torch-rb 0.14.1 → 0.15.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +3 -6
- data/codegen/native_functions.yaml +357 -87
- data/ext/torch/extconf.rb +3 -0
- data/ext/torch/templates.h +0 -23
- data/ext/torch/tensor.cpp +1 -0
- data/ext/torch/utils.h +1 -1
- data/lib/torch/inspector.rb +8 -3
- data/lib/torch/version.rb +1 -1
- metadata +2 -2
@@ -185,7 +185,7 @@
|
|
185
185
|
dispatch:
|
186
186
|
CompositeExplicitAutograd: sym_constrain_range
|
187
187
|
|
188
|
-
- func: sym_constrain_range_for_size(Scalar size, *, int? min, int? max) -> ()
|
188
|
+
- func: sym_constrain_range_for_size(Scalar size, *, int? min=None, int? max=None) -> ()
|
189
189
|
dispatch:
|
190
190
|
CompositeExplicitAutograd: sym_constrain_range_for_size
|
191
191
|
|
@@ -431,6 +431,7 @@
|
|
431
431
|
structured_inherits: TensorIteratorBase
|
432
432
|
dispatch:
|
433
433
|
CPU, CUDA: sgn_out
|
434
|
+
MPS: sgn_out_mps
|
434
435
|
SparseCPU, SparseCUDA: sgn_sparse_out
|
435
436
|
SparseCsrCPU, SparseCsrCUDA: sgn_sparse_csr_out
|
436
437
|
tags: pointwise
|
@@ -681,15 +682,29 @@
|
|
681
682
|
structured_delegate: all.out
|
682
683
|
variants: function, method
|
683
684
|
|
685
|
+
- func: all.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor
|
686
|
+
device_check: NoCheck # TensorIterator
|
687
|
+
structured_delegate: all.dims_out
|
688
|
+
variants: function, method
|
689
|
+
cpp_no_default_args: ['dim']
|
690
|
+
dispatch:
|
691
|
+
CompositeExplicitAutograd: all_dims_default
|
692
|
+
|
684
693
|
- func: all.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
685
694
|
device_check: NoCheck # TensorIterator
|
686
695
|
structured: True
|
687
|
-
precomputed:
|
688
|
-
- dim -> int dim
|
689
696
|
dispatch:
|
690
697
|
CPU, CUDA: all_out
|
691
698
|
MPS: all_out_mps
|
692
699
|
|
700
|
+
- func: all.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
701
|
+
device_check: NoCheck # TensorIterator
|
702
|
+
structured: True
|
703
|
+
dispatch:
|
704
|
+
CPU, CUDA: all_dims_out
|
705
|
+
CompositeExplicitAutograd: all_dims_out_default
|
706
|
+
cpp_no_default_args: ['dim']
|
707
|
+
|
693
708
|
- func: all.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor
|
694
709
|
device_check: NoCheck # TensorIterator
|
695
710
|
variants: function, method
|
@@ -709,15 +724,30 @@
|
|
709
724
|
variants: function, method
|
710
725
|
tags: core
|
711
726
|
|
727
|
+
- func: any.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor
|
728
|
+
device_check: NoCheck # TensorIterator
|
729
|
+
structured_delegate: any.dims_out
|
730
|
+
variants: function, method
|
731
|
+
cpp_no_default_args: ['dim']
|
732
|
+
tags: core
|
733
|
+
dispatch:
|
734
|
+
CompositeExplicitAutograd: any_dims_default
|
735
|
+
|
712
736
|
- func: any.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
713
737
|
device_check: NoCheck # TensorIterator
|
714
738
|
structured: True
|
715
|
-
precomputed:
|
716
|
-
- dim -> int dim
|
717
739
|
dispatch:
|
718
740
|
CPU, CUDA: any_out
|
719
741
|
MPS: any_out_mps
|
720
742
|
|
743
|
+
- func: any.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
744
|
+
device_check: NoCheck # TensorIterator
|
745
|
+
structured: True
|
746
|
+
dispatch:
|
747
|
+
CPU, CUDA: any_dims_out
|
748
|
+
CompositeExplicitAutograd: any_dims_out_default
|
749
|
+
cpp_no_default_args: ['dim']
|
750
|
+
|
721
751
|
- func: any.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor
|
722
752
|
device_check: NoCheck # TensorIterator
|
723
753
|
variants: function, method
|
@@ -1326,6 +1356,7 @@
|
|
1326
1356
|
dispatch:
|
1327
1357
|
SparseCPU, SparseCUDA: cat_sparse
|
1328
1358
|
QuantizedCPU: cat_quantized_cpu
|
1359
|
+
NestedTensorCPU, NestedTensorCUDA: cat_nested
|
1329
1360
|
tags: core
|
1330
1361
|
|
1331
1362
|
- func: cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -1613,59 +1644,67 @@
|
|
1613
1644
|
variants: method
|
1614
1645
|
manual_cpp_binding: True
|
1615
1646
|
|
1616
|
-
- func: convolution(Tensor input, Tensor weight, Tensor? bias,
|
1647
|
+
- func: convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor
|
1617
1648
|
dispatch:
|
1618
1649
|
CompositeExplicitAutograd: convolution
|
1619
1650
|
autogen: convolution.out
|
1620
1651
|
tags: core
|
1621
1652
|
|
1622
|
-
- func: convolution_backward(Tensor grad_output, Tensor input, Tensor weight, SymInt[]? bias_sizes,
|
1653
|
+
- func: convolution_backward(Tensor grad_output, Tensor input, Tensor weight, SymInt[]? bias_sizes, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1623
1654
|
dispatch:
|
1624
1655
|
CompositeExplicitAutograd, CUDA: convolution_backward
|
1625
1656
|
autogen: convolution_backward.out
|
1626
1657
|
tags: core
|
1627
1658
|
|
1628
|
-
- func: convolution_overrideable(Tensor input, Tensor weight, Tensor? bias,
|
1659
|
+
- func: convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor
|
1629
1660
|
dispatch:
|
1630
1661
|
CompositeExplicitAutograd: convolution_overrideable
|
1631
1662
|
autogen: convolution_overrideable.out
|
1632
1663
|
|
1633
|
-
- func: convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight,
|
1664
|
+
- func: convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
1634
1665
|
dispatch:
|
1635
1666
|
CompositeExplicitAutograd: convolution_backward_overrideable
|
1636
1667
|
autogen: convolution_backward_overrideable.out
|
1637
1668
|
|
1638
|
-
- func: _convolution(Tensor input, Tensor weight, Tensor? bias,
|
1669
|
+
- func: _convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor
|
1639
1670
|
dispatch:
|
1640
1671
|
CompositeExplicitAutograd: _convolution
|
1641
1672
|
autogen: _convolution.out
|
1642
1673
|
|
1643
|
-
- func: _convolution.deprecated(Tensor input, Tensor weight, Tensor? bias,
|
1674
|
+
- func: _convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, int[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor
|
1644
1675
|
|
1645
|
-
- func: _convolution_mode(Tensor input, Tensor weight, Tensor? bias,
|
1676
|
+
- func: _convolution_mode(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, str padding, SymInt[] dilation, SymInt groups) -> Tensor
|
1677
|
+
dispatch:
|
1678
|
+
CompositeImplicitAutograd: _convolution_mode_symint
|
1646
1679
|
|
1647
|
-
- func: _convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self,
|
1680
|
+
- func: _convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
1648
1681
|
|
1649
|
-
- func: conv1d(Tensor input, Tensor weight, Tensor? bias=None,
|
1682
|
+
- func: conv1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] dilation=1, SymInt groups=1) -> Tensor
|
1650
1683
|
dispatch:
|
1651
1684
|
CompositeImplicitAutograd: conv1d_symint
|
1652
1685
|
|
1653
|
-
- func: conv2d(Tensor input, Tensor weight, Tensor? bias=None,
|
1686
|
+
- func: conv2d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1, SymInt groups=1) -> Tensor
|
1654
1687
|
dispatch:
|
1655
1688
|
CompositeImplicitAutograd: conv2d_symint
|
1656
1689
|
|
1657
|
-
- func: conv3d(Tensor input, Tensor weight, Tensor? bias=None,
|
1690
|
+
- func: conv3d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1, SymInt groups=1) -> Tensor
|
1658
1691
|
dispatch:
|
1659
1692
|
CompositeImplicitAutograd: conv3d_symint
|
1660
1693
|
|
1661
|
-
- func: conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None,
|
1694
|
+
- func: conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, str padding="valid", SymInt[1] dilation=1, SymInt groups=1) -> Tensor
|
1662
1695
|
cpp_no_default_args: ['bias', 'stride', 'padding']
|
1696
|
+
dispatch:
|
1697
|
+
CompositeImplicitAutograd: conv1d_padding_symint
|
1663
1698
|
|
1664
|
-
- func: conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None,
|
1699
|
+
- func: conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, str padding="valid", SymInt[2] dilation=1, SymInt groups=1) -> Tensor
|
1665
1700
|
cpp_no_default_args: ['bias', 'stride', 'padding']
|
1701
|
+
dispatch:
|
1702
|
+
CompositeImplicitAutograd: conv2d_padding_symint
|
1666
1703
|
|
1667
|
-
- func: conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None,
|
1704
|
+
- func: conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, str padding="valid", SymInt[3] dilation=1, SymInt groups=1) -> Tensor
|
1668
1705
|
cpp_no_default_args: ['bias', 'stride', 'padding']
|
1706
|
+
dispatch:
|
1707
|
+
CompositeImplicitAutograd: conv3d_padding_symint
|
1669
1708
|
|
1670
1709
|
- func: conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor
|
1671
1710
|
dispatch:
|
@@ -1675,15 +1714,15 @@
|
|
1675
1714
|
- func: conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor)
|
1676
1715
|
|
1677
1716
|
# NB: we inherit the goofy argument order from PyTorch torch.nn.functional
|
1678
|
-
- func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None,
|
1717
|
+
- func: conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] output_padding=0, SymInt groups=1, SymInt[1] dilation=1) -> Tensor
|
1679
1718
|
dispatch:
|
1680
1719
|
CompositeImplicitAutograd: conv_transpose1d_symint
|
1681
1720
|
|
1682
|
-
- func: conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None,
|
1721
|
+
- func: conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt groups=1, SymInt[2] dilation=1) -> Tensor
|
1683
1722
|
dispatch:
|
1684
1723
|
CompositeImplicitAutograd: conv_transpose2d_symint
|
1685
1724
|
|
1686
|
-
- func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None,
|
1725
|
+
- func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt groups=1, SymInt[3] dilation=1) -> Tensor
|
1687
1726
|
dispatch:
|
1688
1727
|
CompositeImplicitAutograd: conv_transpose3d_symint
|
1689
1728
|
|
@@ -1691,6 +1730,7 @@
|
|
1691
1730
|
variants: function
|
1692
1731
|
dispatch:
|
1693
1732
|
CompositeExplicitAutogradNonFunctional: copy
|
1733
|
+
tags: core
|
1694
1734
|
|
1695
1735
|
- func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
1696
1736
|
variants: method
|
@@ -1720,6 +1760,8 @@
|
|
1720
1760
|
device_check: NoCheck # TensorIterator
|
1721
1761
|
variants: function, method
|
1722
1762
|
structured_delegate: cos.out
|
1763
|
+
dispatch:
|
1764
|
+
NestedTensorCPU, NestedTensorCUDA: cos_nested
|
1723
1765
|
tags: [core, pointwise]
|
1724
1766
|
|
1725
1767
|
- func: cos_(Tensor(a!) self) -> Tensor(a!)
