tf-idf-similarity 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.gitignore +6 -0
- data/.travis.yml +3 -0
- data/Gemfile +4 -0
- data/LICENSE +20 -0
- data/README.md +70 -0
- data/Rakefile +16 -0
- data/USAGE +1 -0
- data/lib/tf-idf-similarity.rb +7 -0
- data/lib/tf-idf-similarity/collection.rb +128 -0
- data/lib/tf-idf-similarity/document.rb +62 -0
- data/lib/tf-idf-similarity/extras/collection.rb +85 -0
- data/lib/tf-idf-similarity/extras/document.rb +118 -0
- data/lib/tf-idf-similarity/token.rb +42 -0
- data/lib/tf-idf-similarity/version.rb +3 -0
- data/td-idf-similarity.gemspec +22 -0
- metadata +114 -0
data/.gitignore
ADDED
data/.travis.yml
ADDED
data/Gemfile
ADDED
data/LICENSE
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
Copyright (c) 2012 Open North Inc.
|
2
|
+
|
3
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
4
|
+
a copy of this software and associated documentation files (the
|
5
|
+
"Software"), to deal in the Software without restriction, including
|
6
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
7
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
8
|
+
permit persons to whom the Software is furnished to do so, subject to
|
9
|
+
the following conditions:
|
10
|
+
|
11
|
+
The above copyright notice and this permission notice shall be
|
12
|
+
included in all copies or substantial portions of the Software.
|
13
|
+
|
14
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
15
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
16
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
17
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
18
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
19
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
20
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,70 @@
|
|
1
|
+
# Ruby Vector Space Model (VSM) with tf*idf weights
|
2
|
+
|
3
|
+
Calculates the similarity between texts using a [bag-of-words](http://en.wikipedia.org/wiki/Bag_of_words_model) [Vector Space Model](http://en.wikipedia.org/wiki/Vector_space_model) with [Term Frequency-Inverse Document Frequency](http://en.wikipedia.org/wiki/Tf*idf) weights. If your use case demands performance, use [Lucene](http://lucene.apache.org/core/) (or similar), which also implements other information retrieval functions like [BM 25](http://en.wikipedia.org/wiki/Okapi_BM25).
|
4
|
+
|
5
|
+
## Usage
|
6
|
+
|
7
|
+
require 'tf-idf-similarity'
|
8
|
+
|
9
|
+
corpus = TfIdfSimilarity::Collection.new
|
10
|
+
corpus << TfIdfSimilarity::Document.new("Lorem ipsum dolor sit amet...")
|
11
|
+
corpus << TfIdfSimilarity::Document.new("Pellentesque sed ipsum dui...")
|
12
|
+
corpus << TfIdfSimilarity::Document.new("Nam scelerisque dui sed leo...")
|
13
|
+
|
14
|
+
p corpus.similarity_matrix
|
15
|
+
|
16
|
+
This gem will use the [gsl gem](http://rb-gsl.rubyforge.org/) if available, for faster matrix multiplication.
|
17
|
+
|
18
|
+
## Optimizations
|
19
|
+
|
20
|
+
### [GNU Scientific Library (GSL)](http://www.gnu.org/software/gsl/)
|
21
|
+
|
22
|
+
The latest `gsl` gem (`1.14.7`) is [not compatible](http://bretthard.in/2012/03/getting-related_posts-lsi-and-gsl-to-work-in-jekyll/) with the `gsl` package (`1.15`) in Homebrew:
|
23
|
+
|
24
|
+
```sh
|
25
|
+
cd /usr/local
|
26
|
+
git checkout -b gsl-1.14 83ed49411f076e30ced04c2cbebb054b2645a431
|
27
|
+
brew install gsl
|
28
|
+
git checkout master
|
29
|
+
git branch -d gsl-1.14
|
30
|
+
gem install gsl
|
31
|
+
```
|
32
|
+
|
33
|
+
### [Automatically Tuned Linear Algebra Software (ATLAS)](http://math-atlas.sourceforge.net/)
|
34
|
+
|
35
|
+
You may know this software through [Linear Algebra PACKage (LAPACK)](http://www.netlib.org/lapack/) or [Basic Linear Algebra Subprograms (BLAS)](http://www.netlib.org/blas/).
