timescaledb 0.2.6 → 0.2.7

Sign up to get free protection for your applications and to get access to all the features.
Files changed (102) hide show
  1. checksums.yaml +4 -4
  2. data/lib/timescaledb/acts_as_hypertable/core.rb +1 -1
  3. data/lib/timescaledb/database/quoting.rb +12 -0
  4. data/lib/timescaledb/database/schema_statements.rb +168 -0
  5. data/lib/timescaledb/database/types.rb +17 -0
  6. data/lib/timescaledb/database.rb +11 -0
  7. data/lib/timescaledb/toolkit/time_vector.rb +41 -4
  8. data/lib/timescaledb/version.rb +1 -1
  9. metadata +6 -95
  10. data/.github/workflows/ci.yml +0 -72
  11. data/.gitignore +0 -12
  12. data/.rspec +0 -3
  13. data/.ruby-version +0 -1
  14. data/.tool-versions +0 -1
  15. data/.travis.yml +0 -9
  16. data/CODE_OF_CONDUCT.md +0 -74
  17. data/Fastfile +0 -17
  18. data/Gemfile +0 -8
  19. data/Gemfile.lock +0 -75
  20. data/Gemfile.scenic +0 -7
  21. data/Gemfile.scenic.lock +0 -119
  22. data/README.md +0 -490
  23. data/Rakefile +0 -21
  24. data/bin/console +0 -28
  25. data/bin/setup +0 -13
  26. data/docs/command_line.md +0 -178
  27. data/docs/img/lttb_example.png +0 -0
  28. data/docs/img/lttb_sql_vs_ruby.gif +0 -0
  29. data/docs/img/lttb_zoom.gif +0 -0
  30. data/docs/index.md +0 -72
  31. data/docs/migrations.md +0 -76
  32. data/docs/models.md +0 -78
  33. data/docs/toolkit.md +0 -507
  34. data/docs/toolkit_lttb_tutorial.md +0 -557
  35. data/docs/toolkit_lttb_zoom.md +0 -357
  36. data/docs/toolkit_ohlc.md +0 -315
  37. data/docs/videos.md +0 -16
  38. data/examples/all_in_one/all_in_one.rb +0 -94
  39. data/examples/all_in_one/benchmark_comparison.rb +0 -108
  40. data/examples/all_in_one/caggs.rb +0 -93
  41. data/examples/all_in_one/query_data.rb +0 -78
  42. data/examples/ranking/.gitattributes +0 -7
  43. data/examples/ranking/.gitignore +0 -29
  44. data/examples/ranking/.ruby-version +0 -1
  45. data/examples/ranking/Gemfile +0 -33
  46. data/examples/ranking/Gemfile.lock +0 -189
  47. data/examples/ranking/README.md +0 -166
  48. data/examples/ranking/Rakefile +0 -6
  49. data/examples/ranking/app/controllers/application_controller.rb +0 -2
  50. data/examples/ranking/app/controllers/concerns/.keep +0 -0
  51. data/examples/ranking/app/jobs/application_job.rb +0 -7
  52. data/examples/ranking/app/models/application_record.rb +0 -3
  53. data/examples/ranking/app/models/concerns/.keep +0 -0
  54. data/examples/ranking/app/models/game.rb +0 -2
  55. data/examples/ranking/app/models/play.rb +0 -7
  56. data/examples/ranking/bin/bundle +0 -114
  57. data/examples/ranking/bin/rails +0 -4
  58. data/examples/ranking/bin/rake +0 -4
  59. data/examples/ranking/bin/setup +0 -33
  60. data/examples/ranking/config/application.rb +0 -39
  61. data/examples/ranking/config/boot.rb +0 -4
  62. data/examples/ranking/config/credentials.yml.enc +0 -1
  63. data/examples/ranking/config/database.yml +0 -86
  64. data/examples/ranking/config/environment.rb +0 -5
  65. data/examples/ranking/config/environments/development.rb +0 -60
  66. data/examples/ranking/config/environments/production.rb +0 -75
  67. data/examples/ranking/config/environments/test.rb +0 -53
  68. data/examples/ranking/config/initializers/cors.rb +0 -16
  69. data/examples/ranking/config/initializers/filter_parameter_logging.rb +0 -8
  70. data/examples/ranking/config/initializers/inflections.rb +0 -16
  71. data/examples/ranking/config/initializers/timescale.rb +0 -2
  72. data/examples/ranking/config/locales/en.yml +0 -33
  73. data/examples/ranking/config/puma.rb +0 -43
  74. data/examples/ranking/config/routes.rb +0 -6
  75. data/examples/ranking/config/storage.yml +0 -34
  76. data/examples/ranking/config.ru +0 -6
  77. data/examples/ranking/db/migrate/20220209120747_create_games.rb +0 -10
  78. data/examples/ranking/db/migrate/20220209120910_create_plays.rb +0 -19
  79. data/examples/ranking/db/migrate/20220209143347_create_score_per_hours.rb +0 -5
  80. data/examples/ranking/db/schema.rb +0 -47