|
@@ -1802,32 +1844,32 @@
|
|
1802
1844
|
CUDA: cudnn_batch_norm_backward
|
1803
1845
|
autogen: cudnn_batch_norm_backward.out
|
1804
1846
|
|
1805
|
-
- func: cudnn_convolution(Tensor self, Tensor weight,
|
1847
|
+
- func: cudnn_convolution(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor
|
1806
1848
|
dispatch:
|
1807
1849
|
CUDA: cudnn_convolution
|
1808
1850
|
autogen: cudnn_convolution.out
|
1809
1851
|
|
1810
|
-
- func: cudnn_convolution_transpose(Tensor self, Tensor weight,
|
1852
|
+
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor
|
1811
1853
|
dispatch:
|
1812
1854
|
CUDA: cudnn_convolution_transpose
|
1813
1855
|
autogen: cudnn_convolution_transpose.out
|
1814
1856
|
|
1815
|
-
- func: _mps_convolution_transpose(Tensor self, Tensor weight,
|
1857
|
+
- func: _mps_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor
|
1816
1858
|
dispatch:
|
1817
1859
|
MPS: _mps_convolution_transpose
|
1818
1860
|
autogen: _mps_convolution_transpose.out
|
1819
1861
|
|
1820
|
-
- func: mps_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight,
|
1862
|
+
- func: mps_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[2] output_mask) -> (Tensor, Tensor)
|
1821
1863
|
dispatch:
|
1822
1864
|
MPS: mps_convolution_transpose_backward
|
1823
1865
|
autogen: mps_convolution_transpose_backward.out
|
1824
1866
|
|
1825
|
-
- func: cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias,
|
1867
|
+
- func: cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor
|
1826
1868
|
dispatch:
|
1827
1869
|
CUDA: cudnn_convolution_relu
|
1828
1870
|
autogen: cudnn_convolution_relu.out
|
1829
1871
|
|
1830
|
-
- func: cudnn_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias,
|
1872
|
+
- func: cudnn_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor
|
1831
1873
|
dispatch:
|
1832
1874
|
CUDA: cudnn_convolution_add_relu
|
1833
1875
|
autogen: cudnn_convolution_add_relu.out
|
@@ -1967,6 +2009,7 @@
|
|
1967
2009
|
dispatch:
|
1968
2010
|
CPU: ctc_loss_cpu
|
1969
2011
|
CUDA: ctc_loss_gpu
|
2012
|
+
Meta: ctc_loss_meta
|
1970
2013
|
autogen: _ctc_loss.out
|
1971
2014
|
tags: dynamic_output_shape # the shape of second output is data dependent
|
1972
2015
|
|
@@ -1999,6 +2042,7 @@
|
|
1999
2042
|
variants: function, method
|
2000
2043
|
dispatch:
|
2001
2044
|
CompositeExplicitAutograd: diagonal
|
2045
|
+
tags: core
|
2002
2046
|
|
2003
2047
|
- func: linalg_diagonal(Tensor(a) A, *, int offset=0, int dim1=-2, int dim2=-1) -> Tensor(a)
|
2004
2048
|
python_module: linalg
|
@@ -2079,7 +2123,7 @@
|
|
2079
2123
|
structured_delegate: div.out_mode
|
2080
2124
|
dispatch:
|
2081
2125
|
SparseCPU, SparseCUDA: div_sparse
|
2082
|
-
tags: pointwise
|
2126
|
+
tags: [core, pointwise]
|
2083
2127
|
|
2084
2128
|
- func: div_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!)
|
2085
2129
|
device_check: NoCheck # TensorIterator
|
@@ -2120,7 +2164,7 @@
|
|
2120
2164
|
variants: function, method
|
2121
2165
|
dispatch:
|
2122
2166
|
CompositeExplicitAutograd: div
|
2123
|
-
tags: pointwise
|
2167
|
+
tags: [core, pointwise]
|
2124
2168
|
|
2125
2169
|
- func: div_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!)
|
2126
2170
|
variants: method
|
@@ -2370,7 +2414,7 @@
|
|
2370
2414
|
variants: method
|
2371
2415
|
device_check: NoCheck
|
2372
2416
|
device_guard: False
|
2373
|
-
tags: inplace_view
|
2417
|
+
tags: [core, inplace_view]
|
2374
2418
|
dispatch:
|
2375
2419
|
Meta: resize__symint
|
2376
2420
|
CPU: resize_
|
@@ -2517,7 +2561,7 @@
|
|
2517
2561
|
dispatch:
|
2518
2562
|
SparseCPU, SparseCUDA: expm1_sparse
|
2519
2563
|
SparseCsrCPU, SparseCsrCUDA: expm1_sparse_csr
|
2520
|
-
tags: pointwise
|
2564
|
+
tags: [core, pointwise]
|
2521
2565
|
|
2522
2566
|
- func: expm1_(Tensor(a!) self) -> Tensor(a!)
|
2523
2567
|
device_check: NoCheck # TensorIterator
|
@@ -2684,10 +2728,15 @@
|
|
2684
2728
|
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
2685
2729
|
device_check: NoCheck # TensorIterator
|
2686
2730
|
variants: function, method
|
2731
|
+
dispatch:
|
2732
|
+
CompositeExplicitAutograd: floor_divide
|
2687
2733
|
|
2688
2734
|
- func: floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
2689
2735
|
device_check: NoCheck # TensorIterator
|
2690
2736
|
variants: method
|
2737
|
+
dispatch:
|
2738
|
+
CompositeExplicitAutograd: floor_divide_
|
2739
|
+
autogen: floor_divide.Scalar_out
|
2691
2740
|
|
2692
2741
|
- func: frac(Tensor self) -> Tensor
|
2693
2742
|
device_check: NoCheck # TensorIterator
|
@@ -2979,7 +3028,7 @@
|
|
2979
3028
|
- func: _unsafe_index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
|
2980
3029
|
variants: function
|
2981
3030
|
dispatch:
|
2982
|
-
|
3031
|
+
CompositeExplicitAutograd: _unsafe_index
|
2983
3032
|
|
2984
3033
|
- func: index_copy.out(Tensor self, int dim, Tensor index, Tensor source, *, Tensor(a!) out) -> Tensor(a!)
|
2985
3034
|
structured: True
|
@@ -3253,7 +3302,7 @@
|
|
3253
3302
|
dispatch:
|
3254
3303
|
CUDA: _cslt_compress
|
3255
3304
|
|
3256
|
-
- func: _cslt_sparse_mm(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, bool transpose_result=False) -> Tensor
|
3305
|
+
- func: _cslt_sparse_mm(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, Tensor? alpha=None, ScalarType? out_dtype=None, bool transpose_result=False) -> Tensor
|
3257
3306
|
dispatch:
|
3258
3307
|
CUDA: _cslt_sparse_mm
|
3259
3308
|
|
@@ -3261,6 +3310,10 @@
|
|
3261
3310
|
dispatch:
|
3262
3311
|
CUDA: _sparse_semi_structured_linear
|
3263
3312
|
|
3313
|
+
- func: _mixed_dtypes_linear(Tensor input, Tensor weight, Tensor scale, *, Tensor? bias=None, str? activation=None) -> Tensor
|
3314
|
+
dispatch:
|
3315
|
+
CUDA: _mixed_dtypes_linear
|
3316
|
+
|
3264
3317
|
- func: fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
3265
3318
|
|
3266
3319
|
- func: fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor
|
@@ -3291,12 +3344,42 @@
|
|
3291
3344
|
dispatch:
|
3292
3345
|
CompositeExplicitAutograd: linspace
|
3293
3346
|
|
3347
|
+
- func: linspace.Tensor_Tensor(Tensor start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
3348
|
+
category_override: factory
|
3349
|
+
dispatch:
|
3350
|
+
CompositeExplicitAutograd: linspace
|
3351
|
+
|
3352
|
+
- func: linspace.Tensor_Scalar(Tensor start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
3353
|
+
category_override: factory
|
3354
|
+
dispatch:
|
3355
|
+
CompositeExplicitAutograd: linspace
|
3356
|
+
|
3357
|
+
- func: linspace.Scalar_Tensor(Scalar start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
3358
|
+
category_override: factory
|
3359
|
+
dispatch:
|
3360
|
+
CompositeExplicitAutograd: linspace
|
3361
|
+
|
3294
3362
|
- func: linspace.out(Scalar start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
3295
3363
|
dispatch:
|
3296
3364
|
CPU, Meta: linspace_out
|
3297
3365
|
CUDA: linspace_cuda_out
|
3298
3366
|
MPS: linspace_out_mps
|
3299
3367
|
|
3368
|
+
- func: linspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
3369
|
+
category_override: factory
|
3370
|
+
dispatch:
|
3371
|
+
CompositeExplicitAutograd: linspace_out
|
3372
|
+
|
3373
|
+
- func: linspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
3374
|
+
category_override: factory
|
3375
|
+
dispatch:
|
3376
|
+
CompositeExplicitAutograd: linspace_out
|
3377
|
+
|
3378
|
+
- func: linspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)
|
3379
|
+
category_override: factory
|
3380
|
+
dispatch:
|
3381
|
+
CompositeExplicitAutograd: linspace_out
|
3382
|
+
|
3300
3383
|
- func: log(Tensor self) -> Tensor
|
3301
3384
|
device_check: NoCheck # TensorIterator
|
3302
3385
|
structured_delegate: log.out
|
@@ -3322,7 +3405,7 @@
|
|
3322
3405
|
device_check: NoCheck # TensorIterator
|
3323
3406
|
structured_delegate: log10.out
|
3324
3407
|
variants: function, method
|
3325
|
-
tags: pointwise
|
3408
|
+
tags: [core, pointwise]
|
3326
3409
|
|
3327
3410
|
- func: log10_(Tensor(a!) self) -> Tensor(a!)
