.arg_types.values }.sort == [["Scalar"], ["Tensor"]]
|
44
|
-
# functions that take a tensor or scalar
|
45
|
-
scalar_name, tensor_name = funcs.sort_by { |f| f.arg_types.values }.map(&:cpp_name)
|
46
|
-
context.send(def_method, name) do |other|
|
47
|
-
case other
|
48
|
-
when Tensor
|
49
|
-
send(tensor_name, other)
|
50
|
-
else
|
51
|
-
send(scalar_name, other)
|
52
|
-
end
|
53
|
-
end
|
54
|
-
else
|
55
|
-
parser = Parser.new(funcs)
|
56
|
-
|
57
|
-
context.send(def_method, name) do |*args, **options|
|
58
|
-
result = parser.parse(args, options)
|
59
|
-
raise ArgumentError, result[:error] if result[:error]
|
60
|
-
send(result[:name], *result[:args])
|
61
|
-
end
|
62
|
-
end
|
63
|
-
end
|
64
|
-
end
|
65
|
-
end
|
66
|
-
end
|
67
|
-
end
|
68
|
-
end
|
69
|
-
|
70
|
-
Torch::Native::Dispatcher.bind
|