torch-rb 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +363 -0
- data/ext/torch/ext.cpp +546 -0
- data/ext/torch/extconf.rb +22 -0
- data/lib/torch-rb.rb +1 -0
- data/lib/torch.rb +327 -0
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +62 -0
- data/lib/torch/nn/conv2d.rb +50 -0
- data/lib/torch/nn/functional.rb +44 -0
- data/lib/torch/nn/init.rb +30 -0
- data/lib/torch/nn/linear.rb +36 -0
- data/lib/torch/nn/module.rb +56 -0
- data/lib/torch/nn/mse_loss.rb +13 -0
- data/lib/torch/nn/parameter.rb +10 -0
- data/lib/torch/nn/relu.rb +13 -0
- data/lib/torch/nn/sequential.rb +29 -0
- data/lib/torch/tensor.rb +143 -0
- data/lib/torch/utils/data/data_loader.rb +12 -0
- data/lib/torch/utils/data/tensor_dataset.rb +15 -0
- data/lib/torch/version.rb +3 -0
- metadata +149 -0
| @@ -0,0 +1,44 @@ | |
| 1 | 
            +
            module Torch
         | 
| 2 | 
            +
              module NN
         | 
| 3 | 
            +
                class Functional
         | 
| 4 | 
            +
                  class << self
         | 
| 5 | 
            +
                    def relu(input)
         | 
| 6 | 
            +
                      Torch.relu(input)
         | 
| 7 | 
            +
                    end
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                    def conv2d(input, weight, bias)
         | 
| 10 | 
            +
                      Torch.conv2d(input, weight, bias)
         | 
| 11 | 
            +
                    end
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                    def max_pool2d(input, kernel_size)
         | 
| 14 | 
            +
                      kernel_size = [kernel_size, kernel_size] if kernel_size.is_a?(Integer)
         | 
| 15 | 
            +
                      Torch.max_pool2d(input, kernel_size)
         | 
| 16 | 
            +
                    end
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                    def linear(input, weight, bias)
         | 
| 19 | 
            +
                      Torch.linear(input, weight, bias)
         | 
| 20 | 
            +
                    end
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                    def mse_loss(input, target, reduction: "mean")
         | 
| 23 | 
            +
                      Torch.mse_loss(input, target, reduction)
         | 
| 24 | 
            +
                    end
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    def cross_entropy(input, target)
         | 
| 27 | 
            +
                      nll_loss(log_softmax(input, 1), target)
         | 
| 28 | 
            +
                    end
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                    def nll_loss(input, target)
         | 
| 31 | 
            +
                      # TODO fix for non-1d
         | 
| 32 | 
            +
                      Torch.nll_loss(input, target)
         | 
| 33 | 
            +
                    end
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    def log_softmax(input, dim)
         | 
| 36 | 
            +
                      input.log_softmax(dim)
         | 
| 37 | 
            +
                    end
         | 
| 38 | 
            +
                  end
         | 
| 39 | 
            +
                end
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                # shortcut
         | 
| 42 | 
            +
                F = Functional
         | 
| 43 | 
            +
              end
         | 
| 44 | 
            +
            end
         | 
| @@ -0,0 +1,30 @@ | |
| 1 | 
            +
            module Torch
         | 
| 2 | 
            +
              module NN
         | 
| 3 | 
            +
                module Init
         | 
| 4 | 
            +
                  class << self
         | 
| 5 | 
            +
                    def calculate_fan_in_and_fan_out(tensor)
         | 
| 6 | 
            +
                      dimensions = tensor.dim
         | 
| 7 | 
            +
                      if dimensions < 2
         | 
| 8 | 
            +
                        raise Error, "Fan in and fan out can not be computed for tensor with fewer than 2 dimensions"
         | 
| 9 | 
            +
                      end
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                      if dimensions == 2
         | 
| 12 | 
            +
                        fan_in = tensor.size(1)
         | 
| 13 | 
            +
                        fan_out = tensor.size(0)
         | 
| 14 | 
            +
                      else
         | 
| 15 | 
            +
                        num_input_fmaps = tensor.size(1)
         | 
| 16 | 
            +
                        num_output_fmaps = tensor.size(0)
         | 
| 17 | 
            +
                        receptive_field_size = 1
         | 
| 18 | 
            +
                        if tensor.dim > 2
         | 
| 19 | 
            +
                          receptive_field_size = tensor[0][0].numel
         | 
| 20 | 
            +
                        end
         | 
| 21 | 
            +