|
36
|
+
|
37
|
+
The `nmatrix` gem (`0.0.1`) can't find the `cblas.h` and `clapack.h` header files. Either [set the C_INCLUDE_PATH](https://github.com/SciRuby/nmatrix#synopsis):
|
38
|
+
|
39
|
+
export C_INCLUDE_PATH=/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current/Headers/
|
40
|
+
|
41
|
+
Or [create links](https://github.com/SciRuby/nmatrix/issues/21) before installing the gem:
|
42
|
+
|
43
|
+
sudo ln -s /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current/Headers/cblas.h /usr/include/cblas.h
|
44
|
+
sudo ln -s /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Versions/Current/Headers/clapack.h /usr/include/clapack.h
|
45
|
+
|
46
|
+
Version `0.0.2` [doesn't compile on Mac OS X Lion](https://github.com/SciRuby/nmatrix/issues/34).
|
47
|
+
|
48
|
+
### Other Considerations
|
49
|
+
|
50
|
+
The [narray](http://narray.rubyforge.org/) and [nmatrix](http://sciruby.com/nmatrix/) gems have no method to calculate the magnitude of a vector. [Ruby-LAPACK](http://ruby.gfd-dennou.org/products/ruby-lapack/) is a very thin wrapper around LAPACK, which has an opaque Fortran-style naming scheme. [Linalg](https://github.com/quix/linalg) and [RNum](http://rnum.rubyforge.org/) and old and not available as gems.
|
51
|
+
|
52
|
+
## Extras
|
53
|
+
|
54
|
+
You can access more term frequency, document frequency, and normalization formulas with:
|
55
|
+
|
56
|
+
require 'tf-idf-similarity/extras/collection'
|
57
|
+
require 'tf-idf-similarity/extras/document'
|
58
|
+
|
59
|
+
The default tf*idf formula follows the [Lucene Conceptual Scoring Formula](http://lucene.apache.org/core/4_0_0-BETA/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html).
|
60
|
+
|
61
|
+
## Reference
|
62
|
+
|
63
|
+
* [G. Salton and C. Buckley. "Term Weighting Approaches in Automatic Text Retrieval."" Technical Report. Cornell University, Ithaca, NY, USA. 1987.](http://www.cs.odu.edu/~jbollen/IR04/readings/article1-29-03.pdf)
|
64
|
+
* [E. Chisholm and T. G. Kolda. "New term weighting formulas for the vector space method in information retrieval." Technical Report Number ORNL-TM-13756. Oak Ridge National Laboratory, Oak Ridge, TN, USA. 1999.](http://www.sandia.gov/~tgkolda/pubs/bibtgkfiles/ornl-tm-13756.pdf)
|
65
|
+
|
66
|
+
## Bugs? Questions?
|
67
|
+
|
68
|
+
This gem's main repository is on GitHub: [http://github.com/opennorth/tf-idf-similarity](http://github.com/opennorth/tf-idf-similarity), where your contributions, forks, bug reports, feature requests, and feedback are greatly welcomed.
|
69
|
+
|
70
|
+
Copyright (c) 2012 Open North Inc., released under the MIT license
|
data/Rakefile
ADDED
@@ -0,0 +1,16 @@
|
|
1
|
+
require 'bundler'
|
2
|
+
Bundler::GemHelper.install_tasks
|
3
|
+
|
4
|
+
require 'rspec/core/rake_task'
|
5
|
+
RSpec::Core::RakeTask.new(:spec)
|
6
|
+
|
7
|
+
task :default => :spec
|
8
|
+
|
9
|
+
begin
|
10
|
+
require 'yard'
|
11
|
+
YARD::Rake::YardocTask.new
|
12
|
+
rescue LoadError
|
13
|
+
task :yard do
|
14
|
+
abort 'YARD is not available. In order to run yard, you must: gem install yard'
|
15
|
+
end
|
16
|
+
end
|
data/USAGE
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
See README.md for full usage details.