  81. data/examples/ranking/db/seeds.rb +0 -7
  82. data/examples/ranking/db/views/score_per_hours_v01.sql +0 -7
  83. data/examples/ranking/lib/tasks/.keep +0 -0
  84. data/examples/ranking/log/.keep +0 -0
  85. data/examples/ranking/public/robots.txt +0 -1
  86. data/examples/ranking/storage/.keep +0 -0
  87. data/examples/ranking/tmp/.keep +0 -0
  88. data/examples/ranking/tmp/pids/.keep +0 -0
  89. data/examples/ranking/tmp/storage/.keep +0 -0
  90. data/examples/ranking/vendor/.keep +0 -0
  91. data/examples/toolkit-demo/compare_volatility.rb +0 -104
  92. data/examples/toolkit-demo/lttb/README.md +0 -15
  93. data/examples/toolkit-demo/lttb/lttb.rb +0 -92
  94. data/examples/toolkit-demo/lttb/lttb_sinatra.rb +0 -139
  95. data/examples/toolkit-demo/lttb/lttb_test.rb +0 -21
  96. data/examples/toolkit-demo/lttb/views/index.erb +0 -27
  97. data/examples/toolkit-demo/lttb-zoom/README.md +0 -13
  98. data/examples/toolkit-demo/lttb-zoom/lttb_zoomable.rb +0 -90
  99. data/examples/toolkit-demo/lttb-zoom/views/index.erb +0 -33
  100. data/examples/toolkit-demo/ohlc.rb +0 -175
  101. data/mkdocs.yml +0 -34
  102. data/timescaledb.gemspec +0 -40
@@ -1,357 +0,0 @@
1
- # Downsampling and zooming
2
-
3
- Less than 2 decades ago, google revolutionised the digital maps system, raising the bar of maps rendering and helping people to navigate in the unknown. Helping tourists and drivers to drammatically speed up the time to analyze a route and get the next step. With time-series dates and numbers, several indicators where created to make data scientists digest things faster like candle sticks and indicators that can easily show insights about relevant moments in the data.
4
-
5
- In this tutorial, we're going to cover data resolution and how to present data in a reasonable resolution.
6
-
7
- if you're zooming out years of time-series data, no matter how wide is your monitor, probably you'll not be able to see more than a few thounsand points in your screen.
8
-
9
- One of the hard challenges we face to plot data is downsampling it in a proper resolution. Generally, when we zoom in, we lose resolution as we focus on a slice of the data points available. With less data points, the distribution of the data points become far from each other and we adopt lines between the points to promote a fake connection between the elements. Often, fetching all the data seems unreasonable and expensive.
10
-
11
- In this tutorial, you'll see how Timescale can help you to strike a balance between speed and screen resolution. We're going to walk you through a downsampling method that allows you to downsampling milions of records to your screen resolution for a fast rendering process.
12
-
13
- Establishing a threshold that is reasonable for the screen resolution, every zoom in will fetch new slices of downsampled data.
14
-
15
- Downsampling in the the front end is pretty common for the plotting libraries, but the process still very expensive while delegating to the back end and make the zooming experience smooth like zooming on digital maps. You still watch the old resolution while fetches nes data and keep narrowing down for a new slice of data that represents the actual period.
16
-
17
- In this example, we're going to use the [lttb][3] function, that is part of the [functions pipelines][4] that can simplify a lot of your data analysis in the database.
18
-
19
- If you're not familiar with the LTTB algorithm, feel free to try the [LTTB Tutorial][1] first and then you'll understand completely how the downsampling algorithm is choosing what points to print.
20
-
21
- The focus of this example is to show how you can build a recursive process to just downsample the data to keep it with a good resolution.
22
-
23
- The image bellow corresponds to the step by step guide provided here.
24
-
25
-
26
- ![LTTB Zoomable Example](https://jonatas.github.io/timescaledb/img/lttb_zoom.gif)
27
-
28
-
29
- If you want to just go and run it directly, you can fetch the complete example [here][2].
