torch-rb 0.1.1 → 0.1.6
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +40 -0
- data/LICENSE.txt +46 -22
- data/README.md +73 -9
- data/ext/torch/ext.cpp +148 -315
- data/ext/torch/extconf.rb +6 -0
- data/ext/torch/nn_functions.cpp +615 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +298 -0
- data/ext/torch/tensor_functions.cpp +1920 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +2975 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch.rb +236 -112
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +52 -25
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +109 -0
- data/lib/torch/native/generator.rb +168 -0
- data/lib/torch/native/native_functions.yaml +6837 -0
- data/lib/torch/native/parser.rb +134 -0
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +19 -0
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +9 -0
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/bce_loss.rb +13 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/bilinear.rb +38 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +16 -39
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/cosine_similarity.rb +15 -0
- data/lib/torch/nn/cross_entropy_loss.rb +14 -0
- data/lib/torch/nn/ctc_loss.rb +15 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/embedding_bag.rb +34 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +419 -16
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +14 -0
- data/lib/torch/nn/init.rb +58 -1
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/kl_div_loss.rb +13 -0
- data/lib/torch/nn/l1_loss.rb +13 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/leaky_relu.rb +20 -0
- data/lib/torch/nn/linear.rb +12 -11
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/log_softmax.rb +14 -0
- data/lib/torch/nn/loss.rb +10 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +9 -0
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +19 -0
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +191 -19
- data/lib/torch/nn/mse_loss.rb +2 -2
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/nll_loss.rb +14 -0
- data/lib/torch/nn/pairwise_distance.rb +16 -0
- data/lib/torch/nn/parameter.rb +4 -0
- data/lib/torch/nn/poisson_nll_loss.rb +16 -0
- data/lib/torch/nn/prelu.rb +19 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/relu.rb +8 -3
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +198 -0
- data/lib/torch/nn/sequential.rb +1 -10
- data/lib/torch/nn/sigmoid.rb +9 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/softmax.rb +18 -0
- data/lib/torch/nn/softmax2d.rb +10 -0
- data/lib/torch/nn/softmin.rb +14 -0
- data/lib/torch/nn/softplus.rb +19 -0
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/weighted_loss.rb +10 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +62 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +60 -0
- data/lib/torch/random.rb +10 -0
- data/lib/torch/tensor.rb +90 -30
- data/lib/torch/utils/data/data_loader.rb +15 -0
- data/lib/torch/utils/data/tensor_dataset.rb +8 -1
- data/lib/torch/version.rb +1 -1
- metadata +122 -3
data/ext/torch/extconf.rb
CHANGED
@@ -22,4 +22,10 @@ $LDFLAGS << " -Wl,-rpath,#{lib}"
|
|
22
22
|
$LDFLAGS << " -L#{lib}"
|
23
23
|
$LDFLAGS << " -ltorch -lc10"
|
24
24
|
|
25
|
+
# generate C++ functions
|
26
|
+
puts "Generating C++ functions..."
