tomoto 0.3.0-x86_64-linux

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (97) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +45 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +162 -0
  5. data/ext/tomoto/ct.cpp +58 -0
  6. data/ext/tomoto/dmr.cpp +69 -0
  7. data/ext/tomoto/dt.cpp +91 -0
  8. data/ext/tomoto/extconf.rb +34 -0
  9. data/ext/tomoto/gdmr.cpp +42 -0
  10. data/ext/tomoto/hdp.cpp +47 -0
  11. data/ext/tomoto/hlda.cpp +71 -0
  12. data/ext/tomoto/hpa.cpp +32 -0
  13. data/ext/tomoto/lda.cpp +281 -0
  14. data/ext/tomoto/llda.cpp +33 -0
  15. data/ext/tomoto/mglda.cpp +81 -0
  16. data/ext/tomoto/pa.cpp +32 -0
  17. data/ext/tomoto/plda.cpp +33 -0
  18. data/ext/tomoto/slda.cpp +48 -0
  19. data/ext/tomoto/tomoto.cpp +48 -0
  20. data/ext/tomoto/utils.h +30 -0
  21. data/lib/tomoto/2.7/tomoto.so +0 -0
  22. data/lib/tomoto/3.0/tomoto.so +0 -0
  23. data/lib/tomoto/3.1/tomoto.so +0 -0
  24. data/lib/tomoto/ct.rb +24 -0
  25. data/lib/tomoto/dmr.rb +27 -0
  26. data/lib/tomoto/dt.rb +15 -0
  27. data/lib/tomoto/gdmr.rb +15 -0
  28. data/lib/tomoto/hdp.rb +11 -0
  29. data/lib/tomoto/hlda.rb +56 -0
  30. data/lib/tomoto/hpa.rb +11 -0
  31. data/lib/tomoto/lda.rb +181 -0
  32. data/lib/tomoto/llda.rb +15 -0
  33. data/lib/tomoto/mglda.rb +15 -0
  34. data/lib/tomoto/pa.rb +11 -0
  35. data/lib/tomoto/plda.rb +15 -0
  36. data/lib/tomoto/slda.rb +37 -0
  37. data/lib/tomoto/version.rb +3 -0
  38. data/lib/tomoto.rb +27 -0
  39. data/vendor/EigenRand/EigenRand/EigenRand +24 -0
  40. data/vendor/EigenRand/LICENSE +21 -0
  41. data/vendor/EigenRand/README.md +426 -0
  42. data/vendor/eigen/COPYING.APACHE +203 -0
  43. data/vendor/eigen/COPYING.BSD +26 -0
  44. data/vendor/eigen/COPYING.GPL +674 -0
  45. data/vendor/eigen/COPYING.LGPL +502 -0
  46. data/vendor/eigen/COPYING.MINPACK +51 -0
  47. data/vendor/eigen/COPYING.MPL2 +373 -0
  48. data/vendor/eigen/COPYING.README +18 -0
  49. data/vendor/eigen/Eigen/Cholesky +45 -0
  50. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  51. data/vendor/eigen/Eigen/Core +384 -0
  52. data/vendor/eigen/Eigen/Dense +7 -0
  53. data/vendor/eigen/Eigen/Eigen +2 -0
  54. data/vendor/eigen/Eigen/Eigenvalues +60 -0
  55. data/vendor/eigen/Eigen/Geometry +59 -0
  56. data/vendor/eigen/Eigen/Householder +29 -0
  57. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  58. data/vendor/eigen/Eigen/Jacobi +32 -0
  59. data/vendor/eigen/Eigen/KLUSupport +41 -0
  60. data/vendor/eigen/Eigen/LU +47 -0
  61. data/vendor/eigen/Eigen/MetisSupport +35 -0
  62. data/vendor/eigen/Eigen/OrderingMethods +70 -0
  63. data/vendor/eigen/Eigen/PaStiXSupport +49 -0
  64. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  65. data/vendor/eigen/Eigen/QR +50 -0
  66. data/vendor/eigen/Eigen/QtAlignedMalloc +39 -0
  67. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  68. data/vendor/eigen/Eigen/SVD +50 -0
  69. data/vendor/eigen/Eigen/Sparse +34 -0
  70. data/vendor/eigen/Eigen/SparseCholesky +37 -0
  71. data/vendor/eigen/Eigen/SparseCore +69 -0
  72. data/vendor/eigen/Eigen/SparseLU +50 -0
  73. data/vendor/eigen/Eigen/SparseQR +36 -0
  74. data/vendor/eigen/Eigen/StdDeque +27 -0
  75. data/vendor/eigen/Eigen/StdList +26 -0
  76. data/vendor/eigen/Eigen/StdVector +27 -0
  77. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  78. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  79. data/vendor/eigen/README.md +5 -0
  80. data/vendor/eigen/bench/README.txt +55 -0
  81. data/vendor/eigen/bench/btl/COPYING +340 -0
  82. data/vendor/eigen/bench/btl/README +154 -0
  83. data/vendor/eigen/bench/tensors/README +20 -0
  84. data/vendor/eigen/blas/README.txt +6 -0
  85. data/vendor/eigen/ci/README.md +56 -0
  86. data/vendor/eigen/demos/mandelbrot/README +10 -0
  87. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  88. data/vendor/eigen/demos/opengl/README +13 -0
  89. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1815 -0
  90. data/vendor/eigen/unsupported/README.txt +50 -0
  91. data/vendor/tomotopy/LICENSE +21 -0
  92. data/vendor/tomotopy/README.kr.rst +512 -0
  93. data/vendor/tomotopy/README.rst +516 -0
  94. data/vendor/variant/LICENSE +25 -0
  95. data/vendor/variant/LICENSE_1_0.txt +23 -0
  96. data/vendor/variant/README.md +102 -0
  97. metadata +140 -0
@@ -0,0 +1,1815 @@
1
+ # Eigen Tensors {#eigen_tensors}
2
+
3
+ Tensors are multidimensional arrays of elements. Elements are typically scalars,
4
+ but more complex types such as strings are also supported.
5
+
6
+ ## Tensor Classes
7
+
8
+ You can manipulate a tensor with one of the following classes. They all are in
9
+ the namespace `::Eigen.`
10
+
11
+
12
+ ### Class Tensor<data_type, rank>
13
+
14
+ This is the class to use to create a tensor and allocate memory for it. The
15
+ class is templatized with the tensor datatype, such as float or int, and the
16
+ tensor rank. The rank is the number of dimensions, for example rank 2 is a
17
+ matrix.
18
+
19
+ Tensors of this class are resizable. For example, if you assign a tensor of a
20
+ different size to a Tensor, that tensor is resized to match its new value.
21
+
22
+ #### Constructor Tensor<data_type, rank>(size0, size1, ...)
23
+
24
+ Constructor for a Tensor. The constructor must be passed `rank` integers
25
+ indicating the sizes of the instance along each of the the `rank`
26
+ dimensions.
27
+
28
+ // Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
29
+ // memory to hold 24 floating point values (24 = 2 x 3 x 4).
30
+ Tensor<float, 3> t_3d(2, 3, 4);
31
+
32
+ // Resize t_3d by assigning a tensor of different sizes, but same rank.
33
+ t_3d = Tensor<float, 3>(3, 4, 3);
34
+
35
+ #### Constructor Tensor<data_type, rank>(size_array)
36
+
37
+ Constructor where the sizes for the constructor are specified as an array of
38
+ values instead of an explicitly list of parameters. The array type to use is
39
+ `Eigen::array<Eigen::Index>`. The array can be constructed automatically
40
+ from an initializer list.
41
+
42
+ // Create a tensor of strings of rank 2 with sizes 5, 7.
43
+ Tensor<string, 2> t_2d({5, 7});
44
+
45
+
46
+ ### Class TensorFixedSize<data_type, Sizes<size0, size1, ...>>
47
+
48
+ Class to use for tensors of fixed size, where the size is known at compile
49
+ time. Fixed sized tensors can provide very fast computations because all their
50
+ dimensions are known by the compiler. FixedSize tensors are not resizable.
51
+
52
+ If the total number of elements in a fixed size tensor is small enough the
53
+ tensor data is held onto the stack and does not cause heap allocation and free.
54
+
55
+ // Create a 4 x 3 tensor of floats.
56
+ TensorFixedSize<float, Sizes<4, 3>> t_4x3;
57
+
58
+ ### Class TensorMap<Tensor<data_type, rank>>
59
+
60
+ This is the class to use to create a tensor on top of memory allocated and
61
+ owned by another part of your code. It allows to view any piece of allocated
62
+ memory as a Tensor. Instances of this class do not own the memory where the
63
+ data are stored.
64
+
65
+ A TensorMap is not resizable because it does not own the memory where its data
66
+ are stored.
67
+
68
+ #### Constructor TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)
69
+
70
+ Constructor for a Tensor. The constructor must be passed a pointer to the
71
+ storage for the data, and "rank" size attributes. The storage has to be
72
+ large enough to hold all the data.
73
+
74
+ // Map a tensor of ints on top of stack-allocated storage.
75
+ int storage[128]; // 2 x 4 x 2 x 8 = 128
76
+ TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8);
77
+
78
+ // The same storage can be viewed as a different tensor.
79
+ // You can also pass the sizes as an array.
80
+ TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8);
81
+
82
+ // You can also map fixed-size tensors. Here we get a 1d view of
83
+ // the 2d fixed-size tensor.
84
+ TensorFixedSize<float, Sizes<4, 3>> t_4x3;
85
+ TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
86
+
87
+
88
+ #### Class TensorRef
89
+
90
+ See Assigning to a TensorRef below.
91
+
92
+ ## Accessing Tensor Elements
93
+
94
+ #### <data_type> tensor(index0, index1...)
95
+
96
+ Return the element at position `(index0, index1...)` in tensor
97
+ `tensor`. You must pass as many parameters as the rank of `tensor`.
98
+ The expression can be used as an l-value to set the value of the element at the
99
+ specified position. The value returned is of the datatype of the tensor.
