tomoto 0.1.3 → 0.1.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/LICENSE.txt +1 -1
- data/README.md +7 -0
- data/ext/tomoto/ct.cpp +54 -0
- data/ext/tomoto/dmr.cpp +62 -0
- data/ext/tomoto/dt.cpp +82 -0
- data/ext/tomoto/ext.cpp +27 -773
- data/ext/tomoto/gdmr.cpp +34 -0
- data/ext/tomoto/hdp.cpp +42 -0
- data/ext/tomoto/hlda.cpp +66 -0
- data/ext/tomoto/hpa.cpp +27 -0
- data/ext/tomoto/lda.cpp +250 -0
- data/ext/tomoto/llda.cpp +29 -0
- data/ext/tomoto/mglda.cpp +71 -0
- data/ext/tomoto/pa.cpp +27 -0
- data/ext/tomoto/plda.cpp +29 -0
- data/ext/tomoto/slda.cpp +40 -0
- data/ext/tomoto/utils.h +84 -0
- data/lib/tomoto/tomoto.bundle +0 -0
- data/lib/tomoto/tomoto.so +0 -0
- data/lib/tomoto/version.rb +1 -1
- data/vendor/tomotopy/README.kr.rst +12 -3
- data/vendor/tomotopy/README.rst +12 -3
- data/vendor/tomotopy/src/Labeling/FoRelevance.cpp +47 -2
- data/vendor/tomotopy/src/Labeling/FoRelevance.h +21 -151
- data/vendor/tomotopy/src/Labeling/Labeler.h +5 -3
- data/vendor/tomotopy/src/Labeling/Phraser.hpp +518 -0
- data/vendor/tomotopy/src/TopicModel/CTModel.hpp +6 -3
- data/vendor/tomotopy/src/TopicModel/DT.h +1 -1
- data/vendor/tomotopy/src/TopicModel/DTModel.hpp +8 -23
- data/vendor/tomotopy/src/TopicModel/HDPModel.hpp +9 -18
- data/vendor/tomotopy/src/TopicModel/HLDAModel.hpp +56 -58
- data/vendor/tomotopy/src/TopicModel/HPAModel.hpp +4 -14
- data/vendor/tomotopy/src/TopicModel/LDA.h +69 -17
- data/vendor/tomotopy/src/TopicModel/LDACVB0Model.hpp +1 -1
- data/vendor/tomotopy/src/TopicModel/LDAModel.hpp +108 -61
- data/vendor/tomotopy/src/TopicModel/MGLDAModel.hpp +7 -8
- data/vendor/tomotopy/src/TopicModel/PAModel.hpp +26 -16
- data/vendor/tomotopy/src/TopicModel/PT.h +27 -0
- data/vendor/tomotopy/src/TopicModel/PTModel.cpp +10 -0
- data/vendor/tomotopy/src/TopicModel/PTModel.hpp +273 -0
- data/vendor/tomotopy/src/TopicModel/TopicModel.hpp +16 -11
- data/vendor/tomotopy/src/Utils/MultiNormalDistribution.hpp +3 -2
- data/vendor/tomotopy/src/Utils/Trie.hpp +39 -8
- data/vendor/tomotopy/src/Utils/TruncMultiNormal.hpp +36 -38
- data/vendor/tomotopy/src/Utils/Utils.hpp +50 -45
- data/vendor/tomotopy/src/Utils/math.h +8 -4
- data/vendor/tomotopy/src/Utils/tvector.hpp +4 -0
- metadata +24 -60
data/ext/tomoto/gdmr.cpp
ADDED
@@ -0,0 +1,34 @@
|
|
1
|
+
#include <GDMR.h>
|
2
|
+
|
3
|
+
#include <rice/Module.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_gdmr(Rice::Module& m) {
|
8
|
+
Rice::define_class_under<tomoto::IGDMRModel, tomoto::IDMRModel>(m, "GDMR")
|
9
|
+
.define_singleton_method(
|
10
|
+
"_new",
|
11
|
+
*[](size_t tw, size_t k, std::vector<uint64_t> degrees, tomoto::Float alpha, tomoto::Float sigma, tomoto::Float sigma0, tomoto::Float eta, tomoto::Float alpha_epsilon, int seed) {
|
12
|
+
if (seed < 0) {
|
13
|
+
seed = std::random_device{}();