|
@@ -0,0 +1,7 @@
|
|
1
|
+
$LOAD_PATH.unshift(File.expand_path(File.dirname(__FILE__))) unless $LOAD_PATH.include?(File.expand_path(File.dirname(__FILE__)))
|
2
|
+
|
3
|
+
module TfIdfSimilarity
|
4
|
+
autoload :Collection, 'tf-idf-similarity/collection'
|
5
|
+
autoload :Document, 'tf-idf-similarity/document'
|
6
|
+
autoload :Token, 'tf-idf-similarity/token'
|
7
|
+
end
|
@@ -0,0 +1,128 @@
|
|
1
|
+
begin
|
2
|
+
require 'gsl'
|
3
|
+
rescue LoadError
|
4
|
+
require 'matrix'
|
5
|
+
end
|
6
|
+
|
7
|
+
class TfIdfSimilarity::Collection
|
8
|
+
# The documents in the collection.
|
9
|
+
attr_reader :documents
|
10
|
+
# The number of times each term appears in all documents.
|
11
|
+
attr_reader :term_counts
|
12
|
+
# The number of documents each term appears in.
|
13
|
+
attr_reader :document_counts
|
14
|
+
|
15
|
+
def initialize
|
16
|
+
@documents = []
|
17
|
+
@term_counts = Hash.new 0
|
18
|
+
@document_counts = Hash.new 0
|
19
|
+
end
|
20
|
+
|
21
|
+
def <<(document)
|
22
|
+
document.term_counts.each do |term,count|
|
23
|
+
@term_counts[term] += count
|
24
|
+
@document_counts[term] += 1
|
25
|
+
end
|
26
|
+
@documents << document
|
27
|
+
end
|
28
|
+
|
29
|
+
# @return [Array<String>] the set of the collection's terms with no duplicates
|
30
|
+
def terms
|
31
|
+
term_counts.keys
|
32
|
+
end
|
33
|
+
|
34
|
+
# @see http://en.wikipedia.org/wiki/Vector_space_model
|
35
|
+
# @see http://en.wikipedia.org/wiki/Document-term_matrix
|
36
|
+
# @see http://en.wikipedia.org/wiki/Cosine_similarity
|
37
|
+
def similarity_matrix
|
38
|
+
if matrix?
|
39
|
+
idf = []
|
40
|
+
term_document_matrix = Matrix.build(terms.size, documents.size) do |i,j|
|
41
|
+
idf[i] ||= inverse_document_frequency terms[i]
|
42
|
+
documents[j].term_frequency(terms[i]) * idf[i]
|
43
|
+
end
|
44
|
+
else
|
45
|
+
term_document_matrix = if gsl?
|
46
|
+
GSL::Matrix.alloc terms.size, documents.size
|
47
|
+
elsif narray?
|
48
|
+
NMatrix.float documents.size, terms.size
|
49
|
+
elsif nmatrix?
|
50
|
+
# The nmatrix gem's sparse matrices are unfortunately buggy.
|
51
|
+
# @see https://github.com/SciRuby/nmatrix/issues/35
|
52
|
+
NMatrix.new([terms.size, documents.size], :float64)
|
53
|
+
end
|
54
|
+
|
55
|
+
terms.each_with_index do |term,i|
|
56
|
+
idf = inverse_document_frequency term
|
57
|
+
documents.each_with_index do |document,j|
|
58
|
+
tfidf = document.term_frequency(term) * idf
|
59
|
+
if gsl? || nmatrix?
|
60
|
+
term_document_matrix[i, j] = tfidf
|
61
|
+
# NArray puts the dimensions in a different order.
|
62
|
+
# @see http://narray.rubyforge.org/SPEC.en
|
63
|
+
elsif narray?
|
64
|
+
term_document_matrix[j, i] = tfidf
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
68
|
+
end
|
69
|
+
|
70
|
+
# Columns are normalized to unit vectors, so we can calculate the cosine
|
71
|
+
# similarity of all document vectors.
|
72
|
+
matrix = normalize term_document_matrix
|
73
|
+
|
74
|
+
if nmatrix?