100
+
101
+ // Set the value of the element at position (0, 1, 0);
102
+ Tensor<float, 3> t_3d(2, 3, 4);
103
+ t_3d(0, 1, 0) = 12.0f;
104
+
105
+ // Initialize all elements to random values.
106
+ for (int i = 0; i < 2; ++i) {
107
+ for (int j = 0; j < 3; ++j) {
108
+ for (int k = 0; k < 4; ++k) {
109
+ t_3d(i, j, k) = ...some random value...;
110
+ }
111
+ }
112
+ }
113
+
114
+ // Print elements of a tensor.
115
+ for (int i = 0; i < 2; ++i) {
116
+ LOG(INFO) << t_3d(i, 0, 0);
117
+ }
118
+
119
+
120
+ ## TensorLayout
121
+
122
+ The tensor library supports 2 layouts: `ColMajor` (the default) and
123
+ `RowMajor`. Only the default column major layout is currently fully
124
+ supported, and it is therefore not recommended to attempt to use the row major
125
+ layout at the moment.
126
+
127
+ The layout of a tensor is optionally specified as part of its type. If not
128
+ specified explicitly column major is assumed.
129
+
130
+ Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
131
+ TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
132
+
133
+ All the arguments to an expression must use the same layout. Attempting to mix
134
+ different layouts will result in a compilation error.
135
+
136
+ It is possible to change the layout of a tensor or an expression using the
137
+ `swap_layout()` method. Note that this will also reverse the order of the
138
+ dimensions.
139
+
140
+ Tensor<float, 2, ColMajor> col_major(2, 4);
141
+ Tensor<float, 2, RowMajor> row_major(2, 4);
142
+
143
+ Tensor<float, 2> col_major_result = col_major; // ok, layouts match
144
+ Tensor<float, 2> col_major_result = row_major; // will not compile
145
+
146
+ // Simple layout swap
147
+ col_major_result = row_major.swap_layout();
148
+ eigen_assert(col_major_result.dimension(0) == 4);
149
+ eigen_assert(col_major_result.dimension(1) == 2);
150
+
151
+ // Swap the layout and preserve the order of the dimensions
152
+ array<int, 2> shuffle(1, 0);
153
+ col_major_result = row_major.swap_layout().shuffle(shuffle);
154
+ eigen_assert(col_major_result.dimension(0) == 2);
155
+ eigen_assert(col_major_result.dimension(1) == 4);
156
+
157
+
158
+ ## Tensor Operations
159
+
160
+ The Eigen Tensor library provides a vast library of operations on Tensors:
161
+ numerical operations such as addition and multiplication, geometry operations
162
+ such as slicing and shuffling, etc. These operations are available as methods
163
+ of the Tensor classes, and in some cases as operator overloads. For example
164
+ the following code computes the elementwise addition of two tensors:
165
+
166
+ Tensor<float, 3> t1(2, 3, 4);
167
+ ...set some values in t1...
168
+ Tensor<float, 3> t2(2, 3, 4);
169
+ ...set some values in t2...
170
+ // Set t3 to the element wise sum of t1 and t2
171
+ Tensor<float, 3> t3 = t1 + t2;
172
+
173
+ While the code above looks easy enough, it is important to understand that the
174
+ expression `t1 + t2` is not actually adding the values of the tensors. The
175
+ expression instead constructs a "tensor operator" object of the class
176
+ TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
177
+ `t1` and `t2`. This is a small C++ object that knows how to add
178
+ `t1` and `t2`. It is only when the value of the expression is assigned
179
+ to the tensor `t3` that the addition is actually performed. Technically,
180
+ this happens through the overloading of `operator=()` in the Tensor class.
181
+
182
+ This mechanism for computing tensor expressions allows for lazy evaluation and
183
+ optimizations which are what make the tensor library very fast.
184
+
185
+ Of course, the tensor operators do nest, and the expression `t1 + t2 * 0.3f`
186
+ is actually represented with the (approximate) tree of operators:
187
+
188
+ TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
189
+
190
+
191
+ ### Tensor Operations and C++ "auto"
192
+
193
+ Because Tensor operations create tensor operators, the C++ `auto` keyword
194
+ does not have its intuitive meaning. Consider these 2 lines of code:
195
+
196
+ Tensor<float, 3> t3 = t1 + t2;
197
+ auto t4 = t1 + t2;
198
+
199
+ In the first line we allocate the tensor `t3` and it will contain the
200
+ result of the addition of `t1` and `t2`. In the second line, `t4`
201
+ is actually the tree of tensor operators that will compute the addition of
202
+ `t1` and `t2`. In fact, `t4` is *not* a tensor and you cannot get
203
+ the values of its elements:
204
+
205
+ Tensor<float, 3> t3 = t1 + t2;
206
+ cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0)
207
+
208
+ auto t4 = t1 + t2;
209
+ cout << t4(0, 0, 0); // Compilation error!
210
+
211
+ When you use `auto` you do not get a Tensor as a result but instead a
212
+ non-evaluated expression. So only use `auto` to delay evaluation.
213
+
214
+ Unfortunately, there is no single underlying concrete type for holding
215
+ non-evaluated expressions, hence you have to use auto in the case when you do
216
+ want to hold non-evaluated expressions.
217
+
218
+ When you need the results of set of tensor computations you have to assign the
219
+ result to a Tensor that will be capable of holding onto them. This can be
220
+ either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing
221
+ piece of memory. All the following will work:
222
+
223
+ auto t4 = t1 + t2;
224
+
225
+ Tensor<float, 3> result = t4; // Could also be: result(t4);
226
+ cout << result(0, 0, 0);
227
+
228
+ TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4;
229
+ cout << result(0, 0, 0);
230
+
231
+ TensorFixedSize<float, Sizes<size0, ...>> result = t4;
232
+ cout << result(0, 0, 0);
233
+
234
+ Until you need the results, you can keep the operation around, and even reuse
235
+ it for additional operations. As long as you keep the expression as an
236
+ operation, no computation is performed.
237
+
238
+ // One way to compute exp((t1 + t2) * 0.2f);
239
+ auto t3 = t1 + t2;
240
+ auto t4 = t3 * 0.2f;
241
+ auto t5 = t4.exp();
242
+ Tensor<float, 3> result = t5;
243
+
244
+ // Another way, exactly as efficient as the previous one:
245
+ Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
246
+
247
+ ### Controlling When Expression are Evaluated
248
+
249
+ There are several ways to control when expressions are evaluated:
250
+
251
+ * Assignment to a Tensor, TensorFixedSize, or TensorMap.
252
+ * Use of the eval() method.
253
+ * Assignment to a TensorRef.
254
+
255
+ #### Assigning to a Tensor, TensorFixedSize, or TensorMap.
256
+
257
+ The most common way to evaluate an expression is to assign it to a Tensor. In
258
+ the example below, the `auto` declarations make the intermediate values
259
+ "Operations", not Tensors, and do not cause the expressions to be evaluated.
260
+ The assignment to the Tensor `result` causes the evaluation of all the
261
+ operations.
262
+
263
+ auto t3 = t1 + t2; // t3 is an Operation.
264
+ auto t4 = t3 * 0.2f; // t4 is an Operation.
265
+ auto t5 = t4.exp(); // t5 is an Operation.
266
+ Tensor<float, 3> result = t5; // The operations are evaluated.
267
+
268
+ If you know the ranks and sizes of the Operation value you can assign the
269
+ Operation to a TensorFixedSize instead of a Tensor, which is a bit more
270
+ efficient.
271
+
272
+ // We know that the result is a 4x4x2 tensor!
273
+ TensorFixedSize<float, Sizes<4, 4, 2>> result = t5;
274
+
275
+ Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
276
+ tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
277
+ have the rank and sizes of the expression that are assigned to them.
278
+
279
+ #### Calling eval().
280
+
281
+ When you compute large composite expressions, you sometimes want to tell Eigen
282
+ that an intermediate value in the expression tree is worth evaluating ahead of
283
+ time. This is done by inserting a call to the `eval()` method of the
284
+ expression Operation.
285
+
286
+ // The previous example could have been written:
287
+ Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
288
+
289
+ // If you want to compute (t1 + t2) once ahead of time you can write:
290
+ Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp();
291
+
292
+ Semantically, calling `eval()` is equivalent to materializing the value of
293
+ the expression in a temporary Tensor of the right size. The code above in
294
+ effect does:
295
+
296
+ // .eval() knows the size!
297
+ TensorFixedSize<float, Sizes<4, 4, 2>> tmp = t1 + t2;
298
+ Tensor<float, 3> result = (tmp * 0.2f).exp();
299
+
300
+ Note that the return value of `eval()` is itself an Operation, so the
301
+ following code does not do what you may think:
302
+
303
+ // Here t3 is an evaluation Operation. t3 has not been evaluated yet.
304
+ auto t3 = (t1 + t2).eval();
305
+
306
+ // You can use t3 in another expression. Still no evaluation.
307
+ auto t4 = (t3 * 0.2f).exp();
308
+
309
+ // The value is evaluated when you assign the Operation to a Tensor, using
310
+ // an intermediate tensor to represent t3.x
311
+ Tensor<float, 3> result = t4;
312
+
313
+ While in the examples above calling `eval()` does not make a difference in
314
+ performance, in other cases it can make a huge difference. In the expression
315
+ below the `broadcast()` expression causes the `X.maximum()` expression
316
+ to be evaluated many times:
317
+
318
+ Tensor<...> X ...;
319
+ Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast))
320
+ * beta).exp();
321
+
322
+ Inserting a call to `eval()` between the `maximum()` and
323
+ `reshape()` calls guarantees that maximum() is only computed once and
324
+ greatly speeds-up execution:
325
+
326
+ Tensor<...> Y =
327
+ ((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast))
328
+ * beta).exp();
329
+
330
+ In the other example below, the tensor `Y` is both used in the expression
331
+ and its assignment. This is an aliasing problem and if the evaluation is not
332
+ done in the right order Y will be updated incrementally during the evaluation
333
+ resulting in bogus results:
334
+
335
+ Tensor<...> Y ...;
336
+ Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast));
337
+
338
+ Inserting a call to `eval()` between the `sum()` and `reshape()`
339
+ expressions ensures that the sum is computed before any updates to `Y` are
340
+ done.
