tomoto 0.3.2-arm64-darwin
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +54 -0
- data/LICENSE.txt +22 -0
- data/README.md +164 -0
- data/ext/tomoto/ct.cpp +58 -0
- data/ext/tomoto/dmr.cpp +69 -0
- data/ext/tomoto/dt.cpp +91 -0
- data/ext/tomoto/extconf.rb +42 -0
- data/ext/tomoto/gdmr.cpp +42 -0
- data/ext/tomoto/hdp.cpp +47 -0
- data/ext/tomoto/hlda.cpp +71 -0
- data/ext/tomoto/hpa.cpp +32 -0
- data/ext/tomoto/lda.cpp +281 -0
- data/ext/tomoto/llda.cpp +33 -0
- data/ext/tomoto/mglda.cpp +81 -0
- data/ext/tomoto/pa.cpp +32 -0
- data/ext/tomoto/plda.cpp +33 -0
- data/ext/tomoto/slda.cpp +48 -0
- data/ext/tomoto/tomoto.cpp +48 -0
- data/ext/tomoto/utils.h +30 -0
- data/lib/tomoto/2.7/tomoto.bundle +0 -0
- data/lib/tomoto/3.0/tomoto.bundle +0 -0
- data/lib/tomoto/3.1/tomoto.bundle +0 -0
- data/lib/tomoto/3.2/tomoto.bundle +0 -0
- data/lib/tomoto/ct.rb +24 -0
- data/lib/tomoto/dmr.rb +27 -0
- data/lib/tomoto/dt.rb +15 -0
- data/lib/tomoto/gdmr.rb +15 -0
- data/lib/tomoto/hdp.rb +11 -0
- data/lib/tomoto/hlda.rb +56 -0
- data/lib/tomoto/hpa.rb +11 -0
- data/lib/tomoto/lda.rb +181 -0
- data/lib/tomoto/llda.rb +15 -0
- data/lib/tomoto/mglda.rb +15 -0
- data/lib/tomoto/pa.rb +11 -0
- data/lib/tomoto/plda.rb +15 -0
- data/lib/tomoto/slda.rb +37 -0
- data/lib/tomoto/version.rb +3 -0
- data/lib/tomoto.rb +27 -0
- data/vendor/EigenRand/EigenRand/EigenRand +24 -0
- data/vendor/EigenRand/LICENSE +21 -0
- data/vendor/EigenRand/README.md +430 -0
- data/vendor/eigen/COPYING.APACHE +203 -0
- data/vendor/eigen/COPYING.BSD +26 -0
- data/vendor/eigen/COPYING.GPL +674 -0
- data/vendor/eigen/COPYING.LGPL +502 -0
- data/vendor/eigen/COPYING.MINPACK +51 -0
- data/vendor/eigen/COPYING.MPL2 +373 -0
- data/vendor/eigen/COPYING.README +18 -0
- data/vendor/eigen/Eigen/Cholesky +45 -0
- data/vendor/eigen/Eigen/CholmodSupport +48 -0
- data/vendor/eigen/Eigen/Core +384 -0
- data/vendor/eigen/Eigen/Dense +7 -0
- data/vendor/eigen/Eigen/Eigen +2 -0
- data/vendor/eigen/Eigen/Eigenvalues +60 -0
- data/vendor/eigen/Eigen/Geometry +59 -0
- data/vendor/eigen/Eigen/Householder +29 -0
- data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
- data/vendor/eigen/Eigen/Jacobi +32 -0
- data/vendor/eigen/Eigen/KLUSupport +41 -0
- data/vendor/eigen/Eigen/LU +47 -0
- data/vendor/eigen/Eigen/MetisSupport +35 -0
- data/vendor/eigen/Eigen/OrderingMethods +70 -0
- data/vendor/eigen/Eigen/PaStiXSupport +49 -0
- data/vendor/eigen/Eigen/PardisoSupport +35 -0
- data/vendor/eigen/Eigen/QR +50 -0
- data/vendor/eigen/Eigen/QtAlignedMalloc +39 -0
- data/vendor/eigen/Eigen/SPQRSupport +34 -0
- data/vendor/eigen/Eigen/SVD +50 -0
- data/vendor/eigen/Eigen/Sparse +34 -0
- data/vendor/eigen/Eigen/SparseCholesky +37 -0
- data/vendor/eigen/Eigen/SparseCore +69 -0
- data/vendor/eigen/Eigen/SparseLU +50 -0
- data/vendor/eigen/Eigen/SparseQR +36 -0
- data/vendor/eigen/Eigen/StdDeque +27 -0
- data/vendor/eigen/Eigen/StdList +26 -0
- data/vendor/eigen/Eigen/StdVector +27 -0
- data/vendor/eigen/Eigen/SuperLUSupport +64 -0
- data/vendor/eigen/Eigen/UmfPackSupport +40 -0
- data/vendor/eigen/README.md +5 -0
- data/vendor/eigen/bench/README.txt +55 -0
- data/vendor/eigen/bench/btl/COPYING +340 -0
- data/vendor/eigen/bench/btl/README +154 -0
- data/vendor/eigen/bench/tensors/README +20 -0
- data/vendor/eigen/blas/README.txt +6 -0
- data/vendor/eigen/ci/README.md +56 -0
- data/vendor/eigen/demos/mandelbrot/README +10 -0
- data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
- data/vendor/eigen/demos/opengl/README +13 -0
- data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1815 -0
- data/vendor/eigen/unsupported/README.txt +50 -0
- data/vendor/tomotopy/LICENSE +21 -0
- data/vendor/tomotopy/README.kr.rst +519 -0
- data/vendor/tomotopy/README.rst +538 -0
- data/vendor/variant/LICENSE +25 -0
- data/vendor/variant/LICENSE_1_0.txt +23 -0
- data/vendor/variant/README.md +102 -0
- metadata +141 -0
@@ -0,0 +1,430 @@
|
|
1
|
+
# EigenRand : The Fastest C++11-compatible random distribution generator for Eigen
|
2
|
+
|
3
|
+
EigenRand is a header-only library for [Eigen](http://eigen.tuxfamily.org/index.php?title=Main_Page), providing vectorized random number engines and vectorized random distribution generators.
|
4
|
+
Since the classic Random functions of Eigen relies on an old C function `rand()`,
|
5
|
+
there is no way to control random numbers and no guarantee for quality of generated numbers.
|
6
|
+
In addition, Eigen's Random is slow because `rand()` is hard to vectorize.
|
7
|
+
|
8
|
+
EigenRand provides a variety of random distribution functions similar to C++11 standard's random functions,
|
9
|
+
which can be vectorized and easily integrated into Eigen's expressions of Matrix and Array.
|
10
|
+
|
11
|
+
You can get 5~10 times speed by just replacing old Eigen's Random or unvectorizable c++11 random number generators with EigenRand.
|
12
|
+
|
13
|
+
## Features
|
14
|
+
|
15
|
+
* C++11-compatible Random Number Generator
|
16
|
+
* 5~10 times faster than non-vectorized functions
|
17
|
+
* Header-only (like Eigen)
|
18
|
+
* Can be easily integrated with Eigen's expressions
|
19
|
+
* Currently supports only x86, x86-64(up to AVX2), and ARM64 NEON (experimental) architecture.