|
27
|
+
require_relative "../../lib/torch/native/generator"
|
28
|
+
Torch::Native::Generator.generate_cpp_functions
|
29
|
+
|
30
|
+
# create makefile
|
25
31
|
create_makefile("torch/ext")
|
@@ -0,0 +1,615 @@
|
|
1
|
+
// generated by rake generate:functions
|
2
|
+
// do not edit by hand
|
3
|
+
|
4
|
+
#include <torch/torch.h>
|
5
|
+
#include <rice/Module.hpp>
|
6
|
+
#include "templates.hpp"
|
7
|
+
|
8
|
+
void add_nn_functions(Module m) {
|
9
|
+
m
|
10
|
+
.define_singleton_method(
|
11
|
+
"_adaptive_avg_pool2d",
|
12
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
13
|
+
return torch::adaptive_avg_pool2d(self, output_size);
|
14
|
+
})
|
15
|
+
.define_singleton_method(
|
16
|
+
"_adaptive_avg_pool2d_out",
|
17
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
18
|
+
return torch::adaptive_avg_pool2d_out(out, self, output_size);
|
19
|
+
})
|
20
|
+
.define_singleton_method(
|
21
|
+
"_adaptive_avg_pool3d",
|
22
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
23
|
+
return torch::adaptive_avg_pool3d(self, output_size);
|
24
|
+
})
|
25
|
+
.define_singleton_method(
|
26
|
+
"_adaptive_avg_pool3d_out",
|
27
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
28
|
+
return torch::adaptive_avg_pool3d_out(out, self, output_size);
|
29
|
+
})
|
30
|
+
.define_singleton_method(
|
31
|
+
"_adaptive_max_pool2d",
|
32
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
33
|
+
return wrap(torch::adaptive_max_pool2d(self, output_size));
|
34
|
+
})
|
35
|
+
.define_singleton_method(
|
36
|
+
"_adaptive_max_pool2d_out",
|
37
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
|
38
|
+
return wrap(torch::adaptive_max_pool2d_out(out, indices, self, output_size));
|
39
|
+
})
|
40
|
+
.define_singleton_method(
|
41
|
+
"_adaptive_max_pool3d",
|
42
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
43
|
+
return wrap(torch::adaptive_max_pool3d(self, output_size));
|
44
|
+
})
|
45
|
+
.define_singleton_method(
|
46
|
+
"_adaptive_max_pool3d_out",
|
47
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
|
48
|
+
return wrap(torch::adaptive_max_pool3d_out(out, indices, self, output_size));
|
49
|
+
})
|
50
|
+
.define_singleton_method(
|
51
|
+
"_avg_pool2d",
|
52
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
|
53
|
+
return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
|
54
|
+
})
|
55
|
+
.define_singleton_method(
|
56
|
+
"_avg_pool2d_divisor_override",
|
57
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
|
58
|
+
return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
|
59
|
+
})
|
60
|
+
.define_singleton_method(
|
61
|
+
"_avg_pool3d",
|
62
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
|
63
|
+
return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
|
64
|
+
})
|
65
|
+
.define_singleton_method(
|
66
|
+
"_avg_pool3d_divisor_override",
|
67
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
|
68
|
+
return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
|
69
|
+
})
|
70
|
+
.define_singleton_method(
|
71
|
+
"_binary_cross_entropy",
|
72
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction) {
|
73
|
+
return torch::binary_cross_entropy(self, target, weight, reduction);
|
74
|
+
})
|
75
|
+
.define_singleton_method(
|
76
|
+
"_binary_cross_entropy_out",
|
77
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, Tensor &out) {
|
78
|
+
return torch::binary_cross_entropy_out(out, self, target, weight, reduction);
|
79
|
+
})
|
80
|
+
.define_singleton_method(
|
81
|
+
"_col2im",
|
82
|
+
*[](const Tensor &self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
|
83
|
+
return torch::col2im(self, output_size, kernel_size, dilation, padding, stride);
|
84
|
+
})
|
85
|
+
.define_singleton_method(
|
86
|
+
"_col2im_out",
|
87
|
+
*[](const Tensor &self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor &out) {
|
88
|
+
return torch::col2im_out(out, self, output_size, kernel_size, dilation, padding, stride);