341
+
342
+ Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
343
+
344
+ Note that an eval around the full right hand side expression is not needed
345
+ because the generated has to compute the i-th value of the right hand side
346
+ before assigning it to the left hand side.
347
+
348
+ However, if you were assigning the expression value to a shuffle of `Y`
349
+ then you would need to force an eval for correctness by adding an `eval()`
350
+ call for the right hand side:
351
+
352
+ Y.shuffle(...) =
353
+ (Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();
354
+
355
+
356
+ #### Assigning to a TensorRef.
357
+
358
+ If you need to access only a few elements from the value of an expression you
359
+ can avoid materializing the value in a full tensor by using a TensorRef.
360
+
361
+ A TensorRef is a small wrapper class for any Eigen Operation. It provides
362
+ overloads for the `()` operator that let you access individual values in
363
+ the expression. TensorRef is convenient, because the Operation themselves do
364
+ not provide a way to access individual elements.
365
+
366
+ // Create a TensorRef for the expression. The expression is not
367
+ // evaluated yet.
368
+ TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp();
369
+
370
+ // Use "ref" to access individual elements. The expression is evaluated
371
+ // on the fly.
372
+ float at_0 = ref(0, 0, 0);
373
+ cout << ref(0, 1, 0);
374
+
375
+ Only use TensorRef when you need a subset of the values of the expression.
376
+ TensorRef only computes the values you access. However note that if you are
377
+ going to access all the values it will be much faster to materialize the
378
+ results in a Tensor first.
379
+
380
+ In some cases, if the full Tensor result would be very large, you may save
381
+ memory by accessing it as a TensorRef. But not always. So don't count on it.
382
+
383
+
384
+ ### Controlling How Expressions Are Evaluated
385
+
386
+ The tensor library provides several implementations of the various operations
387
+ such as contractions and convolutions. The implementations are optimized for
388
+ different environments: single threaded on CPU, multi threaded on CPU, or on a
389
+ GPU using cuda. Additional implementations may be added later.
390
+
391
+ You can choose which implementation to use with the `device()` call. If
392
+ you do not choose an implementation explicitly the default implementation that
393
+ uses a single thread on the CPU is used.
394
+
395
+ The default implementation has been optimized for recent Intel CPUs, taking
396
+ advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the
397
+ library on ARM CPUs. Note that you need to pass compiler-dependent flags
398
+ to enable the use of SSE, AVX, and other instructions.
399
+
400
+ For example, the following code adds two tensors using the default
401
+ single-threaded CPU implementation:
402
+
403
+ Tensor<float, 2> a(30, 40);
404
+ Tensor<float, 2> b(30, 40);
405
+ Tensor<float, 2> c = a + b;
406
+
407
+ To choose a different implementation you have to insert a `device()` call
408
+ before the assignment of the result. For technical C++ reasons this requires
409
+ that the Tensor for the result be declared on its own. This means that you
410
+ have to know the size of the result.
411
+
412
+ Eigen::Tensor<float, 2> c(30, 40);
413
+ c.device(...) = a + b;
414
+
415
+ The call to `device()` must be the last call on the left of the operator=.
416
+
417
+ You must pass to the `device()` call an Eigen device object. There are
418
+ presently three devices you can use: DefaultDevice, ThreadPoolDevice and
419
+ GpuDevice.
420
+
421
+
422
+ #### Evaluating With the DefaultDevice
423
+
424
+ This is exactly the same as not inserting a `device()` call.
425
+
426
+ DefaultDevice my_device;
427
+ c.device(my_device) = a + b;
428
+
429
+ #### Evaluating with a Thread Pool
430
+
431
+ // Create the Eigen ThreadPool
432
+ Eigen::ThreadPool pool(8 /* number of threads in pool */)
433
+
434
+ // Create the Eigen ThreadPoolDevice.
435
+ Eigen::ThreadPoolDevice my_device(&pool, 4 /* number of threads to use */);
436
+
437
+ // Now just use the device when evaluating expressions.
438
+ Eigen::Tensor<float, 2> c(30, 50);
439
+ c.device(my_device) = a.contract(b, dot_product_dims);
440
+
441
+
442
+ #### Evaluating On GPU
443
+
444
+ This is presently a bit more complicated than just using a thread pool device.
445
+ You need to create a GPU device but you also need to explicitly allocate the
446
+ memory for tensors with cuda.
447
+
448
+
449
+ ## API Reference
450
+
451
+ ### Datatypes
452
+
453
+ In the documentation of the tensor methods and Operation we mention datatypes
454
+ that are tensor-type specific:
455
+
456
+ #### <Tensor-Type>::Dimensions
457
+
458
+ Acts like an array of ints. Has an `int size` attribute, and can be
459
+ indexed like an array to access individual values. Used to represent the
460
+ dimensions of a tensor. See `dimensions()`.
461
+
462
+ #### <Tensor-Type>::Index
463
+
464
+ Acts like an `int`. Used for indexing tensors along their dimensions. See
465
+ `operator()`, `dimension()`, and `size()`.
466
+
467
+ #### <Tensor-Type>::Scalar
468
+
469
+ Represents the datatype of individual tensor elements. For example, for a
470
+ `Tensor<float>`, `Scalar` is the type `float`. See
471
+ `setConstant()`.
472
+
473
+ #### <Operation>
474
+
475
+ We use this pseudo type to indicate that a tensor Operation is returned by a
476
+ method. We indicate in the text the type and dimensions of the tensor that the
477
+ Operation returns after evaluation.
478
+
479
+ The Operation will have to be evaluated, for example by assigning it to a
480
+ tensor, before you can access the values of the resulting tensor. You can also
481
+ access the values through a TensorRef.
482
+
483
+
484
+ ## Built-in Tensor Methods
485
+
486
+ These are usual C++ methods that act on tensors immediately. They are not
487
+ Operations which provide delayed evaluation of their results. Unless specified
488
+ otherwise, all the methods listed below are available on all tensor classes:
489
+ Tensor, TensorFixedSize, and TensorMap.
490
+
491
+ ## Metadata
492
+
493
+ ### int NumDimensions
494
+
495
+ Constant value indicating the number of dimensions of a Tensor. This is also
496
+ known as the tensor "rank".
497
+
498
+ Eigen::Tensor<float, 2> a(3, 4);
499
+ cout << "Dims " << a.NumDimensions;
500
+ => Dims 2
501
+
502
+ ### Dimensions dimensions()
503
+
504
+ Returns an array-like object representing the dimensions of the tensor.
505
+ The actual type of the `dimensions()` result is `<Tensor-Type>::``Dimensions`.
506
+
507
+ Eigen::Tensor<float, 2> a(3, 4);
508
+ const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
509
+ cout << "Dim size: " << d.size << ", dim 0: " << d[0]
510
+ << ", dim 1: " << d[1];
511
+ => Dim size: 2, dim 0: 3, dim 1: 4
512
+
513
+ If you use a C++11 compiler, you can use `auto` to simplify the code:
514
+
515
+ const auto& d = a.dimensions();
516
+ cout << "Dim size: " << d.size << ", dim 0: " << d[0]
517
+ << ", dim 1: " << d[1];
518
+ => Dim size: 2, dim 0: 3, dim 1: 4
519
+
520
+ ### Index dimension(Index n)
521
+
522
+ Returns the n-th dimension of the tensor. The actual type of the
523
+ `dimension()` result is `<Tensor-Type>::``Index`, but you can
524
+ always use it like an int.
525
+
526
+ Eigen::Tensor<float, 2> a(3, 4);
527
+ int dim1 = a.dimension(1);
528
+ cout << "Dim 1: " << dim1;
529
+ => Dim 1: 4
530
+
531
+ ### Index size()
532
+
533
+ Returns the total number of elements in the tensor. This is the product of all
534
+ the tensor dimensions. The actual type of the `size()` result is
535
+ `<Tensor-Type>::``Index`, but you can always use it like an int.
536
+
537
+ Eigen::Tensor<float, 2> a(3, 4);
538
+ cout << "Size: " << a.size();
539
+ => Size: 12
540
+
541
+
542
+ ### Getting Dimensions From An Operation
543
+
544
+ A few operations provide `dimensions()` directly,
545
+ e.g. `TensorReslicingOp`. Most operations defer calculating dimensions
546
+ until the operation is being evaluated. If you need access to the dimensions
547
+ of a deferred operation, you can wrap it in a TensorRef (see Assigning to a
548
+ TensorRef above), which provides `dimensions()` and `dimension()` as
549
+ above.
550
+
551
+ TensorRef can also wrap the plain Tensor types, so this is a useful idiom in
552
+ templated contexts where the underlying object could be either a raw Tensor
553
+ or some deferred operation (e.g. a slice of a Tensor). In this case, the
554
+ template code can wrap the object in a TensorRef and reason about its
555
+ dimensionality while remaining agnostic to the underlying type.
556
+
557
+
558
+ ## Constructors
559
+
560
+ ### Tensor
561
+
562
+ Creates a tensor of the specified size. The number of arguments must be equal
563
+ to the rank of the tensor. The content of the tensor is not initialized.
564
+
565
+ Eigen::Tensor<float, 2> a(3, 4);
566
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
567
+ => NumRows: 3 NumCols: 4
568
+
569
+ ### TensorFixedSize
570
+
571
+ Creates a tensor of the specified size. The number of arguments in the Sizes<>
572
+ template parameter determines the rank of the tensor. The content of the tensor
573
+ is not initialized.
