topical 0.0.1.pre.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.rspec +3 -0
- data/.standard.yml +3 -0
- data/CODE_OF_CONDUCT.md +132 -0
- data/LICENSE.txt +21 -0
- data/README.md +252 -0
- data/Rakefile +10 -0
- data/examples/quick_demo.rb +118 -0
- data/examples/verify_migration.rb +108 -0
- data/lib/topical/clustering/adapter.rb +30 -0
- data/lib/topical/clustering/hdbscan_adapter.rb +54 -0
- data/lib/topical/clustering/kmeans_adapter.rb +44 -0
- data/lib/topical/engine.rb +310 -0
- data/lib/topical/extractors/term_extractor.rb +98 -0
- data/lib/topical/labelers/base.rb +23 -0
- data/lib/topical/labelers/hybrid.rb +24 -0
- data/lib/topical/labelers/llm_adapter.rb +126 -0
- data/lib/topical/labelers/llm_based.rb +111 -0
- data/lib/topical/labelers/term_based.rb +22 -0
- data/lib/topical/metrics.rb +188 -0
- data/lib/topical/topic.rb +114 -0
- data/lib/topical/version.rb +5 -0
- data/lib/topical.rb +55 -0
- data/sig/topical.rbs +4 -0
- metadata +142 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: '0559da99a2324dc6a4716e075d1222dfb9049f188e224f0976349aa6cdce5002'
|
4
|
+
data.tar.gz: 03b340c866055159801e476d61866b0b13856966f34b0c0904a49a299fce7ba7
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 535427f8e78814474292ad924dfd367bebc0bf3b796e010e407e8432d1aade54db55599b613255002db0eebfacf6939785699db344cd7d4d19be8eaeb744e804
|
7
|
+
data.tar.gz: 4390654a5a9c7375e10b0174e2a67b4a2e5df7a69176f0761e9a4c4005cdd5b53736d2639a74a1943dc408b2677e2cdf57e1c51a0fcd1886bce8a3db1c83fa27
|
data/.rspec
ADDED
data/.standard.yml
ADDED
data/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,132 @@
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
2
|
+
|
3
|
+
## Our Pledge
|
4
|
+
|
5
|
+
We as members, contributors, and leaders pledge to make participation in our
|
6
|
+
community a harassment-free experience for everyone, regardless of age, body
|
7
|
+
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
8
|
+
identity and expression, level of experience, education, socio-economic status,
|
9
|
+
nationality, personal appearance, race, caste, color, religion, or sexual
|
10
|
+
identity and orientation.
|
11
|
+
|
12
|
+
We pledge to act and interact in ways that contribute to an open, welcoming,
|
13
|
+
diverse, inclusive, and healthy community.
|
14
|
+
|
15
|
+
## Our Standards
|
16
|
+
|
17
|
+
Examples of behavior that contributes to a positive environment for our
|
18
|
+
community include:
|
19
|
+
|
20
|
+
* Demonstrating empathy and kindness toward other people
|
21
|
+
* Being respectful of differing opinions, viewpoints, and experiences
|
22
|
+
* Giving and gracefully accepting constructive feedback
|
23
|
+
* Accepting responsibility and apologizing to those affected by our mistakes,
|
24
|
+
and learning from the experience
|
25
|
+
* Focusing on what is best not just for us as individuals, but for the overall
|
26
|
+
community
|
27
|
+
|
28
|
+
Examples of unacceptable behavior include:
|
29
|
+
|
30
|
+
* The use of sexualized language or imagery, and sexual attention or advances of
|
31
|
+
any kind
|
32
|
+
* Trolling, insulting or derogatory comments, and personal or political attacks
|
33
|
+
* Public or private harassment
|
34
|
+
* Publishing others' private information, such as a physical or email address,
|
35
|
+
without their explicit permission
|
36
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
37
|
+
professional setting
|
38
|
+
|
39
|
+
## Enforcement Responsibilities
|
40
|
+
|
41
|
+
Community leaders are responsible for clarifying and enforcing our standards of
|
42
|
+
acceptable behavior and will take appropriate and fair corrective action in
|
43
|
+
response to any behavior that they deem inappropriate, threatening, offensive,
|
44
|
+
or harmful.