30
-
31
- Now, we'll split the work in two main sessions: preparing the back-end and front-end.
32
-
33
- ## Preparing the Back end
34
-
35
- The back-end will be a Ruby script to fetch the dataset and prepare the database in case it's not ready. It will also offer the JSON endpoint with the downsampled data that will be consumed by the front-end.
36
-
37
-
38
- ### Set up dependencies
39
-
40
- The example is using Bundler inline, as it avoids the creation of the `Gemfile`. It's very handy for prototyping code that you can ship in a single file. You can declare all the gems in the `gemfile` code block, and Bundler will install them dynamically.
41
-
42
- ```ruby
43
- require 'bundler/inline' #require only what you need
44
-
45
- gemfile(true) do
46
- gem 'timescaledb'
47
- gem 'pry'
48
- gem 'sinatra', require: false
49
- gem 'sinatra-reloader'
50
- gem 'sinatra-cross_origin'
51
- end
52
- ```
53
-
54
- The Timescale gem doesn't require the toolkit by default, so you must specify it to use.
55
-
56
- !!!warning
57
- Note that we do not require the rest of the libraries because Bundler inline already requires the specified libraries by default which is very convenient for examples in a single file.
58
-
59
- Let's take a look at what dependencies we have for what purpose:
60
-
61
- * [timescaledb][4] gem is the ActiveRecord wrapper for TimescaleDB functions.
62
- * [sinatra][6] is a DSL for quickly creating web applications with minimal effort.
63
-
64
- Only for development purposes we also have:
65
-
66
- 1. The [pry][5] library is widely adopted to debug any Ruby code. It can facilitate to explore the app and easily troubleshoot any issues you find.
67
- 2. The `sinatra-cross_origin` allow the application to use javascript directly from foreign servers without denying the access.
68
- 3. The `sinatra-reloader` is very convenient to keep updating the code examples without the need to restart the ruby process.
69
-
70
- ```ruby
71
- require 'sinatra'
72
- require 'sinatra/json'
73
- require 'sinatra/contrib'
74
- require 'timescaledb/toolkit'
75
-
76
- register Sinatra::Reloader
77
- register Sinatra::Contrib
78
- ```
79
-
80
- ## Setup database
81
-
82
- Now, it's time to set up the database for this application. Make sure you have TimescaleDB installed or [learn how to install TimescaleDB here][12].
83
-
84
- ### Establishing the connection
85
-
86
- The next step is to connect to the database so that we will run this example with the PostgreSQL URI as the last argument of the command line.
87
-
88
- ```ruby
89
- PG_URI = ARGV.last
90
- ActiveRecord::Base.establish_connection(PG_URI)
91
- ```
92
-
93
- If this line works, it means your connection is good.
94
-
95
- ### Downloading the dataset
96
-
97
- The data comes from a real scenario. The data loaded in the example comes from the [weather dataset][8] and contains several profiles with more or less data and with a reasonable resolution for the actual example.
98
-
99
- Here is small automation to make it run smoothly with small, medium, and big data sets.
100
-
101
- ```ruby
102
- VALID_SIZES = %i[small med big]
103
- def download_weather_dataset size: :small
104
- unless VALID_SIZES.include?(size)
105
- fail "Invalid size: #{size}. Valid are #{VALID_SIZES}"
106
- end
107
- url = "https://timescaledata.blob.core.windows.net/datasets/weather_#{size}.tar.gz"
108
- puts "fetching #{size} weather dataset..."
109
- system "wget \"#{url}\""
110
- puts "done!"
111
- end
112
- ```
113
-
114
- Now, let's create the setup method to verify if the database is created and have the data loaded, and fetch it if necessary.
115
-
116
- ```ruby
117
- def setup size: :small
118
- file = "weather_#{size}.tar.gz"
119
- download_weather_dataset unless File.exists? file
120
- puts "extracting #{file}"
121
- system "tar -xvzf #{file} "
122
- puts "creating data structures"
123
- system "psql #{PG_URI} < weather.sql"
124
- system %|psql #{PG_URI} -c "\\COPY locations FROM weather_#{size}_locations.csv CSV"|
125
- system %|psql #{PG_URI} -c "\\COPY conditions FROM weather_#{size}_conditions.csv CSV"|
126
- end
127
- ```
128
-
129
- !!!info
130
- Maybe you'll need to recreate the database if you want to test with a different dataset.