574
+
575
+ Eigen::TensorFixedSize<float, Sizes<3, 4>> a;
576
+ cout << "Rank: " << a.rank() << endl;
577
+ => Rank: 2
578
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
579
+ => NumRows: 3 NumCols: 4
580
+
581
+ ### TensorMap
582
+
583
+ Creates a tensor mapping an existing array of data. The data must not be freed
584
+ until the TensorMap is discarded, and the size of the data must be large enough
585
+ to accommodate the coefficients of the tensor.
586
+
587
+ float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
588
+ Eigen::TensorMap<Tensor<float, 2>> a(data, 3, 4);
589
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
590
+ => NumRows: 3 NumCols: 4
591
+ cout << "a(1, 2): " << a(1, 2) << endl;
592
+ => a(1, 2): 7
593
+
594
+
595
+ ## Contents Initialization
596
+
597
+ When a new Tensor or a new TensorFixedSize are created, memory is allocated to
598
+ hold all the tensor elements, but the memory is not initialized. Similarly,
599
+ when a new TensorMap is created on top of non-initialized memory the memory its
600
+ contents are not initialized.
601
+
602
+ You can use one of the methods below to initialize the tensor memory. These
603
+ have an immediate effect on the tensor and return the tensor itself as a
604
+ result. These are not tensor Operations which delay evaluation.
605
+
606
+ ### <Tensor-Type> setConstant(const Scalar& val)
607
+
608
+ Sets all elements of the tensor to the constant value `val`. `Scalar`
609
+ is the type of data stored in the tensor. You can pass any value that is
610
+ convertible to that type.
611
+
612
+ Returns the tensor itself in case you want to chain another call.
613
+
614
+ a.setConstant(12.3f);
615
+ cout << "Constant: " << endl << a << endl << endl;
616
+ =>
617
+ Constant:
618
+ 12.3 12.3 12.3 12.3
619
+ 12.3 12.3 12.3 12.3
620
+ 12.3 12.3 12.3 12.3
621
+
622
+ Note that `setConstant()` can be used on any tensor where the element type
623
+ has a copy constructor and an `operator=()`:
624
+
625
+ Eigen::Tensor<string, 2> a(2, 3);
626
+ a.setConstant("yolo");
627
+ cout << "String tensor: " << endl << a << endl << endl;
628
+ =>
629
+ String tensor:
630
+ yolo yolo yolo
631
+ yolo yolo yolo
632
+
633
+
634
+ ### <Tensor-Type> setZero()
635
+
636
+ Fills the tensor with zeros. Equivalent to `setConstant(Scalar(0))`.
637
+ Returns the tensor itself in case you want to chain another call.
638
+
639
+ a.setZero();
640
+ cout << "Zeros: " << endl << a << endl << endl;
641
+ =>
642
+ Zeros:
643
+ 0 0 0 0
644
+ 0 0 0 0
645
+ 0 0 0 0
646
+
647
+
648
+ ### <Tensor-Type> setValues({..initializer_list})
649
+
650
+ Fills the tensor with explicit values specified in a std::initializer_list.
651
+ The type of the initializer list depends on the type and rank of the tensor.
652
+
653
+ If the tensor has rank N, the initializer list must be nested N times. The
654
+ most deeply nested lists must contains P scalars of the Tensor type where P is
655
+ the size of the last dimension of the Tensor.
656
+
657
+ For example, for a `TensorFixedSize<float, 2, 3>` the initializer list must
658
+ contains 2 lists of 3 floats each.
659
+
660
+ `setValues()` returns the tensor itself in case you want to chain another
661
+ call.
662
+
663
+ Eigen::Tensor<float, 2> a(2, 3);
664
+ a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
665
+ cout << "a" << endl << a << endl << endl;
666
+ =>
667
+ a
668
+ 0 1 2
669
+ 3 4 5
670
+
671
+ If a list is too short, the corresponding elements of the tensor will not be
672
+ changed. This is valid at each level of nesting. For example the following
673
+ code only sets the values of the first row of the tensor.
674
+
675
+ Eigen::Tensor<int, 2> a(2, 3);
676
+ a.setConstant(1000);
677
+ a.setValues({{10, 20, 30}});
678
+ cout << "a" << endl << a << endl << endl;
679
+ =>
680
+ a
681
+ 10 20 30
682
+ 1000 1000 1000
683
+
684
+ ### <Tensor-Type> setRandom()
685
+
686
+ Fills the tensor with random values. Returns the tensor itself in case you
687
+ want to chain another call.
688
+
689
+ a.setRandom();
690
+ cout << "Random: " << endl << a << endl << endl;
691
+ =>
692
+ Random:
693
+ 0.680375 0.59688 -0.329554 0.10794
694
+ -0.211234 0.823295 0.536459 -0.0452059
695
+ 0.566198 -0.604897 -0.444451 0.257742
696
+
697
+ You can customize `setRandom()` by providing your own random number
698
+ generator as a template argument:
699
+
700
+ a.setRandom<MyRandomGenerator>();
701
+
702
+ Here, `MyRandomGenerator` must be a struct with the following member
703
+ functions, where Scalar and Index are the same as `<Tensor-Type>::``Scalar`
704
+ and `<Tensor-Type>::``Index`.
705
+
706
+ See `struct UniformRandomGenerator` in TensorFunctors.h for an example.
707
+
708
+ // Custom number generator for use with setRandom().
709
+ struct MyRandomGenerator {
710
+ // Default and copy constructors. Both are needed
711
+ MyRandomGenerator() { }
712
+ MyRandomGenerator(const MyRandomGenerator& ) { }
713
+
714
+ // Return a random value to be used. "element_location" is the
715
+ // location of the entry to set in the tensor, it can typically
716
+ // be ignored.
717
+ Scalar operator()(Eigen::DenseIndex element_location,
718
+ Eigen::DenseIndex /*unused*/ = 0) const {
719
+ return <randomly generated value of type T>;
720
+ }
721
+
722
+ // Same as above but generates several numbers at a time.
723
+ typename internal::packet_traits<Scalar>::type packetOp(
724
+ Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
725
+ return <a packet of randomly generated values>;
726
+ }
727
+ };
728
+
729
+ You can also use one of the 2 random number generators that are part of the
730
+ tensor library:
731
+ * UniformRandomGenerator
732
+ * NormalRandomGenerator
733
+
734
+
735
+ ## Data Access
736
+
737
+ The Tensor, TensorFixedSize, and TensorRef classes provide the following
738
+ accessors to access the tensor coefficients:
739
+
740
+ const Scalar& operator()(const array<Index, NumIndices>& indices)
741
+ const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
742
+ Scalar& operator()(const array<Index, NumIndices>& indices)
743
+ Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
744
+
745
+ The number of indices must be equal to the rank of the tensor. Moreover, these
746
+ accessors are not available on tensor expressions. In order to access the
747
+ values of a tensor expression, the expression must either be evaluated or
748
+ wrapped in a TensorRef.
749
+
750
+
751
+ ### Scalar* data() and const Scalar* data() const
752
+
753
+ Returns a pointer to the storage for the tensor. The pointer is const if the
754
+ tensor was const. This allows direct access to the data. The layout of the
755
+ data depends on the tensor layout: RowMajor or ColMajor.
756
+
757
+ This access is usually only needed for special cases, for example when mixing
758
+ Eigen Tensor code with other libraries.
759
+
760
+ Scalar is the type of data stored in the tensor.
761
+
762
+ Eigen::Tensor<float, 2> a(3, 4);
763
+ float* a_data = a.data();
764
+ a_data[0] = 123.45f;
765
+ cout << "a(0, 0): " << a(0, 0);
766
+ => a(0, 0): 123.45
767
+
768
+
769
+ ## Tensor Operations
770
+
771
+ All the methods documented below return non evaluated tensor `Operations`.
772
+ These can be chained: you can apply another Tensor Operation to the value
773
+ returned by the method.
774
+
775
+ The chain of Operation is evaluated lazily, typically when it is assigned to a
776
+ tensor. See "Controlling when Expression are Evaluated" for more details about
777
+ their evaluation.
778
+
779
+ ### <Operation> constant(const Scalar& val)
780
+
781
+ Returns a tensor of the same type and dimensions as the original tensor but
782
+ where all elements have the value `val`.
783
+
784
+ This is useful, for example, when you want to add or subtract a constant from a
785
+ tensor, or multiply every element of a tensor by a scalar.
786
+
787
+ Eigen::Tensor<float, 2> a(2, 3);
788
+ a.setConstant(1.0f);
789
+ Eigen::Tensor<float, 2> b = a + a.constant(2.0f);
790
+ Eigen::Tensor<float, 2> c = b * b.constant(0.2f);
791
+ cout << "a" << endl << a << endl << endl;
792
+ cout << "b" << endl << b << endl << endl;
793
+ cout << "c" << endl << c << endl << endl;
794
+ =>
795
+ a
796
+ 1 1 1
797
+ 1 1 1
798
+
799
+ b
800
+ 3 3 3
801
+ 3 3 3
802
+
803
+ c
804
+ 0.6 0.6 0.6
805
+ 0.6 0.6 0.6
806
+
807
+ ### <Operation> random()
808
+
809
+ Returns a tensor of the same type and dimensions as the current tensor
810
+ but where all elements have random values.
811
+
812
+ This is for example useful to add random values to an existing tensor.
813
+ The generation of random values can be customized in the same manner
814
+ as for `setRandom()`.
815
+
816
+ Eigen::Tensor<float, 2> a(2, 3);
817
+ a.setConstant(1.0f);
818
+ Eigen::Tensor<float, 2> b = a + a.random();
819
+ cout << "a" << endl << a << endl << endl;
820
+ cout << "b" << endl << b << endl << endl;
821
+ =>
822
+ a
823
+ 1 1 1
824
+ 1 1 1
825
+
826
+ b
827
+ 1.68038 1.5662 1.82329
828
+ 0.788766 1.59688 0.395103
829
+
830
+
831
+ ## Unary Element Wise Operations
832
+
833
+ All these operations take a single input tensor as argument and return a tensor
834
+ of the same type and dimensions as the tensor to which they are applied. The
835
+ requested operations are applied to each element independently.