|
45
|
+
|
46
|
+
Community leaders have the right and responsibility to remove, edit, or reject
|
47
|
+
comments, commits, code, wiki edits, issues, and other contributions that are
|
48
|
+
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
49
|
+
decisions when appropriate.
|
50
|
+
|
51
|
+
## Scope
|
52
|
+
|
53
|
+
This Code of Conduct applies within all community spaces, and also applies when
|
54
|
+
an individual is officially representing the community in public spaces.
|
55
|
+
Examples of representing our community include using an official email address,
|
56
|
+
posting via an official social media account, or acting as an appointed
|
57
|
+
representative at an online or offline event.
|
58
|
+
|
59
|
+
## Enforcement
|
60
|
+
|
61
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
62
|
+
reported to the community leaders responsible for enforcement at
|
63
|
+
[INSERT CONTACT METHOD].
|
64
|
+
All complaints will be reviewed and investigated promptly and fairly.
|
65
|
+
|
66
|
+
All community leaders are obligated to respect the privacy and security of the
|
67
|
+
reporter of any incident.
|
68
|
+
|
69
|
+
## Enforcement Guidelines
|
70
|
+
|
71
|
+
Community leaders will follow these Community Impact Guidelines in determining
|
72
|
+
the consequences for any action they deem in violation of this Code of Conduct:
|
73
|
+
|
74
|
+
### 1. Correction
|
75
|
+
|
76
|
+
**Community Impact**: Use of inappropriate language or other behavior deemed
|
77
|
+
unprofessional or unwelcome in the community.
|
78
|
+
|
79
|
+
**Consequence**: A private, written warning from community leaders, providing
|
80
|
+
clarity around the nature of the violation and an explanation of why the
|
81
|
+
behavior was inappropriate. A public apology may be requested.
|
82
|
+
|
83
|
+
### 2. Warning
|
84
|
+
|
85
|
+
**Community Impact**: A violation through a single incident or series of
|
86
|
+
actions.
|
87
|
+
|
88
|
+
**Consequence**: A warning with consequences for continued behavior. No
|
89
|
+
interaction with the people involved, including unsolicited interaction with
|
90
|
+
those enforcing the Code of Conduct, for a specified period of time. This
|
91
|
+
includes avoiding interactions in community spaces as well as external channels
|
92
|
+
like social media. Violating these terms may lead to a temporary or permanent
|
93
|
+
ban.
|
94
|
+
|
95
|
+
### 3. Temporary Ban
|
96
|
+
|
97
|
+
**Community Impact**: A serious violation of community standards, including
|
98
|
+
sustained inappropriate behavior.
|
99
|
+
|
100
|
+
**Consequence**: A temporary ban from any sort of interaction or public
|
101
|
+
communication with the community for a specified period of time. No public or
|
102
|
+
private interaction with the people involved, including unsolicited interaction
|
103
|
+
with those enforcing the Code of Conduct, is allowed during this period.
|
104
|
+
Violating these terms may lead to a permanent ban.
|
105
|
+
|
106
|
+
### 4. Permanent Ban
|
107
|
+
|
108
|
+
**Community Impact**: Demonstrating a pattern of violation of community
|
109
|
+
standards, including sustained inappropriate behavior, harassment of an
|
110
|
+
individual, or aggression toward or disparagement of classes of individuals.
|
111
|
+
|
112
|
+
**Consequence**: A permanent ban from any sort of public interaction within the
|
113
|
+
community.
|
114
|
+
|
115
|
+
## Attribution
|
116
|
+
|
117
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
118
|
+
version 2.1, available at
|
119
|
+
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
120
|
+
|
121
|
+
Community Impact Guidelines were inspired by
|
122
|
+
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
123
|
+
|
124
|
+
For answers to common questions about this code of conduct, see the FAQ at
|
125
|
+
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
126
|
+
[https://www.contributor-covenant.org/translations][translations].
|
127
|
+
|
128
|
+
[homepage]: https://www.contributor-covenant.org
|
129
|
+
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
130
|
+
[Mozilla CoC]: https://github.com/mozilla/diversity
|
131
|
+
[FAQ]: https://www.contributor-covenant.org/faq
|
132
|
+
[translations]: https://www.contributor-covenant.org/translations
|
data/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2025 Chris Petersen
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,252 @@
|
|
1
|
+
# Topical
|
2
|
+
|
3
|
+
Topic modeling for Ruby using modern clustering algorithms. Extract meaningful topics from document embeddings using HDBSCAN clustering and c-TF-IDF term extraction.