                        fan_in = num_input_fmaps * receptive_field_size
         | 
| 22 | 
            +
                        fan_out = num_output_fmaps * receptive_field_size
         | 
| 23 | 
            +
                      end
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                      [fan_in, fan_out]
         | 
| 26 | 
            +
                    end
         | 
| 27 | 
            +
                  end
         | 
| 28 | 
            +
                end
         | 
| 29 | 
            +
              end
         | 
| 30 | 
            +
            end
         | 
| @@ -0,0 +1,36 @@ | |
| 1 | 
            +
            module Torch
         | 
| 2 | 
            +
              module NN
         | 
| 3 | 
            +
                class Linear < Module
         | 
| 4 | 
            +
                  attr_reader :bias, :weight
         | 
| 5 | 
            +
             | 
| 6 | 
            +
                  def initialize(in_features, out_features, bias: true)
         | 
| 7 | 
            +
                    @in_features = in_features
         | 
| 8 | 
            +
                    @out_features = out_features
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                    @weight = Parameter.new(Tensor.new(out_features, in_features))
         | 
| 11 | 
            +
                    if bias
         | 
| 12 | 
            +
                      @bias = Parameter.new(Tensor.new(out_features))
         | 
| 13 | 
            +
                    end
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                    reset_parameters
         | 
| 16 | 
            +
                  end
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                  def call(input)
         | 
| 19 | 
            +
                    F.linear(input, @weight, @bias)
         | 
| 20 | 
            +
                  end
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                  def reset_parameters
         | 
| 23 | 
            +
                    Init.kaiming_uniform_(@weight, Math.sqrt(5))
         | 
| 24 | 
            +
                    if @bias
         | 
| 25 | 
            +
                      fan_in, _ = Init.calculate_fan_in_and_fan_out(@weight)
         | 
| 26 | 
            +
                      bound = 1 / Math.sqrt(fan_in)
         | 
| 27 | 
            +
                      Init.uniform_(@bias, -bound, bound)
         | 
| 28 | 
            +
                    end
         | 
| 29 | 
            +
                  end
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                  def inspect
         | 
| 32 | 
            +
                    "Linear(in_features: #{@in_features.inspect}, out_features: #{@out_features.inspect}, bias: #{(!@bias.nil?).inspect})"
         | 
| 33 | 
            +
                  end
         | 
| 34 | 
            +
                end
         | 
| 35 | 
            +
              end
         | 
| 36 | 
            +
            end
         | 
| @@ -0,0 +1,56 @@ | |
| 1 | 
            +
            module Torch
         | 
| 2 | 
            +
              module NN
         | 
| 3 | 
            +
                class Module
         | 
| 4 | 
            +
                  def inspect
         | 
| 5 | 
            +
                    str = String.new
         | 
| 6 | 
            +
                    str << "#{self.class.name}(\n"
         | 
| 7 | 
            +
                    modules.each do |name, mod|
         | 
| 8 | 
            +
                      str << "  (#{name}): #{mod.inspect}\n"
         | 
| 9 | 
            +
                    end
         | 
| 10 | 
            +
                    str << ")"
         | 
| 11 | 
            +
                  end
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                  def call(*input)
         | 
| 14 | 
            +
                    forward(*input)
         | 
| 15 | 
            +
                  end
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                  def parameters
         | 
| 18 | 
            +
                    params = []
         | 
| 19 | 
            +
                    instance_variables.each do |name|
         | 
| 20 | 
            +
                      param = instance_variable_get(name)
         | 
| 21 | 
            +
                      params << param if param.is_a?(Parameter)
         | 
| 22 | 
            +
                    end
         | 
| 23 | 
            +
                    params + modules.flat_map { |_, mod| mod.parameters }
         | 
| 24 | 
            +
                  end
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                  def zero_grad
         | 
| 27 | 
            +
                    parameters.each do |param|
         | 
| 28 | 
            +
                      if param.grad
         | 
| 29 | 
            +
                        raise Error, "Not supported yet"
         | 
| 30 | 
            +
                        param.grad.detach!
         | 
| 31 | 
            +
                        param.grad.zero!