836
+
837
+ ### <Operation> operator-()
838
+
839
+ Returns a tensor of the same type and dimensions as the original tensor
840
+ containing the opposite values of the original tensor.
841
+
842
+ Eigen::Tensor<float, 2> a(2, 3);
843
+ a.setConstant(1.0f);
844
+ Eigen::Tensor<float, 2> b = -a;
845
+ cout << "a" << endl << a << endl << endl;
846
+ cout << "b" << endl << b << endl << endl;
847
+ =>
848
+ a
849
+ 1 1 1
850
+ 1 1 1
851
+
852
+ b
853
+ -1 -1 -1
854
+ -1 -1 -1
855
+
856
+ ### <Operation> sqrt()
857
+
858
+ Returns a tensor of the same type and dimensions as the original tensor
859
+ containing the square roots of the original tensor.
860
+
861
+ ### <Operation> rsqrt()
862
+
863
+ Returns a tensor of the same type and dimensions as the original tensor
864
+ containing the inverse square roots of the original tensor.
865
+
866
+ ### <Operation> square()
867
+
868
+ Returns a tensor of the same type and dimensions as the original tensor
869
+ containing the squares of the original tensor values.
870
+
871
+ ### <Operation> inverse()
872
+
873
+ Returns a tensor of the same type and dimensions as the original tensor
874
+ containing the inverse of the original tensor values.
875
+
876
+ ### <Operation> exp()
877
+
878
+ Returns a tensor of the same type and dimensions as the original tensor
879
+ containing the exponential of the original tensor.
880
+
881
+ ### <Operation> log()
882
+
883
+ Returns a tensor of the same type and dimensions as the original tensor
884
+ containing the natural logarithms of the original tensor.
885
+
886
+ ### <Operation> abs()
887
+
888
+ Returns a tensor of the same type and dimensions as the original tensor
889
+ containing the absolute values of the original tensor.
890
+
891
+ ### <Operation> pow(Scalar exponent)
892
+
893
+ Returns a tensor of the same type and dimensions as the original tensor
894
+ containing the coefficients of the original tensor to the power of the
895
+ exponent.
896
+
897
+ The type of the exponent, Scalar, is always the same as the type of the
898
+ tensor coefficients. For example, only integer exponents can be used in
899
+ conjuntion with tensors of integer values.
900
+
901
+ You can use cast() to lift this restriction. For example this computes
902
+ cubic roots of an int Tensor:
903
+
904
+ Eigen::Tensor<int, 2> a(2, 3);
905
+ a.setValues({{0, 1, 8}, {27, 64, 125}});
906
+ Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
907
+ cout << "a" << endl << a << endl << endl;
908
+ cout << "b" << endl << b << endl << endl;
909
+ =>
910
+ a
911
+ 0 1 8
912
+ 27 64 125
913
+
914
+ b
915
+ 0 1 2
916
+ 3 4 5
917
+
918
+ ### <Operation> operator * (Scalar scale)
919
+
920
+ Multiplies all the coefficients of the input tensor by the provided scale.
921
+
922
+ ### <Operation> cwiseMax(Scalar threshold)
923
+ TODO
924
+
925
+ ### <Operation> cwiseMin(Scalar threshold)
926
+ TODO
927
+
928
+ ### <Operation> unaryExpr(const CustomUnaryOp& func)
929
+ TODO
930
+
931
+
932
+ ## Binary Element Wise Operations
933
+
934
+ These operations take two input tensors as arguments. The 2 input tensors should
935
+ be of the same type and dimensions. The result is a tensor of the same
936
+ dimensions as the tensors to which they are applied, and unless otherwise
937
+ specified it is also of the same type. The requested operations are applied to
938
+ each pair of elements independently.
939
+
940
+ ### <Operation> operator+(const OtherDerived& other)
941
+
942
+ Returns a tensor of the same type and dimensions as the input tensors
943
+ containing the coefficient wise sums of the inputs.
944
+
945
+ ### <Operation> operator-(const OtherDerived& other)
946
+
947
+ Returns a tensor of the same type and dimensions as the input tensors
948
+ containing the coefficient wise differences of the inputs.
949
+
950
+ ### <Operation> operator*(const OtherDerived& other)
951
+
952
+ Returns a tensor of the same type and dimensions as the input tensors
953
+ containing the coefficient wise products of the inputs.
954
+
955
+ ### <Operation> operator/(const OtherDerived& other)
956
+
957
+ Returns a tensor of the same type and dimensions as the input tensors
958
+ containing the coefficient wise quotients of the inputs.
959
+
960
+ This operator is not supported for integer types.
961
+
962
+ ### <Operation> cwiseMax(const OtherDerived& other)
963
+
964
+ Returns a tensor of the same type and dimensions as the input tensors
965
+ containing the coefficient wise maximums of the inputs.
966
+
967
+ ### <Operation> cwiseMin(const OtherDerived& other)
968
+
969
+ Returns a tensor of the same type and dimensions as the input tensors
970
+ containing the coefficient wise mimimums of the inputs.
971
+
972
+ ### <Operation> Logical operators
973
+
974
+ The following logical operators are supported as well:
975
+
976
+ * operator&&(const OtherDerived& other)
977
+ * operator||(const OtherDerived& other)
978
+ * operator<(const OtherDerived& other)
979
+ * operator<=(const OtherDerived& other)
980
+ * operator>(const OtherDerived& other)
981
+ * operator>=(const OtherDerived& other)
982
+ * operator==(const OtherDerived& other)
983
+ * operator!=(const OtherDerived& other)
984
+
985
+ They all return a tensor of boolean values.
986
+
987
+
988
+ ## Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor)
989
+
990
+ Selection is a coefficient-wise ternary operator that is the tensor equivalent
991
+ to the if-then-else operation.
992
+
993
+ Tensor<bool, 3> if = ...;
994
+ Tensor<float, 3> then = ...;
995
+ Tensor<float, 3> else = ...;
996
+ Tensor<float, 3> result = if.select(then, else);
997
+
998
+ The 3 arguments must be of the same dimensions, which will also be the dimension
999
+ of the result. The 'if' tensor must be of type boolean, the 'then' and the
1000
+ 'else' tensor must be of the same type, which will also be the type of the
1001
+ result.
1002
+
1003
+ Each coefficient in the result is equal to the corresponding coefficient in the
1004
+ 'then' tensor if the corresponding value in the 'if' tensor is true. If not, the
1005
+ resulting coefficient will come from the 'else' tensor.
1006
+
1007
+
1008
+ ## Contraction
1009
+
1010
+ Tensor *contractions* are a generalization of the matrix product to the
1011
+ multidimensional case.
1012
+
1013
+ // Create 2 matrices using tensors of rank 2
1014
+ Eigen::Tensor<int, 2> a(2, 3);
1015
+ a.setValues({{1, 2, 3}, {6, 5, 4}});
1016
+ Eigen::Tensor<int, 2> b(3, 2);
1017
+ b.setValues({{1, 2}, {4, 5}, {5, 6}});
1018
+
1019
+ // Compute the traditional matrix product
1020
+ Eigen::array<Eigen::IndexPair<int>, 1> product_dims = { Eigen::IndexPair<int>(1, 0) };
1021
+ Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);
1022
+
1023
+ // Compute the product of the transpose of the matrices
1024
+ Eigen::array<Eigen::IndexPair<int>, 1> transposed_product_dims = { Eigen::IndexPair<int>(0, 1) };
1025
+ Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);
1026
+
1027
+ // Contraction to scalar value using a double contraction.
1028
+ // First coordinate of both tensors are contracted as well as both second coordinates, i.e., this computes the sum of the squares of the elements.
1029
+ Eigen::array<Eigen::IndexPair<int>, 2> double_contraction_product_dims = { Eigen::IndexPair<int>(0, 0), Eigen::IndexPair<int>(1, 1) };
1030
+ Eigen::Tensor<int, 0> AdoubleContractedA = a.contract(a, double_contraction_product_dims);
1031
+
1032
+ // Extracting the scalar value of the tensor contraction for further usage
1033
+ int value = AdoubleContractedA(0);
1034
+
1035
+ ## Reduction Operations
1036
+
1037
+ A *Reduction* operation returns a tensor with fewer dimensions than the
1038
+ original tensor. The values in the returned tensor are computed by applying a
1039
+ *reduction operator* to slices of values from the original tensor. You specify
1040
+ the dimensions along which the slices are made.
1041
+
1042
+ The Eigen Tensor library provides a set of predefined reduction operators such
1043
+ as `maximum()` and `sum()` and lets you define additional operators by
1044
+ implementing a few methods from a reductor template.
1045
+
1046
+ ### Reduction Dimensions
1047
+
1048
+ All reduction operations take a single parameter of type
1049
+ `<TensorType>::``Dimensions` which can always be specified as an array of
1050
+ ints. These are called the "reduction dimensions." The values are the indices
1051
+ of the dimensions of the input tensor over which the reduction is done. The
1052
+ parameter can have at most as many element as the rank of the input tensor;
1053
+ each element must be less than the tensor rank, as it indicates one of the
1054
+ dimensions to reduce.
1055
+
1056
+ Each dimension of the input tensor should occur at most once in the reduction
1057
+ dimensions as the implementation does not remove duplicates.
1058
+
1059
+ The order of the values in the reduction dimensions does not affect the
1060
+ results, but the code may execute faster if you list the dimensions in
1061
+ increasing order.
1062
+
1063
+ Example: Reduction along one dimension.
1064
+
1065
+ // Create a tensor of 2 dimensions
1066
+ Eigen::Tensor<int, 2> a(2, 3);
1067
+ a.setValues({{1, 2, 3}, {6, 5, 4}});
1068
+ // Reduce it along the second dimension (1)...
1069
+ Eigen::array<int, 1> dims({1 /* dimension to reduce */});
1070
+ // ...using the "maximum" operator.
1071
+ // The result is a tensor with one dimension. The size of
1072
+ // that dimension is the same as the first (non-reduced) dimension of a.