|
4
|
+
|
5
|
+
## Quick Start
|
6
|
+
|
7
|
+
```bash
|
8
|
+
# Install the gem
|
9
|
+
gem install topical
|
10
|
+
|
11
|
+
# Try it out immediately in IRB
|
12
|
+
irb
|
13
|
+
```
|
14
|
+
|
15
|
+
```ruby
|
16
|
+
require 'topical'
|
17
|
+
|
18
|
+
# Create some sample documents
|
19
|
+
documents = [
|
20
|
+
"Ruby is a dynamic programming language with elegant syntax",
|
21
|
+
"Rails is a web framework written in Ruby for building web applications",
|
22
|
+
"Python is great for machine learning and data science applications",
|
23
|
+
"TensorFlow and PyTorch are popular machine learning frameworks in Python",
|
24
|
+
"JavaScript runs in browsers and Node.js for full-stack development",
|
25
|
+
"React and Vue are modern JavaScript frameworks for building UIs",
|
26
|
+
"Machine learning models need training data and validation sets",
|
27
|
+
"Deep learning uses neural networks with multiple layers",
|
28
|
+
"Web development involves HTML, CSS, and JavaScript",
|
29
|
+
"Backend development often uses databases and APIs"
|
30
|
+
]
|
31
|
+
|
32
|
+
# Create simple mock embeddings (in practice, use real embeddings from red-candle or other embedding models)
|
33
|
+
# Here we create 3 distinct clusters based on keywords
|
34
|
+
embeddings = documents.map do |doc|
|
35
|
+
text = doc.downcase
|
36
|
+
[
|
37
|
+
text.include?("ruby") || text.include?("rails") ? 1.0 : 0.0, # Ruby cluster
|
38
|
+
text.include?("python") || text.include?("machine") || text.include?("learning") ? 1.0 : 0.0, # ML cluster
|
39
|
+
text.include?("javascript") || text.include?("web") || text.include?("css") ? 1.0 : 0.0, # Web cluster
|
40
|
+
rand(-0.1..0.1) # Small random noise
|
41
|
+
]
|
42
|
+
end
|
43
|
+
|
44
|
+
# Extract topics
|
45
|
+
topics = Topical.extract(
|
46
|
+
embeddings: embeddings,
|
47
|
+
documents: documents,
|
48
|
+
clustering_method: :kmeans,
|
49
|
+
k: 3
|
50
|
+
)
|
51
|
+
|
52
|
+
# Display results
|
53
|
+
topics.each do |topic|
|
54
|
+
puts "\n📌 #{topic.label}"
|
55
|
+
puts " Documents: #{topic.size}"
|
56
|
+
puts " Key terms: #{topic.terms.first(5).join(', ')}"
|
57
|
+
puts " Sample: \"#{topic.documents.first[0..80]}...\""
|
58
|
+
end
|
59
|
+
```
|
60
|
+
|
61
|
+
## Installation
|
62
|
+
|
63
|
+
Add this line to your application's Gemfile:
|
64
|
+
|
65
|
+
```ruby
|
66
|
+
gem 'topical'
|
67
|
+
|
68
|
+
# Optional but recommended: for generating real embeddings
|
69
|
+
gem 'red-candle'
|
70
|
+
```
|
71
|
+
|
72
|
+
And then execute:
|
73
|
+
|
74
|
+
$ bundle install
|
75
|
+
|
76
|
+
Or install it yourself as:
|
77
|
+
|
78
|
+
$ gem install topical
|
79
|
+
|
80
|
+
## Real-World Usage with Embeddings
|
81
|
+
|
82
|
+
### Using with red-candle (recommended)
|
83
|
+
|
84
|
+
```ruby
|
85
|
+
require 'topical'
|
86
|
+
require 'red-candle'
|
87
|
+
|
88
|
+
# Initialize embedding model
|
89
|
+
embedder = RedCandle::Embedding.new("sentence-transformers/all-MiniLM-L6-v2")
|
90
|
+
|
91
|
+
# Your documents
|
92
|
+
documents = [
|
93
|
+
"The Federal Reserve raised interest rates to combat inflation",
|
94
|
+