         | 
| 32 | 
            +
                      end
         | 
| 33 | 
            +
                    end
         | 
| 34 | 
            +
                  end
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                  def method_missing(method, *args, &block)
         | 
| 37 | 
            +
                    modules[method.to_s] || super
         | 
| 38 | 
            +
                  end
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                  def respond_to?(method, include_private = false)
         | 
| 41 | 
            +
                    modules.key?(method.to_s) || super
         | 
| 42 | 
            +
                  end
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                  private
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                  def modules
         | 
| 47 | 
            +
                    modules = {}
         | 
| 48 | 
            +
                    instance_variables.each do |name|
         | 
| 49 | 
            +
                      mod = instance_variable_get(name)
         | 
| 50 | 
            +
                      modules[name[1..-1]] = mod if mod.is_a?(Module)
         | 
| 51 | 
            +
                    end
         | 
| 52 | 
            +
                    modules
         | 
| 53 | 
            +
                  end
         | 
| 54 | 
            +
                end
         | 
| 55 | 
            +
              end
         | 
| 56 | 
            +
            end
         | 
| @@ -0,0 +1,29 @@ | |
| 1 | 
            +
            module Torch
         | 
| 2 | 
            +
              module NN
         | 
| 3 | 
            +
                class Sequential < Module
         | 
| 4 | 
            +
                  def initialize(*args)
         | 
| 5 | 
            +
                    @modules = {}
         | 
| 6 | 
            +
                    # TODO support hash arg (named modules)
         | 
| 7 | 
            +
                    args.each_with_index do |mod, idx|
         | 
| 8 | 
            +
                      add_module(idx.to_s, mod)
         | 
| 9 | 
            +
                    end
         | 
| 10 | 
            +
                  end
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                  def add_module(name, mod)
         | 
| 13 | 
            +
                    # TODO add checks
         | 
| 14 | 
            +
                    @modules[name] = mod
         | 
| 15 | 
            +
                  end
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                  def forward(input)
         | 
| 18 | 
            +
                    @modules.values.each do |mod|
         | 
| 19 | 
            +
                      input = mod.call(input)
         | 
| 20 | 
            +
                    end
         | 
| 21 | 
            +
                    input
         | 
| 22 | 
            +
                  end
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                  def parameters
         | 
| 25 | 
            +
                    @modules.flat_map { |_, mod| mod.parameters }
         | 
| 26 | 
            +
                  end
         | 
| 27 | 
            +
                end
         | 
| 28 | 
            +
              end
         | 
| 29 | 
            +
            end
         | 
    
        data/lib/torch/tensor.rb
    ADDED
    
    | @@ -0,0 +1,143 @@ | |
| 1 | 
            +
            module Torch
         | 
| 2 | 
            +
              class Tensor
         | 
| 3 | 
            +
                include Comparable
         | 
| 4 | 
            +
                include Inspector
         | 
| 5 | 
            +
             | 
| 6 | 
            +
                alias_method :requires_grad?, :requires_grad
         | 
| 7 | 
            +
             | 
| 8 | 
            +
                def self.new(*size)
         | 
| 9 | 
            +
                  if size.first.is_a?(Tensor)
         | 
| 10 | 
            +
                    size.first
         | 
| 11 | 
            +
                  else
         | 
| 12 | 
            +
                    Torch.rand(*size)
         | 
| 13 | 
            +
                  end
         | 
| 14 | 
            +
                end
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                def dtype
         | 
| 17 | 
            +
                  dtype = ENUM_TO_DTYPE[_dtype]
         | 
| 18 | 
            +
                  raise Error, "Unknown type: #{_dtype}" unless dtype
         | 
| 19 | 
            +
                  dtype
         | 
| 20 | 
            +
                end
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                def layout
         | 
| 23 | 
            +
                  _layout.downcase.to_sym
         | 
| 24 | 
            +
                end
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                def to_s
         | 
| 27 | 
            +
                  inspect
         | 
| 28 | 
            +
                end
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def to_a
         | 
| 31 | 
            +
                  reshape(_data, shape)
         | 
| 32 | 
            +
                end
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                def size(dim = nil)
         | 
| 35 | 
            +
                  if dim
         | 
| 36 | 
            +
                    _size(dim)
