tf-idf-similarity 0.0.9 → 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- data/.travis.yml +29 -0
- data/Gemfile +4 -0
- data/README.md +41 -29
- data/lib/tf-idf-similarity.rb +12 -1
- data/lib/tf-idf-similarity/document.rb +35 -28
- data/lib/tf-idf-similarity/extras/document.rb +2 -125
- data/lib/tf-idf-similarity/extras/tf_idf_model.rb +192 -0
- data/lib/tf-idf-similarity/matrix_methods.rb +164 -0
- data/lib/tf-idf-similarity/term_count_model.rb +78 -0
- data/lib/tf-idf-similarity/tf_idf_model.rb +81 -0
- data/lib/tf-idf-similarity/token.rb +34 -12
- data/lib/tf-idf-similarity/version.rb +1 -1
- data/spec/document_spec.rb +136 -0
- data/spec/extras/tf_idf_model_spec.rb +269 -0
- data/spec/spec_helper.rb +21 -0
- data/spec/term_count_model_spec.rb +108 -0
- data/spec/tf_idf_model_spec.rb +174 -0
- data/spec/token_spec.rb +34 -0
- data/td-idf-similarity.gemspec +3 -3
- metadata +91 -63
- data/lib/tf-idf-similarity/collection.rb +0 -205
- data/lib/tf-idf-similarity/extras/collection.rb +0 -110
@@ -0,0 +1,269 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
|
3
|
+
require 'tf-idf-similarity/extras/document'
|
4
|
+
require 'tf-idf-similarity/extras/tf_idf_model'
|
5
|
+
|
6
|
+
describe TfIdfSimilarity::TfIdfModel do
|
7
|
+
def build_document(text, opts = {})
|
8
|
+
TfIdfSimilarity::Document.new(text, opts)
|
9
|
+
end
|
10
|
+
|
11
|
+
def build_model(documents)
|
12
|
+
TfIdfSimilarity::TfIdfModel.new(documents, :library => MATRIX_LIBRARY)
|
13
|
+
end
|
14
|
+
|
15
|
+
# @see https://github.com/josephwilk/rsemantic/blob/master/spec/semantic/transform/tf_idf_transform_spec.rb
|
16
|
+
# No relevant tests to reproduce.
|
17
|
+
|
18
|
+
# @see https://github.com/mkdynamic/vss/blob/master/test/test.rb
|
19
|
+
context 'comparing to vss gem' do
|
20
|
+
let :documents do
|
21
|
+
[ "I'm not even going to mention any TV series.",
|
22
|
+
"The Wire is the best thing ever. Fact.",
|
23
|
+
"Some would argue that Lost got a bit too wierd after season 2.",
|
24
|
+
"Lost is surely not in the same league as The Wire.",
|
25
|
+
"You cannot compare the The Wire and Lost.",
|
26
|
+
].map do |text|
|
27
|
+
build_document(text)
|
28
|
+
end
|
29
|
+
end
|
30
|
+
|
31
|
+
let :model do
|
32
|
+
build_model(documents)
|
33
|
+
end
|
34
|
+
|
35
|
+
pending "Add TfIdfSimilarity::TfIdfModel#search"
|
36
|
+
end
|
37
|
+
|
38
|
+
# @see https://github.com/bbcrd/Similarity/blob/master/test/test_corpus.rb
|
39
|
+
# @see https://github.com/bbcrd/Similarity/blob/master/test/test_document.rb
|
40
|
+
# @see https://github.com/bbcrd/Similarity/blob/master/test/test_term_document_matrix.rb
|
41
|
+
context 'comparing to similarity gem' do
|
42
|
+
let :document do
|
43
|
+
TfIdfSimilarity::Document.new('cow cow cow horse horse elephant')
|
44
|
+
end
|
45
|
+
|
46
|
+
def build_model_from_text(*texts)
|
47
|
+
build_model(texts.map{|text| build_document(text)})
|
48
|
+
end
|
49
|
+
|
50
|
+
let :model_a do
|
51
|
+
build_model_from_text("cow horse sheep", "horse bird dog")
|
52
|
+
end
|
53
|
+
|
54
|
+
let :model_b do
|
55
|
+
build_model_from_text("cow cow cow bird", "horse horse horse bird")
|
56
|
+
end
|
57
|
+
|
58
|
+
let :model_c do
|
59
|
+
build_model_from_text("cow cow cow", "horse horse horse")