|
3328
3411
|
device_check: NoCheck # TensorIterator
|
@@ -3346,7 +3429,7 @@
|
|
3346
3429
|
dispatch:
|
3347
3430
|
SparseCPU, SparseCUDA: log1p_sparse
|
3348
3431
|
SparseCsrCPU, SparseCsrCUDA: log1p_sparse_csr
|
3349
|
-
tags: pointwise
|
3432
|
+
tags: [core, pointwise]
|
3350
3433
|
|
3351
3434
|
- func: log1p_(Tensor(a!) self) -> Tensor(a!)
|
3352
3435
|
device_check: NoCheck # TensorIterator
|
@@ -3372,7 +3455,7 @@
|
|
3372
3455
|
device_check: NoCheck # TensorIterator
|
3373
3456
|
structured_delegate: log2.out
|
3374
3457
|
variants: function, method
|
3375
|
-
tags: pointwise
|
3458
|
+
tags: [core, pointwise]
|
3376
3459
|
|
3377
3460
|
- func: log2_(Tensor(a!) self) -> Tensor(a!)
|
3378
3461
|
device_check: NoCheck # TensorIterator
|
@@ -3477,11 +3560,41 @@
|
|
3477
3560
|
dispatch:
|
3478
3561
|
CompositeExplicitAutograd: logspace
|
3479
3562
|
|
3563
|
+
- func: logspace.Tensor_Tensor(Tensor start, Tensor end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
3564
|
+
category_override: factory
|
3565
|
+
dispatch:
|
3566
|
+
CompositeExplicitAutograd: logspace
|
3567
|
+
|
3568
|
+
- func: logspace.Tensor_Scalar(Tensor start, Scalar end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
3569
|
+
category_override: factory
|
3570
|
+
dispatch:
|
3571
|
+
CompositeExplicitAutograd: logspace
|
3572
|
+
|
3573
|
+
- func: logspace.Scalar_Tensor(Scalar start, Tensor end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
3574
|
+
category_override: factory
|
3575
|
+
dispatch:
|
3576
|
+
CompositeExplicitAutograd: logspace
|
3577
|
+
|
3480
3578
|
- func: logspace.out(Scalar start, Scalar end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)
|
3481
3579
|
dispatch:
|
3482
3580
|
CPU, Meta: logspace_out
|
3483
3581
|
CUDA: logspace_cuda_out
|
3484
3582
|
|
3583
|
+
- func: logspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)
|
3584
|
+
category_override: factory
|
3585
|
+
dispatch:
|
3586
|
+
CompositeExplicitAutograd: logspace_out
|
3587
|
+
|
3588
|
+
- func: logspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)
|
3589
|
+
category_override: factory
|
3590
|
+
dispatch:
|
3591
|
+
CompositeExplicitAutograd: logspace_out
|
3592
|
+
|
3593
|
+
- func: logspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)
|
3594
|
+
category_override: factory
|
3595
|
+
dispatch:
|
3596
|
+
CompositeExplicitAutograd: logspace_out
|
3597
|
+
|
3485
3598
|
# log_softmax allows positional dtype, unlike most operators, because kwonly is BC-breaking when loading jit models.
|
3486
3599
|
- func: log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor
|
3487
3600
|
variants: function, method
|
@@ -3847,17 +3960,17 @@
|
|
3847
3960
|
# TODO: Add this function to MPS dispatch key so that we avoid declaring it in
|
3848
3961
|
# native_functions.yaml
|
3849
3962
|
# https://github.com/pytorch/pytorch/issues/77394
|
3850
|
-
- func: _mps_convolution(Tensor self, Tensor weight, Tensor? bias,
|
3963
|
+
- func: _mps_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor
|
3851
3964
|
dispatch:
|
3852
3965
|
MPS: _mps_convolution
|
3853
3966
|
autogen: _mps_convolution.out
|
3854
3967
|
|
3855
|
-
- func: mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight,
|
3968
|
+
- func: mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
|
3856
3969
|
dispatch:
|
3857
3970
|
MPS: mps_convolution_backward
|
3858
3971
|
autogen: mps_convolution_backward.out
|
3859
3972
|
|
3860
|
-
- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding,
|
3973
|
+
- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor
|
3861
3974
|
dispatch:
|
3862
3975
|
CompositeExplicitAutograd: mkldnn_convolution
|
3863
3976
|
autogen: mkldnn_convolution.out
|
@@ -3883,26 +3996,26 @@
|
|
3883
3996
|
CUDA: miopen_batch_norm_backward
|
3884
3997
|
autogen: miopen_batch_norm_backward.out
|
3885
3998
|
|
3886
|
-
- func: miopen_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding,
|
3999
|
+
- func: miopen_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor
|
3887
4000
|
dispatch:
|
3888
4001
|
CUDA: miopen_convolution
|
3889
4002
|
autogen: miopen_convolution.out
|
3890
4003
|
|
3891
|
-
- func: miopen_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] output_padding,
|
4004
|
+
- func: miopen_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor
|
3892
4005
|
dispatch:
|
3893
4006
|
CUDA: miopen_convolution_transpose
|
3894
4007
|
autogen: miopen_convolution_transpose.out
|
3895
4008
|
|
3896
|
-
- func: miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding,
|
4009
|
+
- func: miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor
|
3897
4010
|
dispatch:
|
3898
4011
|
CUDA: miopen_depthwise_convolution
|
3899
4012
|
autogen: miopen_depthwise_convolution.out
|
3900
4013
|
|
3901
|
-
- func: miopen_convolution_relu(Tensor self, Tensor weight, Tensor? bias,
|
4014
|
+
- func: miopen_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor
|
3902
4015
|
dispatch:
|
3903
4016
|
CUDA: miopen_convolution_relu
|
3904
4017
|
|
3905
|
-
- func: miopen_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias,
|
4018
|
+
- func: miopen_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor
|
3906
4019
|
dispatch:
|
3907
4020
|
CUDA: miopen_convolution_add_relu
|
3908
4021
|
|
@@ -3943,6 +4056,14 @@
|
|
3943
4056
|
dispatch:
|
3944
4057
|
CUDA: _int_mm_out_cuda
|
3945
4058
|
|
4059
|
+
- func: _convert_weight_to_int4pack(Tensor self, int innerKTiles) -> Tensor
|
4060
|
+
dispatch:
|
4061
|
+
CUDA: _convert_weight_to_int4pack_cuda
|
4062
|
+
|
4063
|
+
- func: _weight_int4pack_mm(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros) -> Tensor
|
4064
|
+
dispatch:
|
4065
|
+
CUDA: _weight_int4pack_mm_cuda
|
4066
|
+
|
3946
4067
|
- func: _sparse_mm(Tensor sparse, Tensor dense) -> Tensor
|
3947
4068
|
python_module: sparse
|
3948
4069
|
|
@@ -4087,6 +4208,7 @@
|
|
4087
4208
|
device_guard: False
|
4088
4209
|
dispatch:
|
4089
4210
|
CompositeImplicitAutograd: narrow_symint
|
4211
|
+
NestedTensorCPU, NestedTensorCUDA: narrow_nested_symint
|
4090
4212
|
|
4091
4213
|
- func: narrow.Tensor(Tensor(a) self, int dim, Tensor start, SymInt length) -> Tensor(a)