         | 
| 37 | 
            +
                  else
         | 
| 38 | 
            +
                    shape
         | 
| 39 | 
            +
                  end
         | 
| 40 | 
            +
                end
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                def shape
         | 
| 43 | 
            +
                  dim.times.map { |i| size(i) }
         | 
| 44 | 
            +
                end
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                def view(*size)
         | 
| 47 | 
            +
                  _view(size)
         | 
| 48 | 
            +
                end
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def item
         | 
| 51 | 
            +
                  if numel != 1
         | 
| 52 | 
            +
                    raise Error, "only one element tensors can be converted to Ruby scalars"
         | 
| 53 | 
            +
                  end
         | 
| 54 | 
            +
                  _data.first
         | 
| 55 | 
            +
                end
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def data
         | 
| 58 | 
            +
                  Torch.tensor(to_a)
         | 
| 59 | 
            +
                end
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                # TODO read directly from memory
         | 
| 62 | 
            +
                def numo
         | 
| 63 | 
            +
                  raise Error, "Numo not found" unless defined?(Numo::NArray)
         | 
| 64 | 
            +
                  cls = Torch._dtype_to_numo[dtype]
         | 
| 65 | 
            +
                  raise Error, "Cannot convert #{dtype} to Numo" unless cls
         | 
| 66 | 
            +
                  cls.cast(_data).reshape(*shape)
         | 
| 67 | 
            +
                end
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                def new_ones(*size, **options)
         | 
| 70 | 
            +
                  Torch.ones_like(Torch.empty(*size), **options)
         | 
| 71 | 
            +
                end
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                def requires_grad!(requires_grad = true)
         | 
| 74 | 
            +
                  _requires_grad!(requires_grad)
         | 
| 75 | 
            +
                end
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                # operations
         | 
| 78 | 
            +
                %w(add sub mul div remainder pow neg sum mean num norm min max dot matmul exp log unsqueeze).each do |op|
         | 
| 79 | 
            +
                  define_method(op) do |*args, **options, &block|
         | 
| 80 | 
            +
                    if options.any?
         | 
| 81 | 
            +
                      Torch.send(op, self, *args, **options, &block)
         | 
| 82 | 
            +
                    else
         | 
| 83 | 
            +
                      Torch.send(op, self, *args, &block)
         | 
| 84 | 
            +
                    end
         | 
| 85 | 
            +
                  end
         | 
| 86 | 
            +
                end
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def +(other)
         | 
| 89 | 
            +
                  add(other)
         | 
| 90 | 
            +
                end
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                def -(other)
         | 
| 93 | 
            +
                  sub(other)
         | 
| 94 | 
            +
                end
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                def *(other)
         | 
| 97 | 
            +
                  mul(other)
         | 
| 98 | 
            +
                end
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def /(other)
         | 
| 101 | 
            +
                  div(other)
         | 
| 102 | 
            +
                end
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                def %(other)
         | 
| 105 | 
            +
                  remainder(other)
         | 
| 106 | 
            +
                end
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                def **(other)
         | 
| 109 | 
            +
                  pow(other)
         | 
| 110 | 
            +
                end
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                def -@
         | 
| 113 | 
            +
                  neg
         | 
| 114 | 
            +
                end
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def <=>(other)
         | 
| 117 | 
            +
                  item <=> other
         | 
| 118 | 
            +
                end
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                # TODO use accessor C++ method
         | 
| 121 | 
            +
                def [](index, *args)
         | 
| 122 | 
            +
                  v = _access(index)
         | 
| 123 | 
            +
                  args.each do |i|
         | 
| 124 | 
            +
                    v = v._access(i)
         | 
| 125 | 
            +
                  end
         | 
| 126 | 
            +
                  v
         | 
| 127 | 
            +
                end
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                private
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def reshape(arr, dims)
         | 
| 132 | 
            +
                  if dims.empty?