|
75
|
+
matrix.transpose.dot matrix
|
76
|
+
else
|
77
|
+
matrix.transpose * matrix
|
78
|
+
end
|
79
|
+
end
|
80
|
+
|
81
|
+
# @param [String] term a term
|
82
|
+
# @return [Float] the term's inverse document frequency
|
83
|
+
#
|
84
|
+
# @see http://lucene.apache.org/core/4_0_0-BETA/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
|
85
|
+
def inverse_document_frequency(term)
|
86
|
+
1 + Math.log(documents.size / (document_counts[term].to_f + 1))
|
87
|
+
end
|
88
|
+
alias_method :idf, :inverse_document_frequency
|
89
|
+
|
90
|
+
# @param [Document] matrix a term-document matrix
|
91
|
+
# @return [Matrix] a matrix in which all document vectors are unit vectors
|
92
|
+
#
|
93
|
+
# @note Lucene normalizes document length differently.
|
94
|
+
def normalize(matrix)
|
95
|
+
if gsl?
|
96
|
+
matrix.each_col(&:normalize!)
|
97
|
+
elsif narray?
|
98
|
+
# @todo NArray doesn't have a method to normalize a vector.
|
99
|
+
# 0.upto(matrix.shape[0] - 1).each do |j|
|
100
|
+
# matrix[j, true] # Normalize this column somehow.
|
101
|
+
# end
|
102
|
+
matrix
|
103
|
+
elsif nmatrix?
|
104
|
+
# @todo NMatrix doesn't have a method to normalize a vector.
|
105
|
+
matrix
|
106
|
+
else
|
107
|
+
Matrix.columns matrix.column_vectors.map(&:normalize)
|
108
|
+
end
|
109
|
+
end
|
110
|
+
|
111
|
+
private
|
112
|
+
|
113
|
+
def gsl?
|
114
|
+
@gsl ||= Object.const_defined?(:GSL)
|
115
|
+
end
|
116
|
+
|
117
|
+
def narray?
|
118
|
+
@narray ||= Object.const_defined?(:NArray) && !gsl?
|
119
|
+
end
|
120
|
+
|
121
|
+
def nmatrix?
|
122
|
+
@nmatrix ||= Object.const_defined?(:NMatrix) && !narray?
|
123
|
+
end
|
124
|
+
|
125
|
+
def matrix?
|
126
|
+
@matrix ||= Object.const_defined?(:Matrix)
|
127
|
+
end
|
128
|
+
end
|
@@ -0,0 +1,62 @@
|
|
1
|
+
# coding: utf-8
|
2
|
+
require 'unicode_utils'
|
3
|
+
|
4
|
+
class TfIdfSimilarity::Document
|
5
|
+
# An optional document identifier.
|
6
|
+
attr_reader :id
|
7
|
+
# The document's text.
|
8
|
+
attr_reader :text
|
9
|
+
# The number of times each term appears in the document.
|
10
|
+
attr_reader :term_counts
|
11
|
+
|
12
|
+
# @param [String] text the document's text
|
13
|
+
# @param [Hash] opts optional arguments
|
14
|
+
# @option opts [String] :id a string to identify the document
|
15
|
+
def initialize(text, opts = {})
|
16
|
+
@text = text
|
17
|
+
@id = opts[:id] || object_id
|
18
|
+
@term_counts = Hash.new 0
|
19
|
+
process
|
20
|
+
end
|
21
|
+
|
22
|
+
# @return [Array<String>] the set of the document's terms with no duplicates
|
23
|
+
def terms
|
24
|
+
term_counts.keys
|
25
|
+
end
|
26
|
+
|
27
|
+
# @param [String] term a term
|
28
|
+
# @return [Float] the square root of the term count
|
29
|
+
#
|
30
|
+
# @see http://lucene.apache.org/core/4_0_0-BETA/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
|
31
|
+
def term_frequency(term)
|
32
|
+
Math.sqrt term_counts[term]
|
33
|
+
end
|
34
|
+
alias_method :tf, :term_frequency
|
35
|
+
|
36
|
+
private
|
37
|
+
|
38
|
+
# Tokenize the text and counts terms.
|
39
|
+
def process
|
40
|
+
tokenize(text).each do |word|
|
41
|
+
token = TfIdfSimilarity::Token.new word
|
42
|
+
if token.valid?