|
89
|
+
})
|
90
|
+
.define_singleton_method(
|
91
|
+
"_elu",
|
92
|
+
*[](const Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale) {
|
93
|
+
return torch::elu(self, alpha, scale, input_scale);
|
94
|
+
})
|
95
|
+
.define_singleton_method(
|
96
|
+
"_elu_",
|
97
|
+
*[](Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale) {
|
98
|
+
return torch::elu_(self, alpha, scale, input_scale);
|
99
|
+
})
|
100
|
+
.define_singleton_method(
|
101
|
+
"_elu_out",
|
102
|
+
*[](const Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale, Tensor &out) {
|
103
|
+
return torch::elu_out(out, self, alpha, scale, input_scale);
|
104
|
+
})
|
105
|
+
.define_singleton_method(
|
106
|
+
"_fractional_max_pool2d",
|
107
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
|
108
|
+
return wrap(torch::fractional_max_pool2d(self, kernel_size, output_size, random_samples));
|
109
|
+
})
|
110
|
+
.define_singleton_method(
|
111
|
+
"_fractional_max_pool2d_output",
|
112
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
|
113
|
+
return wrap(torch::fractional_max_pool2d_out(output, indices, self, kernel_size, output_size, random_samples));
|
114
|
+
})
|
115
|
+
.define_singleton_method(
|
116
|
+
"_fractional_max_pool3d",
|
117
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
|
118
|
+
return wrap(torch::fractional_max_pool3d(self, kernel_size, output_size, random_samples));
|
119
|
+
})
|
120
|
+
.define_singleton_method(
|
121
|
+
"_fractional_max_pool3d_output",
|
122
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
|
123
|
+
return wrap(torch::fractional_max_pool3d_out(output, indices, self, kernel_size, output_size, random_samples));
|
124
|
+
})
|
125
|
+
.define_singleton_method(
|
126
|
+
"_gelu",
|
127
|
+
*[](const Tensor &self) {
|
128
|
+
return torch::gelu(self);
|
129
|
+
})
|
130
|
+
.define_singleton_method(
|
131
|
+
"_glu",
|
132
|
+
*[](const Tensor &self, int64_t dim) {
|
133
|
+
return torch::glu(self, dim);
|
134
|
+
})
|
135
|
+
.define_singleton_method(
|
136
|
+
"_glu_out",
|
137
|
+
*[](const Tensor &self, int64_t dim, Tensor &out) {
|
138
|
+
return torch::glu_out(out, self, dim);
|
139
|
+
})
|
140
|
+
.define_singleton_method(
|
141
|
+
"_hardtanh",
|
142
|
+
*[](const Tensor &self, Scalar min_val, Scalar max_val) {
|
143
|
+
return torch::hardtanh(self, min_val, max_val);
|
144
|
+
})
|
145
|
+
.define_singleton_method(
|
146
|
+
"_hardtanh_",
|
147
|
+
*[](Tensor &self, Scalar min_val, Scalar max_val) {
|
148
|
+
return torch::hardtanh_(self, min_val, max_val);
|
149
|
+
})
|
150
|
+
.define_singleton_method(
|
151
|
+
"_hardtanh_out",
|
152
|
+
*[](const Tensor &self, Scalar min_val, Scalar max_val, Tensor &out) {
|
153
|
+
return torch::hardtanh_out(out, self, min_val, max_val);
|
154
|
+
})
|
155
|
+
.define_singleton_method(
|
156
|
+
"_im2col",
|
157
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
|
158
|
+
return torch::im2col(self, kernel_size, dilation, padding, stride);
|
159
|
+
})
|
160
|
+
.define_singleton_method(
|
161
|
+
"_im2col_out",
|
162
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor &out) {
|
163
|
+
return torch::im2col_out(out, self, kernel_size, dilation, padding, stride);
|
164
|
+
})
|
165
|
+
.define_singleton_method(
|
166
|
+
"_l1_loss",
|
167
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
168
|
+
return torch::l1_loss(self, target, reduction);
|
169
|
+
})
|
170
|
+
.define_singleton_method(
|
171
|
+
"_l1_loss_out",
|
172
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
173
|
+
return torch::l1_loss_out(out, self, target, reduction);
|
174
|
+
})
|
175
|
+
.define_singleton_method(
|
176
|
+
"_leaky_relu",
|
177
|
+
*[](const Tensor &self, Scalar negative_slope) {
|
178
|
+
return torch::leaky_relu(self, negative_slope);
|
179
|
+
})
|
180
|
+
.define_singleton_method(
|
181
|
+
"_leaky_relu_",
|
182
|
+
*[](Tensor &self, Scalar negative_slope) {