1073
+ Eigen::Tensor<int, 1> b = a.maximum(dims);
1074
+ cout << "a" << endl << a << endl << endl;
1075
+ cout << "b" << endl << b << endl << endl;
1076
+ =>
1077
+ a
1078
+ 1 2 3
1079
+ 6 5 4
1080
+
1081
+ b
1082
+ 3
1083
+ 6
1084
+
1085
+ Example: Reduction along two dimensions.
1086
+
1087
+ Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
1088
+ a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
1089
+ {7.0f, 6.0f, 5.0f, 4.0f},
1090
+ {8.0f, 9.0f, 10.0f, 11.0f}},
1091
+ {{12.0f, 13.0f, 14.0f, 15.0f},
1092
+ {19.0f, 18.0f, 17.0f, 16.0f},
1093
+ {20.0f, 21.0f, 22.0f, 23.0f}}});
1094
+ // The tensor a has 3 dimensions. We reduce along the
1095
+ // first 2, resulting in a tensor with a single dimension
1096
+ // of size 4 (the last dimension of a.)
1097
+ // Note that we pass the array of reduction dimensions
1098
+ // directly to the maximum() call.
1099
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b =
1100
+ a.maximum(Eigen::array<int, 2>({0, 1}));
1101
+ cout << "b" << endl << b << endl << endl;
1102
+ =>
1103
+ b
1104
+ 20
1105
+ 21
1106
+ 22
1107
+ 23
1108
+
1109
+ #### Reduction along all dimensions
1110
+
1111
+ As a special case, if you pass no parameter to a reduction operation the
1112
+ original tensor is reduced along *all* its dimensions. The result is a
1113
+ scalar, represented as a zero-dimension tensor.
1114
+
1115
+ Eigen::Tensor<float, 3> a(2, 3, 4);
1116
+ a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
1117
+ {7.0f, 6.0f, 5.0f, 4.0f},
1118
+ {8.0f, 9.0f, 10.0f, 11.0f}},
1119
+ {{12.0f, 13.0f, 14.0f, 15.0f},
1120
+ {19.0f, 18.0f, 17.0f, 16.0f},
1121
+ {20.0f, 21.0f, 22.0f, 23.0f}}});
1122
+ // Reduce along all dimensions using the sum() operator.
1123
+ Eigen::Tensor<float, 0> b = a.sum();
1124
+ cout << "b" << endl << b << endl << endl;
1125
+ =>
1126
+ b
1127
+ 276
1128
+
1129
+
1130
+ ### <Operation> sum(const Dimensions& new_dims)
1131
+ ### <Operation> sum()
1132
+
1133
+ Reduce a tensor using the sum() operator. The resulting values
1134
+ are the sum of the reduced values.
1135
+
1136
+ ### <Operation> mean(const Dimensions& new_dims)
1137
+ ### <Operation> mean()
1138
+
1139
+ Reduce a tensor using the mean() operator. The resulting values
1140
+ are the mean of the reduced values.
1141
+
1142
+ ### <Operation> maximum(const Dimensions& new_dims)
1143
+ ### <Operation> maximum()
1144
+
1145
+ Reduce a tensor using the maximum() operator. The resulting values are the
1146
+ largest of the reduced values.
1147
+
1148
+ ### <Operation> minimum(const Dimensions& new_dims)
1149
+ ### <Operation> minimum()
1150
+
1151
+ Reduce a tensor using the minimum() operator. The resulting values
1152
+ are the smallest of the reduced values.
1153
+
1154
+ ### <Operation> prod(const Dimensions& new_dims)
1155
+ ### <Operation> prod()
1156
+
1157
+ Reduce a tensor using the prod() operator. The resulting values
1158
+ are the product of the reduced values.
1159
+
1160
+ ### <Operation> all(const Dimensions& new_dims)
1161
+ ### <Operation> all()
1162
+ Reduce a tensor using the all() operator. Casts tensor to bool and then checks
1163
+ whether all elements are true. Runs through all elements rather than
1164
+ short-circuiting, so may be significantly inefficient.
1165
+
1166
+ ### <Operation> any(const Dimensions& new_dims)
1167
+ ### <Operation> any()
1168
+ Reduce a tensor using the any() operator. Casts tensor to bool and then checks
1169
+ whether any element is true. Runs through all elements rather than
1170
+ short-circuiting, so may be significantly inefficient.
1171
+
1172
+
1173
+ ### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)
1174
+
1175
+ Reduce a tensor using a user-defined reduction operator. See `SumReducer`
1176
+ in TensorFunctors.h for information on how to implement a reduction operator.
1177
+
1178
+
1179
+ ## Trace
1180
+
1181
+ A *Trace* operation returns a tensor with fewer dimensions than the original
1182
+ tensor. It returns a tensor whose elements are the sum of the elements of the
1183
+ original tensor along the main diagonal for a list of specified dimensions, the
1184
+ "trace dimensions". Similar to the `Reduction Dimensions`, the trace dimensions
1185
+ are passed as an input parameter to the operation, are of type `<TensorType>::``Dimensions`
1186
+ , and have the same requirements when passed as an input parameter. In addition,
1187
+ the trace dimensions must have the same size.
1188
+
1189
+ Example: Trace along 2 dimensions.
1190
+
1191
+ // Create a tensor of 3 dimensions
1192
+ Eigen::Tensor<int, 3> a(2, 2, 3);
1193
+ a.setValues({{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}});
1194
+ // Specify the dimensions along which the trace will be computed.
1195
+ // In this example, the trace can only be computed along the dimensions
1196
+ // with indices 0 and 1
1197
+ Eigen::array<int, 2> dims({0, 1});
1198
+ // The output tensor contains all but the trace dimensions.
1199
+ Tensor<int, 1> a_trace = a.trace(dims);
1200
+ cout << "a_trace:" << endl;
1201
+ cout << a_trace << endl;
1202
+ =>
1203
+ a_trace:
1204
+ 11
1205
+ 13
1206
+ 15
1207
+
1208
+
1209
+ ### <Operation> trace(const Dimensions& new_dims)
1210
+ ### <Operation> trace()
1211
+
1212
+ As a special case, if no parameter is passed to the operation, trace is computed
1213
+ along *all* dimensions of the input tensor.
1214
+
1215
+ Example: Trace along all dimensions.
1216
+
1217
+ // Create a tensor of 3 dimensions, with all dimensions having the same size.
1218
+ Eigen::Tensor<int, 3> a(3, 3, 3);
1219
+ a.setValues({{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
1220
+ {{10, 11, 12}, {13, 14, 15}, {16, 17, 18}},
1221
+ {{19, 20, 21}, {22, 23, 24}, {25, 26, 27}}});
1222
+ // Result is a zero dimension tensor
1223
+ Tensor<int, 0> a_trace = a.trace();
1224
+ cout<<"a_trace:"<<endl;
1225
+ cout<<a_trace<<endl;
1226
+ =>
1227
+ a_trace:
1228
+ 42
1229
+
1230
+
1231
+ ## Scan Operations
1232
+
1233
+ A *Scan* operation returns a tensor with the same dimensions as the original
1234
+ tensor. The operation performs an inclusive scan along the specified
1235
+ axis, which means it computes a running total along the axis for a given
1236
+ reduction operation.
1237
+ If the reduction operation corresponds to summation, then this computes the
1238
+ prefix sum of the tensor along the given axis.
1239
+
1240
+ Example:
1241
+ dd a comment to this line
1242
+
1243
+ // Create a tensor of 2 dimensions
1244
+ Eigen::Tensor<int, 2> a(2, 3);
1245
+ a.setValues({{1, 2, 3}, {4, 5, 6}});
1246
+ // Scan it along the second dimension (1) using summation
1247
+ Eigen::Tensor<int, 2> b = a.cumsum(1);
1248
+ // The result is a tensor with the same size as the input
1249
+ cout << "a" << endl << a << endl << endl;
1250
+ cout << "b" << endl << b << endl << endl;
1251
+ =>
1252
+ a
1253
+ 1 2 3
1254
+ 4 5 6
1255
+
1256
+ b
1257
+ 1 3 6
1258
+ 4 9 15
1259
+
1260
+ ### <Operation> cumsum(const Index& axis)
1261
+
1262
+ Perform a scan by summing consecutive entries.
1263
+
1264
+ ### <Operation> cumprod(const Index& axis)
1265
+
1266
+ Perform a scan by multiplying consecutive entries.
1267
+
1268
+
1269
+ ## Convolutions
1270
+
1271
+ ### <Operation> convolve(const Kernel& kernel, const Dimensions& dims)
1272
+
1273
+ Returns a tensor that is the output of the convolution of the input tensor with the kernel,
1274
+ along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
1275
+ which were part of the convolution will be reduced by the formula:
1276
+ output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
1277
+ The dimension sizes for dimensions that were not part of the convolution will remain the same.
1278
+ Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
1279
+ convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is
1280
+ for the last dimension).
1281
+
1282
+ // Compute convolution along the second and third dimension.
1283
+ Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
1284
+ Tensor<float, 2, DataLayout> kernel(2, 2);
1285
+ Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
1286
+ input.setRandom();
1287
+ kernel.setRandom();
1288
+
1289
+ Eigen::array<ptrdiff_t, 2> dims({1, 2}); // Specify second and third dimension for convolution.
1290
+ output = input.convolve(kernel, dims);
1291
+
1292
+ for (int i = 0; i < 3; ++i) {
1293
+ for (int j = 0; j < 2; ++j) {
1294
+ for (int k = 0; k < 6; ++k) {
1295
+ for (int l = 0; l < 11; ++l) {
1296
+ const float result = output(i,j,k,l);
1297
+ const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
1298
+ input(i,j+1,k+0,l) * kernel(1,0) +
1299
+ input(i,j+0,k+1,l) * kernel(0,1) +
1300
+ input(i,j+1,k+1,l) * kernel(1,1);
1301
+ VERIFY_IS_APPROX(result, expected);
1302
+ }
1303
+ }
1304
+ }
1305
+ }
1306
+
1307
+
1308
+ ## Geometrical Operations
1309
+
1310
+ These operations return a Tensor with different dimensions than the original
1311
+ Tensor. They can be used to access slices of tensors, see them with different
1312
+ dimensions, or pad tensors with additional data.