|
60
|
+
end
|
61
|
+
|
62
|
+
# Normalizes to the number of tokens in the document.
|
63
|
+
# @see https://github.com/bbcrd/Similarity/blob/master/lib/similarity/document.rb#L42
|
64
|
+
def tf(term)
|
65
|
+
document.term_count(term) / document.size.to_f
|
66
|
+
end
|
67
|
+
|
68
|
+
# Does not add one to the inverse document frequency.
|
69
|
+
# @see https://github.com/bbcrd/Similarity/blob/master/lib/similarity/corpus.rb#L44
|
70
|
+
def idf(model, term)
|
71
|
+
model.plain_idf(term, 0, 1)
|
72
|
+
end
|
73
|
+
|
74
|
+
it 'should return the terms' do
|
75
|
+
[ "the quick brown fox",
|
76
|
+
"the quick brown fox",
|
77
|
+
"The Quick Brown Fox",
|
78
|
+
'The, Quick! Brown. "Fox"',
|
79
|
+
].each do |text|
|
80
|
+
build_document(text).terms.sort.should == ["brown", "fox", "quick", "the"]
|
81
|
+
end
|
82
|
+
end
|
83
|
+
|
84
|
+
it 'should return the number of documents' do
|
85
|
+
model_a.documents.size.should == 2
|
86
|
+
end
|
87
|
+
|
88
|
+
it 'should return the number of terms' do
|
89
|
+
document.terms.size.should == 3
|
90
|
+
model_a.terms.size.should == 5
|
91
|
+
end
|
92
|
+
|
93
|
+
it 'should return the term frequency' do
|
94
|
+
tf('cow').should == 0.5
|
95
|
+
tf('horse').should be_within(0.001).of(0.333)
|
96
|
+
tf('sheep').should == 0
|
97
|
+
end
|
98
|
+
|
99
|
+
it 'should return the similarity matrix' do
|
100
|
+
pending "Calculate the tf*idf matrix like the similarity gem does"
|
101
|
+
end
|
102
|
+
|
103
|
+
it 'should return the number of documents in which a term appears' do
|
104
|
+
model_b.document_count('cow').should == 1
|
105
|
+
model_b.document_count('horse').should == 1
|
106
|
+
model_b.document_count('bird').should == 2
|
107
|
+
end
|
108
|
+
|
109
|
+
it 'should return the inverse document frequency' do
|
110
|
+
idf(model_c, 'cow').should be_within(0.001).of(0.0)
|
111
|
+
idf(model_c, 'bird').should be_within(0.001).of(0.693)
|
112
|
+
end
|
113
|
+
|
114
|
+
it 'should return the document vector' do
|
115
|
+
pending "Calculate the tf*idf matrix like the similarity gem does"