131
-
132
- ### Declaring the models
133
-
134
- Now, let's declare the ActiveRecord models. The location is an auxiliary table
135
- to control the placement of the device.
136
-
137
- ```ruby
138
- class Location < ActiveRecord::Base
139
- self.primary_key = "device_id"
140
-
141
- has_many :conditions, foreign_key: "device_id"
142
- end
143
- ```
144
-
145
- Every location emits weather conditions with `temperature` and `humidity` every X minutes.
146
-
147
- The `conditions` is the time-series data we'll refer to here.
148
-
149
- ```ruby
150
- class Condition < ActiveRecord::Base
151
- acts_as_hypertable time_column: "time"
152
- acts_as_time_vector value_column: "temperature", segment_by: "device_id"
153
- belongs_to :location, foreign_key: "device_id"
154
- end
155
- ```
156
-
157
- ### Putting all together
158
-
159
- Now it's time to call the methods we implemented before. So, let's set up a logger to print the data to the standard output (STDOUT) to confirm the steps and add the toolkit to the search path.
160
-
161
- Similar to database migration, we need to verify if the table exists, set up the hypertable and load the data if necessary.
162
-
163
- ```ruby
164
- ActiveRecord::Base.connection.instance_exec do
165
- ActiveRecord::Base.logger = Logger.new(STDOUT)
166
- add_toolkit_to_search_path!
167
-
168
- unless Condition.table_exists?
169
- setup size: :small
170
- end
171
- end
172
- ```
173
-
174
- The `setup` method also can fetch different datasets and you'll need to manually drop the `conditions` and `locations` tables to reload it.
175
-
176
-
177
- ### Filtering data
178
-
179
- We'll have two main scenarios to plot the data. When the user is not filtering any data and when the user is filtering during a zoom phase.
180
-
181
- To simplify the example, we're going to use only the `weather-pro-000001` device_id to make it easier to follow:
182
-
183
- ```ruby
184
- def filter_by_request_params
185
- filter= {device_id: "weather-pro-000001"}
186
- if params[:filter] && params[:filter] != "null"
187
- from, to = params[:filter].split(",").map(&Time.method(:parse))
188
- filter[:time] = from..to
189
- end
190
- filter
191
- end
192
- ```
193
-
194
- The method is just building the proper where clause using the ActiveRecord style to be filtering the conditions we want to use for the example. Now, let's use the previous method defining the scope of the data that will be downsampled from the database.
195
-
196
- ```ruby
197
- def conditions
198
- Condition.where(filter_by_request_params).order('time')
199
- end
200
- ```
201
-
202
- ### Downsampling data
203
-
204
- The threshold can be defined as a method as it can also be used further in the front-end for rendering the initial template values.
205
-
206
- ```ruby
207
- def threshold
208
- params[:threshold]&.to_i || 50
209
- end
210
- ```
211
-
212
- Now, the most important method of this example, the call to the [lttb][3] function that is responsible for the downsampling algorithm. It also reuses all previous logic built here.
213
-
214
- ```ruby
215
- def downsampled
216
- conditions.lttb(threshold: threshold, segment_by: nil)
217
- end
218
- ```
219
-
220
- The `segment_by` keyword explicit `nil` because we have the `segment_by` explicit in the `acts_as_time_vector` macro in the model that is being inherited here. As the filter is specifying a `device_id`, we can skip this option to simplify the data coming from lttb.
221
-
222
- !!!info "The lttb scope"
223
- The `lttb` method call in reality is a ActiveRecord scope. It is encapsulating all the logic behind the library. The SQL code is not big, but there's some caveats involved here. So, behind the scenes the following SQL query is executed:
224
-
225
- ```sql
226
- SELECT time AS time, value AS temperature
227
- FROM (
228
- WITH ordered AS
229
- (SELECT "conditions"."time",
230
- "conditions"."temperature"
231
- FROM "conditions"
232
- WHERE "conditions"."device_id" = 'weather-pro-000001'
233
- ORDER BY time, "conditions"."time" ASC)
234
- SELECT (
235
- lttb( ordered.time, ordered.temperature, 50) ->
236
- toolkit_experimental.unnest()
237
- ).* FROM ordered
238
- ) AS ordered
239
- ```
240
-
241
- The `acts_as_time_vector` macro makes the `lttb` scope available in the ActiveRecord scopes allowing to mix conditions in advance and nest the queries in the way that it can process the LTTB and unnest it properly.
242
-
243
- Also, note that it's using the `->` pipeline operator to unnest the timevector and transform the data in tupples again.