|
4092
4214
|
variants: function, method
|
@@ -4199,7 +4321,7 @@
|
|
4199
4321
|
|
4200
4322
|
- func: _nnpack_available() -> bool
|
4201
4323
|
|
4202
|
-
- func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding,
|
4324
|
+
- func: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1) -> Tensor
|
4203
4325
|
variants: function
|
4204
4326
|
dispatch:
|
4205
4327
|
CompositeExplicitAutograd: _nnpack_spatial_convolution
|
@@ -4314,6 +4436,7 @@
|
|
4314
4436
|
- func: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor
|
4315
4437
|
dispatch:
|
4316
4438
|
CPU: pixel_shuffle_cpu
|
4439
|
+
MPS: pixel_shuffle_mps
|
4317
4440
|
CompositeExplicitAutogradNonFunctional: math_pixel_shuffle
|
4318
4441
|
autogen: pixel_shuffle.out
|
4319
4442
|
tags: core
|
@@ -4321,16 +4444,17 @@
|
|
4321
4444
|
- func: pixel_unshuffle(Tensor self, int downscale_factor) -> Tensor
|
4322
4445
|
dispatch:
|
4323
4446
|
CPU: pixel_unshuffle_cpu
|
4447
|
+
MPS: pixel_unshuffle_mps
|
4324
4448
|
CompositeExplicitAutogradNonFunctional: math_pixel_unshuffle
|
4325
4449
|
autogen: pixel_unshuffle.out
|
4326
4450
|
|
4327
|
-
- func: channel_shuffle(Tensor self,
|
4451
|
+
- func: channel_shuffle(Tensor self, SymInt groups) -> Tensor
|
4328
4452
|
dispatch:
|
4329
4453
|
CPU, CUDA: channel_shuffle
|
4330
4454
|
QuantizedCPU: channel_shuffle_quantized_cpu
|
4331
4455
|
autogen: channel_shuffle.out
|
4332
4456
|
|
4333
|
-
- func: native_channel_shuffle(Tensor self,
|
4457
|
+
- func: native_channel_shuffle(Tensor self, SymInt groups) -> Tensor
|
4334
4458
|
dispatch:
|
4335
4459
|
CPU: channel_shuffle_cpu
|
4336
4460
|
CompositeImplicitAutograd: math_channel_shuffle
|
@@ -4338,7 +4462,7 @@
|
|
4338
4462
|
- func: is_pinned(Tensor self, Device? device=None) -> bool
|
4339
4463
|
variants: method
|
4340
4464
|
dispatch:
|
4341
|
-
CUDA: is_pinned_cuda
|
4465
|
+
NestedTensorCUDA, CUDA: is_pinned_cuda
|
4342
4466
|
MPS: is_pinned_mps
|
4343
4467
|
CompositeExplicitAutograd: is_pinned_default
|
4344
4468
|
|
@@ -4352,6 +4476,7 @@
|
|
4352
4476
|
dispatch:
|
4353
4477
|
CUDA: _pin_memory_cuda
|
4354
4478
|
MPS: _pin_memory_mps
|
4479
|
+
NestedTensorCUDA, NestedTensorCPU: _pin_memory_nested
|
4355
4480
|
autogen: _pin_memory.out
|
4356
4481
|
|
4357
4482
|
- func: pinverse(Tensor self, float rcond=1e-15) -> Tensor
|
@@ -4660,7 +4785,7 @@
|
|
4660
4785
|
autogen: repeat.out
|
4661
4786
|
tags: core
|
4662
4787
|
|
4663
|
-
- func: repeat_interleave.Tensor(Tensor repeats, *,
|
4788
|
+
- func: repeat_interleave.Tensor(Tensor repeats, *, SymInt? output_size=None) -> Tensor
|
4664
4789
|
variants: function
|
4665
4790
|
dispatch:
|
4666
4791
|
CPU: repeat_interleave_cpu
|
@@ -4669,10 +4794,12 @@
|
|
4669
4794
|
tags: dynamic_output_shape
|
4670
4795
|
autogen: repeat_interleave.Tensor_out
|
4671
4796
|
|
4672
|
-
- func: repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *,
|
4797
|
+
- func: repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *, SymInt? output_size=None) -> Tensor
|
4673
4798
|
variants: function, method
|
4799
|
+
dispatch:
|
4800
|
+
CompositeImplicitAutograd: repeat_interleave_symint
|
4674
4801
|
|
4675
|
-
- func: repeat_interleave.self_int(Tensor self, SymInt repeats, int? dim=None, *,
|
4802
|
+
- func: repeat_interleave.self_int(Tensor self, SymInt repeats, int? dim=None, *, SymInt? output_size=None) -> Tensor
|
4676
4803
|
variants: function, method
|
4677
4804
|
dispatch:
|
4678
4805
|
CompositeImplicitAutograd: repeat_interleave_symint
|
@@ -4973,12 +5100,14 @@
|
|
4973
5100
|
python_module: nn
|
4974
5101
|
dispatch:
|
4975
5102
|
NestedTensorCPU, NestedTensorCUDA: NestedTensor_silu
|
5103
|
+
tags: pointwise
|
4976
5104
|
|
4977
5105
|
- func: silu_(Tensor(a!) self) -> Tensor(a!)
|
4978
5106
|
structured_delegate: silu.out
|
4979
5107
|
python_module: nn
|
4980
5108
|
dispatch:
|
4981
5109
|
NestedTensorCPU, NestedTensorCUDA: NestedTensor_silu_
|
5110
|
+
tags: pointwise
|
4982
5111
|
|
4983
5112
|
- func: silu.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
4984
5113
|
structured: True
|
@@ -4987,6 +5116,7 @@
|
|
4987
5116
|
dispatch:
|
4988
5117
|
CPU, CUDA: silu_out
|
4989
5118
|
MPS: silu_out_mps
|
5119
|
+
tags: pointwise
|
4990
5120
|
|
4991
5121
|
- func: silu_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)
|
4992
5122
|
structured: True
|
@@ -4995,6 +5125,7 @@
|
|
4995
5125
|
dispatch:
|
4996
5126
|
CPU, CUDA: silu_backward_out
|
4997
5127
|
MPS: silu_backward_out_mps
|
5128
|
+
tags: pointwise
|
4998
5129
|
|
4999
5130
|
- func: silu_backward(Tensor grad_output, Tensor self) -> Tensor
|
5000
5131
|
structured_delegate: silu_backward.grad_input
|
@@ -5002,6 +5133,7 @@
|
|
5002
5133
|
dispatch:
|
5003
5134
|
CompositeImplicitAutograd: math_silu_backward
|
5004
5135
|
NestedTensorCPU, NestedTensorCUDA: silu_backward_nested
|
5136
|
+
tags: pointwise
|
5005
5137
|
|
5006
5138
|
- func: mish(Tensor self) -> Tensor
|
5007
5139
|
structured_delegate: mish.out
|
@@ -5017,11 +5149,13 @@
|
|
5017
5149
|
python_module: nn
|
5018
5150
|
dispatch:
|
5019
5151
|
CPU, CUDA: mish_out
|
5152
|
+
MPS: mish_out_mps
|
5020
5153
|
|
5021
5154
|
- func: mish_backward(Tensor grad_output, Tensor self) -> Tensor
|
5022
5155
|
python_module: nn
|
5023
5156
|
dispatch:
|
5024
5157
|
CPU, CUDA: mish_backward
|
5158
|
+
MPS: mish_backward_mps
|
5025
5159
|
CompositeImplicitAutograd: math_mish_backward
|
5026
5160
|
|
5027
5161
|
- func: sigmoid(Tensor self) -> Tensor
|
@@ -5076,6 +5210,7 @@
|
|
5076
5210
|
dispatch:
|
5077
5211
|
SparseCsrCPU, SparseCsrCUDA: sin_sparse_csr
|
5078
5212
|
SparseCPU, SparseCUDA: sin_sparse
|
5213
|
+
NestedTensorCPU, NestedTensorCUDA: sin_nested
|
5079
5214
|
tags: [core, pointwise]
|
5080
5215
|
|
5081
5216
|
- func: sin_(Tensor(a!) self) -> Tensor(a!)
|
@@ -5971,7 +6106,7 @@
|
|
5971
6106
|
dispatch:
|
5972
6107
|
SparseCPU, SparseCUDA: trunc_sparse
|
5973
6108
|
SparseCsrCPU, SparseCsrCUDA: trunc_sparse_csr
|
5974
|
-
tags: pointwise
|
6109
|
+
tags: [core, pointwise]
|
5975
6110
|
|
5976
6111
|
- func: trunc_(Tensor(a!) self) -> Tensor(a!)