|
14
|
+
}
|
15
|
+
return tomoto::IGDMRModel::create((tomoto::TermWeight)tw, k, degrees, alpha, sigma, sigma0, eta, alpha_epsilon, seed);
|
16
|
+
})
|
17
|
+
.define_method(
|
18
|
+
"_add_doc",
|
19
|
+
*[](tomoto::IGDMRModel& self, std::vector<std::string> words, std::vector<tomoto::Float> metadata) {
|
20
|
+
auto doc = buildDoc(words);
|
21
|
+
doc.misc["metadata"] = metadata;
|
22
|
+
return self.addDoc(doc);
|
23
|
+
})
|
24
|
+
.define_method(
|
25
|
+
"degrees",
|
26
|
+
*[](tomoto::IGDMRModel& self) {
|
27
|
+
return self.getFs();
|
28
|
+
})
|
29
|
+
.define_method(
|
30
|
+
"sigma0",
|
31
|
+
*[](tomoto::IGDMRModel& self) {
|
32
|
+
return self.getSigma0();
|
33
|
+
});
|
34
|
+
}
|
data/ext/tomoto/hdp.cpp
ADDED
@@ -0,0 +1,42 @@
|
|
1
|
+
#include <HDP.h>
|
2
|
+
|
3
|
+
#include <rice/Module.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_hdp(Rice::Module& m) {
|
8
|
+
Rice::define_class_under<tomoto::IHDPModel, tomoto::ILDAModel>(m, "HDP")
|
9
|
+
.define_singleton_method(
|
10
|
+
"_new",
|
11
|
+
*[](size_t tw, size_t k, tomoto::Float alpha, tomoto::Float eta, tomoto::Float gamma, int seed) {
|
12
|
+
if (seed < 0) {
|
13
|
+
seed = std::random_device{}();
|
14
|
+
}
|
15
|
+
return tomoto::IHDPModel::create((tomoto::TermWeight)tw, k, alpha, eta, gamma, seed);
|
16
|
+
})
|
17
|
+
.define_method(
|
18
|
+
"alpha",
|
19
|
+
*[](tomoto::IHDPModel& self) {
|
20
|
+
return self.getAlpha();
|
21
|
+
})
|
22
|
+
.define_method(
|
23
|
+
"gamma",
|
24
|
+
*[](tomoto::IHDPModel& self) {
|
25
|
+
return self.getGamma();
|
26
|
+
})
|
27
|
+
.define_method(
|
28
|
+
"live_k",
|
29
|
+
*[](tomoto::IHDPModel& self) {
|
30
|
+
return self.getLiveK();
|
31
|
+
})
|
32
|
+
.define_method(
|
33
|
+
"live_topic?",
|
34
|
+
*[](tomoto::IHDPModel& self, size_t tid) {
|
35
|
+
return self.isLiveTopic(tid);
|
36
|
+
})
|
37
|
+
.define_method(
|
38
|
+
"num_tables",
|
39
|
+
*[](tomoto::IHDPModel& self) {
|
40
|
+
return self.getTotalTables();
|
41
|
+
});
|
42
|
+
}
|
data/ext/tomoto/hlda.cpp
ADDED
@@ -0,0 +1,66 @@
|
|
1
|
+
#include <HLDA.h>
|
2
|
+
|
3
|
+
#include <rice/Module.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_hlda(Rice::Module& m) {
|
8
|
+
Rice::define_class_under<tomoto::IHLDAModel, tomoto::ILDAModel>(m, "HLDA")
|
9
|
+
.define_singleton_method(
|
10
|
+
"_new",
|
11
|
+
*[](size_t tw, size_t levelDepth, tomoto::Float alpha, tomoto::Float eta, tomoto::Float gamma, int seed) {
|
12
|
+
if (seed < 0) {
|
13
|
+
seed = std::random_device{}();
|
14
|
+
}
|
15
|
+
return tomoto::IHLDAModel::create((tomoto::TermWeight)tw, levelDepth, alpha, eta, gamma, seed);
|
16
|
+
})
|
17
|
+
.define_method(
|
18
|
+
"alpha",
|
19
|
+
*[](tomoto::IHLDAModel& self) {
|
20
|
+
Array res;
|
21
|
+
for (size_t i = 0; i < self.getLevelDepth(); i++) {