244
-
245
-
246
- ### Exposing endpoints
247
-
248
- Now, let's start with the web part using the sinatra macros. First, let's
249
- configure the server to allow cross origin requests and fetch the javascripts
250
- libraries directly from their official website.
251
-
252
- ```ruby
253
- configure do
254
- enable :cross_origin
255
- end
256
- ```
257
- Now, let's declare the root endpoint that will render the index template and
258
- the JSON endpoint that will return the downsampled data.
259
-
260
- ```ruby
261
- get '/' do
262
- erb :index
263
- end
264
- ```
265
-
266
- Note that the erb template should be on `views/index.erb` and will be covered in
267
- the front end section soon.
268
-
269
- ```ruby
270
- get "/lttb_sql" do
271
- json downsampled
272
- end
273
- ```
274
-
275
- ## Front end
276
-
277
- The front-end will be a simple HTML with Javascript to Plot the fetched data and asynchronouysly refresh the data in a new resolution in case of zooming in.
278
-
279
- The sinatrarb works with a simple "views" folder and by default it renders erb templates that is a mix of Ruby scriptlets and HTML templates.
280
-
281
- All the following snippets goes to the same file. They're just split into
282
- separated parts that will make it easier to understand what each part does.
283
-
284
- Let's start with the header that contains the extra scripts.
285
-
286
- We're just using two libraries:
287
-
288
- 1. **jQuery** to fetch data async with ajax calls.
289
- 2. [plotly][9] to plot the data.
290
-
291
- ```html
292
- <head>
293
- <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.1/dist/jquery.min.js"></script>
294
- <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
295
- </head>
296
- ```
297
-
298
- Now, let's have a small status showing how many records are present in the
299
- database and allowing to use a different threshold and test different subset of
300
- downsampled data.
301
-
302
- ```html
303
- <h3>Downsampling <%= conditions.count %> records to
304
- <select value="<%= threshold %>" onchange="location.href=`/?threshold=${this.value}`">
305
- <option><%= threshold %></option>
306
- <option value="50">50</option>
307
- <option value="100">100</option>
308
- <option value="500">500</option>
309
- <option value="1000">1000</option>
310
- <option value="5000">5000</option>
311
- </select> points.
312
- </h3>
313
- ```
314
-
315
- Note that some Ruby scripts are wrapped with `<%= ... %>`in the middle of the HTML instructions to inherit the defaults established in the back-end.
316
-
317
- Now, it's time to declare the div that will receive the plot component and
318
- declare the method to fetch data and create the chart.
319
-
320
- ```html
321
- <div id='container'></div>
322
- <script>
323
- let chart = document.getElementById('container');
324
- function fetch(filter) {
325
- $.ajax({
326
- url: `/lttb_sql?threshold=<%= threshold %>&filter=${filter}`,
327
- success: function(result) {
328
- let x = result.map((e) => e[0]);
329
- let y = result.map((e) => parseFloat(e[1]));
330
- Plotly.newPlot(chart, [{x, y}]);
331
- chart.on('plotly_relayout',
332
- function(eventdata){
333
- fetch([eventdata['xaxis.range[0]'], eventdata['xaxis.range[1]']]);
334
- });
335
- }});
336
- }
337
- fetch(null);
338
- </script>
339
- ```
340
-
341
- That's all for today folks!
342
-
343
-
344
- [1]: /toolkit_lttb_tutorial
345
- [2]: https://github.com/jonatas/timescaledb/blob/master/examples/toolkit-demo/lttb_zoom
346
- [3]: https://docs.timescale.com/api/latest/hyperfunctions/downsample/lttb/
347
- [4]: https://docs.timescale.com/timescaledb/latest/how-to-guides/hyperfunctions/function-pipelines/
348
- [5]: https://github.com/jonatas/timescaledb
349
- [6]: http://pry.github.io
350
- [7]: http://sinatrarb.com
351
- [8]: https://docs.timescale.com/timescaledb/latest/tutorials/sample-datasets/#weather-datasets
352
- [9]: https://plotly.com
353
- [10]:
354
- [11]:
355
- [12]:
356
- [13]:
357
- [4]:
data/docs/toolkit_ohlc.md DELETED
@@ -1,315 +0,0 @@
1
- # OHLC / Candlesticks
2
-
3
- Candlesticks are a popular tool in technical analysis, used by traders to determine potential market movements.
4
-
5
- The toolkit also allows you to compute candlesticks with the [ohlc][1] function.