|
183
|
+
return torch::leaky_relu_(self, negative_slope);
|
184
|
+
})
|
185
|
+
.define_singleton_method(
|
186
|
+
"_leaky_relu_out",
|
187
|
+
*[](const Tensor &self, Scalar negative_slope, Tensor &out) {
|
188
|
+
return torch::leaky_relu_out(out, self, negative_slope);
|
189
|
+
})
|
190
|
+
.define_singleton_method(
|
191
|
+
"_linear",
|
192
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias) {
|
193
|
+
return torch::linear(input, weight, bias);
|
194
|
+
})
|
195
|
+
.define_singleton_method(
|
196
|
+
"_log_sigmoid",
|
197
|
+
*[](const Tensor &self) {
|
198
|
+
return torch::log_sigmoid(self);
|
199
|
+
})
|
200
|
+
.define_singleton_method(
|
201
|
+
"_log_sigmoid_forward",
|
202
|
+
*[](const Tensor &self) {
|
203
|
+
return wrap(torch::log_sigmoid_forward(self));
|
204
|
+
})
|
205
|
+
.define_singleton_method(
|
206
|
+
"_log_sigmoid_forward_output",
|
207
|
+
*[](const Tensor &self, Tensor &output, Tensor &buffer) {
|
208
|
+
return wrap(torch::log_sigmoid_forward_out(output, buffer, self));
|
209
|
+
})
|
210
|
+
.define_singleton_method(
|
211
|
+
"_log_sigmoid_out",
|
212
|
+
*[](const Tensor &self, Tensor &out) {
|
213
|
+
return torch::log_sigmoid_out(out, self);
|
214
|
+
})
|
215
|
+
.define_singleton_method(
|
216
|
+
"_max_pool2d_with_indices",
|
217
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
218
|
+
return wrap(torch::max_pool2d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
|
219
|
+
})
|
220
|
+
.define_singleton_method(
|
221
|
+
"_max_pool2d_with_indices_out",
|
222
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
|
223
|
+
return wrap(torch::max_pool2d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
|
224
|
+
})
|
225
|
+
.define_singleton_method(
|
226
|
+
"_max_pool3d_with_indices",
|
227
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
228
|
+
return wrap(torch::max_pool3d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
|
229
|
+
})
|
230
|
+
.define_singleton_method(
|
231
|
+
"_max_pool3d_with_indices_out",
|
232
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
|
233
|
+
return wrap(torch::max_pool3d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
|
234
|
+
})
|
235
|
+
.define_singleton_method(
|
236
|
+
"_max_unpool2d",
|
237
|
+
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size) {
|
238
|
+
return torch::max_unpool2d(self, indices, output_size);
|
239
|
+
})
|
240
|
+
.define_singleton_method(
|
241
|
+
"_max_unpool2d_out",
|
242
|
+
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, Tensor &out) {
|
243
|
+
return torch::max_unpool2d_out(out, self, indices, output_size);
|
244
|
+
})
|
245
|
+
.define_singleton_method(
|
246
|
+
"_max_unpool3d",
|
247
|
+
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding) {
|
248
|
+
return torch::max_unpool3d(self, indices, output_size, stride, padding);
|
249
|
+
})
|
250
|
+
.define_singleton_method(
|
251
|
+
"_max_unpool3d_out",
|
252
|
+
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
|
253
|
+
return torch::max_unpool3d_out(out, self, indices, output_size, stride, padding);
|
254
|
+
})
|
255
|
+
.define_singleton_method(
|
256
|
+
"_mkldnn_linear",
|
257
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias) {
|
258
|
+
return torch::mkldnn_linear(input, weight, bias);
|
259
|
+
})
|
260
|
+
.define_singleton_method(
|
261
|
+
"_mkldnn_reorder_conv2d_weight",
|
262
|
+
*[](const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups) {
|
263
|
+
return torch::mkldnn_reorder_conv2d_weight(self, padding, stride, dilation, groups);
|
264
|
+
})
|
265
|
+
.define_singleton_method(
|
266
|
+
"_mse_loss",
|
267
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
268
|
+
return torch::mse_loss(self, target, reduction);
|
269
|
+
})
|
270
|
+
.define_singleton_method(
|
271
|
+
"_mse_loss_out",
|
272
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
273
|
+
return torch::mse_loss_out(out, self, target, reduction);