|
43
|
+
@term_counts[token.lowercase_filter.classic_filter.to_s] += 1
|
44
|
+
end
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
# Tokenizes a text, respecting the word boundary rules from Unicode’s Default
|
49
|
+
# Word Boundary Specification.
|
50
|
+
#
|
51
|
+
# @param [String] text a text
|
52
|
+
# @return [Enumerator] a token enumerator
|
53
|
+
#
|
54
|
+
# @note We should evaluate the tokenizers by {http://www.sciencemag.org/content/suppl/2010/12/16/science.1199644.DC1/Michel.SOM.revision.2.pdf Google}
|
55
|
+
# or {http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.UAX29URLEmailTokenizerFactory Solr}.
|
56
|
+
#
|
57
|
+
# @see http://unicode.org/reports/tr29/#Default_Word_Boundaries
|
58
|
+
# @see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StandardTokenizerFactory
|
59
|
+
def tokenize(text)
|
60
|
+
UnicodeUtils.each_word text
|
61
|
+
end
|
62
|
+
end
|
@@ -0,0 +1,85 @@
|
|
1
|
+
require 'tf-idf-similarity/collection'
|
2
|
+
|
3
|
+
class TfIdfSimilarity::Collection
|
4
|
+
# SMART n, Salton x, Chisholm NONE
|
5
|
+
def no_collection_frequency(term)
|
6
|
+
1.0
|
7
|
+
end
|
8
|
+
|
9
|
+
# SMART t, Salton f, Chisholm IDFB
|
10
|
+
def plain_inverse_document_frequency(term)
|
11
|
+
count = document_counts[term].to_f
|
12
|
+
Math.log documents.size / count
|
13
|
+
end
|
14
|
+
alias_method :plain_idf, :plain_inverse_document_frequency
|
15
|
+
|
16
|
+
# SMART p, Salton p, Chisholm IDFP
|
17
|
+
def probabilistic_inverse_document_frequency(term)
|
18
|
+
count = document_counts[term].to_f
|
19
|
+
Math.log (documents.size - count) / count
|
20
|
+
end
|
21
|
+
alias_method :probabilistic_idf, :probabilistic_inverse_document_frequency
|
22
|
+
|
23
|
+
# Chisholm IGFF
|
24
|
+
def global_frequency_inverse_document_frequency(term)
|
25
|
+
term_counts[term] / document_counts[term].to_f
|
26
|
+
end
|
27
|
+
alias_method :gfidf, :global_frequency_inverse_document_frequency
|
28
|
+
|
29
|
+
# Chisholm IGFL
|
30
|
+
def log_global_frequency_inverse_document_frequency(term)
|
31
|
+
Math.log global_frequency_inverse_document_frequency(term) + 1
|
32
|
+
end
|
33
|
+
alias_method :log_gfidf, :log_global_frequency_inverse_document_frequency
|
34
|
+
|
35
|
+
# Chisholm IGFI
|
36
|
+
def incremented_global_frequency_inverse_document_frequency(term)
|
37
|
+
global_frequency_inverse_document_frequency(term) + 1
|
38
|
+
end
|
39
|
+
alias_method :incremented_gfidf, :incremented_global_frequency_inverse_document_frequency
|
40
|
+
|
41
|
+
# Chisholm IGFS
|
42
|
+
def square_root_global_frequency_inverse_document_frequency(term)
|
43
|
+
Math.sqrt global_frequency_inverse_document_frequency(term) - 0.9
|