6
-
7
- Candlesticks are a type of price chart that displays the high, low, open, and close prices of a security for a specific period. They can be useful because they can provide information about market trends and reversals. For example, if you see that the stock has been trading in a range for a while, it may be worth considering buying or selling when the price moves outside of this range. Additionally, candlesticks can be used in conjunction with other technical indicators to make trading decisions.
8
-
9
-
10
- Let's start defining a table that stores the trades from financial market data
11
- and then we can calculate the candlesticks with the Timescaledb Toolkit.
12
-
13
- ## Migration
14
-
15
- The `ticks` table is a hypertable that will be partitioning the data into one
16
- week intervl. Compressing them after a month to save storage.
17
-
18
- ```ruby
19
- hypertable_options = {
20
- time_column: 'time',
21
- chunk_time_interval: '1 week',
22
- compress_segmentby: 'symbol',
23
- compress_orderby: 'time',
24
- compression_interval: '1 month'
25
- }
26
- create_table :ticks, hypertable: hypertable_options, id: false do |t|
27
- t.timestampt :time
28
- t.string :symbol
29
- t.decimal :price
30
- t.integer :volume
31
- end
32
- ```
33
-
34
- In the previous code block, we assume it goes inside a Rails migration or you
35
- can embed such code into a `ActiveRecord::Base.connection.instance_exec` block.
36
-
37
- ## Defining the model
38
-
39
- As we don't need a primary key for the table, let's set it to nil. The
40
- `acts_as_hypertable` macro will give us several useful scopes that can be
41
- wrapping some of the TimescaleDB features.
42
-
43
- The `acts_as_time_vector` will allow us to set what are the default columns used
44
- to calculate the data.
45
-
46
-
47
- ```ruby
48
- class Tick < ActiveRecord::Base
49
- self.primary_key = nil
50
- acts_as_hypertable time_column: :time
51
- acts_as_time_vector value_column: price, segment_by: :symbol
52
- end
53
- ```
54
-
55
- The candlestick will split the timeframe by the `time_column` and use the `price` as the default value to process the candlestick. It will also segment the candles by `symbol`.
56
-
57
- If you need to generate some data for your table, please check [this post][2].
58
-
59
- ## The `ohlc` scope
60
-
61
- When the `acts_as_time_vector` method is used in the model, it will inject
62
- several scopes from the toolkit to easily have access to functions like the
63
- ohlc.
64
-
65
- The `ohlc` scope is available with a few parameters that inherits the
66
- configuration from the `acts_as_time_vector` declared previously.
67
-
68
- The simplest query is:
69
-
70
- ```ruby
71
- Tick.ohlc(timeframe: '1m')
72
- ```
73
-
74
- It will generate the following SQL:
75
-
76
- ```sql
77
- SELECT symbol,
78
- "time",
79
- toolkit_experimental.open(ohlc),
80
- toolkit_experimental.high(ohlc),
81
- toolkit_experimental.low(ohlc),
82
- toolkit_experimental.close(ohlc),
83
- toolkit_experimental.open_time(ohlc),
84
- toolkit_experimental.high_time(ohlc),
85
- toolkit_experimental.low_time(ohlc),
86
- toolkit_experimental.close_time(ohlc)
87
- FROM (
88
- SELECT time_bucket('1m', time) as time,
89
- "ticks"."symbol",
90
- toolkit_experimental.ohlc(time, price)
91
- FROM "ticks" GROUP BY 1, 2 ORDER BY 1)
92
- AS ohlc
93
- ```
94
-
95
- The timeframe argument can also be skipped and the default is `1 hour`.
96
-
97
- You can also combine other scopes to filter data before you get the data from the candlestick:
98
-
99
- ```ruby
100
- Tick.yesterday
101
- .where(symbol: "APPL")
102
- .ohlc(timeframe: '1m')
103
- ```
104
-
105
- The `yesterday` scope is automatically included because of the `acts_as_hypertable` macro. And it will be combining with other where clauses.
106
-
107
- ## Continuous aggregates
108
-
109
- If you would like to continuous aggregate the candlesticks on a materialized
110
- view you can use continuous aggregates for it.
111
-
112
- The next examples shows how to create a continuous aggregates of 1 minute
113
- candlesticks:
114
-
115
- ```ruby
116
- options = {
117
- with_data: false,
118
- refresh_policies: {
119
- start_offset: "INTERVAL '1 month'",
120
- end_offset: "INTERVAL '1 minute'",
121
- schedule_interval: "INTERVAL '1 minute'"
122
- }
123
- }
124
- create_continuous_aggregate('ohlc_1m', Tick.ohlc(timeframe: '1m'), **options)
125
- ```
126
-
127
-
128
- Note that the `create_continuous_aggregate` calls the `to_sql` method in case
129
- the second parameter is not a string.