|
116
|
+
end
|
117
|
+
end
|
118
|
+
|
119
|
+
# @see https://github.com/mchung/tf-idf/blob/master/spec/tf-idf_spec.rb
|
120
|
+
context 'comparing to tf-idf gem' do
|
121
|
+
# Normalizes to the number of unique tokens (terms) in the document.
|
122
|
+
# @see https://github.com/mchung/tf-idf/blob/master/lib/tf-idf.rb#L172
|
123
|
+
|
124
|
+
let :corpus_a do
|
125
|
+
1.upto(50).map do |n|
|
126
|
+
text = []
|
127
|
+
text << 'the' if n <= 23
|
128
|
+
text << 'a' if n <= 17
|
129
|
+
text << 'said' if n <= 5
|
130
|
+
text << 'phone' if n <= 2
|
131
|
+
text << 'girl' if n <= 1
|
132
|
+
text << 'moon' if n <= 1
|
133
|
+
build_document(text * ' ')
|
134
|
+
end
|
135
|
+
end
|
136
|
+
|
137
|
+
let :corpus_b do
|
138
|
+
1.upto(50).map do |n|
|
139
|
+
text = []
|
140
|
+
text << 'the' if n <= 23
|
141
|
+
text << 'a' if n <= 17
|
142
|
+
text << 'said' if n <= 5
|
143
|
+
text << 'phone' if n <= 2
|
144
|
+
text << 'girl' if n <= 1
|
145
|
+
build_document(text * ' ')
|
146
|
+
end
|
147
|
+
end
|
148
|
+
|
149
|
+
let :model_a do
|
150
|
+
build_model(corpus_a)
|
151
|
+
end
|
152
|
+
|
153
|
+
let :model_b do
|
154
|
+
build_model(corpus_b)
|
155
|
+
end
|
156
|
+
|
157
|
+
it 'should return the number of documents' do
|
158
|
+
model_a.documents.size.should == 50
|
159
|
+
end
|
160
|
+
|
161
|
+
it 'should return the number of terms' do
|
162
|
+
model_a.terms.size.should == 6
|
163
|
+
end
|
164
|
+
|
165
|
+
# Adds one to the numerator when calculating inverse document frequency.
|
166
|
+
# Sets a default inverse document frequency for non-occurring terms.
|
167
|
+
# @note The tf-idf gem has a #doc_keywords method for non-corpus documents.
|
168
|
+
# @see https://github.com/mchung/tf-idf/blob/master/lib/tf-idf.rb#L153
|
169
|
+
it 'should return the inverse document frequency' do
|
170
|
+
# should query IDF for nonexistent terms
|
171
|
+
default = model_a.plain_idf('xxx', 1, 1)
|
172
|
+
model_a.plain_idf('nonexistent', 1, 1).should == default
|
173
|
+
model_a.plain_idf('THE', 1, 1).should == default
|
174
|
+
|
175
|
+
# should query IDF for existent terms
|
176
|
+
model_a.plain_idf('a', 1, 1).should > model_a.plain_idf('the', 1, 1)
|
177
|
+
model_a.plain_idf('girl', 1, 1).should == model_a.plain_idf('moon', 1, 1)
|
178
|
+
|
179
|
+
# should add input documents to an existing corpus
|
180
|
+
model_a.plain_idf('water', 1, 1).should == default
|
181
|
+
model_a.plain_idf('moon', 1, 1).should be_within(0.001).of(3.238) # 3.23867845216438
|
182
|
+
model_a.plain_idf('said', 1, 1).should be_within(0.001).of(2.140) # 2.14006616349627
|
183
|
+
|
184
|
+
model = build_model(corpus_a + [build_document('water moon')])
|
185
|
+
|
186
|
+
model.plain_idf('water', 1, 1).should be_within(0.001).of(3.258) # 3.25809653802148
|
187
|
+
model.plain_idf('moon', 1, 1).should be_within(0.001).of(2.852) # 2.85263142991332
|
188
|
+
model.plain_idf('said', 1, 1).should be_within(0.001).of(2.159) # 2.15948424935337
|
189
|
+
|
190
|
+
# should add input documents to an empty corpus
|
191
|
+
unless MATRIX_LIBRARY == :gsl
|
192
|
+
model_c = build_model([])
|
193
|
+
|
194
|
+