44
|
+
end
|
45
|
+
alias_method :square_root_gfidf, :square_root_global_frequency_inverse_document_frequency
|
46
|
+
|
47
|
+
# Chisholm ENPY
|
48
|
+
def entropy(term)
|
49
|
+
denominator = term_counts[term].to_f
|
50
|
+
logN = Math.log documents.size
|
51
|
+
1 + documents.reduce(0) do |sum,document|
|
52
|
+
quotient = document.term_counts[term] / denominator
|
53
|
+
sum += quotient * Math.log(quotient) / logN
|
54
|
+
end
|
55
|
+
end
|
56
|
+
|
57
|
+
|
58
|
+
|
59
|
+
# @param [Document] matrix a term-document matrix
|
60
|
+
# @return [Matrix] the same matrix
|
61
|
+
#
|
62
|
+
# SMART n, Salton x, Chisholm NONE
|
63
|
+
def no_normalization(matrix)
|
64
|
+
matrix
|
65
|
+
end
|
66
|
+
|
67
|
+
# @param [Document] matrix a term-document matrix
|
68
|
+
# @return [Matrix] a matrix in which all document vectors are unit vectors
|
69
|
+
#
|
70
|
+
# SMART c, Salton c, Chisholm COSN
|
71
|
+
def cosine_normalization(matrix)
|
72
|
+
Matrix.columns(tfidf.column_vectors.map do |column|
|
73
|
+
column.normalize
|
74
|
+
end)
|
75
|
+
end
|
76
|
+
|
77
|
+
# @param [Document] matrix a term-document matrix
|
78
|
+
# @return [Matrix] a matrix
|
79
|
+
#
|
80
|
+
# SMART u, Chisholm PUQN
|
81
|
+
def pivoted_unique_normalization(matrix)
|
82
|
+
# @todo
|
83
|
+
# http://nlp.stanford.edu/IR-book/html/htmledition/pivoted-normalized-document-length-1.html
|
84
|
+
end
|
85
|
+
end
|
@@ -0,0 +1,118 @@
|
|
1
|
+
require 'tf-idf-similarity/document'
|
2
|
+
|
3
|
+
class TfIdfSimilarity::Document
|
4
|
+
# @return [Float] the maximum term count of any term in the document
|
5
|
+
def maximum_term_count
|
6
|
+
@maximum_term_count ||= @term_counts.values.max.to_f
|
7
|
+
end
|
8
|
+
|
9
|
+
# @return [Float] the average term count of all terms in the document
|
10
|
+
def average_term_count
|
11
|
+
@average_term_count ||= @term_counts.values.reduce(:+) / @term_counts.size.to_f
|
12
|
+
end
|
13
|
+
|
14
|
+
|
15
|
+
|
16
|
+
# Returns the term count.
|
17
|
+
#
|
18
|
+
# SMART n, Salton t, Chisholm FREQ
|
19
|
+
def plain_term_frequency(term)
|
20
|
+
term_counts[term]
|
21
|
+
end
|
22
|
+
alias :plain_tf, :plain_term_frequency
|
23
|
+
|
24
|
+
# Returns 1 if the term is present, 0 otherwise.
|
25
|
+
#
|
26
|
+
# SMART b, Salton b, Chisholm BNRY
|
27
|
+
def binary_term_frequency(term)
|
28
|
+
count = term_counts[term]
|
29
|
+
if count > 0
|
30
|
+
1
|
31
|
+
else
|
32
|
+
0
|
33
|
+
end
|
34
|
+
end
|
35
|
+
alias_method :binary_tf, :binary_term_frequency
|
36
|
+
|
37
|
+
# Normalizes the term count by the maximum term count.
|
38
|
+
#
|
39
|
+
# @see http://en.wikipedia.org/wiki/Tf*idf
|
40
|
+
def normalized_term_frequency(term)