|
274
|
+
})
|
275
|
+
.define_singleton_method(
|
276
|
+
"_multi_margin_loss",
|
277
|
+
*[](const Tensor &self, const Tensor &target, Scalar p, Scalar margin, OptionalTensor weight, MyReduction reduction) {
|
278
|
+
return torch::multi_margin_loss(self, target, p, margin, weight, reduction);
|
279
|
+
})
|
280
|
+
.define_singleton_method(
|
281
|
+
"_multi_margin_loss_out",
|
282
|
+
*[](const Tensor &self, const Tensor &target, Scalar p, Scalar margin, OptionalTensor weight, MyReduction reduction, Tensor &out) {
|
283
|
+
return torch::multi_margin_loss_out(out, self, target, p, margin, weight, reduction);
|
284
|
+
})
|
285
|
+
.define_singleton_method(
|
286
|
+
"_multilabel_margin_loss",
|
287
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
288
|
+
return torch::multilabel_margin_loss(self, target, reduction);
|
289
|
+
})
|
290
|
+
.define_singleton_method(
|
291
|
+
"_multilabel_margin_loss_forward",
|
292
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
293
|
+
return wrap(torch::multilabel_margin_loss_forward(self, target, reduction));
|
294
|
+
})
|
295
|
+
.define_singleton_method(
|
296
|
+
"_multilabel_margin_loss_forward_output",
|
297
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &output, Tensor &is_target) {
|
298
|
+
return wrap(torch::multilabel_margin_loss_forward_out(output, is_target, self, target, reduction));
|
299
|
+
})
|
300
|
+
.define_singleton_method(
|
301
|
+
"_multilabel_margin_loss_out",
|
302
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
303
|
+
return torch::multilabel_margin_loss_out(out, self, target, reduction);
|
304
|
+
})
|
305
|
+
.define_singleton_method(
|
306
|
+
"_nll_loss",
|
307
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
308
|
+
return torch::nll_loss(self, target, weight, reduction, ignore_index);
|
309
|
+
})
|
310
|
+
.define_singleton_method(
|
311
|
+
"_nll_loss2d",
|
312
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
313
|
+
return torch::nll_loss2d(self, target, weight, reduction, ignore_index);
|
314
|
+
})
|
315
|
+
.define_singleton_method(
|
316
|
+
"_nll_loss2d_forward",
|
317
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
318
|
+
return wrap(torch::nll_loss2d_forward(self, target, weight, reduction, ignore_index));
|
319
|
+
})
|
320
|
+
.define_singleton_method(
|
321
|
+
"_nll_loss2d_forward_output",
|
322
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
|
323
|
+
return wrap(torch::nll_loss2d_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
|
324
|
+
})
|
325
|
+
.define_singleton_method(
|
326
|
+
"_nll_loss2d_out",
|
327
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &out) {
|
328
|
+
return torch::nll_loss2d_out(out, self, target, weight, reduction, ignore_index);
|
329
|
+
})
|
330
|
+
.define_singleton_method(
|
331
|
+
"_nll_loss_forward",
|
332
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
333
|
+
return wrap(torch::nll_loss_forward(self, target, weight, reduction, ignore_index));
|
334
|
+
})
|
335
|
+
.define_singleton_method(
|
336
|
+
"_nll_loss_forward_output",
|
337
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
|
338
|
+
return wrap(torch::nll_loss_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
|
339
|
+
})
|
340
|
+
.define_singleton_method(
|
341
|
+
"_nll_loss_out",
|
342
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &out) {
|
343
|
+
return torch::nll_loss_out(out, self, target, weight, reduction, ignore_index);
|
344
|
+
})
|
345
|
+
.define_singleton_method(
|
346
|
+
"_one_hot",
|
347
|
+
*[](const Tensor &self, int64_t num_classes) {
|
348
|
+
return torch::one_hot(self, num_classes);
|
349
|
+
})
|
350
|
+
.define_singleton_method(
|
351
|
+
"_reflection_pad1d",
|
352
|
+
*[](const Tensor &self, IntArrayRef padding) {
|
353
|
+
return torch::reflection_pad1d(self, padding);
|
354
|
+
})
|
355
|
+
.define_singleton_method(
|
356
|
+
"_reflection_pad1d_out",
