torch-rb 0.15.0 → 0.17.0

Sign up to get free protection for your applications and to get access to all the features.
data/ext/torch/utils.h CHANGED
@@ -6,7 +6,7 @@
6
6
  #include <rice/stl.hpp>
7
7
 
8
8
  static_assert(
9
- TORCH_VERSION_MAJOR == 2 && TORCH_VERSION_MINOR == 2,
9
+ TORCH_VERSION_MAJOR == 2 && TORCH_VERSION_MINOR == 4,
10
10
  "Incompatible LibTorch version"
11
11
  );
12
12
 
@@ -0,0 +1,20 @@
1
+ module Torch
2
+ module NN
3
+ class ELU < Module
4
+ def initialize(alpha: 1, inplace: false)
5
+ super()
6
+ @alpha = alpha
7
+ @inplace = inplace
8
+ end
9
+
10
+ def forward(input)
11
+ F.elu(input, alpha: @alpha, inplace: @inplace)
12
+ end
13
+
14
+ def extra_inspect
15
+ inplace_str = @inplace ? ", inplace: true" : ""
16
+ format("alpha: %s", @alpha) + inplace_str
17
+ end
18
+ end
19
+ end
20
+ end
@@ -134,7 +134,7 @@ module Torch
134
134
  raise ArgumentError, "Padding length too large" unless pad.size / 2 <= input.dim
135
135
 
136
136
  if mode == "constant"
137
- return Torch.constant_pad_nd(input, pad, value)
137
+ Torch.constant_pad_nd(input, pad, value)
138
138
  else
139
139
  raise ArgumentError, "Padding mode doesn't take in value argument" unless value == 0
140
140
 
@@ -174,6 +174,18 @@ module Torch
174
174
 
175
175
  # activation layers
176
176
 
177
+ def elu(input, alpha: 1, inplace: false)
178
+ if inplace
179
+ NN.elu!(input, alpha)
180
+ else
181
+ NN.elu(input, alpha)
182
+ end
183
+ end
184
+
185
+ def gelu(input, approximate: 'none')
186
+ NN.gelu(input, approximate: approximate)
187
+ end
188
+
177
189
  def hardshrink(input, lambd = 0.5)
178
190
  Torch.hardshrink(input, lambd)
179
191
  end
@@ -469,6 +481,16 @@ module Torch
469
481
  Torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, to_reduction(reduction))
470
482
  end
471
483
 
484
+ def normalize(input, p: 2.0, dim: 1, eps: 1e-12, out: nil)
485
+ if out.nil?
486
+ denom = input.norm(p, dim, keepdim: true).clamp_min(eps).expand_as(input)
487
+ input / denom
488
+ else
489
+ denom = input.norm(p, dim, keepdim: true).clamp_min!(eps).expand_as(input)
490
+ Torch.div(input, denom, out: out)
491
+ end
492
+ end
493
+
472
494
  # vision
473
495
 
474
496
  def interpolate(input, size: nil, scale_factor: nil, mode: "nearest", align_corners: nil, recompute_scale_factor: nil)
@@ -5,10 +5,10 @@ module Torch
5
5
  def in_projection_packed(q, k, v, w, b: nil)
6
6
  e = q.size(-1)
7
7
 
8
- if k.eql? v
9
- if q.eql? k
8
+ if k.eql?(v)
9
+ if q.eql?(k)
10
10
  # self-attention
11
- return linear(q, w, b).chunk(3, dim: -1)
11
+ linear(q, w, b).chunk(3, dim: -1)
12
12
  else
13
13
  # encoder-decoder attention
14
14
  w_q, w_kv = w.split_with_sizes([e, e * 2])
@@ -18,7 +18,7 @@ module Torch
18
18
  b_q, b_kv = b.split_with_sizes([e, e * 2])
19
19
  end
20
20
 
21
- return [linear(q, w_q, b_q), *linear(k, w_kv, b_kv).chunk(2, dim: -1)]
21
+ [linear(q, w_q, b_q), *linear(k, w_kv, b_kv).chunk(2, dim: -1)]
22
22
  end
23
23
  else
24
24
  w_q, w_k, w_v = w.chunk(3)
@@ -28,7 +28,7 @@ module Torch
28
28
  b_q, b_k, b_v = b.chunk(3)
29
29
  end
30
30
 
31
- return [linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)]
31
+ [linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)]
32
32
  end
33
33
  end
34
34
 