|
20
|
+
|
21
|
+
## Requirement
|
22
|
+
|
23
|
+
* Eigen 3.3.4 ~ 3.4.0
|
24
|
+
* C++11-compatible compilers
|
25
|
+
|
26
|
+
## Build for Test & Benchmark
|
27
|
+
You can build a test binary to verify if EigenRand is working well.
|
28
|
+
First, make sure you have Eigen 3.3.4~3.4.0 installed in your compiler include folder. Also make sure you have cmake 3.9 or higher installed.
|
29
|
+
After then, you can build it following:
|
30
|
+
```console
|
31
|
+
$ git clone https://github.com/bab2min/EigenRand
|
32
|
+
$ cd EigenRand
|
33
|
+
$ git clone https://github.com/google/googletest
|
34
|
+
$ pushd googletest && git checkout v1.8.x && popd
|
35
|
+
$ mkdir build && cd build
|
36
|
+
$ cmake -DCMAKE_BUILD_TYPE=Release ..
|
37
|
+
$ make
|
38
|
+
$ ./test/EigenRand-test # Binary for unit test
|
39
|
+
$ ./EigenRand-accuracy # Binary for accuracy test of univariate random distributions
|
40
|
+
$ ./EigenRand-benchmark # Binary for performance test of univariate random distributions
|
41
|
+
$ ./EigenRand-benchmark-mv # Binary for performance test of multivariate random distributions
|
42
|
+
```
|
43
|
+
|
44
|
+
You can specify additional compiler arguments including target machine options (e.g. -mavx2, -march) like:
|
45
|
+
```console
|
46
|
+
$ cmake -DCMAKE_BUILD_TYPE=Release -DEIGENRAND_CXX_FLAGS="-march=native" ..
|
47
|
+
```
|
48
|
+
|
49
|
+
## Documentation
|
50
|
+
|
51
|
+
https://bab2min.github.io/eigenrand/
|
52
|
+
|
53
|
+
## Functions
|
54
|
+
|
55
|
+
### Random distributions for real types
|
56
|
+
|
57
|
+
| Function | Generator | Scalar Type | Description | Equivalent to |
|
58
|
+
|:---:|:---:|:---:|:---:|:---:|
|
59
|
+
| `Eigen::Rand::balanced` | `Eigen::Rand::BalancedGen` | float, double | generates real values in the [-1, 1] range | `Eigen::DenseBase<Ty>::Random` for floating point types |
|
60
|
+
| `Eigen::Rand::beta` | `Eigen::Rand::BetaGen` | float, double | generates real values on a [beta distribution](https://en.wikipedia.org/wiki/Beta_distribution) | |
|
61
|
+
| `Eigen::Rand::cauchy` | `Eigen::Rand::CauchyGen` | float, double | generates real values on the [Cauchy distribution](https://en.wikipedia.org/wiki/Cauchy_distribution). | `std::cauchy_distribution` |
|
62
|
+
| `Eigen::Rand::chiSquared` | `Eigen::Rand::ChiSquaredGen` | float, double | generates real values on a [chi-squared distribution](https://en.wikipedia.org/wiki/Chi-squared_distribution). | `std::chi_squared_distribution` |
|
63
|
+
| `Eigen::Rand::exponential` | `Eigen::Rand::ExponentialGen` | float, double | generates real values on an [exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution). | `std::exponential_distribution` |
|
64
|
+
| `Eigen::Rand::extremeValue` | `Eigen::Rand::ExtremeValueGen` | float, double | generates real values on an [extreme value distribution](https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution). | `std::extreme_value_distribution` |
|
65
|
+
| `Eigen::Rand::fisherF` | `Eigen::Rand::FisherFGen` | float, double | generates real values on the [Fisher's F distribution](https://en.wikipedia.org/wiki/F_distribution). | `std::fisher_f_distribution` |
|
66
|
+
| `Eigen::Rand::gamma` | `Eigen::Rand::GammaGen` | float, double | generates real values on a [gamma distribution](https://en.wikipedia.org/wiki/Gamma_distribution). | `std::gamma_distribution` |
|
67
|
+
| `Eigen::Rand::lognormal` | `Eigen::Rand::LognormalGen` | float, double | generates real values on a [lognormal distribution](https://en.wikipedia.org/wiki/Lognormal_distribution). | `std::lognormal_distribution` |
|
68
|
+
| `Eigen::Rand::normal` | `Eigen::Rand::StdNormalGen`, `Eigen::Rand::NormalGen` | float, double | generates real values on a [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution). | `std::normal_distribution` |
|
69
|
+
| `Eigen::Rand::studentT` | `Eigen::Rand::StudentTGen` | float, double | generates real values on the [Student's t distribution](https://en.wikipedia.org/wiki/Student%27s_t-distribution). | `std::student_t_distribution` |
|
70
|
+
| `Eigen::Rand::uniformReal` | `Eigen::Rand::UniformRealGen` | float, double | generates real values in the `[0, 1)` range. | `std::generate_canonical` |
|
71
|
+
| `Eigen::Rand::weibull` | `Eigen::Rand::WeibullGen` | float, double | generates real values on the [Weibull distribution](https://en.wikipedia.org/wiki/Weibull_distribution). | `std::weibull_distribution` |
|
72
|
+
|
73
|
+
### Random distributions for integer types
|
74
|
+
|
75
|
+
| Function | Generator | Scalar Type | Description | Equivalent to |
|
76
|
+
|:---:|:---:|:---:|:---:|:---:|
|
77
|
+