default = model_c.plain_idf('xxx', 1, 1)
|
195
|
+
model_c.plain_idf('moon', 1, 1).should == default
|
196
|
+
model_c.plain_idf('water', 1, 1).should == default
|
197
|
+
model_c.plain_idf('said', 1, 1).should == default
|
198
|
+
end
|
199
|
+
|
200
|
+
model_d = build_model([
|
201
|
+
build_document('moon'),
|
202
|
+
build_document('moon said hello'),
|
203
|
+
])
|
204
|
+
|
205
|
+
default = model_d.plain_idf('xxx', 1, 1)
|
206
|
+
model_d.plain_idf('water', 1, 1).should == default
|
207
|
+
model_d.plain_idf('said', 1, 1).should be_within(0.001).of(0.405) # 0.405465108108164
|
208
|
+
model_d.plain_idf('moon', 1, 1).should == 0 # 0
|
209
|
+
|
210
|
+
# should observe stopwords list
|
211
|
+
default = model_b.plain_idf('xxx', 1, 1)
|
212
|
+
model_b.plain_idf('water', 1, 1).should == default
|
213
|
+
model_b.plain_idf('moon', 1, 1).should == default # returns 0 for stopwords
|
214
|
+
model_b.plain_idf('said', 1, 1).should be_within(0.001).of(2.140) # 2.14006616349627
|
215
|
+
|
216
|
+
model_e = build_model(corpus_b + [
|
217
|
+
build_document('moon', :tokens => %w()),
|
218
|
+
build_document('moon and water', :tokens => %w(and water)),
|
219
|
+
])
|
220
|
+
|
221
|
+
default = model_e.plain_idf('xxx', 1, 1)
|
222
|
+
model_e.plain_idf('water', 1, 1).should be_within(0.001).of(3.277) # 3.27714473299218
|
223
|
+
model_e.plain_idf('moon', 1, 1).should == default # returns 0 for stopwords
|
224
|
+
model_e.plain_idf('said', 1, 1).should be_within(0.001).of(2.178) # 2.17853244432407
|
225
|
+
end
|
226
|
+
end
|
227
|
+
|
228
|
+
# @see https://github.com/reddavis/TF-IDF/blob/master/spec/tf_idf_spec.rb
|
229
|
+
context 'comparing to tf_idf gem' do
|
230
|
+
let :one do
|
231
|
+
build_document('a a a a a a a a b b')
|
232
|
+
end
|
233
|
+
|
234
|
+
let :two do
|
235
|
+
build_document('a a')
|
236
|
+
end
|
237
|
+
|
238
|
+
let :model do
|
239
|
+
build_model([one, two])
|
240
|
+
end
|
241
|
+
|
242
|
+
# Normalizes to the number of tokens in the document.
|
243
|
+
# @see https://github.com/reddavis/TF-IDF/blob/master/lib/tf_idf.rb#L76
|
244
|
+
def tf
|
245
|
+
one.term_count('b') / one.size.to_f
|
246
|
+
end
|
247
|
+
|
248
|
+
# Performs plain inverse document frequency with base 10.
|
249
|
+
# @see https://github.com/reddavis/TF-IDF/blob/master/lib/tf_idf.rb#L50
|
250
|
+
def idf
|
251
|
+
model.plain_idf('b') / Math.log(10)
|
252
|
+
end
|
253
|
+
|
254
|
+
it 'should return the term frequency' do
|
255
|
+
tf.should == 0.2
|
256
|
+
model.tf(one, 'b').should be_within(0.001).of(1.414)
|
257
|
+
end
|
258
|
+
|
259
|
+
it 'should return the inverse document frequency' do
|
260
|
+
idf.should be_within(0.001).of(0.301) # 0.30102999
|
261
|
+
model.idf('b').should == 1
|
262
|
+
end
|
263
|
+
|
264
|
+
it 'should return the tf*idf' do
|
265
|
+
(tf * idf).should be_within(0.001).of(0.060) # 0.0602
|
266
|
+
model.tfidf(one, 'b').should be_within(0.001).of(1.414)
|
267
|
+
end
|
268
|
+
end
|
269
|
+
end
|
data/spec/spec_helper.rb
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
require 'rubygems'
|
2
|
+
|
3
|
+
require 'coveralls'
|
4
|
+
Coveralls.wear!