|
5977
6112
|
structured_delegate: trunc.out
|
@@ -6196,6 +6331,7 @@
|
|
6196
6331
|
dispatch:
|
6197
6332
|
CPU: weight_norm_cpu
|
6198
6333
|
CUDA: weight_norm_cuda
|
6334
|
+
MPS: weight_norm_mps
|
6199
6335
|
autogen: _weight_norm_interface.out
|
6200
6336
|
|
6201
6337
|
- func: _weight_norm_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
@@ -6203,6 +6339,7 @@
|
|
6203
6339
|
dispatch:
|
6204
6340
|
CPU: weight_norm_backward_cpu
|
6205
6341
|
CUDA: weight_norm_backward_cuda
|
6342
|
+
MPS: weight_norm_backward_mps
|
6206
6343
|
autogen: _weight_norm_interface_backward.out
|
6207
6344
|
|
6208
6345
|
- func: _weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)
|
@@ -6219,6 +6356,7 @@
|
|
6219
6356
|
dispatch:
|
6220
6357
|
CPU: _efficientzerotensor
|
6221
6358
|
CUDA: _efficientzerotensor_cuda
|
6359
|
+
MPS: _efficientzerotensor_mps
|
6222
6360
|
Meta: _efficientzerotensor_meta
|
6223
6361
|
autogen: _efficientzerotensor.out
|
6224
6362
|
|
@@ -6675,12 +6813,12 @@
|
|
6675
6813
|
structured_delegate: _addmm_activation.out
|
6676
6814
|
variants: function, method
|
6677
6815
|
|
6678
|
-
- func: _scaled_mm(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None) -> (Tensor, Tensor)
|
6816
|
+
- func: _scaled_mm(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False) -> (Tensor, Tensor)
|
6679
6817
|
variants: function
|
6680
6818
|
dispatch:
|
6681
6819
|
CUDA: _scaled_mm_cuda
|
6682
6820
|
|
6683
|
-
- func: _scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))
|
6821
|
+
- func: _scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))
|
6684
6822
|
variants: function
|
6685
6823
|
dispatch:
|
6686
6824
|
CUDA: _scaled_mm_out_cuda
|
@@ -7055,7 +7193,7 @@
|
|
7055
7193
|
variants: function, method
|
7056
7194
|
dispatch:
|
7057
7195
|
CompositeExplicitAutograd: unbind
|
7058
|
-
|
7196
|
+
NestedTensorCPU, NestedTensorCUDA: NestedTensor_unbind
|
7059
7197
|
|
7060
7198
|
- func: unbind.Dimname(Tensor(a -> *) self, Dimname dim) -> Tensor(a)[]
|
7061
7199
|
variants: function, method
|
@@ -7143,14 +7281,14 @@
|
|
7143
7281
|
CPU: dense_to_mkldnn
|
7144
7282
|
autogen: to_mkldnn.out
|
7145
7283
|
|
7146
|
-
- func: mkldnn_reorder_conv2d_weight(Tensor self,
|
7284
|
+
- func: mkldnn_reorder_conv2d_weight(Tensor self, SymInt[2] padding=0, SymInt[2] stride=1, SymInt[2] dilation=1, SymInt groups=1, SymInt[]? input_size=None) -> Tensor
|
7147
7285
|
variants: function
|
7148
7286
|
python_module: nn
|
7149
7287
|
dispatch:
|
7150
7288
|
MkldnnCPU: mkldnn_reorder_conv2d_weight
|
7151
7289
|
autogen: mkldnn_reorder_conv2d_weight.out
|
7152
7290
|
|
7153
|
-
- func: mkldnn_reorder_conv3d_weight(Tensor self,
|
7291
|
+
- func: mkldnn_reorder_conv3d_weight(Tensor self, SymInt[3] padding=0, SymInt[3] stride=1, SymInt[3] dilation=1, SymInt groups=1) -> Tensor
|
7154
7292
|
variants: function
|
7155
7293
|
python_module: nn
|
7156
7294
|
dispatch:
|
@@ -7656,6 +7794,10 @@
|
|
7656
7794
|
dispatch:
|
7657
7795
|
CompositeExplicitAutograd: masked_scatter
|
7658
7796
|
|
7797
|
+
- func: masked_scatter_backward(Tensor grad_output, Tensor mask, SymInt[] sizes) -> Tensor
|
7798
|
+
dispatch:
|
7799
|
+
CompositeExplicitAutograd: masked_scatter_backward_symint
|
7800
|
+
|
7659
7801
|
- func: _masked_softmax(Tensor self, Tensor mask, int? dim=None, int? mask_type=None) -> Tensor
|
7660
7802
|
dispatch:
|
7661
7803
|
CUDA: masked_softmax_cuda
|
@@ -7938,6 +8080,8 @@
|
|
7938
8080
|
- func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
7939
8081
|
device_check: NoCheck # TensorIterator
|
7940
8082
|
variants: method
|
8083
|
+
dispatch:
|
8084
|
+
CompositeExplicitAutograd: bitwise_and_
|
7941
8085
|
tags: pointwise
|
7942
8086
|
|
7943
8087
|
- func: bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
@@ -7982,6 +8126,8 @@
|
|
7982
8126
|
- func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor
|
7983
8127
|
device_check: NoCheck # TensorIterator
|
7984
8128
|
variants: method, function
|
8129
|
+
dispatch:
|
8130
|
+
CompositeExplicitAutograd: bitwise_or
|
7985
8131
|
tags: [core, pointwise]
|
7986
8132
|
|
7987
8133
|
- func: bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> Tensor
|
@@ -8001,6 +8147,8 @@
|
|
8001
8147
|
- func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
8002
8148
|
device_check: NoCheck # TensorIterator
|
8003
8149
|
variants: method
|
8150
|
+
dispatch:
|
8151
|
+
CompositeExplicitAutograd: bitwise_or_
|
8004
8152
|
tags: pointwise
|
8005
8153
|
|
8006
8154
|
- func: bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
@@ -8045,6 +8193,8 @@
|
|
8045
8193
|
- func: bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor
|
8046
8194
|
device_check: NoCheck # TensorIterator
|
8047
8195
|
variants: method, function
|
8196
|
+
dispatch:
|
8197
|
+
CompositeExplicitAutograd: bitwise_xor
|
8048
8198
|
tags: [core, pointwise]
|
8049
8199
|
|
8050
8200
|
- func: bitwise_xor.Scalar_Tensor(Scalar self, Tensor other) -> Tensor
|
@@ -8064,6 +8214,8 @@
|
|
8064
8214
|
- func: bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
8065
8215
|
device_check: NoCheck # TensorIterator
|
8066
8216
|
variants: method
|
8217
|
+
dispatch:
|
8218
|
+
CompositeExplicitAutograd: bitwise_xor_
|
8067
8219
|
tags: pointwise
|
8068
8220
|
|
8069
8221
|
- func: bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
@@ -8504,6 +8656,7 @@
|
|
8504
8656
|
variants: method, function
|
8505
8657
|
dispatch:
|
8506
8658
|
QuantizedCPU: eq_quantized_cpu
|
8659
|
+
NestedTensorCPU, NestedTensorCUDA: eq_scalar_nested
|
8507
8660
|
tags: [core, pointwise]
|
8508
8661
|
|
8509
8662
|
- func: eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -8540,6 +8693,7 @@
|
|
8540
8693
|
variants: method, function
|
8541
8694
|
dispatch:
|
8542
8695
|
QuantizedCPU: ge_quantized_cpu
|
8696
|
+
NestedTensorCPU, NestedTensorCUDA: ge_scalar_nested
|
8543
8697
|
tags: [core, pointwise]
|
8544
8698
|
|
8545
8699
|
- func: ge.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -8666,6 +8820,7 @@
|
|
8666
8820
|
variants: method, function
|
8667
8821
|
dispatch:
|
8668
8822
|
QuantizedCPU: gt_quantized_cpu
|
8823
|
+
NestedTensorCPU, NestedTensorCUDA: gt_scalar_nested
|
8669
8824
|
tags: [core, pointwise]
|
8670
8825
|
|
8671
8826
|
- func: gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
@@ -9106,6 +9261,7 @@
|
|
9106
9261
|
structured_inherits: TensorIteratorBase
|
9107
9262
|
dispatch:
|
9108
9263
|
CPU, CUDA: lgamma_out
|
9264
|
+
MPS: lgamma_out_mps
|
9109
9265
|
tags: pointwise
|
9110
9266
|
|
9111
9267
|
- func: lgamma_(Tensor(a!) self) -> Tensor(a!)
|
@@ -9126,6 +9282,7 @@
|
|
9126
9282
|
structured_inherits: TensorIteratorBase
|
9127
9283
|
dispatch:
|
9128
9284
|
CPU, CUDA: digamma_out
|
9285
|
+
MPS: digamma_out_mps
|
9129
9286
|
tags: pointwise
|
9130
9287
|
|
9131
9288
|
- func: digamma(Tensor self) -> Tensor
|
@@ -9140,6 +9297,7 @@
|
|
9140
9297
|
structured_inherits: TensorIteratorBase
|
9141
9298
|
dispatch:
|
9142
9299
|
CPU, CUDA: polygamma_out
|
9300
|
+
MPS: polygamma_out_mps
|
9143
9301
|
tags: pointwise
|
9144
9302
|
|
9145
9303
|
- func: polygamma(int n, Tensor self) -> Tensor
|
@@ -9263,7 +9421,7 @@
|
|
9263
9421
|
dispatch:
|
9264
9422
|
CPU, CUDA: atan2_out
|
9265
9423
|
MPS: atan2_out_mps
|
9266
|
-
tags: pointwise
|
9424
|
+
tags: [core, pointwise]
|
9267
9425
|
|
9268
9426
|
- func: atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
9269
9427
|
device_check: NoCheck # TensorIterator
|
@@ -9275,7 +9433,7 @@
|
|
9275
9433
|
device_check: NoCheck # TensorIterator
|
9276
9434
|
structured_delegate: atan2.out
|
9277
9435
|
variants: method, function
|
9278
|
-
tags: pointwise
|
9436
|
+
tags: [core, pointwise]
|
9279
9437
|
# arctan2, alias of atan2
|
9280
9438
|
|
9281
9439
|
- func: arctan2(Tensor self, Tensor other) -> Tensor
|
@@ -9464,7 +9622,7 @@
|
|
9464
9622
|
structured: True
|
9465
9623
|
structured_inherits: TensorIteratorBase
|
9466
9624
|
dispatch:
|
9467
|
-
CPU, CUDA: nextafter_out
|
9625
|
+
CPU, CUDA, MPS: nextafter_out
|
9468
9626
|
tags: pointwise
|
9469
9627
|
|
9470
9628
|
- func: nextafter(Tensor self, Tensor other) -> Tensor
|
@@ -9811,7 +9969,7 @@
|
|
9811
9969
|
- func: pow.Scalar(Scalar self, Tensor exponent) -> Tensor
|
9812
9970
|
device_check: NoCheck # TensorIterator
|
9813
9971
|
structured_delegate: pow.Scalar_out
|
9814
|
-
tags: pointwise
|
9972
|
+
tags: [core, pointwise]
|
9815
9973
|
|
9816
9974
|
- func: pow.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!)