| `Eigen::Rand::binomial` | `Eigen::Rand::BinomialGen` | int | generates integers on a [binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution). | `std::binomial_distribution` |
|
78
|
+
| `Eigen::Rand::discrete` | `Eigen::Rand::DiscreteGen` | int | generates random integers on a discrete distribution. | `std::discrete_distribution` |
|
79
|
+
| `Eigen::Rand::geometric` | `Eigen::Rand::GeometricGen` | int | generates integers on a [geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution). | `std::geometric_distribution` |
|
80
|
+
| `Eigen::Rand::negativeBinomial` | `Eigen::Rand::NegativeBinomialGen` | int | generates integers on a [negative binomial distribution](https://en.wikipedia.org/wiki/Negative_binomial_distribution). | `std::negative_binomial_distribution` |
|
81
|
+
| `Eigen::Rand::poisson` | `Eigen::Rand::PoissonGen` | int | generates integers on the [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution). | `std::poisson_distribution` |
|
82
|
+
| `Eigen::Rand::randBits` | `Eigen::Rand::RandbitsGen` | int | generates integers with random bits. | `Eigen::DenseBase<Ty>::Random` for integer types |
|
83
|
+
| `Eigen::Rand::uniformInt` | `Eigen::Rand::UniformIntGen` | int | generates integers in the `[min, max]` range. | `std::uniform_int_distribution` |
|
84
|
+
|
85
|
+
### Multivariate distributions for real vectors and matrices
|
86
|
+
|
87
|
+
| Generator | Description | Equivalent to |
|
88
|
+
|:---:|:---:|:---:|
|
89
|
+
| `Eigen::Rand::MultinomialGen` | generates integer vectors on a [multinomial distribution](https://en.wikipedia.org/wiki/Multinomial_distribution) | [scipy.stats.multinomial in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multinomial.html#scipy.stats.multinomial) |
|
90
|
+
| `Eigen::Rand::DirichletGen` | generates real vectors on a [Dirichlet distribution](https://en.wikipedia.org/wiki/Dirichlet_distribution) | [scipy.stats.dirichlet in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet.html#scipy.stats.dirichlet) |
|
91
|
+
| `Eigen::Rand::MvNormalGen` | generates real vectors on a [multivariate normal distribution](https://en.wikipedia.org/wiki/Multivariate_normal_distribution) | [scipy.stats.multivariate_normal in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html#scipy.stats.multivariate_normal) |
|
92
|
+
| `Eigen::Rand::WishartGen` | generates real matrices on a [Wishart distribution](https://en.wikipedia.org/wiki/Wishart_distribution) | [scipy.stats.wishart in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wishart.html#scipy.stats.wishart) |
|
93
|
+
| `Eigen::Rand::InvWishartGen` | generates real matrices on a [inverse Wishart distribution](https://en.wikipedia.org/wiki/Inverse-Wishart_distribution) | [scipy.stats.invwishart in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invwishart.html#scipy.stats.invwishart) |
|
94
|
+
|
95
|
+
|
96
|
+
### Random number engines
|
97
|
+
|
98
|
+
| | Description | Equivalent to |
|
99
|
+
|:---:|:---:|:---:|
|
100
|
+
| `Eigen::Rand::Vmt19937_64` | a vectorized version of Mersenne Twister algorithm. It generates two 64bit random integers simultaneously with SSE2 & NEON and four integers with AVX2. | `std::mt19937_64` |
|
101
|
+
| `Eigen::Rand::P8_mt19937_64` | a vectorized version of Mersenne Twister algorithm. Since it generates eight 64bit random integers simultaneously, the random values are the same regardless of architecture. | |
|
102
|
+
|
103
|
+
## Performance
|
104
|
+
The following charts show the relative speed-up of EigenRand compared to references(equivalent functions of C++ std or Eigen).
|
105
|
+
|
106
|
+
![Perf_no_vect](/doxygen/images/perf_no_vect.png)
|
107
|
+
![Perf_no_vect](/doxygen/images/perf_sse2.png)
|
108
|
+
![Perf_no_vect](/doxygen/images/perf_avx.png)
|
109
|
+
![Perf_no_vect](/doxygen/images/perf_avx2.png)
|
110
|
+
|
111
|
+
The following charts are about multivariate distributions.
|
112
|
+
![Perf_no_vect](/doxygen/images/perf_mv_part1.png)
|
113
|
+
![Perf_no_vect](/doxygen/images/perf_mv_part2.png)
|
114
|
+
|
115
|
+
|
116
|
+
The following result is a measure of the time in seconds it takes to generate 1M random numbers.
|
117
|
+
It shows the average of 20 times.
|
118
|
+
|
119
|
+
### Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz (Ubuntu 16.04, gcc5.4)
|
120
|
+
|
121
|
+
| | C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) |
|
122
|
+
|---|---:|---:|---:|---:|---:|---:|
|
123
|
+
| `balanced`* | 9.0 | 5.9 | 1.5 | 1.4 | 1.3 | 0.9 |
|
124
|
+
| `balanced`(double)* | 8.7 | 6.4 | 3.3 | 2.9 | 1.7 | 1.7 |
|
125
|
+
| `binomial(20, 0.5)` | 400.8 | 118.5 | 32.7 | 36.6 | 30.0 | 22.7 |
|
126
|
+
| `binomial(50, 0.01)` | 71.7 | 22.5 | 7.7 | 8.3 | 7.9 | 6.6 |
|
127
|
+
| `binomial(100, 0.75)` | 340.5 | 454.5 | 91.7 | 111.5 | 106.3 | 86.4 |