|
357
|
+
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
358
|
+
return torch::reflection_pad1d_out(out, self, padding);
|
359
|
+
})
|
360
|
+
.define_singleton_method(
|
361
|
+
"_reflection_pad2d",
|
362
|
+
*[](const Tensor &self, IntArrayRef padding) {
|
363
|
+
return torch::reflection_pad2d(self, padding);
|
364
|
+
})
|
365
|
+
.define_singleton_method(
|
366
|
+
"_reflection_pad2d_out",
|
367
|
+
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
368
|
+
return torch::reflection_pad2d_out(out, self, padding);
|
369
|
+
})
|
370
|
+
.define_singleton_method(
|
371
|
+
"_replication_pad1d",
|
372
|
+
*[](const Tensor &self, IntArrayRef padding) {
|
373
|
+
return torch::replication_pad1d(self, padding);
|
374
|
+
})
|
375
|
+
.define_singleton_method(
|
376
|
+
"_replication_pad1d_out",
|
377
|
+
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
378
|
+
return torch::replication_pad1d_out(out, self, padding);
|
379
|
+
})
|
380
|
+
.define_singleton_method(
|
381
|
+
"_replication_pad2d",
|
382
|
+
*[](const Tensor &self, IntArrayRef padding) {
|
383
|
+
return torch::replication_pad2d(self, padding);
|
384
|
+
})
|
385
|
+
.define_singleton_method(
|
386
|
+
"_replication_pad2d_out",
|
387
|
+
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
388
|
+
return torch::replication_pad2d_out(out, self, padding);
|
389
|
+
})
|
390
|
+
.define_singleton_method(
|
391
|
+
"_replication_pad3d",
|
392
|
+
*[](const Tensor &self, IntArrayRef padding) {
|
393
|
+
return torch::replication_pad3d(self, padding);
|
394
|
+
})
|
395
|
+
.define_singleton_method(
|
396
|
+
"_replication_pad3d_out",
|
397
|
+
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
398
|
+
return torch::replication_pad3d_out(out, self, padding);
|
399
|
+
})
|
400
|
+
.define_singleton_method(
|
401
|
+
"_rrelu_with_noise",
|
402
|
+
*[](const Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training) {
|
403
|
+
return torch::rrelu_with_noise(self, noise, lower, upper, training);
|
404
|
+
})
|
405
|
+
.define_singleton_method(
|
406
|
+
"_rrelu_with_noise_",
|
407
|
+
*[](Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training) {
|
408
|
+
return torch::rrelu_with_noise_(self, noise, lower, upper, training);
|
409
|
+
})
|
410
|
+
.define_singleton_method(
|
411
|
+
"_rrelu_with_noise_out",
|
412
|
+
*[](const Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training, Tensor &out) {
|
413
|
+
return torch::rrelu_with_noise_out(out, self, noise, lower, upper, training);
|
414
|
+
})
|
415
|
+
.define_singleton_method(
|
416
|
+
"_slow_conv_dilated2d",
|
417
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
418
|
+
return torch::slow_conv_dilated2d(self, weight, kernel_size, bias, stride, padding, dilation);
|
419
|
+
})
|
420
|
+
.define_singleton_method(
|
421
|
+
"_slow_conv_dilated3d",
|
422
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
423
|
+
return torch::slow_conv_dilated3d(self, weight, kernel_size, bias, stride, padding, dilation);
|
424
|
+
})
|
425
|
+
.define_singleton_method(
|
426
|
+
"_slow_conv_transpose2d",
|
427
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
|
428
|
+
return torch::slow_conv_transpose2d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
429
|
+
})
|
430
|
+
.define_singleton_method(
|
431
|
+
"_slow_conv_transpose2d_out",
|
432
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor &out) {
|
433
|
+
return torch::slow_conv_transpose2d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
434
|
+
})
|
435
|
+
.define_singleton_method(
|
436
|
+
"_slow_conv_transpose3d",
|
437
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
|
438
|
+
return torch::slow_conv_transpose3d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
439
|
+
})
|
440
|
+
.define_singleton_method(
|
441
|
+
"_slow_conv_transpose3d_out",
|
442
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor &out) {
|
443
|
+