         | 
| 133 | 
            +
                    arr
         | 
| 134 | 
            +
                  else
         | 
| 135 | 
            +
                    arr = arr.flatten
         | 
| 136 | 
            +
                    dims[1..-1].reverse.each do |dim|
         | 
| 137 | 
            +
                      arr = arr.each_slice(dim)
         | 
| 138 | 
            +
                    end
         | 
| 139 | 
            +
                    arr.to_a
         | 
| 140 | 
            +
                  end
         | 
| 141 | 
            +
                end
         | 
| 142 | 
            +
              end
         | 
| 143 | 
            +
            end
         | 
    
        metadata
    ADDED
    
    | @@ -0,0 +1,149 @@ | |
| 1 | 
            +
            --- !ruby/object:Gem::Specification
         | 
| 2 | 
            +
            name: torch-rb
         | 
| 3 | 
            +
            version: !ruby/object:Gem::Version
         | 
| 4 | 
            +
              version: 0.1.0
         | 
| 5 | 
            +
            platform: ruby
         | 
| 6 | 
            +
            authors:
         | 
| 7 | 
            +
            - Andrew Kane
         | 
| 8 | 
            +
            autorequire: 
         | 
| 9 | 
            +
            bindir: bin
         | 
| 10 | 
            +
            cert_chain: []
         | 
| 11 | 
            +
            date: 2019-11-26 00:00:00.000000000 Z
         | 
| 12 | 
            +
            dependencies:
         | 
| 13 | 
            +
            - !ruby/object:Gem::Dependency
         | 
| 14 | 
            +
              name: rice
         | 
| 15 | 
            +
              requirement: !ruby/object:Gem::Requirement
         | 
| 16 | 
            +
                requirements:
         | 
| 17 | 
            +
                - - ">="
         | 
| 18 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 19 | 
            +
                    version: '0'
         | 
| 20 | 
            +
              type: :runtime
         | 
| 21 | 
            +
              prerelease: false
         | 
| 22 | 
            +
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 23 | 
            +
                requirements:
         | 
| 24 | 
            +
                - - ">="
         | 
| 25 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 26 | 
            +
                    version: '0'
         | 
| 27 | 
            +
            - !ruby/object:Gem::Dependency
         | 
| 28 | 
            +
              name: bundler
         | 
| 29 | 
            +
              requirement: !ruby/object:Gem::Requirement
         | 
| 30 | 
            +
                requirements:
         | 
| 31 | 
            +
                - - ">="
         | 
| 32 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 33 | 
            +
                    version: '0'
         | 
| 34 | 
            +
              type: :development
         | 
| 35 | 
            +
              prerelease: false
         | 
| 36 | 
            +
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 37 | 
            +
                requirements:
         | 
| 38 | 
            +
                - - ">="
         | 
| 39 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 40 | 
            +
                    version: '0'
         | 
| 41 | 
            +
            - !ruby/object:Gem::Dependency
         | 
| 42 | 
            +
              name: rake
         | 
| 43 | 
            +
              requirement: !ruby/object:Gem::Requirement
         | 
| 44 | 
            +
                requirements:
         | 
| 45 | 
            +
                - - ">="
         | 
| 46 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 47 | 
            +
                    version: '0'
         | 
| 48 | 
            +
              type: :development
         | 
| 49 | 
            +
              prerelease: false
         | 
| 50 | 
            +
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 51 | 
            +
                requirements:
         | 
| 52 | 
            +
                - - ">="
         | 
| 53 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 54 | 
            +
                    version: '0'
         | 
| 55 | 
            +
            - !ruby/object:Gem::Dependency
         | 
| 56 | 
            +
              name: rake-compiler
         | 
| 57 | 
            +
              requirement: !ruby/object:Gem::Requirement
         | 
| 58 | 
            +
                requirements:
         | 
| 59 | 
            +
                - - ">="
         | 
| 60 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 61 | 
            +
                    version: '0'
         | 
| 62 | 
            +
              type: :development
         | 
| 63 | 
            +
              prerelease: false
         | 
| 64 | 
            +
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 65 | 
            +
                requirements:
         | 
| 66 | 
            +
                - - ">="
         | 
| 67 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 68 | 
            +
                    version: '0'
         | 
| 69 | 
            +
            - !ruby/object:Gem::Dependency
         | 
| 70 | 
            +
              name: minitest
         | 
| 71 | 
            +