|
9817
9975
|
device_check: NoCheck # TensorIterator
|
@@ -10020,6 +10178,21 @@
|
|
10020
10178
|
CUDA: foreach_tensor_add_scalarlist_kernel_cuda_
|
10021
10179
|
autogen: _foreach_add.ScalarList_out
|
10022
10180
|
|
10181
|
+
- func: _foreach_add.Tensor(Tensor[] self, Tensor other, *, Scalar alpha=1) -> Tensor[]
|
10182
|
+
device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices
|
10183
|
+
variants: function
|
10184
|
+
dispatch:
|
10185
|
+
CPU: foreach_tensor_add_tensor_kernel_slow
|
10186
|
+
CUDA: foreach_tensor_add_tensor_kernel_cuda
|
10187
|
+
|
10188
|
+
- func: _foreach_add_.Tensor(Tensor(a!)[] self, Tensor other, *, Scalar alpha=1) -> ()
|
10189
|
+
device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices
|
10190
|
+
variants: function
|
10191
|
+
dispatch:
|
10192
|
+
CPU: foreach_tensor_add_tensor_kernel_slow_
|
10193
|
+
CUDA: foreach_tensor_add_tensor_kernel_cuda_
|
10194
|
+
autogen: _foreach_add.Tensor_out
|
10195
|
+
|
10023
10196
|
- func: _foreach_sub.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]
|
10024
10197
|
device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices
|
10025
10198
|
variants: function
|
@@ -10170,6 +10343,21 @@
|
|
10170
10343
|
CUDA: foreach_tensor_div_scalarlist_kernel_cuda_
|
10171
10344
|
autogen: _foreach_div.ScalarList_out
|
10172
10345
|
|
10346
|
+
- func: _foreach_div.Tensor(Tensor[] self, Tensor other) -> Tensor[]
|
10347
|
+
device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices
|
10348
|
+
variants: function
|
10349
|
+
dispatch:
|
10350
|
+
CPU: foreach_tensor_div_tensor_kernel_slow
|
10351
|
+
CUDA: foreach_tensor_div_tensor_kernel_cuda
|
10352
|
+
|
10353
|
+
- func: _foreach_div_.Tensor(Tensor(a!)[] self, Tensor other) -> ()
|
10354
|
+
device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices
|
10355
|
+
variants: function
|
10356
|
+
dispatch:
|
10357
|
+
CPU: foreach_tensor_div_tensor_kernel_slow_
|
10358
|
+
CUDA: foreach_tensor_div_tensor_kernel_cuda_
|
10359
|
+
autogen: _foreach_div.Tensor_out
|
10360
|
+
|
10173
10361
|
- func: _foreach_clamp_max.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]
|
10174
10362
|
device_check: NoCheck # foreach kernels fall back to slow path when tensor are on different devices
|
10175
10363
|
variants: function
|
@@ -10990,37 +11178,44 @@
|
|
10990
11178
|
dispatch:
|
10991
11179
|
CPU: bucketize_cpu
|
10992
11180
|
CUDA: bucketize_cuda
|
11181
|
+
MPS: bucketize_mps
|
10993
11182
|
|
10994
11183
|
- func: bucketize.Tensor_out(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)
|
10995
11184
|
dispatch:
|
10996
11185
|
CPU: bucketize_out_cpu
|
10997
11186
|
CUDA: bucketize_out_cuda
|
11187
|
+
MPS: bucketize_out_mps
|
10998
11188
|
|
10999
11189
|
- func: bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor
|
11000
11190
|
dispatch:
|
11001
11191
|
CPU: bucketize_cpu
|
11002
11192
|
CUDA: bucketize_cuda
|
11193
|
+
MPS: bucketize_mps
|
11003
11194
|
autogen: bucketize.Scalar_out
|
11004
11195
|
|
11005
11196
|
- func: searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> Tensor
|
11006
11197
|
dispatch:
|
11007
11198
|
CPU: searchsorted_cpu
|
11008
11199
|
CUDA: searchsorted_cuda
|
11200
|
+
MPS: searchsorted_mps
|
11009
11201
|
|
11010
11202
|
- func: searchsorted.Tensor_out(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None, Tensor(a!) out) -> Tensor(a!)
|
11011
11203
|
dispatch:
|
11012
11204
|
CPU: searchsorted_out_cpu
|
11013
11205
|
CUDA: searchsorted_out_cuda
|
11206
|
+
MPS: searchsorted_out_mps
|
11014
11207
|
|
11015
11208
|
- func: searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> Tensor
|
11016
11209
|
dispatch:
|
11017
11210
|
CPU: searchsorted_cpu
|
11018
11211
|
CUDA: searchsorted_cuda
|
11212
|
+
MPS: searchsorted_mps
|
11019
11213
|
|
11020
11214
|
- func: searchsorted.Scalar_out(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None, Tensor(a!) out) -> Tensor(a!)
|
11021
11215
|
dispatch:
|
11022
11216
|
CPU: searchsorted_out_cpu
|
11023
11217
|
CUDA: searchsorted_out_cuda
|
11218
|
+
MPS: searchsorted_out_mps
|
11024
11219
|
|
11025
11220
|
- func: _convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> Tensor
|
11026
11221
|
structured_delegate: _convert_indices_from_coo_to_csr.out
|
@@ -11568,6 +11763,7 @@
|
|
11568
11763
|
python_module: nn
|
11569
11764
|
dispatch:
|
11570
11765
|
CPU, CUDA: softshrink_out
|
11766
|
+
MPS: softshrink_out_mps
|
11571
11767
|
|
11572
11768
|
- func: softshrink(Tensor self, Scalar lambd=0.5) -> Tensor
|
11573
11769
|
structured_delegate: softshrink.out
|
@@ -11580,6 +11776,7 @@
|
|
11580
11776
|
python_module: nn
|
11581
11777
|
dispatch:
|
11582
11778
|
CPU, CUDA: softshrink_backward_out
|
11779
|
+
MPS: softshrink_backward_out_mps
|
11583
11780
|
|
11584
11781
|
- func: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor
|
11585
11782
|
structured_delegate: softshrink_backward.grad_input
|
@@ -12482,101 +12679,101 @@
|
|
12482
12679
|
# make the operational distinction clear.
|
12483
12680
|
tags: pointwise
|
12484
12681
|
|
12485
|
-
- func: slow_conv_transpose2d.out(Tensor self, Tensor weight,
|
12682
|
+
- func: slow_conv_transpose2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)
|
12486
12683
|
python_module: nn
|
12487
12684
|
structured: True
|
12488
12685
|
dispatch:
|
12489
12686
|
CPU: slow_conv_transpose2d_structured_cpu
|
12490
12687
|
CUDA: slow_conv_transpose2d_structured_cuda
|
12491
12688
|
|
12492
|
-
- func: slow_conv_transpose2d(Tensor self, Tensor weight,
|
12689
|
+
- func: slow_conv_transpose2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1) -> Tensor
|
12493
12690
|
python_module: nn
|
12494
12691
|
structured_delegate: slow_conv_transpose2d.out
|
12495
12692
|
|
12496
|
-
- func: slow_conv_transpose3d.out(Tensor self, Tensor weight,
|
12693
|
+
- func: slow_conv_transpose3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1, *, Tensor(a!) out) -> Tensor(a!)
|
12497
12694
|
python_module: nn
|
12498
12695
|
dispatch:
|
12499
12696
|
CPU: slow_conv_transpose3d_out_cpu
|
12500
12697
|
CUDA: slow_conv_transpose3d_out_cuda
|
12501
12698
|
|
12502
|
-
- func: slow_conv_transpose3d(Tensor self, Tensor weight,
|
12699
|
+
- func: slow_conv_transpose3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1) -> Tensor
|
12503
12700
|
python_module: nn
|
12504
12701
|
dispatch:
|
12505
12702
|
CPU: slow_conv_transpose3d_cpu
|
12506
12703
|
CUDA: slow_conv_transpose3d_cuda
|
12507
12704
|
|
12508
|
-
- func: thnn_conv2d.out(Tensor self, Tensor weight,
|
12705
|
+
- func: thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!)
|
12509
12706
|
python_module: nn
|
12510
12707
|
|
12511
|
-
- func: thnn_conv2d(Tensor self, Tensor weight,
|
12708
|
+
- func: thnn_conv2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0) -> Tensor
|
12512
12709
|
python_module: nn
|
12513
12710
|
|
12514
|
-
- func: _slow_conv2d_forward.output(Tensor self, Tensor weight,
|
12711
|
+
- func: _slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!)
|
12515
12712
|
python_module: nn
|
12516
12713
|
dispatch:
|
12517
12714
|
CPU: slow_conv2d_forward_out_cpu
|
12518
12715
|
CUDA: slow_conv2d_forward_out_cuda
|
12519
12716
|
|
12520
|
-
- func: _slow_conv2d_forward(Tensor self, Tensor weight,
|
12717
|
+
- func: _slow_conv2d_forward(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding) -> Tensor
|
12521
12718
|
python_module: nn
|
12522
12719
|
dispatch:
|
12523
12720
|
CPU: slow_conv2d_forward_cpu
|
12524
12721
|
CUDA: slow_conv2d_forward_cuda
|
12525
12722
|
|
12526
|
-
- func: _slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight,
|
12723
|
+
- func: _slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
12527
12724
|
python_module: nn
|
12528
12725
|
dispatch:
|
12529
12726
|
CPU: slow_conv2d_backward_out_cpu
|
12530
12727
|
CUDA: slow_conv2d_backward_out_cuda
|
12531
12728
|
|
12532
|
-
- func: _slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight,
|
12729
|
+
- func: _slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)
|
12533
12730
|
python_module: nn
|
12534
12731
|
dispatch:
|
12535
12732
|
CPU: slow_conv2d_backward_cpu
|
12536
12733
|
CUDA: slow_conv2d_backward_cuda
|
12537
12734
|
autogen: _slow_conv2d_backward.output_mask_out
|
12538
12735
|
|
12539
|
-
- func: _conv_depthwise2d.out(Tensor self, Tensor weight,
|
12736
|
+
- func: _conv_depthwise2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation, *, Tensor(a!) out) -> Tensor(a!)
|
12540
12737
|
use_const_ref_for_mutable_tensors: True
|
12541
12738
|
python_module: nn
|
12542
12739
|
dispatch:
|
12543
12740
|
CUDA: conv_depthwise2d_cuda_out
|
12544
12741
|
|
12545
|
-
- func: _conv_depthwise2d(Tensor self, Tensor weight,
|
12742
|
+
- func: _conv_depthwise2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation) -> Tensor
|
12546
12743
|
python_module: nn
|
12547
12744
|
dispatch:
|
12548
12745
|
CUDA: conv_depthwise2d_cuda
|
12549
12746
|
|
12550
|
-
- func: conv_depthwise3d(Tensor self, Tensor weight,
|
12747
|
+
- func: conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor
|
12551
12748
|
python_module: nn
|
12552
12749
|
dispatch:
|
12553
12750
|
CUDA: conv_depthwise3d_cuda
|
12554
12751
|
autogen: conv_depthwise3d.out
|
12555
12752
|
|
12556
|
-
- func: slow_conv3d.out(Tensor self, Tensor weight,
|
12753
|
+
- func: slow_conv3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, *, Tensor(a!) out) -> Tensor(a!)