return torch::slow_conv_transpose3d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
444
|
+
})
|
445
|
+
.define_singleton_method(
|
446
|
+
"_smooth_l1_loss",
|
447
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
448
|
+
return torch::smooth_l1_loss(self, target, reduction);
|
449
|
+
})
|
450
|
+
.define_singleton_method(
|
451
|
+
"_smooth_l1_loss_out",
|
452
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
453
|
+
return torch::smooth_l1_loss_out(out, self, target, reduction);
|
454
|
+
})
|
455
|
+
.define_singleton_method(
|
456
|
+
"_soft_margin_loss",
|
457
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
458
|
+
return torch::soft_margin_loss(self, target, reduction);
|
459
|
+
})
|
460
|
+
.define_singleton_method(
|
461
|
+
"_soft_margin_loss_out",
|
462
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
463
|
+
return torch::soft_margin_loss_out(out, self, target, reduction);
|
464
|
+
})
|
465
|
+
.define_singleton_method(
|
466
|
+
"_softplus",
|
467
|
+
*[](const Tensor &self, Scalar beta, Scalar threshold) {
|
468
|
+
return torch::softplus(self, beta, threshold);
|
469
|
+
})
|
470
|
+
.define_singleton_method(
|
471
|
+
"_softplus_out",
|
472
|
+
*[](const Tensor &self, Scalar beta, Scalar threshold, Tensor &out) {
|
473
|
+
return torch::softplus_out(out, self, beta, threshold);
|
474
|
+
})
|
475
|
+
.define_singleton_method(
|
476
|
+
"_softshrink",
|
477
|
+
*[](const Tensor &self, Scalar lambd) {
|
478
|
+
return torch::softshrink(self, lambd);
|
479
|
+
})
|
480
|
+
.define_singleton_method(
|
481
|
+
"_softshrink_out",
|
482
|
+
*[](const Tensor &self, Scalar lambd, Tensor &out) {
|
483
|
+
return torch::softshrink_out(out, self, lambd);
|
484
|
+
})
|
485
|
+
.define_singleton_method(
|
486
|
+
"_thnn_conv2d",
|
487
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
488
|
+
return torch::thnn_conv2d(self, weight, kernel_size, bias, stride, padding);
|
489
|
+
})
|
490
|
+
.define_singleton_method(
|
491
|
+
"_thnn_conv2d_forward",
|
492
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
493
|
+
return wrap(torch::thnn_conv2d_forward(self, weight, kernel_size, bias, stride, padding));
|
494
|
+
})
|
495
|
+
.define_singleton_method(
|
496
|
+
"_thnn_conv2d_forward_output",
|
497
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
|
498
|
+
return wrap(torch::thnn_conv2d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
|
499
|
+
})
|
500
|
+
.define_singleton_method(
|
501
|
+
"_thnn_conv2d_out",
|
502
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
|
503
|
+
return torch::thnn_conv2d_out(out, self, weight, kernel_size, bias, stride, padding);
|
504
|
+
})
|
505
|
+
.define_singleton_method(
|
506
|
+
"_thnn_conv3d",
|
507
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
508
|
+
return torch::thnn_conv3d(self, weight, kernel_size, bias, stride, padding);
|
509
|
+
})
|
510
|
+
.define_singleton_method(
|
511
|
+
"_thnn_conv3d_forward",
|
512
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
513
|
+
return wrap(torch::thnn_conv3d_forward(self, weight, kernel_size, bias, stride, padding));
|
514
|
+
})
|
515
|
+
.define_singleton_method(
|
516
|
+
"_thnn_conv3d_forward_output",
|
517
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
|
518
|
+
return wrap(torch::thnn_conv3d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
|
519
|
+
})
|
520
|
+
.define_singleton_method(
|
521
|
+
"_thnn_conv3d_out",
|
522
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
|
523
|
+
return torch::thnn_conv3d_out(out, self, weight, kernel_size, bias, stride, padding);
|
524
|
+
})
|
525
|
+
.define_singleton_method(
|
526
|
+
"_thnn_conv_depthwise2d",
|
527
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
528
|
+
return torch::thnn_conv_depthwise2d(self, weight, kernel_size, bias, stride, padding, dilation);
|
529
|
+
})
|
530
|
+
.define_singleton_method(
|
531
|
+
"_thnn_conv_depthwise2d_forward",
|
532