|
128
|
+
| `cauchy` | 36.1 | 54.4 | 6.1 | 7.1 | 4.7 | 3.9 |
|
129
|
+
| `chiSquared` | 80.5 | 249.5 | 64.6 | 58.0 | 29.4 | 28.8 |
|
130
|
+
| `discrete`(int32) | - | 14.0 | 2.9 | 2.6 | 2.4 | 1.7 |
|
131
|
+
| `discrete`(fp32) | - | 21.9 | 4.3 | 4.0 | 3.6 | 3.0 |
|
132
|
+
| `discrete`(fp64) | 72.4 | 21.4 | 6.9 | 6.5 | 4.9 | 3.7 |
|
133
|
+
| `exponential` | 31.0 | 25.3 | 5.5 | 5.3 | 3.3 | 2.9 |
|
134
|
+
| `extremeValue` | 66.0 | 60.1 | 11.9 | 10.7 | 6.5 | 5.8 |
|
135
|
+
| `fisherF(1, 1)` | 178.1 | 35.1 | 33.2 | 39.3 | 22.9 | 18.7 |
|
136
|
+
| `fisherF(5, 5)` | 141.8 | 415.2 | 136.47 | 172.4 | 92.4 | 74.9 |
|
137
|
+
| `gamma(0.2, 1)` | 207.8 | 211.4 | 54.6 | 51.2 | 26.9 | 27.0 |
|
138
|
+
| `gamma(5, 3)` | 80.9 | 60.0 | 14.3 | 13.3 | 11.4 | 8.0 |
|
139
|
+
| `gamma(10.5, 1)` | 81.1 | 248.6 | 63.3 | 58.5 | 29.2 | 28.4 |
|
140
|
+
| `geometric` | 43.0 | 22.4 | 6.7 | 7.4 | 5.8 | |
|
141
|
+
| `lognormal` | 66.3 | 55.4 | 12.8 | 11.8 | 6.2 | 6.2 |
|
142
|
+
| `negativeBinomial(10, 0.5)` | 312.0 | 301.4 | 82.9 | 100.6 | 95.3 | 77.9 |
|
143
|
+
| `negativeBinomial(20, 0.25)` | 483.4 | 575.9 | 125.0 | 158.2 | 148.4 | 119.5 |
|
144
|
+
| `normal(0, 1)` | 38.1 | 28.5 | 6.8 | 6.2 | 3.8 | 3.7 |
|
145
|
+
| `normal(2, 3)` | 37.6 | 29.0 | 7.3 | 6.6 | 4.0 | 3.9 |
|
146
|
+
| `poisson(1)` | 31.8 | 25.2 | 9.8 | 10.8 | 9.7 | 8.2 |
|
147
|
+
| `poisson(16)` | 231.8 | 274.1 | 66.2 | 80.7 | 74.4 | 64.2 |
|
148
|
+
| `randBits` | 5.2 | 5.4 | 1.4 | 1.3 | 1.1 | 1.0 |
|
149
|
+
| `studentT(1)` | 122.7 | 120.1 | 15.3 | 19.2 | 12.6 | 9.4 |
|
150
|
+
| `studentT(20)` | 102.2 | 111.1 | 15.4 | 19.2 | 12.2 | 9.4 |
|
151
|
+
| `uniformInt(0~63)` | 22.4 | 4.7 | 1.7 | 1.6 | 1.4 | 1.1 |
|
152
|
+
| `uniformInt(0~100k)` | 21.8 | 10.1 | 6.2 | 6.7 | 6.6 | 5.4 |
|
153
|
+
| `uniformReal` | 12.9 | 5.7 | 1.4 | 1.2 | 1.4 | 0.7 |
|
154
|
+
| `weibull` | 41.0 | 35.8 | 17.7 | 15.5 | 8.5 | 8.5 |
|
155
|
+
|
156
|
+
* Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
|
157
|
+
|
158
|
+
| | C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) |
|
159
|
+
|---|---:|---:|---:|---:|---:|---:|
|
160
|
+
| Mersenne Twister(int32) | 4.7 | 5.6 | 4.0 | 3.7 | 3.5 | 3.6 |
|
161
|
+
| Mersenne Twister(int64) | 5.4 | 5.3 | 4.0 | 3.9 | 3.4 | 2.6 |
|
162
|
+
|
163
|
+
| | Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) |
|
164
|
+
|---|---:|---:|---:|---:|---:|---:|
|
165
|
+
| `Dirichlet(4)` | 6.47 | 6.60 | 2.39 | 2.49 | 1.34 | 1.67 |
|
166
|
+
| `Dirichlet(100)` | 75.95 | 189.97 | 66.60 | 72.11 | 38.86 | 34.98 |
|
167
|
+
| `InvWishart(4)` | 140.18 | 7.62 | 4.21 | 4.54 | 3.58 | 3.39 |
|
168
|
+
| `InvWishart(50)` | 1510.47 | 1737.4 | 697.39 | 733.69 | 604.59 | 554.006 |
|
169
|
+
| `Multinomial(4, t=20)` | 3.32 | 4.12 | 0.95 | 1.06 | 1.00 | 1.03 |
|
170
|
+
| `Multinomial(4, t=1000)` | 3.51 | 192.51 | 35.99 | 39.58 | 27.84 | 35.45 |
|
171
|
+
| `Multinomial(100, t=20)` | 69.19 | 4.80 | 2.00 | 2.20 | 2.28 | 2.09 |
|
172
|
+
| `Multinomial(100, t=1000)` | 139.74 | 179.43 | 49.48 | 56.19 | 40.78 | 43.18 |
|
173
|
+
| `MvNormal(4)` | 2.32 | 0.96 | 0.36 | 0.37 | 0.25 | 0.30 |
|
174
|
+
| `MvNormal(100)` | 49.09 | 57.18 | 17.17 | 18.51 | 10.82 | 11.03 |
|
175
|
+
| `Wishart(4)` | 71.19 | 5.28 | 2.70 | 2.93 | 2.04 | 1.94 |
|
176
|
+
| `Wishart(50)` | 1185.26 | 1360.49 | 492.91 | 517.44 | 359.03 | 324.60 |
|
177
|
+
|
178
|
+
|
179
|
+
### Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz (macOS 10.15, clang-1103)
|
180
|
+
|
181
|
+
| | C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) |
|
182
|
+
|---|---:|---:|---:|---:|---:|
|
183
|
+
| `balanced`* | 6.5 | 7.3 | 1.1 | 1.4 | 1.1 |
|
184
|
+
| `balanced`(double)* | 6.6 | 7.5 | 2.6 | 3.3 | 2.4 |
|
185
|
+
| `binomial(20, 0.5)` | 38.8 | 164.9 | 27.7 | 29.3 | 24.9 |
|
186
|
+
| `binomial(50, 0.01)` | 21.9 | 27.6 | 6.6 | 7.0 | 6.3 |
|
187
|
+
| `binomial(100, 0.75)` | 52.2 | 421.9 | 93.6 | 94.8 | 89.1 |
|
188
|
+
| `cauchy` | 36.0 | 30.4 | 5.6 | 5.8 | 4.0 |
|
189
|
+
| `chiSquared` | 84.4 | 152.2 | 44.1 | 48.7 | 26.2 |
|
190
|
+
| `discrete`(int32) | - | 12.4 | 2.1 | 2.6 | 2.2 |
|
191
|
+
| `discrete`(fp32) | - | 23.2 | 3.4 | 3.7 | 3.4 |
|
192
|
+
| `discrete`(fp64) | 48.6 | 22.9 | 4.2 | 5.0 | 4.6 |
|
193
|
+
| `exponential` | 22.0 | 18.0 | 4.1 | 4.9 | 3.2 |
|
194
|
+
| `extremeValue` | 36.2 | 32.0 | 8.7 | 9.5 | 5.1 |
|
195
|
+
| `fisherF(1, 1)` | 158.2 | 73.1 | 32.3 | 32.1 | 18.1 |
|
196
|
+
| `fisherF(5, 5)` | 177.3 | 310.1 | 127.0 | 121.8 | 74.3 |
|
197
|
+
| `gamma(0.2, 1)` | 69.8 | 80.4 | 28.5 | 33.8 | 19.2 |
|
198
|
+
| `gamma(5, 3)` | 83.9 | 53.3 | 10.6 | 12.4 | 8.6 |
|
199
|
+
| `gamma(10.5, 1)` | 83.2 | 150.4 | 43.3 | 48.4 | 26.2 |
|
200
|
+