130
-
131
- ## Rollup
132
-
133
- The rollup allows you to combine ohlc structures from smaller timeframes
134
- to bigger timeframes without needing to reprocess all the data.
135
-
136
- With this feature, you can group by the ohcl multiple times saving processing
137
- from the server and make it easier to manage candlesticks from different time intervals.
138
-
139
- In the previous example, we used the `.ohlc` function that returns already the
140
- attributes from the different timeframes. In the SQL command it's calling the
141
- `open`, `high`, `low`, `close` functions that can access the values behind the
142
- ohlcsummary type.
143
-
144
- To merge the ohlc we need to rollup the `ohlcsummary` to a bigger timeframe and
145
- only access the values as a final resort to see them and access as attributes.
146
-
147
- Let's rebuild the structure:
148
-
149
- ```ruby
150
- execute "CREATE VIEW ohlc_1h AS #{ Ohlc1m.rollup(timeframe: '1 hour').to_sql}"
151
- execute "CREATE VIEW ohlc_1d AS #{ Ohlc1h.rollup(timeframe: '1 day').to_sql}"
152
- ```
153
-
154
- ## Defining models for views
155
-
156
- Note that the previous code refers to `Ohlc1m` and `Ohlc1h` as two classes that
157
- are not defined yet. They will basically be ActiveRecord readonly models to
158
- allow to build scopes from it.
159
-
160
- Ohlc for one hour:
161
- ```ruby
162
- class Ohlc1m < ActiveRecord::Base
163
- self.table_name = 'ohlc_1m'
164
- include Ohlc
165
- end
166
- ```
167
-
168
- Ohlc for one day is pretty much the same:
169
- ```ruby
170
- class Ohlc1h < ActiveRecord::Base
171
- self.table_name = 'ohlc_1h'
172
- include Ohlc
173
- end
174
- ```
175
-
176
- We'll also have the `Ohlc` as a shared concern that can help you to reuse
177
- queries in different views.
178
-
179
- ```ruby
180
- module Ohlc
181
- extend ActiveSupport::Concern
182
-
183
- included do
184
- scope :rollup, -> (timeframe: '1h') do
185
- select("symbol, time_bucket('#{timeframe}', time) as time,
186
- toolkit_experimental.rollup(ohlc) as ohlc")
187
- .group(1,2)
188
- end
189
-
190
- scope :attributes, -> do
191
- select("symbol, time,
192
- toolkit_experimental.open(ohlc),
193
- toolkit_experimental.high(ohlc),
194
- toolkit_experimental.low(ohlc),
195
- toolkit_experimental.close(ohlc),
196
- toolkit_experimental.open_time(ohlc),
197
- toolkit_experimental.high_time(ohlc),
198
- toolkit_experimental.low_time(ohlc),
199
- toolkit_experimental.close_time(ohlc)")
200
- end
201
-
202
- # Following the attributes scope, we can define accessors in the
203
- # model to populate from the previous scope to make it similar
204
- # to a regular model structure.
205
- attribute :time, :time
206
- attribute :symbol, :string
207
-
208
- %w[open high low close].each do |name|
209
- attribute name, :decimal
210
- attribute "#{name}_time", :time
211
- end
212
-
213
- def readonly?
214
- true
215
- end
216
- end
217
- end
218
- ```
219
-
220
- The `rollup` scope is the one that was used to redefine the data into big timeframes
221
- and the `attributes` allow to access the attributes from the [OpenHighLowClose][3]
222
- type.
223
-
224
- In this way, the views become just shortcuts and complex sql can also be done
225
- just nesting the model scope. For example, to rollup from a minute to a month,
226
- you can do:
227
-
228
- ```ruby
229
- Ohlc1m.attributes.from(
230
- Ohlc1m.rollup(timeframe: '1 month')
231
- )
232
- ```
233
-
234
- Soon the continuous aggregates will [support nested aggregates][4] and you'll be
235
- abble to define the materialized views with steps like this:
236
-
237
-
238
- ```ruby
239
- Ohlc1m.attributes.from(
240
- Ohlc1m.rollup(timeframe: '1 month').from(
241
- Ohlc1m.rollup(timeframe: '1 week').from(
242
- Ohlc1m.rollup(timeframe: '1 day').from(
243
- Ohlc1m.rollup(timeframe: '1 hour')
244
- )
245
- )
246
- )
247
- )
248
- ```
249
-
250
- For now composing the subqueries will probably be less efficient and unnecessary.