|
5
|
+
|
6
|
+
require 'rspec'
|
7
|
+
require File.dirname(__FILE__) + '/../lib/tf-idf-similarity'
|
8
|
+
|
9
|
+
MATRIX_LIBRARY = (ENV['MATRIX_LIBRARY'] || :matrix).to_sym
|
10
|
+
puts "\n==> Running specs with #{MATRIX_LIBRARY}"
|
11
|
+
|
12
|
+
case MATRIX_LIBRARY
|
13
|
+
when :gsl
|
14
|
+
require 'gsl'
|
15
|
+
when :narray
|
16
|
+
require 'narray'
|
17
|
+
when :nmatrix
|
18
|
+
require 'nmatrix'
|
19
|
+
else
|
20
|
+
require 'matrix'
|
21
|
+
end
|
@@ -0,0 +1,108 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
|
3
|
+
describe TfIdfSimilarity::TermCountModel do
|
4
|
+
let :text do
|
5
|
+
"FOO-foo BAR bar \r\n\t 123 !@#"
|
6
|
+
end
|
7
|
+
|
8
|
+
let :tokens do
|
9
|
+
['FOO-foo', 'BAR', 'bar', "\r\n\t", '123', '!@#']
|
10
|
+
end
|
11
|
+
|
12
|
+
let :document_without_text do
|
13
|
+
TfIdfSimilarity::Document.new('')
|
14
|
+
end
|
15
|
+
|
16
|
+
let :document do
|
17
|
+
TfIdfSimilarity::Document.new(text)
|
18
|
+
end
|
19
|
+
|
20
|
+
let :document_with_tokens do
|
21
|
+
TfIdfSimilarity::Document.new(text, :tokens => tokens)
|
22
|
+
end
|
23
|
+
|
24
|
+
let :document_with_term_counts do
|
25
|
+
TfIdfSimilarity::Document.new(text, :term_counts => {'bar' => 5, 'baz' => 10})
|
26
|
+
end
|
27
|
+
|
28
|
+
context 'without documents', :unless => lambda{MATRIX_LIBRARY == :gsl} do
|
29
|
+
let :model do
|
30
|
+
TfIdfSimilarity::TermCountModel.new([], :library => MATRIX_LIBRARY)
|
31
|
+
end
|
32
|
+
|
33
|
+
describe '#documents' do
|
34
|
+
it 'should be empty' do
|
35
|
+
model.documents.should be_empty
|
36
|
+
end
|
37
|
+
end
|
38
|
+
|
39
|
+
describe '#terms' do
|
40
|
+
it 'should be empty' do
|
41
|
+
model.terms.should be_empty
|
42
|
+
end
|
43
|
+
end
|
44
|
+
|
45
|
+
describe '#average_document_size' do
|
46
|
+
it 'should be zero' do
|
47
|
+
model.average_document_size.should == 0
|
48
|
+
end
|
49
|
+
end
|
50
|
+
|
51
|
+
describe '#document_count' do
|
52
|
+
it 'should be zero' do
|
53
|
+
model.document_count('xxx').should == 0
|
54
|
+
end
|
55
|
+
end
|
56
|
+
|
57
|
+
describe '#term_count' do
|
58
|
+
it 'should be zero' do
|
59
|
+
model.term_count('xxx').should == 0
|
60
|
+
end
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
context 'with documents' do
|
65
|
+
let :documents do
|
66
|
+
[
|
67
|
+
document, # 4 tokens
|
68
|
+
document_with_tokens, # 3 tokens
|
69
|
+
document_without_text, # 0 tokens
|
70
|
+
document_with_term_counts, # 15 tokens
|
71
|
+
]
|
72
|
+
end
|
73
|
+
|
74
|
+
let :model do
|
75
|
+
TfIdfSimilarity::TermCountModel.new(documents, :library => MATRIX_LIBRARY)
|
76
|
+
end
|
77
|
+
|
78
|
+
describe '#documents' do
|
79
|
+
it 'should return the documents' do
|
80
|
+
model.documents.should == documents
|
81
|
+
end
|
82
|
+
end
|
83
|
+
|
84
|
+
describe '#terms' do
|
85
|
+
it 'should return the terms' do
|
86
|
+
model.terms.to_a.sort.should == ['bar', 'baz', 'foo', 'foo-foo']
|
87
|
+
end
|
88
|
+
end
|
89
|
+
|
90
|
+
describe '#average_document_size' do
|
91
|
+
it 'should return the average number of tokens in a document' do