"Stock markets rallied on positive earnings reports",
|
95
|
+
"New AI breakthrough in natural language processing",
|
96
|
+
"Machine learning transforms healthcare diagnostics",
|
97
|
+
# ... more documents
|
98
|
+
]
|
99
|
+
|
100
|
+
# Generate embeddings
|
101
|
+
embeddings = documents.map { |doc| embedder.embed(doc) }
|
102
|
+
|
103
|
+
# Extract topics with HDBSCAN clustering
|
104
|
+
engine = Topical::Engine.new(
|
105
|
+
clustering_method: :hdbscan,
|
106
|
+
min_cluster_size: 5,
|
107
|
+
verbose: true
|
108
|
+
)
|
109
|
+
|
110
|
+
topics = engine.fit(embeddings, documents)
|
111
|
+
|
112
|
+
# Analyze results
|
113
|
+
topics.each do |topic|
|
114
|
+
puts "\nTopic: #{topic.label}"
|
115
|
+
puts "Size: #{topic.size} documents"
|
116
|
+
puts "Coherence: #{topic.coherence.round(3)}"
|
117
|
+
puts "Top terms: #{topic.terms.first(10).join(', ')}"
|
118
|
+
puts "\nRepresentative documents:"
|
119
|
+
topic.representative_docs(k: 3).each { |doc| puts " - #{doc[0..100]}..." }
|
120
|
+
end
|
121
|
+
|
122
|
+
# Check for outliers
|
123
|
+
outliers = engine.outliers
|
124
|
+
puts "\nOutliers: #{outliers.length} documents"
|
125
|
+
```
|
126
|
+
|
127
|
+
### Advanced Configuration
|
128
|
+
|
129
|
+
```ruby
|
130
|
+
# Create engine with custom configuration
|
131
|
+
engine = Topical::Engine.new(
|
132
|
+
# Clustering options
|
133
|
+
clustering_method: :hdbscan, # :hdbscan or :kmeans
|
134
|
+
min_cluster_size: 10, # Minimum documents per topic (HDBSCAN)
|
135
|
+
min_samples: 5, # Core points needed (HDBSCAN)
|
136
|
+
k: 20, # Number of topics (K-means only)
|
137
|
+
|
138
|
+
# Dimensionality reduction
|
139
|
+
reduce_dimensions: true, # Auto-reduce high-dim embeddings with UMAP
|
140
|
+
n_components: 50, # Target dimensions for reduction
|
141
|
+
|
142
|
+
# Labeling options
|
143
|
+
labeling_method: :hybrid, # :term_based, :llm_based, or :hybrid
|
144
|
+
llm_provider: nil, # Optional: custom LLM provider
|
145
|
+
|
146
|
+
# Other options
|
147
|
+
verbose: true # Show progress
|
148
|
+
)
|
149
|
+
|
150
|
+
# Fit the model
|
151
|
+
topics = engine.fit(embeddings, documents, metadata: metadata)
|
152
|
+
|
153
|
+
# Save and load models
|
154
|
+
engine.save("topic_model.json")
|
155
|
+
loaded = Topical::Engine.load("topic_model.json")
|
156
|
+
|
157
|
+
# Transform new documents
|
158
|
+
new_topics = engine.transform(new_embeddings)
|
159
|
+
|
160
|
+
# Get specific topic
|
161
|
+
topic = engine.get_topic(0)
|
162
|
+
```
|
163
|
+
|
164
|
+
### Topic Analysis
|
165
|
+
|
166
|
+
```ruby
|
167
|
+
# Access topic properties
|
168
|
+
topic.id # Cluster ID
|
169
|
+
topic.label # Human-readable label
|
170
|
+
topic.terms # Top distinctive terms (c-TF-IDF)
|
171
|
+
topic.documents # All documents in topic
|
172
|
+
topic.size # Number of documents
|
173
|
+
topic.coherence # Topic quality score (0-1)
|
174
|
+
topic.centroid # Topic centroid in embedding space
|
175
|
+
|
176
|
+
# Get representative documents
|
177
|
+
topic.representative_docs(k: 5) # 5 most representative docs
|
178
|
+
|
179
|
+
# Convert to hash for serialization
|