| `geometric` | 39.6 | 19.0 | 4.3 | 4.4 | 4.1 |
|
201
|
+
| `lognormal` | 43.8 | 40.7 | 9.0 | 10.8 | 5.7 |
|
202
|
+
| `negativeBinomial(10, 0.5)` | 217.4 | 274.8 | 71.6 | 73.7 | 68.2 |
|
203
|
+
| `negativeBinomial(20, 0.25)` | 192.9 | 464.9 | 112.0 | 111.5 | 105.7 |
|
204
|
+
| `normal(0, 1)` | 32.6 | 28.6 | 5.5 | 6.5 | 3.8 |
|
205
|
+
| `normal(2, 3)` | 32.9 | 30.5 | 5.7 | 6.7 | 3.9 |
|
206
|
+
| `poisson(1)` | 37.9 | 31.0 | 7.5 | 7.8 | 7.1 |
|
207
|
+
| `poisson(16)` | 92.4 | 243.3 | 55.6 | 57.7 | 53.7 |
|
208
|
+
| `randBits` | 6.5 | 6.5 | 1.1 | 1.3 | 1.1 |
|
209
|
+
| `studentT(1)` | 115.0 | 54.1 | 15.5 | 15.7 | 8.3 |
|
210
|
+
| `studentT(20)` | 121.2 | 53.8 | 15.8 | 16.0 | 8.2 |
|
211
|
+
| `uniformInt(0~63)` | 20.2 | 9.8 | 1.8 | 1.8 | 1.6 |
|
212
|
+
| `uniformInt(0~100k)` | 25.7 | 16.1 | 8.1 | 8.5 | 7.2 |
|
213
|
+
| `uniformReal` | 12.7 | 7.0 | 1.0 | 1.2 | 1.1 |
|
214
|
+
| `weibull` | 23.1 | 19.2 | 11.6 | 13.6 | 7.6 |
|
215
|
+
|
216
|
+
* Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
|
217
|
+
|
218
|
+
| | C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) |
|
219
|
+
|---|---:|---:|---:|---:|---:|
|
220
|
+
| Mersenne Twister(int32) | 6.2 | 6.4 | 1.7 | 2.0 | 1.8 |
|
221
|
+
| Mersenne Twister(int64) | 6.4 | 6.3 | 2.5 | 3.1 | 2.4 |
|
222
|
+
|
223
|
+
|
224
|
+
| | Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) |
|
225
|
+
|---|---:|---:|---:|---:|---:|
|
226
|
+
| `Dirichlet(4)` | 3.54 | 3.29 | 1.25 | 1.25 | 0.83 |
|
227
|
+
| `Dirichlet(100)` | 57.63 | 145.32 | 49.71 | 49.50 | 29.13 |
|
228
|
+
| `InvWishart(4)` | 210.92 | 7.53 | 3.72 | 3.66 | 3.10 |
|
229
|
+
| `InvWishart(50)` | 1980.73 | 1446.40 | 560.40 | 559.73 | 457.07 |
|
230
|
+
| `Multinomial(4, t=20)` | 2.60 | 5.22 | 1.48 | 1.50 | 1.42 |
|
231
|
+
| `Multinomial(4, t=1000)` | 3.90 | 208.75 | 29.19 | 29.50 | 27.70 |
|
232
|
+
| `Multinomial(100, t=20)` | 47.71 | 7.09 | 3.71 | 3.63 | 3.60 |
|
233
|
+
| `Multinomial(100, t=1000)` | 128.69 | 215.19 | 44.48 | 44.63 | 43.76 |
|
234
|
+
| `MvNormal(4)` | 2.04 | 1.05 | 0.35 | 0.34 | 0.19 |
|
235
|
+
| `MvNormal(100)` | 48.69 | 47.10 | 16.25 | 16.12 | 11.41 |
|
236
|
+
| `Wishart(4)` | 81.11 | 13.24 | 9.87 | 9.81 | 5.90 |
|
237
|
+
| `Wishart(50)` | 1419.02 | 1087.40 | 448.06 | 442.97 | 328.20 |
|
238
|
+
|
239
|
+
|
240
|
+
### Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz (Windows Server 2019, MSVC2019)
|
241
|
+
|
242
|
+
| | C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
|
243
|
+
|---|---:|---:|---:|---:|---:|
|
244
|
+
| `balanced`* | 20.7 | 7.2 | 3.3 | 4.0 | 2.2 |
|
245
|
+
| `balanced`(double)* | 21.9 | 8.8 | 6.7 | 4.3 | 4.3 |
|
246
|
+
| `binomial(20, 0.5)` | 718.3 | 141.0 | 38.1 | 30.2 | 32.7 |
|
247
|
+
| `binomial(50, 0.01)` | 61.5 | 21.4 | 7.5 | 6.5 | 8.0 |
|
248
|
+
| `binomial(100, 0.75)` | 495.9 | 1042.5 | 100.6 | 95.2 | 93.0 |
|
249
|
+
| `cauchy` | 71.6 | 30.0 | 6.8 | 6.4 | 3.0 |
|
250
|
+
| `chiSquared` | 243.0 | 147.3 | 63.5 | 34.1 | 24.0 |
|
251
|
+
| `discrete`(int32) | - | 12.4 | 3.5 | 2.7 | 2.2 |
|
252
|
+
| `discrete`(fp32) | - | 19.2 | 5.1 | 3.6 | 3.7 |
|
253
|
+
| `discrete`(fp64) | 83.9 | 19.0 | 6.7 | 7.4 | 4.6 |
|
254
|
+
| `exponential` | 58.7 | 16.0 | 6.8 | 6.4 | 3.0 |
|
255
|
+
| `extremeValue` | 64.6 | 27.7 | 13.5 | 9.8 | 5.5 |
|
256
|
+
| `fisherF(1, 1)` | 178.7 | 75.2 | 35.3 | 28.4 | 17.5 |
|
257
|
+
| `fisherF(5, 5)` | 491.0 | 298.4 | 125.8 | 87.4 | 60.5 |
|
258
|
+
| `gamma(0.2, 1)` | 211.7 | 69.3 | 43.7 | 24.7 | 18.7 |
|
259
|
+
| `gamma(5, 3)` | 272.5 | 42.3 | 17.6 | 17.2 | 8.5 |
|
260
|
+
| `gamma(10.5, 1)` | 237.8 | 146.2 | 63.7 | 33.8 | 23.5 |
|
261
|
+
| `geometric` | 49.3 | 17.0 | 7.0 | 5.8 | 5.4 |
|
262
|
+
| `lognormal` | 169.8 | 37.6 | 12.7 | 7.2 | 5.0 |
|
263
|
+
| `negativeBinomial(10, 0.5)` | 752.7 | 462.3 | 87.0 | 83.0 | 81.6 |
|
264
|
+
| `negativeBinomial(20, 0.25)` | 611.4 | 855.3 | 123.7 | 125.3 | 116.6 |
|
265
|
+
| `normal(0, 1)` | 78.4 | 21.1 | 6.9 | 4.6 | 2.9 |
|
266
|
+
| `normal(2, 3)` | 77.2 | 22.3 | 6.8 | 4.8 | 3.1 |
|
267
|
+
| `poisson(1)` | 77.4 | 28.9 | 10.0 | 8.1 | 10.1 |
|
268
|
+
| `poisson(16)` | 312.9 | 485.5 | 63.6 | 61.5 | 60.5 |
|
269
|
+
| `randBits` | 6.0 | 6.2 | 3.1 | 2.7 | 2.7 |
|
270
|
+
| `studentT(1)` | 175.8 | 53.9 | 17.3 | 12.5 | 7.7 |
|
271
|
+
| `studentT(20)` | 173.2 | 55.5 | 17.9 | 12.7 | 7.6 |
|
272
|
+
| `uniformInt(0~63)` | 39.1 | 5.2 | 2.0 | 1.4 | 1.6 |
|
273
|
+
| `uniformInt(0~100k)` | 38.5 | 12.3 | 7.6 | 6.0 | 7.7 |
|
274
|
+
| `uniformReal` | 53.4 | 5.7 | 1.9 | 2.3 | 1.0 |
|
275
|
+
| `weibull` | 75.1 | 44.3 | 18.5 | 14.3 | 7.9 |
|
276
|
+
|
277
|
+
* Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
|
278
|
+
|
279
|
+
| | C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
|
280