|
12557
12754
|
python_module: nn
|
12558
12755
|
|
12559
|
-
- func: slow_conv3d(Tensor self, Tensor weight,
|
12756
|
+
- func: slow_conv3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0) -> Tensor
|
12560
12757
|
python_module: nn
|
12561
12758
|
|
12562
|
-
- func: slow_conv3d_forward.output(Tensor self, Tensor weight,
|
12759
|
+
- func: slow_conv3d_forward.output(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, *, Tensor(a!) output) -> Tensor(a!)
|
12563
12760
|
python_module: nn
|
12564
12761
|
dispatch:
|
12565
12762
|
CPU: slow_conv3d_forward_out_cpu
|
12566
12763
|
|
12567
|
-
- func: slow_conv3d_forward(Tensor self, Tensor weight,
|
12764
|
+
- func: slow_conv3d_forward(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding) -> Tensor
|
12568
12765
|
python_module: nn
|
12569
12766
|
dispatch:
|
12570
12767
|
CPU: slow_conv3d_forward_cpu
|
12571
12768
|
|
12572
|
-
- func: slow_conv_dilated2d(Tensor self, Tensor weight,
|
12769
|
+
- func: slow_conv_dilated2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1) -> Tensor
|
12573
12770
|
python_module: nn
|
12574
12771
|
dispatch:
|
12575
12772
|
CPU: slow_conv_dilated2d_cpu
|
12576
12773
|
CUDA: slow_conv_dilated2d_cuda
|
12577
12774
|
autogen: slow_conv_dilated2d.out
|
12578
12775
|
|
12579
|
-
- func: slow_conv_dilated3d(Tensor self, Tensor weight,
|
12776
|
+
- func: slow_conv_dilated3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1) -> Tensor
|
12580
12777
|
python_module: nn
|
12581
12778
|
dispatch:
|
12582
12779
|
CPU: slow_conv_dilated3d_cpu
|
@@ -14269,19 +14466,20 @@
|
|
14269
14466
|
variants: function
|
14270
14467
|
tags: nondeterministic_seeded
|
14271
14468
|
|
14272
|
-
- func: _scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor
|
14469
|
+
- func: _scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
|
14273
14470
|
dispatch:
|
14274
14471
|
CPU: _scaled_dot_product_flash_attention_cpu
|
14275
14472
|
CUDA: _scaled_dot_product_flash_attention_cuda
|
14276
14473
|
NestedTensorCUDA: _scaled_dot_product_flash_attention_nestedtensor_cuda
|
14277
14474
|
tags: nondeterministic_seeded
|
14278
14475
|
|
14279
|
-
- func: _scaled_dot_product_flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k,
|
14476
|
+
- func: _scaled_dot_product_flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value)
|
14280
14477
|
device_check: NoCheck
|
14281
14478
|
variants: function
|
14282
14479
|
dispatch:
|
14283
14480
|
CPU: _scaled_dot_product_flash_attention_backward_cpu
|
14284
14481
|
CUDA: _scaled_dot_product_flash_attention_backward_cuda
|
14482
|
+
NestedTensorCUDA: _scaled_dot_product_flash_attention_backward_nested
|
14285
14483
|
|
14286
14484
|
- func: _scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset)
|
14287
14485
|
dispatch:
|
@@ -14295,26 +14493,26 @@
|
|
14295
14493
|
CUDA: _scaled_dot_product_efficient_attention_backward_cuda
|
14296
14494
|
tags: nondeterministic_seeded
|
14297
14495
|
|
14298
|
-
- func: _flash_attention_forward(Tensor query, Tensor key, Tensor value, Tensor cum_seq_q, Tensor cum_seq_k,
|
14496
|
+
- func: _flash_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? cum_seq_q, Tensor? cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, bool return_debug_mask, *, float? scale=None) -> (Tensor output, Tensor softmax_logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
|
14299
14497
|
variants: function
|
14300
14498
|
dispatch:
|
14301
14499
|
CUDA: _flash_attention_forward
|
14302
14500
|
tags: nondeterministic_seeded
|
14303
14501
|
|
14304
|
-
- func: _flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k,
|
14502
|
+
- func: _flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor, Tensor, Tensor)
|
14305
14503
|
device_check: NoCheck
|
14306
14504
|
variants: function
|
14307
14505
|
dispatch:
|
14308
14506
|
CUDA: _flash_attention_backward
|
14309
14507
|
|
14310
14508
|
# Returns ouput, logsumexp if compute_logsumexp
|
14311
|
-
- func: _efficient_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, int? max_seqlen_q, float dropout_p, int custom_mask_type, bool compute_log_sumexp=False, *, float? scale=None, Tensor? causal_diagonal=None, Tensor? seqlen_k=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset)
|
14509
|
+
- func: _efficient_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, int? max_seqlen_q, float dropout_p, int custom_mask_type, bool compute_log_sumexp=False, *, float? scale=None, Tensor? causal_diagonal=None, Tensor? seqlen_k=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, SymInt max_seqlen_batch_q, SymInt max_seqlen_batch_k)
|
14312
14510
|
variants: function
|
14313
14511
|
dispatch:
|
14314
14512
|
CUDA: _efficient_attention_forward
|
14315
14513
|
tags: nondeterministic_seeded
|
14316
14514
|
|
14317
|
-
- func: _efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k,
|
14515
|
+
- func: _efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None) -> (Tensor, Tensor, Tensor, Tensor)
|
14318
14516
|
device_check: NoCheck
|
14319
14517
|
variants: function
|
14320
14518
|
dispatch:
|
@@ -14422,12 +14620,16 @@
|
|
14422
14620
|
tags: pointwise
|
14423
14621
|
|
14424
14622
|
- func: special_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor
|
14623
|
+
dispatch:
|
14624
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_t
|
14425
14625
|
device_check: NoCheck
|
14426
14626
|
python_module: special
|
14427
14627
|
variants: function
|
14428
14628
|
tags: pointwise
|
14429
14629
|
|
14430
14630
|
- func: special_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor
|
14631
|
+
dispatch:
|
14632
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_t
|
14431
14633
|
device_check: NoCheck
|
14432
14634
|
python_module: special
|
14433
14635
|
variants: function
|
@@ -14444,6 +14646,8 @@
|
|
14444
14646
|
tags: pointwise
|
14445
14647
|
|
14446
14648
|
- func: special_chebyshev_polynomial_t.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14649
|
+
dispatch:
|
14650
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_t_out
|
14447
14651
|
device_check: NoCheck
|
14448
14652
|
python_module: special
|
14449
14653
|
variants: function
|
@@ -14465,12 +14669,16 @@
|
|
14465
14669
|
tags: pointwise
|
14466
14670
|
|
14467
14671
|
- func: special_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor
|
14672
|
+
dispatch:
|
14673
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_u
|
14468
14674
|
device_check: NoCheck
|
14469
14675
|
python_module: special
|
14470
14676
|
variants: function
|
14471
14677
|
tags: pointwise
|
14472
14678
|
|
14473
14679
|
- func: special_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor
|
14680
|
+
dispatch:
|
14681
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_u
|
14474
14682
|
device_check: NoCheck
|
14475
14683
|
python_module: special
|
14476
14684
|
variants: function
|
@@ -14487,6 +14695,8 @@
|
|
14487
14695
|
tags: pointwise
|
14488
14696
|
|
14489
14697
|
- func: special_chebyshev_polynomial_u.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14698
|
+
dispatch:
|
14699
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_u_out
|
14490
14700
|
device_check: NoCheck
|
14491
14701
|
python_module: special
|
14492
14702
|
variants: function
|
@@ -14508,12 +14718,16 @@
|
|
14508
14718
|
tags: pointwise
|
14509
14719
|
|
14510
14720
|
- func: special_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor
|
14721
|
+
dispatch:
|
14722
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_v
|
14511
14723
|
device_check: NoCheck
|
14512
14724
|
python_module: special
|
14513
14725
|
variants: function
|
14514
14726
|
tags: pointwise
|
14515
14727
|
|
14516
14728
|
- func: special_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor
|
14729
|
+
dispatch:
|
14730
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_v
|
14517
14731
|
device_check: NoCheck
|
14518
14732
|
python_module: special
|
14519
14733
|
variants: function
|
@@ -14530,6 +14744,8 @@
|
|
14530
14744
|
tags: pointwise
|
14531
14745
|
|
14532
14746
|
- func: special_chebyshev_polynomial_v.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14747
|
+
dispatch:
|
14748
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_v_out
|
14533
14749
|
device_check: NoCheck
|
14534
14750
|
python_module: special
|
14535
14751
|
variants: function
|
@@ -14551,12 +14767,16 @@
|
|
14551
14767
|
tags: pointwise
|
14552
14768
|
|
14553
14769
|
- func: special_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor
|
14770
|
+
dispatch:
|
14771
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_w
|
14554
14772
|
device_check: NoCheck
|
14555
14773
|
python_module: special
|
14556
14774
|
variants: function
|
14557
14775
|
tags: pointwise
|
14558
14776
|
|
14559
14777
|
- func: special_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor
|
14778
|
+
dispatch:
|
14779
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_w
|
14560
14780
|
device_check: NoCheck
|
14561
14781
|
python_module: special
|
14562
14782
|
variants: function
|
@@ -14573,6 +14793,8 @@
|
|
14573
14793
|
tags: pointwise
|
14574
14794
|
|
14575
14795
|