180
|
+
topic.to_h
|
181
|
+
|
182
|
+
# Compute metrics across all topics
|
183
|
+
diversity = Topical::Metrics.compute_diversity(topics)
|
184
|
+
coverage = Topical::Metrics.compute_coverage(topics, total_docs)
|
185
|
+
```
|
186
|
+
|
187
|
+
## Clustering Methods
|
188
|
+
|
189
|
+
### HDBSCAN (Hierarchical Density-Based Clustering)
|
190
|
+
- **Pros**: Automatically determines number of topics, identifies outliers, handles varying densities
|
191
|
+
- **Cons**: Requires tuning min_cluster_size and min_samples
|
192
|
+
- **When to use**: When you don't know the number of topics in advance
|
193
|
+
|
194
|
+
### K-means
|
195
|
+
- **Pros**: Fast, deterministic with same seed, always assigns all documents
|
196
|
+
- **Cons**: Must specify k (number of topics), no outlier detection
|
197
|
+
- **When to use**: When you know approximately how many topics to expect
|
198
|
+
|
199
|
+
## Term Extraction
|
200
|
+
|
201
|
+
Topical uses **c-TF-IDF** (class-based TF-IDF) to find distinctive terms for each topic:
|
202
|
+
- Higher scores for terms frequent in topic but rare in other topics
|
203
|
+
- Automatically filters stop words
|
204
|
+
- Configurable minimum/maximum word lengths
|
205
|
+
|
206
|
+
## Topic Labeling Methods
|
207
|
+
|
208
|
+
1. **Term-based** (`:term_based`)
|
209
|
+
- Fast, uses top distinctive terms
|
210
|
+
- No external dependencies
|
211
|
+
|
212
|
+
2. **LLM-based** (`:llm_based`)
|
213
|
+
- High quality, contextual labels
|
214
|
+
- Requires red-candle or API provider
|
215
|
+
|
216
|
+
3. **Hybrid** (`:hybrid`)
|
217
|
+
- Best of both: fast with LLM enhancement
|
218
|
+
- Falls back to term-based if LLM unavailable
|
219
|
+
|
220
|
+
## Dependencies
|
221
|
+
|
222
|
+
- **Required**: `clusterkit` - For HDBSCAN clustering and UMAP dimensionality reduction
|
223
|
+
- **Optional**: `red-candle` - For generating embeddings and LLM-powered topic labeling
|
224
|
+
|
225
|
+
## Performance Tips
|
226
|
+
|
227
|
+
1. **Dimensionality Reduction**: For embeddings with >100 dimensions, enable `reduce_dimensions: true`
|
228
|
+
2. **Batch Processing**: Process documents in batches of 1000-5000 for large datasets
|
229
|
+
3. **Caching**: Save fitted models with `engine.save()` to avoid recomputation
|
230
|
+
4. **Parallel Processing**: Generate embeddings in parallel when possible
|
231
|
+
|
232
|
+
## Examples
|
233
|
+
|
234
|
+
Check out the `examples/` directory for complete examples:
|
235
|
+
- `quick_demo.rb` - Simple demonstration with mock data
|
236
|
+
- `news_clustering.rb` - Clustering news articles
|
237
|
+
- `customer_feedback.rb` - Analyzing customer feedback topics
|
238
|
+
- `research_papers.rb` - Organizing research papers by topic
|
239
|
+
|
240
|
+
## Development
|
241
|
+
|
242
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt.
|
243
|
+
|
244
|
+
To install this gem onto your local machine, run `bundle exec rake install`.
|
245
|
+
|
246
|
+
## Contributing
|
247
|
+
|
248
|
+
Bug reports and pull requests are welcome on GitHub at https://github.com/cpetersen/topical.