1313
+
1314
+ ### <Operation> reshape(const Dimensions& new_dims)
1315
+
1316
+ Returns a view of the input tensor that has been reshaped to the specified
1317
+ new dimensions. The argument new_dims is an array of Index values. The
1318
+ rank of the resulting tensor is equal to the number of elements in new_dims.
1319
+
1320
+ The product of all the sizes in the new dimension array must be equal to
1321
+ the number of elements in the input tensor.
1322
+
1323
+ // Increase the rank of the input tensor by introducing a new dimension
1324
+ // of size 1.
1325
+ Tensor<float, 2> input(7, 11);
1326
+ array<int, 3> three_dims{{7, 11, 1}};
1327
+ Tensor<float, 3> result = input.reshape(three_dims);
1328
+
1329
+ // Decrease the rank of the input tensor by merging 2 dimensions;
1330
+ array<int, 1> one_dim{{7 * 11}};
1331
+ Tensor<float, 1> result = input.reshape(one_dim);
1332
+
1333
+ This operation does not move any data in the input tensor, so the resulting
1334
+ contents of a reshaped Tensor depend on the data layout of the original Tensor.
1335
+
1336
+ For example this is what happens when you `reshape()` a 2D ColMajor tensor
1337
+ to one dimension:
1338
+
1339
+ Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
1340
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
1341
+ Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
1342
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
1343
+ cout << "b" << endl << b << endl;
1344
+ =>
1345
+ b
1346
+ 0
1347
+ 300
1348
+ 100
1349
+ 400
1350
+ 200
1351
+ 500
1352
+
1353
+ This is what happens when the 2D Tensor is RowMajor:
1354
+
1355
+ Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
1356
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
1357
+ Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
1358
+ Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
1359
+ cout << "b" << endl << b << endl;
1360
+ =>
1361
+ b
1362
+ 0
1363
+ 100
1364
+ 200
1365
+ 300
1366
+ 400
1367
+ 500
1368
+
1369
+ The reshape operation is a lvalue. In other words, it can be used on the left
1370
+ side of the assignment operator.
1371
+
1372
+ The previous example can be rewritten as follow:
1373
+
1374
+ Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
1375
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
1376
+ Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
1377
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b(6);
1378
+ b.reshape(two_dim) = a;
1379
+ cout << "b" << endl << b << endl;
1380
+ =>
1381
+ b
1382
+ 0
1383
+ 300
1384
+ 100
1385
+ 400
1386
+ 200
1387
+ 500
1388
+
1389
+ Note that "b" itself was not reshaped but that instead the assignment is done to
1390
+ the reshape view of b.
1391
+
1392
+
1393
+ ### <Operation> shuffle(const Shuffle& shuffle)
1394
+
1395
+ Returns a copy of the input tensor whose dimensions have been
1396
+ reordered according to the specified permutation. The argument shuffle
1397
+ is an array of Index values. Its size is the rank of the input
1398
+ tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
1399
+ dimension of the output tensor equals to the size of the shuffle[i]-th
1400
+ dimension of the input tensor. For example:
1401
+
1402
+ // Shuffle all dimensions to the left by 1.
1403
+ Tensor<float, 3> input(20, 30, 50);
1404
+ // ... set some values in input.
1405
+ Tensor<float, 3> output = input.shuffle({1, 2, 0})
1406
+
1407
+ eigen_assert(output.dimension(0) == 30);
1408
+ eigen_assert(output.dimension(1) == 50);
1409
+ eigen_assert(output.dimension(2) == 20);
1410
+
1411
+ Indices into the output tensor are shuffled accordingly to formulate
1412
+ indices into the input tensor. For example, one can assert in the above
1413
+ code snippet that:
1414
+
1415
+ eigen_assert(output(3, 7, 11) == input(11, 3, 7));
1416
+
1417
+ In general, one can assert that
1418
+
1419
+ eigen_assert(output(..., indices[shuffle[i]], ...) ==
1420
+ input(..., indices[i], ...))
1421
+
1422
+ The shuffle operation results in a lvalue, which means that it can be assigned
1423
+ to. In other words, it can be used on the left side of the assignment operator.
1424
+
1425
+ Let's rewrite the previous example to take advantage of this feature:
1426
+
1427
+ // Shuffle all dimensions to the left by 1.
1428
+ Tensor<float, 3> input(20, 30, 50);
1429
+ // ... set some values in input.
1430
+ Tensor<float, 3> output(30, 50, 20);
1431
+ output.shuffle({2, 0, 1}) = input;
1432
+
1433
+
1434
+ ### <Operation> stride(const Strides& strides)
1435
+
1436
+ Returns a view of the input tensor that strides (skips stride-1
1437
+ elements) along each of the dimensions. The argument strides is an
1438
+ array of Index values. The dimensions of the resulting tensor are
1439
+ ceil(input_dimensions[i] / strides[i]).
1440
+
1441
+ For example this is what happens when you `stride()` a 2D tensor:
1442
+
1443
+ Eigen::Tensor<int, 2> a(4, 3);
1444
+ a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
1445
+ Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
1446
+ Eigen::Tensor<int, 2> b = a.stride(strides);
1447
+ cout << "b" << endl << b << endl;
1448
+ =>
1449
+ b
1450
+ 0 200
1451
+ 900 1100
1452
+
1453
+ It is possible to assign a tensor to a stride:
1454
+ Tensor<float, 3> input(20, 30, 50);
1455
+ // ... set some values in input.
1456
+ Tensor<float, 3> output(40, 90, 200);
1457
+ output.stride({2, 3, 4}) = input;
1458
+
1459
+
1460
+ ### <Operation> slice(const StartIndices& offsets, const Sizes& extents)
1461
+
1462
+ Returns a sub-tensor of the given tensor. For each dimension i, the slice is
1463
+ made of the coefficients stored between offset[i] and offset[i] + extents[i] in
1464
+ the input tensor.
1465
+
1466
+ Eigen::Tensor<int, 2> a(4, 3);
1467
+ a.setValues({{0, 100, 200}, {300, 400, 500},
1468
+ {600, 700, 800}, {900, 1000, 1100}});
1469
+ Eigen::array<int, 2> offsets = {1, 0};
1470
+ Eigen::array<int, 2> extents = {2, 2};
1471
+ Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
1472
+ cout << "a" << endl << a << endl;
1473
+ =>
1474
+ a
1475
+ 0 100 200
1476
+ 300 400 500
1477
+ 600 700 800
1478
+ 900 1000 1100
1479
+ cout << "slice" << endl << slice << endl;
1480
+ =>
1481
+ slice
1482
+ 300 400
1483
+ 600 700
1484
+
1485
+
1486
+ ### <Operation> chip(const Index offset, const Index dim)
1487
+
1488
+ A chip is a special kind of slice. It is the subtensor at the given offset in
1489
+ the dimension dim. The returned tensor has one fewer dimension than the input
1490
+ tensor: the dimension dim is removed.
1491
+
1492
+ For example, a matrix chip would be either a row or a column of the input
1493
+ matrix.
1494
+
1495
+ Eigen::Tensor<int, 2> a(4, 3);
1496
+ a.setValues({{0, 100, 200}, {300, 400, 500},
1497
+ {600, 700, 800}, {900, 1000, 1100}});
1498
+ Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
1499
+ Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
1500
+ cout << "a" << endl << a << endl;
1501
+ =>
1502
+ a
1503
+ 0 100 200
1504
+ 300 400 500
1505
+ 600 700 800
1506
+ 900 1000 1100
1507
+ cout << "row_3" << endl << row_3 << endl;
1508
+ =>
1509
+ row_3
1510
+ 600 700 800
1511
+ cout << "col_2" << endl << col_2 << endl;
1512
+ =>
1513
+ col_2
1514
+ 100 400 700 1000
1515
+
1516
+ It is possible to assign values to a tensor chip since the chip operation is a
1517
+ lvalue. For example:
1518
+
1519
+ Eigen::Tensor<int, 1> a(3);
1520
+ a.setValues({{100, 200, 300}});
1521
+ Eigen::Tensor<int, 2> b(2, 3);
1522
+ b.setZero();
1523
+ b.chip(0, 0) = a;
1524
+ cout << "a" << endl << a << endl;
1525
+ =>
1526
+ a
1527
+ 100
1528
+ 200
1529
+ 300
1530
+ cout << "b" << endl << b << endl;
1531
+ =>
1532
+ b
1533
+ 100 200 300
1534
+ 0 0 0
1535
+
1536
+
1537
+ ### <Operation> reverse(const ReverseDimensions& reverse)
1538
+
1539
+ Returns a view of the input tensor that reverses the order of the coefficients
1540
+ along a subset of the dimensions. The argument reverse is an array of boolean
1541
+ values that indicates whether or not the order of the coefficients should be
1542
+ reversed along each of the dimensions. This operation preserves the dimensions
1543
+ of the input tensor.
1544
+
1545
+ For example this is what happens when you `reverse()` the first dimension
1546
+ of a 2D tensor:
1547
+
1548
+ Eigen::Tensor<int, 2> a(4, 3);
1549
+ a.setValues({{0, 100, 200}, {300, 400, 500},
1550
+ {600, 700, 800}, {900, 1000, 1100}});
1551
+ Eigen::array<bool, 2> reverse({true, false});
1552
+ Eigen::Tensor<int, 2> b = a.reverse(reverse);
1553
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
1554
+ =>
1555
+ a
1556
+ 0 100 200
1557
+ 300 400 500
1558
+ 600 700 800
1559
+ 900 1000 1100
1560
+ b
1561
+ 900 1000 1100
1562
+ 600 700 800
1563
+ 300 400 500
1564
+ 0 100 200
1565
+
1566
+
1567
+ ### <Operation> broadcast(const Broadcast& broadcast)
1568
+
1569
+ Returns a view of the input tensor in which the input is replicated one to many
1570
+ times.