|
+
|---|---:|---:|---:|---:|---:|
|
281
|
+
| Mersenne Twister(int32) | 6.5 | 6.4 | 5.6 | 5.1 | 4.5 |
|
282
|
+
| Mersenne Twister(int64) | 6.6 | 6.5 | 6.9 | 5.9 | 5.1 |
|
283
|
+
|
284
|
+
|
285
|
+
| | Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
|
286
|
+
|---|---:|---:|---:|---:|---:|
|
287
|
+
| `Dirichlet(4)` | 4.27 | 3.20 | 2.31 | 1.43 | 1.25 |
|
288
|
+
| `Dirichlet(100)` | 69.61 | 150.33 | 67.01 | 47.34 | 32.47 |
|
289
|
+
| `InvWishart(4)` | 482.87 | 14.52 | 8.88 | 13.17 | 11.28 |
|
290
|
+
| `InvWishart(50)` | 2222.72 | 2211.66 | 902.34 | 775.36 | 610.60 |
|
291
|
+
| `Multinomial(4, t=20)` | 2.99 | 5.41 | 1.99 | 1.92 | 1.78 |
|
292
|
+
| `Multinomial(4, t=1000)` | 4.23 | 235.84 | 49.73 | 42.41 | 40.76 |
|
293
|
+
| `Multinomial(100, t=20)` | 58.20 | 9.12 | 5.84 | 6.02 | 5.98 |
|
294
|
+
| `Multinomial(100, t=1000)` | 130.54 | 234.40 | 72.99 | 66.36 | 55.28 |
|
295
|
+
| `MvNormal(4)` | 2.25 | 1.89 | 0.35 | 0.32 | 0.25 |
|
296
|
+
| `MvNormal(100)` | 57.71 | 68.80 | 24.40 | 18.28 | 13.05 |
|
297
|
+
| `Wishart(4)` | 70.18 | 16.25 | 4.49 | 3.97 | 3.07 |
|
298
|
+
| `Wishart(50)` | 1471.29 | 1641.73 | 628.58 | 485.68 | 349.81 |
|
299
|
+
|
300
|
+
|
301
|
+
### AMD Ryzen 7 3700x CPU @ 3.60GHz (Windows 10, MSVC2017)
|
302
|
+
|
303
|
+
| | C++ std (or Eigen) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
|
304
|
+
|---|---:|---:|---:|---:|
|
305
|
+
| `balanced`* | 20.8 | 1.9 | 2.0 | 1.4 |
|
306
|
+
| `balanced`(double)* | 21.7 | 4.1 | 2.7 | 3.0 |
|
307
|
+
| `binomial(20, 0.5)` | 416.0 | 27.7 | 28.9 | 29.1 |
|
308
|
+
| `binomial(50, 0.01)` | 37.8 | 6.3 | 6.0 | 6.6 |
|
309
|
+
| `binomial(100, 0.75)` | 309.1 | 72.4 | 66.0 | 67.0 |
|
310
|
+
| `cauchy` | 42.2 | 4.8 | 5.1 | 2.7 |
|
311
|
+
| `chiSquared` | 153.8 | 33.5 | 21.2 | 17.0 |
|
312
|
+
| `discrete`(int32) | - | 2.4 | 2.3 | 2.5 |
|
313
|
+
| `discrete`(fp32) | - | 2.6 | 2.3 | 3.5 |
|
314
|
+
| `discrete`(fp64) | 55.8 | 5.1 | 4.7 | 4.3 |
|
315
|
+
| `exponential` | 33.4 | 6.4 | 2.8 | 2.2 |
|
316
|
+
| `extremeValue` | 39.4 | 7.8 | 4.6 | 4.0 |
|
317
|
+
| `fisherF(1, 1)` | 103.9 | 25.3 | 14.9 | 11.7 |
|
318
|
+
| `fisherF(5, 5)` | 295.7 | 85.5 | 58.3 | 44.8 |
|
319
|
+
| `gamma(0.2, 1)` | 128.8 | 31.9 | 18.3 | 15.8 |
|
320
|
+
| `gamma(5, 3)` | 156.1 | 9.7 | 8.0 | 5.0 |
|
321
|
+
| `gamma(10.5, 1)` | 148.5 | 33.1 | 21.1 | 17.2 |
|
322
|
+
| `geometric` | 27.1 | 6.6 | 4.3 | 4.1 |
|
323
|
+
| `lognormal` | 104.0 | 6.6 | 4.7 | 3.5 |
|
324
|
+
| `negativeBinomial(10, 0.5)` | 462.1 | 60.0 | 56.4 | 58.6 |
|
325
|
+
| `negativeBinomial(20, 0.25)` | 357.6 | 84.5 | 80.6 | 78.4 |
|
326
|
+
| `normal(0, 1)` | 48.8 | 4.2 | 3.7 | 2.3 |
|
327
|
+
| `normal(2, 3)` | 48.8 | 4.5 | 3.8 | 2.4 |
|
328
|
+
| `poisson(1)` | 46.4 | 7.9 | 7.4 | 8.2 |
|
329
|
+
| `poisson(16)` | 192.4 | 43.2 | 40.4 | 40.9 |
|
330
|
+
| `randBits` | 4.2 | 1.7 | 1.5 | 1.8 |
|
331
|
+
| `studentT(1)` | 107.0 | 12.3 | 6.8 | 5.7 |
|
332
|
+
| `studentT(20)` | 107.1 | 12.3 | 6.8 | 5.8 |
|
333
|
+
| `uniformInt(0~63)` | 31.2 | 1.1 | 1.0 | 1.2 |
|
334
|
+
| `uniformInt(0~100k)` | 27.7 | 5.6 | 5.6 | 5.4 |
|
335
|
+
| `uniformReal` | 30.7 | 1.1 | 1.0 | 0.6 |
|
336
|
+
| `weibull` | 46.5 | 10.6 | 6.4 | 5.2 |
|
337
|
+
|
338
|
+
* Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
|
339
|
+
|
340
|
+
| | C++ std | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
|
341
|
+
|---|---:|---:|---:|---:|
|
342
|
+
| Mersenne Twister(int32) | 5.0 | 3.4 | 3.4 | 3.3 |
|
343
|
+
| Mersenne Twister(int64) | 5.1 | 3.9 | 3.9 | 3.3 |
|
344
|
+
|
345
|
+
### ARM64 NEON (Cortex-A73)
|
346
|
+
Currently, Support for ARM64 NEON is experimental and the result may be sub-optimal.
|
347
|
+
Also keep in mind that NEON does not support vectorization of double type.
|
348
|
+
So if you use double type generators, they would fallback into scalar computations.
|
349
|
+
|
350
|
+
![Perf_no_vect](/doxygen/images/perf_neon_v0.3.90.png)
|
351
|
+
|
352
|
+
The following charts are about multivariate distributions.
|
353
|
+
![Perf_no_vect](/doxygen/images/perf_mv_part1_neon_v0.3.90.png)
|
354
|
+
![Perf_no_vect](/doxygen/images/perf_mv_part2_neon_v0.3.90.png)
|
355
|
+
|
356
|
+
Cases filled with orange are generators that are slower than reference functions.
|
357
|
+
|
358
|
+
## Accuracy
|
359
|
+
Since vectorized mathematical functions may have a loss of precision, I measured how well the generated random number fits its actual distribution.
|
360
|
+
32768 samples were generated and Earth Mover's Distance between samples and its actual distribution was calculated for each distribution.
|
361
|
+
Following table shows the average distance (and stdev.) of results performed 50 times for different seeds.