|
22
|
+
res.push(self.getAlpha(i));
|
23
|
+
}
|
24
|
+
return res;
|
25
|
+
})
|
26
|
+
.define_method(
|
27
|
+
"_children_topics",
|
28
|
+
*[](tomoto::IHLDAModel& self, tomoto::Tid topic_id) {
|
29
|
+
return self.getChildTopicId(topic_id);
|
30
|
+
})
|
31
|
+
.define_method(
|
32
|
+
"depth",
|
33
|
+
*[](tomoto::IHLDAModel& self) {
|
34
|
+
return self.getLevelDepth();
|
35
|
+
})
|
36
|
+
.define_method(
|
37
|
+
"gamma",
|
38
|
+
*[](tomoto::IHLDAModel& self) {
|
39
|
+
return self.getGamma();
|
40
|
+
})
|
41
|
+
.define_method(
|
42
|
+
"_level",
|
43
|
+
*[](tomoto::IHLDAModel& self, tomoto::Tid topic_id) {
|
44
|
+
return self.getLevelOfTopic(topic_id);
|
45
|
+
})
|
46
|
+
.define_method(
|
47
|
+
"live_k",
|
48
|
+
*[](tomoto::IHLDAModel& self) {
|
49
|
+
return self.getLiveK();
|
50
|
+
})
|
51
|
+
.define_method(
|
52
|
+
"_live_topic?",
|
53
|
+
*[](tomoto::IHLDAModel& self, tomoto::Tid topic_id) {
|
54
|
+
return self.isLiveTopic(topic_id);
|
55
|
+
})
|
56
|
+
.define_method(
|
57
|
+
"_num_docs_of_topic",
|
58
|
+
*[](tomoto::IHLDAModel& self, tomoto::Tid topic_id) {
|
59
|
+
return self.getNumDocsOfTopic(topic_id);
|
60
|
+
})
|
61
|
+
.define_method(
|
62
|
+
"_parent_topic",
|
63
|
+
*[](tomoto::IHLDAModel& self, tomoto::Tid topic_id) {
|
64
|
+
return self.getParentTopicId(topic_id);
|
65
|
+
});
|
66
|
+
}
|
data/ext/tomoto/hpa.cpp
ADDED
@@ -0,0 +1,27 @@
|
|
1
|
+
#include <HPA.h>
|
2
|
+
|
3
|
+
#include <rice/Module.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_hpa(Rice::Module& m) {
|
8
|
+
Rice::define_class_under<tomoto::IHPAModel, tomoto::IPAModel>(m, "HPA")
|
9
|
+
.define_singleton_method(
|
10
|
+
"_new",
|
11
|
+
*[](size_t tw, size_t k1, size_t k2, tomoto::Float alpha, tomoto::Float eta, int seed) {
|
12
|
+
if (seed < 0) {
|
13
|
+
seed = std::random_device{}();
|
14
|
+
}
|
15
|
+
return tomoto::IHPAModel::create((tomoto::TermWeight)tw, false, k1, k2, alpha, eta, seed);
|
16
|
+
})
|
17
|
+
.define_method(
|
18
|
+
"alpha",
|
19
|
+
*[](tomoto::IHPAModel& self) {
|
20
|
+
Array res;
|
21
|
+
// use <= to return k+1 elements
|
22
|
+
for (size_t i = 0; i <= self.getK(); i++) {
|
23
|
+
res.push(self.getAlpha(i));
|
24
|
+
}
|
25
|
+
return res;
|
26
|
+
});
|
27
|
+
}
|
data/ext/tomoto/lda.cpp
ADDED
@@ -0,0 +1,250 @@
|
|
1
|
+
#include <fstream>
|
2
|
+
#include <iostream>
|
3
|
+
|
4
|
+
#include <LDA.h>
|
5
|
+
|
6
|
+
#include <rice/Class.hpp>
|
7
|
+
#include <rice/Hash.hpp>
|
8
|
+
#include <rice/Module.hpp>
|
9
|
+
|
10
|
+
#include "utils.h"
|
11
|
+
|
12
|
+
class DocumentObject
|
13
|
+
{
|
14
|
+
public:
|
15
|
+
DocumentObject(const tomoto::DocumentBase* _doc, const tomoto::ITopicModel* _tm) : doc{ _doc }, tm{ _tm } {}
|
16
|
+
|
17
|
+
const tomoto::DocumentBase* doc;
|
18
|
+