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
533
|
+
return torch::thnn_conv_depthwise2d_forward(self, weight, kernel_size, bias, stride, padding, dilation);
|
534
|
+
})
|
535
|
+
.define_singleton_method(
|
536
|
+
"_thnn_conv_depthwise2d_forward_out",
|
537
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor &out) {
|
538
|
+
return torch::thnn_conv_depthwise2d_forward_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
|
539
|
+
})
|
540
|
+
.define_singleton_method(
|
541
|
+
"_thnn_conv_depthwise2d_out",
|
542
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor &out) {
|
543
|
+
return torch::thnn_conv_depthwise2d_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
|
544
|
+
})
|
545
|
+
.define_singleton_method(
|
546
|
+
"_upsample_bicubic2d",
|
547
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners) {
|
548
|
+
return torch::upsample_bicubic2d(self, output_size, align_corners);
|
549
|
+
})
|
550
|
+
.define_singleton_method(
|
551
|
+
"_upsample_bicubic2d_out",
|
552
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners, Tensor &out) {
|
553
|
+
return torch::upsample_bicubic2d_out(out, self, output_size, align_corners);
|
554
|
+
})
|
555
|
+
.define_singleton_method(
|
556
|
+
"_upsample_bilinear2d",
|
557
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners) {
|
558
|
+
return torch::upsample_bilinear2d(self, output_size, align_corners);
|
559
|
+
})
|
560
|
+
.define_singleton_method(
|
561
|
+
"_upsample_bilinear2d_out",
|
562
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners, Tensor &out) {
|
563
|
+
return torch::upsample_bilinear2d_out(out, self, output_size, align_corners);
|
564
|
+
})
|
565
|
+
.define_singleton_method(
|
566
|
+
"_upsample_linear1d",
|
567
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners) {
|
568
|
+
return torch::upsample_linear1d(self, output_size, align_corners);
|
569
|
+
})
|
570
|
+
.define_singleton_method(
|
571
|
+
"_upsample_linear1d_out",
|
572
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners, Tensor &out) {
|
573
|
+
return torch::upsample_linear1d_out(out, self, output_size, align_corners);
|
574
|
+
})
|
575
|
+
.define_singleton_method(
|
576
|
+
"_upsample_nearest1d",
|
577
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
578
|
+
return torch::upsample_nearest1d(self, output_size);
|
579
|
+
})
|
580
|
+
.define_singleton_method(
|
581
|
+
"_upsample_nearest1d_out",
|
582
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
583
|
+
return torch::upsample_nearest1d_out(out, self, output_size);
|
584
|
+
})
|
585
|
+
.define_singleton_method(
|
586
|
+
"_upsample_nearest2d",
|
587
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
588
|
+
return torch::upsample_nearest2d(self, output_size);
|
589
|
+
})
|
590
|
+
.define_singleton_method(
|
591
|
+
"_upsample_nearest2d_out",
|
592
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
593
|
+
return torch::upsample_nearest2d_out(out, self, output_size);
|
594
|
+
})
|
595
|
+
.define_singleton_method(
|
596
|
+
"_upsample_nearest3d",
|
597
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
598
|
+
return torch::upsample_nearest3d(self, output_size);
|
599
|
+
})
|
600
|
+
.define_singleton_method(
|
601
|
+
"_upsample_nearest3d_out",
|
602
|
+
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
603
|
+
return torch::upsample_nearest3d_out(out, self, output_size);
|
604
|
+
})
|
605
|
+
.define_singleton_method(
|
606
|
+
"_upsample_trilinear3d",
|
607
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners) {
|
608
|
+
return torch::upsample_trilinear3d(self, output_size, align_corners);
|
609
|
+
})
|
610
|
+
.define_singleton_method(
|
611
|
+
"_upsample_trilinear3d_out",
|
612
|
+
*[](const Tensor &self, IntArrayRef output_size, bool align_corners, Tensor &out) {
|
613
|
+
return torch::upsample_trilinear3d_out(out, self, output_size, align_corners);
|
614
|
+
});
|
615
|
+
}
|