|
362
|
+
|
363
|
+
| | C++ std | EigenRand |
|
364
|
+
|---|---:|---:|
|
365
|
+
| `balanced`* | .0034(.0015) | .0034(.0015) |
|
366
|
+
| `chiSquared(7)` | .0260(.0091) | .0242(.0079) |
|
367
|
+
| `exponential(1)` | .0065(.0025) | .0072(.0022) |
|
368
|
+
| `extremeValue(1, 1)` | .0097(.0029) | .0088(.0025) |
|
369
|
+
| `gamma(0.2, 1)` | .0380(.0021) | .0377(.0025) |
|
370
|
+
| `gamma(1, 1)` | .0070(.0020) | .0065(.0023) |
|
371
|
+
| `gamma(5, 1)` | .0169(.0065) | .0170(.0051) |
|
372
|
+
| `lognormal(0, 1)` | .0072(.0029) | .0067(.0022) |
|
373
|
+
| `normal(0, 1)` | .0070(.0024) | .0073(.0020) |
|
374
|
+
| `uniformReal` | .0018(.0008) | .0017(.0007) |
|
375
|
+
| `weibull(2, 1)` | .0032(.0013) | .0031(.0010) |
|
376
|
+
|
377
|
+
(* Result of `balanced` were from Eigen::Random, not C++ std)
|
378
|
+
|
379
|
+
The smaller value means that the sample result fits its distribution better.
|
380
|
+
The results of EigenRand and C++ std appear to be equivalent within the margin of error.
|
381
|
+
|
382
|
+
|
383
|
+
## License
|
384
|
+
MIT License
|
385
|
+
|
386
|
+
## History
|
387
|
+
|
388
|
+
### 0.4.1 (2022-08-13)
|
389
|
+
* Fixed a bug where double-type generation with std::mt19937 fails compilation.
|
390
|
+
* Fixed a bug where `UniformIntGen` in scalar mode generates numbers in the wrong range.
|
391
|
+
|
392
|
+
### 0.4.0 alpha (2021-09-28)
|
393
|
+
* Now EigenRand supports ARM & ARM64 NEON architecture experimentally. Please report issues about ARM & ARM64 NEON.
|
394
|
+
* Now EigenRand has compatibility to `Eigen 3.4.0`.
|
395
|
+
|
396
|
+
### 0.3.5 (2021-07-16)
|
397
|
+
* Now `UniformRealGen` generates accurate double values.
|
398
|
+
* Fixed a bug where non-vectorized double-type `NormalGen` would get stuck in an infinite loop.
|
399
|
+
* New overloading functions `balanced` and `balancedLike` which generate values over `[a, b]` were added.
|
400
|
+
|
401
|
+
### 0.3.4 (2021-04-25)
|
402
|
+
* Now Eigen 3.3.4 - 3.3.6 versions are additionally supported.
|
403
|
+
|
404
|
+
### 0.3.3 (2021-03-30)
|
405
|
+
* A compilation failure with some RNGs in `double` type was fixed.
|
406
|
+
* An internal function name `plgamma` conflict with one of `SpecialFunctionsPacketMath.h` was fixed.
|
407
|
+
|
408
|
+
### 0.3.2 (2021-03-26)
|
409
|
+
* A default constructor for `DiscreteGen` was added.
|
410
|
+
|
411
|
+
### 0.3.1 (2020-11-15)
|
412
|
+
* Compiling errors in the environment `EIGEN_COMP_MINGW && __GXX_ABI_VERSION < 1004` was fixed.
|
413
|
+
|
414
|
+
### 0.3.0 (2020-10-17)
|
415
|
+
* Potential cache conflict in generator was solved.
|
416
|
+
* Generator classes were added for efficient reusability.
|
417
|
+
* Multivariate distributions including `Multinomial`, `Dirichlet`, `MvNormal`, `Wishart`, `InvWishart` were added.
|
418
|
+
|
419
|
+
### 0.2.2 (2020-08-02)
|
420
|
+
* Now `ParallelRandomEngineAdaptor` and `MersenneTwister` use aligned array on heap.
|
421
|
+
|
422
|
+
### 0.2.1 (2020-07-11)
|
423
|
+
* A new template class `ParallelRandomEngineAdaptor` yielding the same random sequence regardless of SIMD ISA was added.
|
424
|
+
|
425
|
+
### 0.2.0 (2020-07-04)
|
426
|
+
* New distributions including `cauchy`, `studentT`, `fisherF`, `uniformInt`, `binomial`, `negativeBinomial`, `poisson` and `geometric` were added.
|
427
|
+
* A new member function `uniform_real` for `PacketRandomEngine` was added.
|
428
|
+
|
429
|
+
### 0.1.0 (2020-06-27)
|
430
|
+
* The first version of `EigenRand`
|
@@ -0,0 +1,203 @@
|
|
1
|
+
/*
|
2
|
+
Apache License
|
3
|
+
Version 2.0, January 2004
|
4
|
+
http://www.apache.org/licenses/
|
5
|
+
|
6
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7
|
+
|
8
|
+
1. Definitions.
|
9
|
+
|
10
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
11
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
12
|
+
|
13
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14
|
+
the copyright owner that is granting the License.
|
15
|
+
|
16
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
17
|
+
other entities that control, are controlled by, or are under common
|
18
|
+
control with that entity. For the purposes of this definition,
|
19
|
+
"control" means (i) the power, direct or indirect, to cause the
|
20
|
+
direction or management of such entity, whether by contract or
|
21
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23
|
+
|
24
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25
|
+
exercising permissions granted by this License.
|
26
|
+
|
27
|
+
"Source" form shall mean the preferred form for making modifications,
|
28
|
+
including but not limited to software source code, documentation
|
29
|
+
source, and configuration files.
|
30
|
+
|
31
|
+
"Object" form shall mean any form resulting from mechanical
|
32
|
+
transformation or translation of a Source form, including but
|
33
|
+
not limited to compiled object code, generated documentation,
|
34
|
+
and conversions to other media types.
|
35
|
+
|
36
|
+
"Work" shall mean the work of authorship, whether in Source or
|
37
|
+
Object form, made available under the License, as indicated by a
|
38
|
+
copyright notice that is included in or attached to the work
|
39
|
+
(an example is provided in the Appendix below).
|
40
|
+
|
41
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42
|
+
form, that is based on (or derived from) the Work and for which the
|
43
|
+
editorial revisions, annotations, elaborations, or other modifications
|
44
|
+
represent, as a whole, an original work of authorship. For the purposes
|
45
|
+
of this License, Derivative Works shall not include works that remain
|
46
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47
|
+
the Work and Derivative Works thereof.
|
48
|
+
|
49
|
+
"Contribution" shall mean any work of authorship, including
|
50
|
+
the original version of the Work and any modifications or additions
|
51
|
+
to that Work or Derivative Works thereof, that is intentionally
|
52
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
55
|
+
means any form of electronic, verbal, or written communication sent
|
56
|
+
to the Licensor or its representatives, including but not limited to
|
57
|
+
communication on electronic mailing lists, source code control systems,
|
58
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
59
|
+
Licensor for the purpose of discussing and improving the Work, but
|
60
|
+
excluding communication that is conspicuously marked or otherwise
|
61
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
62
|
+
|
63
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64
|
+
on behalf of whom a Contribution has been received by Licensor and
|
65
|
+
subsequently incorporated within the Work.