const tomoto::ITopicModel* tm;
|
19
|
+
};
|
20
|
+
|
21
|
+
void init_lda(Rice::Module& m) {
|
22
|
+
Rice::define_class_under<DocumentObject>(m, "Document")
|
23
|
+
.define_method(
|
24
|
+
"topics",
|
25
|
+
*[](DocumentObject& self) {
|
26
|
+
Rice::Hash res;
|
27
|
+
auto topics = self.tm->getTopicsByDoc(self.doc);
|
28
|
+
for (size_t i = 0; i < topics.size(); i++) {
|
29
|
+
res[i] = topics[i];
|
30
|
+
}
|
31
|
+
return res;
|
32
|
+
});
|
33
|
+
|
34
|
+
Rice::define_class_under<tomoto::ILDAModel>(m, "LDA")
|
35
|
+
.define_singleton_method(
|
36
|
+
"_new",
|
37
|
+
*[](size_t tw, size_t k, tomoto::Float alpha, tomoto::Float eta, int seed) {
|
38
|
+
if (seed < 0) {
|
39
|
+
seed = std::random_device{}();
|
40
|
+
}
|
41
|
+
return tomoto::ILDAModel::create((tomoto::TermWeight)tw, k, alpha, eta, seed);
|
42
|
+
})
|
43
|
+
.define_method(
|
44
|
+
"_add_doc",
|
45
|
+
*[](tomoto::ILDAModel& self, std::vector<std::string> words) {
|
46
|
+
return self.addDoc(buildDoc(words));
|
47
|
+
})
|
48
|
+
.define_method(
|
49
|
+
"alpha",
|
50
|
+
*[](tomoto::ILDAModel& self) {
|
51
|
+
Array res;
|
52
|
+
for (size_t i = 0; i < self.getK(); i++) {
|
53
|
+
res.push(self.getAlpha(i));
|
54
|
+
}
|
55
|
+
return res;
|
56
|
+
})
|
57
|
+
.define_method(
|
58
|
+
"burn_in",
|
59
|
+
*[](tomoto::ILDAModel& self) {
|
60
|
+
return self.getBurnInIteration();
|
61
|
+
})
|
62
|
+
.define_method(
|
63
|
+
"burn_in=",
|
64
|
+
*[](tomoto::ILDAModel& self, size_t iteration) {
|
65
|
+
self.setBurnInIteration(iteration);
|
66
|
+
return iteration;
|
67
|
+
})
|
68
|
+
.define_method(
|
69
|
+
"_count_by_topics",
|
70
|
+
*[](tomoto::ILDAModel& self) {
|
71
|
+
Array res;
|
72
|
+
for (auto const& v : self.getCountByTopic()) {
|
73
|
+
res.push(v);
|
74
|
+
}
|
75
|
+
return res;
|
76
|
+
})
|
77
|
+
.define_method(
|
78
|
+
"docs",
|
79
|
+
*[](tomoto::ILDAModel& self) {
|
80
|
+
Array res;
|
81
|
+
auto n = self.getNumDocs();
|
82
|
+
for (size_t i = 0; i < n; i++) {
|
83
|
+
res.push(DocumentObject(self.getDoc(i), &self));
|
84
|
+
}
|
85
|
+
return res;
|
86
|
+
})
|
87
|
+
.define_method(
|
88
|
+
"eta",
|
89
|
+
*[](tomoto::ILDAModel& self) {
|
90
|
+
return self.getEta();
|
91
|
+
})
|
92
|
+
.define_method(
|
93
|
+
"global_step",
|
94
|
+
*[](tomoto::ILDAModel& self) {
|
95
|
+
return self.getGlobalStep();
|
96
|
+
})
|
97
|
+
.define_method(
|
98
|
+
"k",
|
99
|
+
*[](tomoto::ILDAModel& self) {
|
100
|
+
return self.getK();
|
101
|
+
})
|
102
|
+
.define_method(
|
103
|
+
"_load",
|
104
|
+
*[](tomoto::ILDAModel& self, const char* filename) {
|
105
|
+
std::ifstream str{ filename, std::ios_base::binary };
|
106
|
+
if (!str) throw std::runtime_error{ std::string("cannot open file '") + filename + std::string("'") };
|
107
|
+
std::vector<uint8_t> extra_data;
|
108