|
249
|
+
|
250
|
+
## License
|
251
|
+
|
252
|
+
The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
|
data/Rakefile
ADDED
@@ -0,0 +1,118 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require 'bundler/setup'
|
4
|
+
require 'topical'
|
5
|
+
|
6
|
+
puts "🎯 Topical Quick Demo"
|
7
|
+
puts "=" * 50
|
8
|
+
puts
|
9
|
+
|
10
|
+
# Create some sample documents about different topics
|
11
|
+
documents = [
|
12
|
+
# Ruby/Rails cluster
|
13
|
+
"Ruby is a dynamic programming language with elegant syntax",
|
14
|
+
"Rails is a web framework written in Ruby for building web applications",
|
15
|
+
"Ruby on Rails follows the MVC pattern and convention over configuration",
|
16
|
+
|
17
|
+
# Python/ML cluster
|
18
|
+
"Python is great for machine learning and data science applications",
|
19
|
+
"TensorFlow and PyTorch are popular machine learning frameworks in Python",
|
20
|
+
"Machine learning models need training data and validation sets",
|
21
|
+
"Deep learning uses neural networks with multiple layers",
|
22
|
+
|
23
|
+
# JavaScript/Web cluster
|
24
|
+
"JavaScript runs in browsers and Node.js for full-stack development",
|
25
|
+
"React and Vue are modern JavaScript frameworks for building UIs",
|
26
|
+
"Web development involves HTML, CSS, and JavaScript",
|
27
|
+
"Frontend frameworks help build interactive user interfaces",
|
28
|
+
|
29
|
+
# Database cluster
|
30
|
+
"SQL databases use structured queries to manage relational data",
|
31
|
+
"NoSQL databases like MongoDB store documents in flexible schemas",
|
32
|
+
"Database indexing improves query performance significantly"
|
33
|
+
]
|
34
|
+
|
35
|
+
puts "📚 Processing #{documents.length} documents..."
|
36
|
+
puts
|
37
|
+
|
38
|
+
# Create simple mock embeddings based on keywords
|
39
|
+
# In real usage, you'd use actual embeddings from red-candle or similar
|
40
|
+
embeddings = documents.map do |doc|
|
41
|
+
text = doc.downcase
|
42
|
+
[
|
43
|
+
# Feature engineering based on topic keywords
|
44
|
+
text.include?("ruby") || text.include?("rails") ? 1.0 : 0.0,
|
45
|
+
text.include?("python") || text.include?("machine") || text.include?("learning") || text.include?("neural") ? 1.0 : 0.0,
|
46
|
+
text.include?("javascript") || text.include?("react") || text.include?("vue") || text.include?("web") || text.include?("frontend") ? 1.0 : 0.0,
|
47
|
+
text.include?("database") || text.include?("sql") || text.include?("mongodb") || text.include?("query") ? 1.0 : 0.0,
|
48
|
+
rand(-0.1..0.1), # Add small random noise
|
49
|
+
rand(-0.1..0.1)
|
50
|
+
]
|
51
|
+
end
|
52
|
+
|
53
|
+
# Extract topics using K-means (since we know we have ~4 topic areas)
|
54
|
+
puts "🔍 Extracting topics with K-means clustering..."
|
55
|
+
topics = Topical.extract(
|
56
|
+
embeddings: embeddings,
|
57
|
+
documents: documents,
|
58
|
+
clustering_method: :kmeans,
|
59
|
+
k: 4,
|
60
|
+
verbose: false
|
61
|
+
)
|
62
|
+
|
63
|
+
puts "✅ Found #{topics.length} topics!"
|
64
|
+
puts
|
65
|
+
|
66
|
+
# Display the results
|
67
|
+
topics.each_with_index do |topic, i|
|
68
|
+
puts "━" * 50
|
69
|
+
puts "📌 Topic #{i + 1}: #{topic.label}"
|
70
|
+
puts "━" * 50
|
71
|
+
puts "📊 Size: #{topic.size} documents"
|
72
|
+
puts "🔤 Key terms: #{topic.terms.first(6).join(', ')}"
|
73
|
+
puts "📈 Coherence: #{(topic.coherence * 100).round(1)}%"
|
74
|
+
puts
|
75
|
+
puts "📄 Documents in this topic:"
|
76
|
+
topic.documents.each_with_index do |doc, j|
|
77
|
+
preview = doc.length > 60 ? "#{doc[0..60]}..." : doc
|
78
|
+
puts " #{j + 1}. #{preview}"
|
79
|
+
end
|
80
|
+
puts
|
81
|
+
end
|
82
|
+
|
83
|
+
# Show topic diversity
|
84
|
+
diversity = Topical::Metrics.compute_diversity(topics)
|
85
|
+
puts "━" * 50
|
86
|
+
puts "📊 Overall topic diversity: #{(diversity * 100).round(1)}%"
|
87
|
+
puts "💡 Higher diversity means topics are more distinct from each other"
|
88
|
+
puts
|
89
|
+
|
90
|
+
# Test HDBSCAN clustering (density-based, finds optimal number of clusters)
|
91
|
+
puts "━" * 50
|
92
|
+
puts "🔍 Now trying HDBSCAN clustering (automatic topic detection)..."