|
66
|
+
|
67
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68
|
+
this License, each Contributor hereby grants to You a perpetual,
|
69
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70
|
+
copyright license to reproduce, prepare Derivative Works of,
|
71
|
+
publicly display, publicly perform, sublicense, and distribute the
|
72
|
+
Work and such Derivative Works in Source or Object form.
|
73
|
+
|
74
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75
|
+
this License, each Contributor hereby grants to You a perpetual,
|
76
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77
|
+
(except as stated in this section) patent license to make, have made,
|
78
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79
|
+
where such license applies only to those patent claims licensable
|
80
|
+
by such Contributor that are necessarily infringed by their
|
81
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
82
|
+
with the Work to which such Contribution(s) was submitted. If You
|
83
|
+
institute patent litigation against any entity (including a
|
84
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85
|
+
or a Contribution incorporated within the Work constitutes direct
|
86
|
+
or contributory patent infringement, then any patent licenses
|
87
|
+
granted to You under this License for that Work shall terminate
|
88
|
+
as of the date such litigation is filed.
|
89
|
+
|
90
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
91
|
+
Work or Derivative Works thereof in any medium, with or without
|
92
|
+
modifications, and in Source or Object form, provided that You
|
93
|
+
meet the following conditions:
|
94
|
+
|
95
|
+
(a) You must give any other recipients of the Work or
|
96
|
+
Derivative Works a copy of this License; and
|
97
|
+
|
98
|
+
(b) You must cause any modified files to carry prominent notices
|
99
|
+
stating that You changed the files; and
|
100
|
+
|
101
|
+
(c) You must retain, in the Source form of any Derivative Works
|
102
|
+
that You distribute, all copyright, patent, trademark, and
|
103
|
+
attribution notices from the Source form of the Work,
|
104
|
+
excluding those notices that do not pertain to any part of
|
105
|
+
the Derivative Works; and
|
106
|
+
|
107
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108
|
+
distribution, then any Derivative Works that You distribute must
|
109
|
+
include a readable copy of the attribution notices contained
|
110
|
+
within such NOTICE file, excluding those notices that do not
|
111
|
+
pertain to any part of the Derivative Works, in at least one
|
112
|
+
of the following places: within a NOTICE text file distributed
|
113
|
+
as part of the Derivative Works; within the Source form or
|
114
|
+
documentation, if provided along with the Derivative Works; or,
|
115
|
+
within a display generated by the Derivative Works, if and
|
116
|
+
wherever such third-party notices normally appear. The contents
|
117
|
+
of the NOTICE file are for informational purposes only and
|
118
|
+
do not modify the License. You may add Your own attribution
|
119
|
+
notices within Derivative Works that You distribute, alongside
|
120
|
+
or as an addendum to the NOTICE text from the Work, provided
|
121
|
+
that such additional attribution notices cannot be construed
|
122
|
+
as modifying the License.
|
123
|
+
|
124
|
+
You may add Your own copyright statement to Your modifications and
|
125
|
+
may provide additional or different license terms and conditions
|
126
|
+
for use, reproduction, or distribution of Your modifications, or
|
127
|
+
for any such Derivative Works as a whole, provided Your use,
|
128
|
+
reproduction, and distribution of the Work otherwise complies with
|
129
|
+
the conditions stated in this License.
|
130
|
+
|
131
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132
|
+
any Contribution intentionally submitted for inclusion in the Work
|
133
|
+
by You to the Licensor shall be under the terms and conditions of
|
134
|
+
this License, without any additional terms or conditions.
|
135
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136
|
+
the terms of any separate license agreement you may have executed
|
137
|
+
with Licensor regarding such Contributions.
|
138
|
+
|
139
|
+
6. Trademarks. This License does not grant permission to use the trade
|
140
|
+
names, trademarks, service marks, or product names of the Licensor,
|
141
|
+
except as required for reasonable and customary use in describing the
|
142
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
143
|
+
|
144
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145
|
+
agreed to in writing, Licensor provides the Work (and each
|
146
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148
|
+
implied, including, without limitation, any warranties or conditions
|
149
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151
|
+
appropriateness of using or redistributing the Work and assume any
|
152
|
+
risks associated with Your exercise of permissions under this License.
|
153
|
+
|
154
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
155
|
+
whether in tort (including negligence), contract, or otherwise,
|
156
|
+
unless required by applicable law (such as deliberate and grossly
|
157
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158
|
+
liable to You for damages, including any direct, indirect, special,
|
159
|
+
incidental, or consequential damages of any character arising as a
|
160
|
+
result of this License or out of the use or inability to use the
|
161
|
+
Work (including but not limited to damages for loss of goodwill,
|
162
|
+
work stoppage, computer failure or malfunction, or any and all
|
163
|
+
other commercial damages or losses), even if such Contributor
|
164
|
+
has been advised of the possibility of such damages.
|
165
|
+
|
166
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
168
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169
|
+
or other liability obligations and/or rights consistent with this
|
170
|
+
License. However, in accepting such obligations, You may act only
|
171
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172
|
+
of any other Contributor, and only if You agree to indemnify,
|
173
|
+
defend, and hold each Contributor harmless for any liability
|
174
|
+
incurred by, or claims asserted against, such Contributor by reason
|
175
|
+
of your accepting any such warranty or additional liability.
|
176
|
+
|
177
|
+
END OF TERMS AND CONDITIONS
|
178
|
+
|
179
|
+
APPENDIX: How to apply the Apache License to your work.
|
180
|
+
|
181
|
+
To apply the Apache License to your work, attach the following
|
182
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183
|
+
replaced with your own identifying information. (Don't include
|
184
|
+
the brackets!) The text should be enclosed in the appropriate
|
185
|
+
comment syntax for the file format. We also recommend that a
|
186
|
+
file or class name and description of purpose be included on the
|
187
|
+
same "printed page" as the copyright notice for easier
|
188
|
+
identification within third-party archives.
|
189
|
+
|
190
|
+
Copyright [yyyy] [name of copyright owner]
|
191
|
+
|
192
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193
|
+
you may not use this file except in compliance with the License.
|
194
|
+
You may obtain a copy of the License at
|
195
|
+
|
196
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
197
|
+
|
198
|
+
Unless required by applicable law or agreed to in writing, software
|
199
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201
|
+
See the License for the specific language governing permissions and
|
202
|
+
limitations under the License.
|
203
|
+
*/
|
@@ -0,0 +1,26 @@
|
|
1
|
+
/*
|
2
|
+
Copyright (c) 2011, Intel Corporation. All rights reserved.
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without modification,
|
5
|
+
are permitted provided that the following conditions are met:
|
6
|
+
|
7
|
+
* Redistributions of source code must retain the above copyright notice, this
|
8
|
+
list of conditions and the following disclaimer.
|
9
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
10
|
+
this list of conditions and the following disclaimer in the documentation
|
11
|
+
and/or other materials provided with the distribution.
|
12
|
+
* Neither the name of Intel Corporation nor the names of its contributors may
|
13
|
+
be used to endorse or promote products derived from this software without
|
14
|
+
specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
17
|
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
18
|
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
19
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
20
|
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
21
|
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
22
|
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
23
|
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
24
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
25
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
*/
|