251
- But the foundation is already here to help you in future analysis. Just to make
252
- it clear, here is the SQL generated from the previous code:
253
-
254
- ```sql
255
- SELECT symbol,
256
- time,
257
- toolkit_experimental.open(ohlc),
258
- toolkit_experimental.high(ohlc),
259
- toolkit_experimental.low(ohlc),
260
- toolkit_experimental.close(ohlc),
261
- toolkit_experimental.open_time(ohlc),
262
- toolkit_experimental.high_time(ohlc),
263
- toolkit_experimental.low_time(ohlc),
264
- toolkit_experimental.close_time(ohlc)
265
- FROM (
266
- SELECT symbol,
267
- time_bucket('1 month', time) as time,
268
- toolkit_experimental.rollup(ohlc) as ohlc
269
- FROM (
270
- SELECT symbol,
271
- time_bucket('1 week', time) as time,
272
- toolkit_experimental.rollup(ohlc) as ohlc
273
- FROM (
274
- SELECT symbol,
275
- time_bucket('1 day', time) as time,
276
- toolkit_experimental.rollup(ohlc) as ohlc
277
- FROM (
278
- SELECT symbol,
279
- time_bucket('1 hour', time) as time,
280
- toolkit_experimental.rollup(ohlc) as ohlc
281
- FROM "ohlc_1m"
282
- GROUP BY 1, 2
283
- ) subquery
284
- GROUP BY 1, 2
285
- ) subquery
286
- GROUP BY 1, 2
287
- ) subquery
288
- GROUP BY 1, 2
289
- ) subquery
290
- ```
291
-
292
- You can also define more scopes that will be useful depending on what are you
293
- working on. Example:
294
-
295
- ```ruby
296
- scope :yesterday, -> { where("DATE(#{time_column}) = ?", Date.yesterday.in_time_zone.to_date) }
297
- ```
298
-
299
- And then, just combine the scopes:
300
-
301
- ```ruby
302
- Ohlc1m.yesterday.attributes
303
- ```
304
- I hope you find this tutorial interesting and you can also check the
305
- `ohlc.rb` file in the [examples/toolkit-demo][5] folder.
306
-
307
- If you have any questions or concerns, feel free to reach me ([@jonatasdp][7]) in the [Timescale community][6] or tag timescaledb in your StackOverflow issue.
308
-
309
- [1]: https://docs.timescale.com/api/latest/hyperfunctions/financial-analysis/ohlc/
310
- [2]: https://ideia.me/timescale-continuous-aggregates-with-ruby
311
- [3]: https://github.com/timescale/timescaledb-toolkit/blob/cbbca7b2e69968e585c845924e7ed7aff1cea20a/extension/src/ohlc.rs#L20-L24
312
- [4]: https://github.com/timescale/timescaledb/pull/4668
313
- [5]: https://github.com/jonatas/timescaledb/tree/master/examples/toolkit-demo
314
- [6]: https://timescale.com/community
315
- [7]: https://twitter.com/jonatasdp
data/docs/videos.md DELETED
@@ -1,16 +0,0 @@
1
- # Videos about the TimescaleDB Gem
2
-
3
- This library was started on [twitch.tv/timescaledb](https://twitch.tv/timescaledb).
4
- You can watch all episodes here:
5
-
6
- 1. [Wrapping Functions to Ruby Helpers](https://www.youtube.com/watch?v=hGPsUxLFAYk).
7
- 2. [Extending ActiveRecord with Timescale Helpers](https://www.youtube.com/watch?v=IEyJIHk1Clk).
8
- 3. [Setup Hypertables for Rails testing environment](https://www.youtube.com/watch?v=wM6hVrZe7xA).
9
- 4. [Packing the code to this repository](https://www.youtube.com/watch?v=CMdGAl_XlL4).
10
- 4. [the code to this repository](https://www.youtube.com/watch?v=CMdGAl_XlL4).
11
- 5. [Working with Timescale continuous aggregates](https://youtu.be/co4HnBkHzVw).
12
- 6. [Creating the command-line application in Ruby to explore the Timescale API](https://www.youtube.com/watch?v=I3vM_q2m7T0).
13
-
14
-
15
- If you create any content related to how to use the Timescale Gem, please open a
16
- [Pull Request](https://github.com/jonatas/timescaledb/pulls).