|
93
|
+
puts
|
94
|
+
|
95
|
+
engine = Topical::Engine.new(
|
96
|
+
clustering_method: :hdbscan,
|
97
|
+
min_cluster_size: 3, # Minimum 3 docs per topic
|
98
|
+
min_samples: 2
|
99
|
+
)
|
100
|
+
|
101
|
+
hdbscan_topics = engine.fit(embeddings, documents)
|
102
|
+
outliers = engine.outliers
|
103
|
+
|
104
|
+
puts "✅ HDBSCAN found #{hdbscan_topics.length} topics"
|
105
|
+
puts "🔸 Outliers: #{outliers.length} documents"
|
106
|
+
|
107
|
+
if outliers.any?
|
108
|
+
puts "\nDocuments marked as outliers (don't fit well in any topic):"
|
109
|
+
outliers.each { |doc| puts " - #{doc[0..60]}..." }
|
110
|
+
end
|
111
|
+
|
112
|
+
puts
|
113
|
+
puts "━" * 50
|
114
|
+
puts "🎉 Demo complete! Try it with your own documents and real embeddings."
|
115
|
+
puts
|
116
|
+
puts "💡 Tip: Install red-candle to generate real embeddings:"
|
117
|
+
puts " gem install red-candle"
|
118
|
+
puts " Then use: RedCandle::Embedding.new('model-name').embed(text)"
|
@@ -0,0 +1,108 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require 'bundler/setup'
|
4
|
+
require 'topical'
|
5
|
+
|
6
|
+
puts "=== Topical Migration Verification ==="
|
7
|
+
puts "Version: #{Topical::VERSION}"
|
8
|
+
puts "LLM Available: #{Topical.llm_available?}"
|
9
|
+
puts
|
10
|
+
|
11
|
+
# Create test data
|
12
|
+
embeddings = []
|
13
|
+
documents = []
|
14
|
+
|
15
|
+
# Tech cluster
|
16
|
+
10.times do |i|
|
17
|
+
embeddings << [1.0 + rand(-0.1..0.1), rand(-0.1..0.1), rand(-0.1..0.1)]
|
18
|
+
documents << "Python programming #{i} with machine learning and neural networks"
|
19
|
+
end
|
20
|
+
|
21
|
+
# Business cluster
|
22
|
+
10.times do |i|
|
23
|
+
embeddings << [rand(-0.1..0.1), 1.0 + rand(-0.1..0.1), rand(-0.1..0.1)]
|
24
|
+
documents << "Financial markets #{i} with investment portfolio and trading strategies"
|
25
|
+
end
|
26
|
+
|
27
|
+
# Science cluster
|
28
|
+
10.times do |i|
|
29
|
+
embeddings << [rand(-0.1..0.1), rand(-0.1..0.1), 1.0 + rand(-0.1..0.1)]
|
30
|
+
documents << "Scientific research #{i} with experimental methodology and peer review"
|
31
|
+
end
|
32
|
+
|
33
|
+
puts "Testing different clustering methods:"
|
34
|
+
puts
|
35
|
+
|
36
|
+
# Test HDBSCAN
|
37
|
+
puts "1. HDBSCAN Clustering:"
|
38
|
+
engine = Topical::Engine.new(
|
39
|
+
clustering_method: :hdbscan,
|
40
|
+
min_cluster_size: 5,
|
41
|
+
verbose: true
|
42
|
+
)
|
43
|
+
topics = engine.fit(embeddings, documents)
|
44
|
+
puts " Found #{topics.length} topics"
|
45
|
+
topics.each do |topic|
|
46
|
+
puts " Topic #{topic.id}: #{topic.label} (#{topic.size} docs)"
|
47
|
+
end
|
48
|
+
puts
|
49
|
+
|
50
|
+
# Test K-means
|
51
|
+
puts "2. K-means Clustering:"
|
52
|
+
engine = Topical::Engine.new(
|
53
|
+