              requirement: !ruby/object:Gem::Requirement
         | 
| 72 | 
            +
                requirements:
         | 
| 73 | 
            +
                - - ">="
         | 
| 74 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 75 | 
            +
                    version: '5'
         | 
| 76 | 
            +
              type: :development
         | 
| 77 | 
            +
              prerelease: false
         | 
| 78 | 
            +
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 79 | 
            +
                requirements:
         | 
| 80 | 
            +
                - - ">="
         | 
| 81 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 82 | 
            +
                    version: '5'
         | 
| 83 | 
            +
            - !ruby/object:Gem::Dependency
         | 
| 84 | 
            +
              name: numo-narray
         | 
| 85 | 
            +
              requirement: !ruby/object:Gem::Requirement
         | 
| 86 | 
            +
                requirements:
         | 
| 87 | 
            +
                - - ">="
         | 
| 88 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 89 | 
            +
                    version: '0'
         | 
| 90 | 
            +
              type: :development
         | 
| 91 | 
            +
              prerelease: false
         | 
| 92 | 
            +
              version_requirements: !ruby/object:Gem::Requirement
         | 
| 93 | 
            +
                requirements:
         | 
| 94 | 
            +
                - - ">="
         | 
| 95 | 
            +
                  - !ruby/object:Gem::Version
         | 
| 96 | 
            +
                    version: '0'
         | 
| 97 | 
            +
            description: 
         | 
| 98 | 
            +
            email: andrew@chartkick.com
         | 
| 99 | 
            +
            executables: []
         | 
| 100 | 
            +
            extensions:
         | 
| 101 | 
            +
            - ext/torch/extconf.rb
         | 
| 102 | 
            +
            extra_rdoc_files: []
         | 
| 103 | 
            +
            files:
         | 
| 104 | 
            +
            - CHANGELOG.md
         | 
| 105 | 
            +
            - LICENSE.txt
         | 
| 106 | 
            +
            - README.md
         | 
| 107 | 
            +
            - ext/torch/ext.cpp
         | 
| 108 | 
            +
            - ext/torch/extconf.rb
         | 
| 109 | 
            +
            - lib/torch-rb.rb
         | 
| 110 | 
            +
            - lib/torch.rb
         | 
| 111 | 
            +
            - lib/torch/ext.bundle
         | 
| 112 | 
            +
            - lib/torch/inspector.rb
         | 
| 113 | 
            +
            - lib/torch/nn/conv2d.rb
         | 
| 114 | 
            +
            - lib/torch/nn/functional.rb
         | 
| 115 | 
            +
            - lib/torch/nn/init.rb
         | 
| 116 | 
            +
            - lib/torch/nn/linear.rb
         | 
| 117 | 
            +
            - lib/torch/nn/module.rb
         | 
| 118 | 
            +
            - lib/torch/nn/mse_loss.rb
         | 
| 119 | 
            +
            - lib/torch/nn/parameter.rb
         | 
| 120 | 
            +
            - lib/torch/nn/relu.rb
         | 
| 121 | 
            +
            - lib/torch/nn/sequential.rb
         | 
| 122 | 
            +
            - lib/torch/tensor.rb
         | 
| 123 | 
            +
            - lib/torch/utils/data/data_loader.rb
         | 
| 124 | 
            +
            - lib/torch/utils/data/tensor_dataset.rb
         | 
| 125 | 
            +
            - lib/torch/version.rb
         | 
| 126 | 
            +
            homepage: https://github.com/ankane/torch-rb
         | 
| 127 | 
            +
            licenses:
         | 
| 128 | 
            +
            - MIT
         | 
| 129 | 
            +
            metadata: {}
         | 
| 130 | 
            +
            post_install_message: 
         | 
| 131 | 
            +
            rdoc_options: []
         | 
| 132 | 
            +
            require_paths:
         | 
| 133 | 
            +
            - lib
         | 
| 134 | 
            +
            required_ruby_version: !ruby/object:Gem::Requirement
         | 
| 135 | 
            +
              requirements:
         | 
| 136 | 
            +
              - - ">="
         | 
| 137 | 
            +
                - !ruby/object:Gem::Version
         | 
| 138 | 
            +
                  version: '2.4'
         | 
| 139 | 
            +
            required_rubygems_version: !ruby/object:Gem::Requirement
         | 
| 140 | 
            +
              requirements:
         | 
| 141 | 
            +
              - - ">="
         | 
| 142 | 
            +
                - !ruby/object:Gem::Version
         | 
| 143 | 
            +
                  version: '0'
         | 
| 144 | 
            +
            requirements: []
         | 
| 145 | 
            +
            rubygems_version: 3.0.3
         | 
| 146 | 
            +
            signing_key: 
         | 
| 147 | 
            +
            specification_version: 4
         | 
| 148 | 
            +
            summary: Deep learning for Ruby, powered by LibTorch
         | 
| 149 | 
            +
            test_files: []
         |