|
92
|
+
model.average_document_size.should == 5.5
|
93
|
+
end
|
94
|
+
end
|
95
|
+
|
96
|
+
describe '#document_count' do
|
97
|
+
it 'should return the number of documents the term appears in' do
|
98
|
+
model.document_count('bar').should == 3
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
describe '#term_count' do
|
103
|
+
it 'should return the number of times the term appears in the corpus' do
|
104
|
+
model.term_count('bar').should == 9
|
105
|
+
end
|
106
|
+
end
|
107
|
+
end
|
108
|
+
end
|
@@ -0,0 +1,174 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
|
3
|
+
describe TfIdfSimilarity::TfIdfModel do
|
4
|
+
let :text do
|
5
|
+
"FOO-foo BAR bar \r\n\t 123 !@#"
|
6
|
+
end
|
7
|
+
|
8
|
+
let :tokens do
|
9
|
+
['FOO-foo', 'BAR', 'bar', "\r\n\t", '123', '!@#']
|
10
|
+
end
|
11
|
+
|
12
|
+
let :document_without_text do
|
13
|
+
TfIdfSimilarity::Document.new('')
|
14
|
+
end
|
15
|
+
|
16
|
+
let :document do
|
17
|
+
TfIdfSimilarity::Document.new(text)
|
18
|
+
end
|
19
|
+
|
20
|
+
let :document_with_tokens do
|
21
|
+
TfIdfSimilarity::Document.new(text, :tokens => tokens)
|
22
|
+
end
|
23
|
+
|
24
|
+
let :document_with_term_counts do
|
25
|
+
TfIdfSimilarity::Document.new(text, :term_counts => {'bar' => 5, 'baz' => 10})
|
26
|
+
end
|
27
|
+
|
28
|
+
let :non_corpus_document do
|
29
|
+
TfIdfSimilarity::Document.new('foo foo foo')
|
30
|
+
end
|
31
|
+
|
32
|
+
def similarity_matrix_values(model)
|
33
|
+
matrix = model.similarity_matrix
|
34
|
+
if MATRIX_LIBRARY == :nmatrix
|
35
|
+
matrix.each.to_a
|
36
|
+
else
|
37
|
+
matrix.to_a.flatten
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
context 'without documents', :unless => lambda{MATRIX_LIBRARY == :gsl} do
|
42
|
+
let :model do
|
43
|
+
TfIdfSimilarity::TfIdfModel.new([], :library => MATRIX_LIBRARY)
|
44
|
+
end
|
45
|
+
|
46
|
+
describe '#documents' do
|
47
|
+
it 'should be empty' do
|
48
|
+
model.documents.should be_empty
|
49
|
+
end
|
50
|
+
end
|
51
|
+
|
52
|
+
describe '#terms' do
|
53
|
+
it 'should be empty' do
|
54
|
+
model.terms.should be_empty
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
describe '#inverse_document_frequency' do
|
59
|
+
it 'should return negative infinity' do
|
60
|
+
model.idf('foo').should == -1/0.0 # -Infinity
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
describe '#term_frequency' do
|
65
|
+
it 'should return the term frequency' do
|
66
|
+
model.tf(document, 'foo').should == Math.sqrt(2)
|
67
|
+
end
|
68
|
+
end
|
69
|
+
|
70
|
+
describe '#term_frequency_inverse_document_frequency' do
|
71
|
+
it 'should return negative infinity' do
|
72
|
+
model.tfidf(document, 'foo').should == -1/0.0 # -Infinity
|
73
|
+
end
|
74
|
+
end
|
75
|
+
|
76
|
+
describe '#similarity_matrix' do
|
77
|
+
it 'should be empty' do
|
78
|
+
similarity_matrix_values(model).should be_empty
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
82
|
+
|
83
|
+
context 'with documents' do
|
84
|
+
let :documents do
|
85
|
+
[
|
86
|
+
document,
|
87
|
+
document_with_tokens,