|
+
self.loadModel(str, &extra_data);
|
109
|
+
})
|
110
|
+
.define_method(
|
111
|
+
"ll_per_word",
|
112
|
+
*[](tomoto::ILDAModel& self) {
|
113
|
+
return self.getLLPerWord();
|
114
|
+
})
|
115
|
+
.define_method(
|
116
|
+
"num_docs",
|
117
|
+
*[](tomoto::ILDAModel& self) {
|
118
|
+
return self.getNumDocs();
|
119
|
+
})
|
120
|
+
.define_method(
|
121
|
+
"num_vocabs",
|
122
|
+
*[](tomoto::ILDAModel& self) {
|
123
|
+
return self.getV();
|
124
|
+
})
|
125
|
+
.define_method(
|
126
|
+
"num_words",
|
127
|
+
*[](tomoto::ILDAModel& self) {
|
128
|
+
return self.getN();
|
129
|
+
})
|
130
|
+
.define_method(
|
131
|
+
"optim_interval",
|
132
|
+
*[](tomoto::ILDAModel& self) {
|
133
|
+
return self.getOptimInterval();
|
134
|
+
})
|
135
|
+
.define_method(
|
136
|
+
"optim_interval=",
|
137
|
+
*[](tomoto::ILDAModel& self, size_t value) {
|
138
|
+
self.setOptimInterval(value);
|
139
|
+
return value;
|
140
|
+
})
|
141
|
+
.define_method(
|
142
|
+
"perplexity",
|
143
|
+
*[](tomoto::ILDAModel& self) {
|
144
|
+
return self.getPerplexity();
|
145
|
+
})
|
146
|
+
.define_method(
|
147
|
+
"_prepare",
|
148
|
+
*[](tomoto::ILDAModel& self, size_t minCnt, size_t minDf, size_t rmTop) {
|
149
|
+
self.prepare(true, minCnt, minDf, rmTop);
|
150
|
+
})
|
151
|
+
.define_method(
|
152
|
+
"_removed_top_words",
|
153
|
+
*[](tomoto::ILDAModel& self, size_t rmTop) {
|
154
|
+
Array res;
|
155
|
+
auto dict = self.getVocabDict();
|
156
|
+
size_t size = dict.size();
|
157
|
+
for (size_t i = rmTop; i > 0; i--) {
|
158
|
+
res.push(dict.toWord(size - i));
|
159
|
+
}
|
160
|
+
return res;
|
161
|
+
})
|
162
|
+
.define_method(
|
163
|
+
"_save",
|
164
|
+
*[](tomoto::ILDAModel& self, const char* filename, bool full) {
|
165
|
+
std::ofstream str{ filename, std::ios_base::binary };
|
166
|
+
std::vector<uint8_t> extra_data;
|
167
|
+
self.saveModel(str, full, &extra_data);
|
168
|
+
})
|
169
|
+
.define_method(
|
170
|
+
"_topic_words",
|
171
|
+
*[](tomoto::ILDAModel& self, size_t topicId, size_t topN) {
|
172
|
+
Rice::Hash res;
|
173
|
+
for (auto const& v : self.getWordsByTopicSorted(topicId, topN)) {
|
174
|
+
res[v.first] = v.second;
|
175
|
+
}
|
176
|
+
return res;
|
177
|
+
})
|
178
|
+
.define_method(
|
179
|
+
"_train",
|
180
|
+
*[](tomoto::ILDAModel& self, size_t iteration, size_t workers, size_t ps) {
|
181
|
+
self.train(iteration, workers, (tomoto::ParallelScheme)ps);
|
182
|
+
})
|
183
|
+
.define_method(
|
184
|
+
"_tw",
|
185
|
+
*[](tomoto::ILDAModel& self) {
|
186
|
+
return (int)self.getTermWeight();
|
187
|
+
})
|
188
|
+
.define_method(
|
189
|
+
"used_vocab_df",
|
190
|
+
*[](tomoto::ILDAModel& self) {
|
191
|
+
auto vocab = self.getVocabDf();
|
192
|
+
Array res;
|
193
|
+
for (size_t i = 0; i < self.getV(); i++) {
|
194
|
+