@@ -0,0 +1,18 @@
1
+ module Torch
2
+ module NN
3
+ class GELU < Module
4
+ def initialize(approximate: 'none')
5
+ super()
6
+ @approximate = approximate
7
+ end
8
+
9
+ def forward(input)
10
+ F.gelu(input, approximate: @approximate)
11
+ end
12
+
13
+ def extra_inspect
14
+ "approximate: #{@approximate.inspect}"
15
+ end
16
+ end
17
+ end
18
+ end
@@ -13,7 +13,7 @@ module Torch
13
13
 
14
14
  def extra_inspect
15
15
  inplace_str = @inplace ? ", inplace: true" : ""
16
- format("negative_slope: %s%s", @negative_slope, inplace_str)
16
+ format("negative_slope: %s", @negative_slope) + inplace_str
17
17
  end
18
18
  end
19
19
  end
data/lib/torch/tensor.rb CHANGED
@@ -57,7 +57,7 @@ module Torch
57
57
  if shape.empty?
58
58
  arr
59
59
  else
60
- shape[1..-1].reverse.each do |dim|
60
+ shape[1..-1].reverse_each do |dim|
61
61
  arr = arr.each_slice(dim)
62
62
  end
63
63
  arr.to_a
@@ -160,6 +160,7 @@ module Torch
160
160
  # based on python_variable_indexing.cpp and
161
161
  # https://pytorch.org/cppdocs/notes/tensor_indexing.html
162
162
  def [](*indexes)
163
+ indexes = indexes.map { |v| v.is_a?(Array) ? Torch.tensor(v) : v }
163
164
  _index(indexes)
164
165
  end
165
166
 
@@ -167,6 +168,7 @@ module Torch
167
168
  # https://pytorch.org/cppdocs/notes/tensor_indexing.html
168
169
  def []=(*indexes, value)
169
170
  raise ArgumentError, "Tensor does not support deleting items" if value.nil?
171
+ indexes = indexes.map { |v| v.is_a?(Array) ? Torch.tensor(v) : v }
170
172
  value = Torch.tensor(value, dtype: dtype) unless value.is_a?(Tensor)
171
173
  _index_put_custom(indexes, value)
172
174
  end
data/lib/torch/version.rb CHANGED
@@ -1,3 +1,3 @@
1
1
  module Torch
2
- VERSION = "0.15.0"
2
+ VERSION = "0.17.0"
3
3
  end
data/lib/torch.rb CHANGED
@@ -123,6 +123,8 @@ require_relative "torch/nn/dropout3d"
123
123
  require_relative "torch/nn/feature_alpha_dropout"
124
124
 
125
125
  # nn activations
126
+ require_relative "torch/nn/elu"
127
+ require_relative "torch/nn/gelu"
126
128
  require_relative "torch/nn/hardshrink"
127
129
  require_relative "torch/nn/leaky_relu"
128
130
  require_relative "torch/nn/log_sigmoid"
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: torch-rb
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.15.0
4
+ version: 0.17.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Andrew Kane
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-02-29 00:00:00.000000000 Z
11
+ date: 2024-07-26 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rice
@@ -103,12 +103,14 @@ files:
103
103
  - lib/torch/nn/dropout2d.rb
104
104
  - lib/torch/nn/dropout3d.rb
105
105
  - lib/torch/nn/dropoutnd.rb
106
+ - lib/torch/nn/elu.rb
106
107
  - lib/torch/nn/embedding.rb
107
108
  - lib/torch/nn/embedding_bag.rb
108
109
  - lib/torch/nn/feature_alpha_dropout.rb
109
110
  - lib/torch/nn/fold.rb
110
111
  - lib/torch/nn/functional.rb
111
112
  - lib/torch/nn/functional_attention.rb
113
+ - lib/torch/nn/gelu.rb
112
114
  - lib/torch/nn/group_norm.rb
113
115
  - lib/torch/nn/gru.rb
114
116
  - lib/torch/nn/hardshrink.rb
@@ -230,14 +232,14 @@ required_ruby_version: !ruby/object:Gem::Requirement
230
232
  requirements:
231
233
  - - ">="
232
234
  - !ruby/object:Gem::Version
233
- version: '3'
235
+ version: '3.1'
234
236
  required_rubygems_version: !ruby/object:Gem::Requirement
235
237
  requirements:
236
238
  - - ">="
237
239
  - !ruby/object:Gem::Version
238
240
  version: '0'
239
241
  requirements: []
240
- rubygems_version: 3.5.3
242
+ rubygems_version: 3.5.11
241
243
  signing_key:
242
244
  specification_version: 4
243
245
  summary: Deep learning for Ruby, powered by LibTorch