1571
+ The broadcast argument specifies how many copies of the input tensor need to be
1572
+ made in each of the dimensions.
1573
+
1574
+ Eigen::Tensor<int, 2> a(2, 3);
1575
+ a.setValues({{0, 100, 200}, {300, 400, 500}});
1576
+ Eigen::array<int, 2> bcast({3, 2});
1577
+ Eigen::Tensor<int, 2> b = a.broadcast(bcast);
1578
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
1579
+ =>
1580
+ a
1581
+ 0 100 200
1582
+ 300 400 500
1583
+ b
1584
+ 0 100 200 0 100 200
1585
+ 300 400 500 300 400 500
1586
+ 0 100 200 0 100 200
1587
+ 300 400 500 300 400 500
1588
+ 0 100 200 0 100 200
1589
+ 300 400 500 300 400 500
1590
+
1591
+ ### <Operation> concatenate(const OtherDerived& other, Axis axis)
1592
+
1593
+ TODO
1594
+
1595
+ ### <Operation> pad(const PaddingDimensions& padding)
1596
+
1597
+ Returns a view of the input tensor in which the input is padded with zeros.
1598
+
1599
+ Eigen::Tensor<int, 2> a(2, 3);
1600
+ a.setValues({{0, 100, 200}, {300, 400, 500}});
1601
+ Eigen::array<pair<int, int>, 2> paddings;
1602
+ paddings[0] = make_pair(0, 1);
1603
+ paddings[1] = make_pair(2, 3);
1604
+ Eigen::Tensor<int, 2> b = a.pad(paddings);
1605
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
1606
+ =>
1607
+ a
1608
+ 0 100 200
1609
+ 300 400 500
1610
+ b
1611
+ 0 0 0 0
1612
+ 0 0 0 0
1613
+ 0 100 200 0
1614
+ 300 400 500 0
1615
+ 0 0 0 0
1616
+ 0 0 0 0
1617
+ 0 0 0 0
1618
+
1619
+
1620
+ ### <Operation> extract_patches(const PatchDims& patch_dims)
1621
+
1622
+ Returns a tensor of coefficient patches extracted from the input tensor, where
1623
+ each patch is of dimension specified by 'patch_dims'. The returned tensor has
1624
+ one greater dimension than the input tensor, which is used to index each patch.
1625
+ The patch index in the output tensor depends on the data layout of the input
1626
+ tensor: the patch index is the last dimension ColMajor layout, and the first
1627
+ dimension in RowMajor layout.
1628
+
1629
+ For example, given the following input tensor:
1630
+
1631
+ Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
1632
+ tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
1633
+ {4.0f, 5.0f, 6.0f, 7.0f},
1634
+ {8.0f, 9.0f, 10.0f, 11.0f}});
1635
+
1636
+ cout << "tensor: " << endl << tensor << endl;
1637
+ =>
1638
+ tensor:
1639
+ 0 1 2 3
1640
+ 4 5 6 7
1641
+ 8 9 10 11
1642
+
1643
+ Six 2x2 patches can be extracted and indexed using the following code:
1644
+
1645
+ Eigen::Tensor<float, 3, DataLayout> patch;
1646
+ Eigen::array<ptrdiff_t, 2> patch_dims;
1647
+ patch_dims[0] = 2;
1648
+ patch_dims[1] = 2;
1649
+ patch = tensor.extract_patches(patch_dims);
1650
+ for (int k = 0; k < 6; ++k) {
1651
+ cout << "patch index: " << k << endl;
1652
+ for (int i = 0; i < 2; ++i) {
1653
+ for (int j = 0; j < 2; ++j) {
1654
+ if (DataLayout == ColMajor) {
1655
+ cout << patch(i, j, k) << " ";
1656
+ } else {
1657
+ cout << patch(k, i, j) << " ";
1658
+ }
1659
+ }
1660
+ cout << endl;
1661
+ }
1662
+ }
1663
+
1664
+ This code results in the following output when the data layout is ColMajor:
1665
+
1666
+ patch index: 0
1667
+ 0 1
1668
+ 4 5
1669
+ patch index: 1
1670
+ 4 5
1671
+ 8 9
1672
+ patch index: 2
1673
+ 1 2
1674
+ 5 6
1675
+ patch index: 3
1676
+ 5 6
1677
+ 9 10
1678
+ patch index: 4
1679
+ 2 3
1680
+ 6 7
1681
+ patch index: 5
1682
+ 6 7
1683
+ 10 11
1684
+
1685
+ This code results in the following output when the data layout is RowMajor:
1686
+ (NOTE: the set of patches is the same as in ColMajor, but are indexed differently).
1687
+
1688
+ patch index: 0
1689
+ 0 1
1690
+ 4 5
1691
+ patch index: 1
1692
+ 1 2
1693
+ 5 6
1694
+ patch index: 2
1695
+ 2 3
1696
+ 6 7
1697
+ patch index: 3
1698
+ 4 5
1699
+ 8 9
1700
+ patch index: 4
1701
+ 5 6
1702
+ 9 10
1703
+ patch index: 5
1704
+ 6 7
1705
+ 10 11
1706
+
1707
+ ### <Operation> extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const PaddingType padding_type)
1708
+
1709
+ Returns a tensor of coefficient image patches extracted from the input tensor,
1710
+ which is expected to have dimensions ordered as follows (depending on the data
1711
+ layout of the input tensor, and the number of additional dimensions 'N'):
1712
+
1713
+ *) ColMajor
1714
+ 1st dimension: channels (of size d)
1715
+ 2nd dimension: rows (of size r)
1716
+ 3rd dimension: columns (of size c)
1717
+ 4th-Nth dimension: time (for video) or batch (for bulk processing).
1718
+
1719
+ *) RowMajor (reverse order of ColMajor)
1720
+ 1st-Nth dimension: time (for video) or batch (for bulk processing).
1721
+ N+1'th dimension: columns (of size c)
1722
+ N+2'th dimension: rows (of size r)
1723
+ N+3'th dimension: channels (of size d)
1724
+
1725
+ The returned tensor has one greater dimension than the input tensor, which is
1726
+ used to index each patch. The patch index in the output tensor depends on the
1727
+ data layout of the input tensor: the patch index is the 4'th dimension in
1728
+ ColMajor layout, and the 4'th from the last dimension in RowMajor layout.
1729
+
1730
+ For example, given the following input tensor with the following dimension
1731
+ sizes:
1732
+ *) depth: 2
1733
+ *) rows: 3
1734
+ *) columns: 5
1735
+ *) batch: 7
1736
+
1737
+ Tensor<float, 4> tensor(2,3,5,7);
1738
+ Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();
1739
+
1740
+ 2x2 image patches can be extracted and indexed using the following code:
1741
+
1742
+ *) 2D patch: ColMajor (patch indexed by second-to-last dimension)
1743
+
1744
+ Tensor<float, 5> twod_patch;
1745
+ twod_patch = tensor.extract_image_patches<2, 2>();
1746
+ // twod_patch.dimension(0) == 2
1747
+ // twod_patch.dimension(1) == 2
1748
+ // twod_patch.dimension(2) == 2
1749
+ // twod_patch.dimension(3) == 3*5
1750
+ // twod_patch.dimension(4) == 7
1751
+
1752
+ *) 2D patch: RowMajor (patch indexed by the second dimension)
1753
+
1754
+ Tensor<float, 5, RowMajor> twod_patch_row_major;
1755
+ twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
1756
+ // twod_patch_row_major.dimension(0) == 7
1757
+ // twod_patch_row_major.dimension(1) == 3*5
1758
+ // twod_patch_row_major.dimension(2) == 2
1759
+ // twod_patch_row_major.dimension(3) == 2
1760
+ // twod_patch_row_major.dimension(4) == 2
1761
+
1762
+ ## Special Operations
1763
+
1764
+ ### <Operation> cast<T>()
1765
+
1766
+ Returns a tensor of type T with the same dimensions as the original tensor.
1767
+ The returned tensor contains the values of the original tensor converted to
1768
+ type T.
1769
+
1770
+ Eigen::Tensor<float, 2> a(2, 3);
1771
+ Eigen::Tensor<int, 2> b = a.cast<int>();
1772
+
1773
+ This can be useful for example if you need to do element-wise division of
1774
+ Tensors of integers. This is not currently supported by the Tensor library
1775
+ but you can easily cast the tensors to floats to do the division:
1776
+
1777
+ Eigen::Tensor<int, 2> a(2, 3);
1778
+ a.setValues({{0, 1, 2}, {3, 4, 5}});
1779
+ Eigen::Tensor<int, 2> b =
1780
+ (a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
1781
+ cout << "a" << endl << a << endl << endl;
1782
+ cout << "b" << endl << b << endl << endl;
1783
+ =>
1784
+ a
1785
+ 0 1 2
1786
+ 3 4 5
1787
+
1788
+ b
1789
+ 0 0 1
1790
+ 1 2 2
1791
+
1792
+
1793
+ ### <Operation> eval()
1794
+
1795
+ TODO
1796
+
1797
+
1798
+ ## Representation of scalar values
1799
+
1800
+ Scalar values are often represented by tensors of size 1 and rank 0.For example
1801
+ Tensor<T, N>::maximum() currently returns a Tensor<T, 0>. Similarly, the inner
1802
+ product of 2 1d tensors (through contractions) returns a 0d tensor.
1803
+
1804
+ ## Limitations
1805
+
1806
+ * The number of tensor dimensions is currently limited to 250 when using a
1807
+ compiler that supports cxx11. It is limited to only 5 for older compilers.
1808
+ * The IndexList class requires a cxx11 compliant compiler. You can use an
1809
+ array of indices instead if you don't have access to a modern compiler.
1810
+ * On GPUs only floating point values are properly tested and optimized for.
1811
+ * Complex and integer values are known to be broken on GPUs. If you try to use
1812
+ them you'll most likely end up triggering a static assertion failure such as
1813
+ EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
1814
+
1815
+