res.push(vocab[i]);
|
195
|
+
}
|
196
|
+
return res;
|
197
|
+
})
|
198
|
+
.define_method(
|
199
|
+
"used_vocab_freq",
|
200
|
+
*[](tomoto::ILDAModel& self) {
|
201
|
+
auto vocab = self.getVocabCf();
|
202
|
+
Array res;
|
203
|
+
for (size_t i = 0; i < self.getV(); i++) {
|
204
|
+
res.push(vocab[i]);
|
205
|
+
}
|
206
|
+
return res;
|
207
|
+
})
|
208
|
+
.define_method(
|
209
|
+
"used_vocabs",
|
210
|
+
*[](tomoto::ILDAModel& self) {
|
211
|
+
auto dict = self.getVocabDict();
|
212
|
+
Array res;
|
213
|
+
auto utf8 = Rice::Class(rb_cEncoding).call("const_get", "UTF_8");
|
214
|
+
for (size_t i = 0; i < self.getV(); i++) {
|
215
|
+
res.push(to_ruby<std::string>(dict.toWord(i)).call("force_encoding", utf8));
|
216
|
+
}
|
217
|
+
return res;
|
218
|
+
})
|
219
|
+
.define_method(
|
220
|
+
"vocab_df",
|
221
|
+
*[](tomoto::ILDAModel& self) {
|
222
|
+
auto vocab = self.getVocabDf();
|
223
|
+
Array res;
|
224
|
+
for (size_t i = 0; i < vocab.size(); i++) {
|
225
|
+
res.push(vocab[i]);
|
226
|
+
}
|
227
|
+
return res;
|
228
|
+
})
|
229
|
+
.define_method(
|
230
|
+
"vocab_freq",
|
231
|
+
*[](tomoto::ILDAModel& self) {
|
232
|
+
auto vocab = self.getVocabCf();
|
233
|
+
Array res;
|
234
|
+
for (size_t i = 0; i < vocab.size(); i++) {
|
235
|
+
res.push(vocab[i]);
|
236
|
+
}
|
237
|
+
return res;
|
238
|
+
})
|
239
|
+
.define_method(
|
240
|
+
"vocabs",
|
241
|
+
*[](tomoto::ILDAModel& self) {
|
242
|
+
auto dict = self.getVocabDict();
|
243
|
+
Array res;
|
244
|
+
auto utf8 = Rice::Class(rb_cEncoding).call("const_get", "UTF_8");
|
245
|
+
for (size_t i = 0; i < dict.size(); i++) {
|
246
|
+
res.push(to_ruby<std::string>(dict.toWord(i)).call("force_encoding", utf8));
|
247
|
+
}
|
248
|
+
return res;
|
249
|
+
});
|
250
|
+
}
|
data/ext/tomoto/llda.cpp
ADDED
@@ -0,0 +1,29 @@
|
|
1
|
+
#include <LLDA.h>
|
2
|
+
|
3
|
+
#include <rice/Module.hpp>
|
4
|
+
|
5
|
+
#include "utils.h"
|
6
|
+
|
7
|
+
void init_llda(Rice::Module& m) {
|
8
|
+
Rice::define_class_under<tomoto::ILLDAModel, tomoto::ILDAModel>(m, "LLDA")
|
9
|
+
.define_singleton_method(
|
10
|
+
"_new",
|
11
|
+
*[](size_t tw, size_t k, tomoto::Float alpha, tomoto::Float eta, int seed) {
|
12
|
+
if (seed < 0) {
|
13
|
+
seed = std::random_device{}();
|
14
|
+
}
|
15
|
+
return tomoto::ILLDAModel::create((tomoto::TermWeight)tw, k, alpha, eta, seed);
|
16
|
+
})
|
17
|
+
.define_method(
|
18
|
+
"_add_doc",
|
19
|
+
*[](tomoto::ILLDAModel& self, std::vector<std::string> words, std::vector<std::string> labels) {
|
20
|
+
auto doc = buildDoc(words);
|
21
|
+
doc.misc["labels"] = labels;
|
22
|
+
return self.addDoc(doc);
|
23
|
+
})
|
24
|
+
.define_method(
|
25
|
+
"topics_per_label",
|
26
|
+
*[](tomoto::ILLDAModel& self) {
|
27
|
+
return self.getNumTopicsPerLabel();
|
28
|
+
});
|
29
|
+
}
|