|
88
|
+
document_without_text,
|
89
|
+
document_with_term_counts,
|
90
|
+
]
|
91
|
+
end
|
92
|
+
|
93
|
+
let :model do
|
94
|
+
TfIdfSimilarity::TfIdfModel.new(documents, :library => MATRIX_LIBRARY)
|
95
|
+
end
|
96
|
+
|
97
|
+
describe '#documents' do
|
98
|
+
it 'should return the documents' do
|
99
|
+
model.documents.should == documents
|
100
|
+
end
|
101
|
+
end
|
102
|
+
|
103
|
+
describe '#terms' do
|
104
|
+
it 'should return the terms' do
|
105
|
+
model.terms.to_a.sort.should == ['bar', 'baz', 'foo', 'foo-foo']
|
106
|
+
end
|
107
|
+
end
|
108
|
+
|
109
|
+
describe '#inverse_document_frequency' do
|
110
|
+
it 'should return the inverse document frequency' do
|
111
|
+
model.idf('foo').should be_within(0.001).of(1 + Math.log(2))
|
112
|
+
end
|
113
|
+
|
114
|
+
it 'should return the inverse document frequency of a non-occurring term' do
|
115
|
+
model.idf('xxx').should be_within(0.001).of(1 + Math.log(4))
|
116
|
+
end
|
117
|
+
end
|
118
|
+
|
119
|
+
describe '#term_frequency' do
|
120
|
+
it 'should return the term frequency if no tokens given' do
|
121
|
+
model.tf(document, 'foo').should == Math.sqrt(2)
|
122
|
+
end
|
123
|
+
|
124
|
+
it 'should return the term frequency if tokens given' do
|
125
|
+
model.tf(document_with_tokens, 'foo-foo').should == 1
|
126
|
+
end
|
127
|
+
|
128
|
+
it 'should return no term frequency if no text given' do
|
129
|
+
model.tf(document_without_text, 'foo').should == 0
|
130
|
+
end
|
131
|
+
|
132
|
+
it 'should return the term frequency if term counts given' do
|
133
|
+
model.tf(document_with_term_counts, 'bar').should == Math.sqrt(5)
|
134
|
+
end
|
135
|
+
|
136
|
+
it 'should return the term frequency of a non-occurring term' do
|
137
|
+
model.tf(document, 'xxx').should == 0
|
138
|
+
end
|
139
|
+
|
140
|
+
it 'should return the term frequency in a non-occurring document' do
|
141
|
+
model.tf(non_corpus_document, 'foo').should == Math.sqrt(3)
|
142
|
+
end
|
143
|
+
end
|
144
|
+
|
145
|
+
describe '#term_frequency_inverse_document_frequency' do
|
146
|
+
it 'should return the tf*idf' do
|
147
|
+
model.tfidf(document, 'foo').should be_within(0.001).of((1 + Math.log(2)) * Math.sqrt(2))
|
148
|
+
end
|
149
|
+
|
150
|
+
it 'should return the tf*idf of a non-occurring term' do
|
151
|
+
model.tfidf(document, 'xxx').should == 0
|
152
|
+
end
|
153
|
+
|
154
|
+
it 'should return the tf*idf in a non-occurring term' do
|
155
|
+
model.tfidf(non_corpus_document, 'foo').should be_within(0.001).of((1 + Math.log(2)) * Math.sqrt(3))
|
156
|
+
end
|
157
|
+
end
|
158
|
+
|
159
|
+
describe '#similarity_matrix' do
|
160
|
+
it 'should return the similarity matrix' do
|
161
|
+
expected = [
|
162
|
+
1.0, 0.326, 0.0, 0.195,
|
163
|
+
0.326, 1.0, 0.0, 0.247,
|
164
|
+
0.0, 0.0, 0.0, 0.0,
|
165
|
+
0.195, 0.247, 0.0, 1.0,
|
166
|
+
]
|
167
|
+
|
168
|
+
similarity_matrix_values(model).each_with_index do |value,i|
|
169
|
+
value.should be_within(0.001).of(expected[i])
|
170
|
+
end
|
171
|
+
end
|
172
|
+
end
|
173
|
+
end
|
174
|
+
end
|