- func: special_chebyshev_polynomial_w.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14796
|
+
dispatch:
|
14797
|
+
CompositeExplicitAutograd: special_chebyshev_polynomial_w_out
|
14576
14798
|
device_check: NoCheck
|
14577
14799
|
python_module: special
|
14578
14800
|
variants: function
|
@@ -14594,12 +14816,16 @@
|
|
14594
14816
|
tags: pointwise
|
14595
14817
|
|
14596
14818
|
- func: special_hermite_polynomial_h.x_scalar(Scalar x, Tensor n) -> Tensor
|
14819
|
+
dispatch:
|
14820
|
+
CompositeExplicitAutograd: special_hermite_polynomial_h
|
14597
14821
|
device_check: NoCheck
|
14598
14822
|
python_module: special
|
14599
14823
|
variants: function
|
14600
14824
|
tags: pointwise
|
14601
14825
|
|
14602
14826
|
- func: special_hermite_polynomial_h.n_scalar(Tensor x, Scalar n) -> Tensor
|
14827
|
+
dispatch:
|
14828
|
+
CompositeExplicitAutograd: special_hermite_polynomial_h
|
14603
14829
|
device_check: NoCheck
|
14604
14830
|
python_module: special
|
14605
14831
|
variants: function
|
@@ -14616,6 +14842,8 @@
|
|
14616
14842
|
tags: pointwise
|
14617
14843
|
|
14618
14844
|
- func: special_hermite_polynomial_h.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14845
|
+
dispatch:
|
14846
|
+
CompositeExplicitAutograd: special_hermite_polynomial_h_out
|
14619
14847
|
device_check: NoCheck
|
14620
14848
|
python_module: special
|
14621
14849
|
variants: function
|
@@ -14637,12 +14865,16 @@
|
|
14637
14865
|
tags: pointwise
|
14638
14866
|
|
14639
14867
|
- func: special_hermite_polynomial_he.x_scalar(Scalar x, Tensor n) -> Tensor
|
14868
|
+
dispatch:
|
14869
|
+
CompositeExplicitAutograd: special_hermite_polynomial_he
|
14640
14870
|
device_check: NoCheck
|
14641
14871
|
python_module: special
|
14642
14872
|
variants: function
|
14643
14873
|
tags: pointwise
|
14644
14874
|
|
14645
14875
|
- func: special_hermite_polynomial_he.n_scalar(Tensor x, Scalar n) -> Tensor
|
14876
|
+
dispatch:
|
14877
|
+
CompositeExplicitAutograd: special_hermite_polynomial_he
|
14646
14878
|
device_check: NoCheck
|
14647
14879
|
python_module: special
|
14648
14880
|
variants: function
|
@@ -14659,6 +14891,8 @@
|
|
14659
14891
|
tags: pointwise
|
14660
14892
|
|
14661
14893
|
- func: special_hermite_polynomial_he.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14894
|
+
dispatch:
|
14895
|
+
CompositeExplicitAutograd: special_hermite_polynomial_he_out
|
14662
14896
|
device_check: NoCheck
|
14663
14897
|
python_module: special
|
14664
14898
|
variants: function
|
@@ -14680,12 +14914,16 @@
|
|
14680
14914
|
tags: pointwise
|
14681
14915
|
|
14682
14916
|
- func: special_laguerre_polynomial_l.x_scalar(Scalar x, Tensor n) -> Tensor
|
14917
|
+
dispatch:
|
14918
|
+
CompositeExplicitAutograd: special_laguerre_polynomial_l
|
14683
14919
|
device_check: NoCheck
|
14684
14920
|
python_module: special
|
14685
14921
|
variants: function
|
14686
14922
|
tags: pointwise
|
14687
14923
|
|
14688
14924
|
- func: special_laguerre_polynomial_l.n_scalar(Tensor x, Scalar n) -> Tensor
|
14925
|
+
dispatch:
|
14926
|
+
CompositeExplicitAutograd: special_laguerre_polynomial_l
|
14689
14927
|
device_check: NoCheck
|
14690
14928
|
python_module: special
|
14691
14929
|
variants: function
|
@@ -14702,6 +14940,8 @@
|
|
14702
14940
|
tags: pointwise
|
14703
14941
|
|
14704
14942
|
- func: special_laguerre_polynomial_l.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14943
|
+
dispatch:
|
14944
|
+
CompositeExplicitAutograd: special_laguerre_polynomial_l_out
|
14705
14945
|
device_check: NoCheck
|
14706
14946
|
python_module: special
|
14707
14947
|
variants: function
|
@@ -14723,12 +14963,16 @@
|
|
14723
14963
|
tags: pointwise
|
14724
14964
|
|
14725
14965
|
- func: special_legendre_polynomial_p.x_scalar(Scalar x, Tensor n) -> Tensor
|
14966
|
+
dispatch:
|
14967
|
+
CompositeExplicitAutograd: special_legendre_polynomial_p
|
14726
14968
|
device_check: NoCheck
|
14727
14969
|
python_module: special
|
14728
14970
|
variants: function
|
14729
14971
|
tags: pointwise
|
14730
14972
|
|
14731
14973
|
- func: special_legendre_polynomial_p.n_scalar(Tensor x, Scalar n) -> Tensor
|
14974
|
+
dispatch:
|
14975
|
+
CompositeExplicitAutograd: special_legendre_polynomial_p
|
14732
14976
|
device_check: NoCheck
|
14733
14977
|
python_module: special
|
14734
14978
|
variants: function
|
@@ -14745,6 +14989,8 @@
|
|
14745
14989
|
tags: pointwise
|
14746
14990
|
|
14747
14991
|
- func: special_legendre_polynomial_p.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
14992
|
+
dispatch:
|
14993
|
+
CompositeExplicitAutograd: special_legendre_polynomial_p_out
|
14748
14994
|
device_check: NoCheck
|
14749
14995
|
python_module: special
|
14750
14996
|
variants: function
|
@@ -14856,12 +15102,16 @@
|
|
14856
15102
|
tags: pointwise
|
14857
15103
|
|
14858
15104
|
- func: special_shifted_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor
|
15105
|
+
dispatch:
|
15106
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t
|
14859
15107
|
device_check: NoCheck
|
14860
15108
|
python_module: special
|
14861
15109
|
variants: function
|
14862
15110
|
tags: pointwise
|
14863
15111
|
|
14864
15112
|
- func: special_shifted_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor
|
15113
|
+
dispatch:
|
15114
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t
|
14865
15115
|
device_check: NoCheck
|
14866
15116
|
python_module: special
|
14867
15117
|
variants: function
|
@@ -14878,6 +15128,8 @@
|
|
14878
15128
|
tags: pointwise
|
14879
15129
|
|
14880
15130
|
- func: special_shifted_chebyshev_polynomial_t.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
15131
|
+
dispatch:
|
15132
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_t_out
|
14881
15133
|
device_check: NoCheck
|
14882
15134
|
python_module: special
|
14883
15135
|
variants: function
|
@@ -14899,12 +15151,16 @@
|
|
14899
15151
|
tags: pointwise
|
14900
15152
|
|
14901
15153
|
- func: special_shifted_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor
|
15154
|
+
dispatch:
|
15155
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u
|
14902
15156
|
device_check: NoCheck
|
14903
15157
|
python_module: special
|
14904
15158
|
variants: function
|
14905
15159
|
tags: pointwise
|
14906
15160
|
|
14907
15161
|
- func: special_shifted_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor
|
15162
|
+
dispatch:
|
15163
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u
|
14908
15164
|
device_check: NoCheck
|
14909
15165
|
python_module: special
|
14910
15166
|
variants: function
|
@@ -14921,6 +15177,8 @@
|
|
14921
15177
|
tags: pointwise
|
14922
15178
|
|
14923
15179
|
- func: special_shifted_chebyshev_polynomial_u.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
15180
|
+
dispatch:
|
15181
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_u_out
|
14924
15182
|
device_check: NoCheck
|
14925
15183
|
python_module: special
|
14926
15184
|
variants: function
|
@@ -14942,12 +15200,16 @@
|
|
14942
15200
|
tags: pointwise
|
14943
15201
|
|
14944
15202
|
- func: special_shifted_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor
|
15203
|
+
dispatch:
|
15204
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v
|
14945
15205
|
device_check: NoCheck
|
14946
15206
|
python_module: special
|
14947
15207
|
variants: function
|
14948
15208
|
tags: pointwise
|
14949
15209
|
|
14950
15210
|
- func: special_shifted_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor
|
15211
|
+
dispatch:
|
15212
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v
|
14951
15213
|
device_check: NoCheck
|
14952
15214
|
python_module: special
|
14953
15215
|
variants: function
|
@@ -14964,6 +15226,8 @@
|
|
14964
15226
|
tags: pointwise
|
14965
15227
|
|
14966
15228
|
- func: special_shifted_chebyshev_polynomial_v.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
15229
|
+
dispatch:
|
15230
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_v_out
|
14967
15231
|
device_check: NoCheck
|
14968
15232
|
python_module: special
|
14969
15233
|
variants: function
|
@@ -14985,12 +15249,16 @@
|
|
14985
15249
|
tags: pointwise
|
14986
15250
|
|
14987
15251
|
- func: special_shifted_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor
|
15252
|
+
dispatch:
|
15253
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w
|
14988
15254
|
device_check: NoCheck
|
14989
15255
|
python_module: special
|
14990
15256
|
variants: function
|
14991
15257
|
tags: pointwise
|
14992
15258
|
|
14993
15259
|
- func: special_shifted_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor
|
15260
|
+
dispatch:
|
15261
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w
|
14994
15262
|
device_check: NoCheck
|
14995
15263
|
python_module: special
|
14996
15264
|
variants: function
|
@@ -15007,6 +15275,8 @@
|
|
15007
15275
|
tags: pointwise
|
15008
15276
|
|
15009
15277
|
- func: special_shifted_chebyshev_polynomial_w.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)
|
15278
|
+
dispatch:
|
15279
|
+
CompositeExplicitAutograd: special_shifted_chebyshev_polynomial_w_out
|
15010
15280
|
device_check: NoCheck
|
15011
15281
|
python_module: special
|
15012
15282
|
variants: function
|