clustering_method: :kmeans,
|
54
|
+
k: 3,
|
55
|
+
verbose: false
|
56
|
+
)
|
57
|
+
topics = engine.fit(embeddings, documents)
|
58
|
+
puts " Found #{topics.length} topics"
|
59
|
+
topics.each do |topic|
|
60
|
+
puts " Topic #{topic.id}: #{topic.label} (#{topic.size} docs)"
|
61
|
+
end
|
62
|
+
puts
|
63
|
+
|
64
|
+
# Test convenience method
|
65
|
+
puts "3. Convenience API:"
|
66
|
+
topics = Topical.extract(
|
67
|
+
embeddings: embeddings,
|
68
|
+
documents: documents,
|
69
|
+
clustering_method: :kmeans,
|
70
|
+
k: 3
|
71
|
+
)
|
72
|
+
puts " Found #{topics.length} topics"
|
73
|
+
puts
|
74
|
+
|
75
|
+
# Test advanced features
|
76
|
+
puts "4. Advanced Features:"
|
77
|
+
topic = topics.first
|
78
|
+
puts " Representative docs: #{topic.representative_docs(k: 2).length}"
|
79
|
+
puts " Coherence: #{topic.coherence.round(3)}"
|
80
|
+
puts " Centroid dimensions: #{topic.centroid.length}"
|
81
|
+
puts
|
82
|
+
|
83
|
+
# Test metrics
|
84
|
+
puts "5. Metrics Module:"
|
85
|
+
diversity = Topical::Metrics.compute_diversity(topics)
|
86
|
+
coverage = Topical::Metrics.compute_coverage(topics, documents.length)
|
87
|
+
puts " Topic diversity: #{diversity.round(3)}"
|
88
|
+
puts " Document coverage: #{coverage.round(3)}"
|
89
|
+
puts
|
90
|
+
|
91
|
+
# Test persistence
|
92
|
+
puts "6. Model Persistence:"
|
93
|
+
model_path = "/tmp/topical_test_model.json"
|
94
|
+
engine.save(model_path)
|
95
|
+
puts " Model saved to #{model_path}"
|
96
|
+
|
97
|
+
loaded_engine = Topical::Engine.load(model_path)
|
98
|
+
puts " Model loaded successfully"
|
99
|
+
puts " Loaded topics: #{loaded_engine.topics.length}"
|
100
|
+
puts
|
101
|
+
|
102
|
+
# Test outlier detection
|
103
|
+
puts "7. Outlier Detection:"
|
104
|
+
outliers = engine.outliers
|
105
|
+
puts " Outliers: #{outliers.length}"
|
106
|
+
puts
|
107
|
+
|
108
|
+
puts "=== All tests passed! Migration successful. ==="
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Topical
|
4
|
+
module Clustering
|
5
|
+
# Base adapter class for clustering algorithms
|
6
|
+
class Adapter
|
7
|
+
def fit_predict(embeddings)
|
8
|
+
raise NotImplementedError, "Subclasses must implement fit_predict"
|
9
|
+
end
|
10
|
+
|
11
|
+
def fit(embeddings)
|
12
|
+
raise NotImplementedError, "Subclasses must implement fit"
|
13
|
+
end
|
14
|
+
|
15
|
+
def predict(embeddings)
|
16
|
+
raise NotImplementedError, "Subclasses must implement predict"
|
17
|
+
end
|
18
|
+
|
19
|
+
# Number of clusters found (excluding noise)
|
20
|
+
def n_clusters
|
21
|
+
@n_clusters || 0
|
22
|
+
end
|
23
|
+
|
24
|
+
# Number of noise points (labeled as -1)
|
25
|
+
def n_noise_points
|
26
|
+
@n_noise_points || 0
|
27
|
+
end
|
28
|
+
end
|
29
|
+
end
|
30
|
+
end
|