|
41
|
+
term_counts[term] / maximum_term_count
|
42
|
+
end
|
43
|
+
alias_method :normalized_tf, :normalized_term_frequency
|
44
|
+
|
45
|
+
# Further normalizes the normalized term frequency to lie between 0.5 and 1.
|
46
|
+
#
|
47
|
+
# SMART a, Salton n, Chisholm ATF1
|
48
|
+
def augmented_normalized_term_frequency(term)
|
49
|
+
0.5 + 0.5 * normalized_term_frequency(term)
|
50
|
+
end
|
51
|
+
alias_method :augmented_normalized_tf, :augmented_normalized_term_frequency
|
52
|
+
|
53
|
+
# Chisholm ATFA
|
54
|
+
def augmented_average_term_frequency(term)
|
55
|
+
count = term_counts[term]
|
56
|
+
if count > 0
|
57
|
+
0.9 + 0.1 * count / average_term_count
|
58
|
+
else
|
59
|
+
0
|
60
|
+
end
|
61
|
+
end
|
62
|
+
alias_method :augmented_average_tf, :augmented_average_term_frequency
|
63
|
+
|
64
|
+
# Chisholm ATFC
|
65
|
+
def changed_coefficient_augmented_normalized_term_frequency(term)
|
66
|
+
count = term_counts[term]
|
67
|
+
if count > 0
|
68
|
+
0.2 + 0.8 * count / maximum_term_count
|
69
|
+
else
|
70
|
+
0
|
71
|
+
end
|
72
|
+
end
|
73
|
+
alias_method :changed_coefficient_augmented_normalized_tf, :changed_coefficient_augmented_normalized_term_frequency
|
74
|
+
|
75
|
+
# SMART l, Chisholm LOGA
|
76
|
+
def log_term_frequency(term)
|
77
|
+
count = term_counts[term]
|
78
|
+
if count > 0
|
79
|
+
1 + Math.log(count)
|
80
|
+
else
|
81
|
+
0
|
82
|
+
end
|
83
|
+
end
|
84
|
+
alias_method :log_tf, :log_term_frequency
|
85
|
+
|
86
|
+
# SMART L, Chisholm LOGN
|
87
|
+
def normalized_log_term_frequency(term)
|
88
|
+
count = term_counts[term]
|
89
|
+
if count > 0
|
90
|
+
(1 + Math.log(count)) / (1 + Math.log(average_term_count))
|
91
|
+
else
|
92
|
+
0
|
93
|
+
end
|
94
|
+
end
|
95
|
+
alias_method :normalized_log_tf, :normalized_log_term_frequency
|
96
|
+
|
97
|
+
# Chisholm LOGG
|
98
|
+
def augmented_log_term_frequency(term)
|
99
|
+
count = term_counts[term]
|
100
|
+
if count > 0
|
101
|
+
0.2 + 0.8 * Math.log(count + 1)
|
102
|
+
else
|
103
|
+
0
|
104
|
+
end
|
105
|
+
end
|
106
|
+
alias_method :augmented_log_tf, :augmented_log_term_frequency
|
107
|
+
|
108
|
+
# Chisholm SQRT
|
109
|
+
def square_root_term_frequency(term)
|
110
|
+
count = term_counts[term]
|
111
|
+
if count > 0
|
112
|
+
Math.sqrt(count - 0.5) + 1
|
113
|
+
else
|
114
|
+
0
|
115
|
+
end
|
116
|
+
end
|
117
|
+
alias_method :square_root_tf, :square_root_term_frequency
|
118
|
+
end
|
@@ -0,0 +1,42 @@
|
|
1
|
+
# coding: utf-8
|
2
|
+
|
3
|
+
# @note We can add more filters from Solr and stem using Porter's Snowball.
|
4
|
+
#
|
5
|
+
# @see https://github.com/aurelian/ruby-stemmer
|
6
|
+
# @see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StopFilterFactory
|
7
|
+
# @see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.WordDelimiterFilterFactory
|
8
|
+
# @see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.SynonymFilterFactory
|
9
|
+
class TfIdfSimilarity::Token < String
|
10
|
+
# Returns a falsy value if all its characters are numbers, punctuation,
|
11
|
+
# whitespace or control characters.
|
12
|
+
#
|
13
|
+
# @note Some implementations ignore one and two-letter words.
|
14
|
+
#
|
15
|
+
# @return [Boolean] whether the string is a token
|
16
|
+
def valid?
|
17
|
+
!self[%r{
|
18
|
+
\A
|
19
|
+
(
|
20
|
+
\d | # number
|
21
|
+
\p{Cntrl} | # control character
|
22
|
+
\p{Punct} | # punctuation
|
23
|
+
[[:space:]] # whitespace
|
24
|
+
)+
|
25
|
+
\z
|
26
|
+
}x]
|
27
|
+
end
|
28
|
+
|
29
|
+
# @return [Token] a lowercase string
|
30
|
+
#
|
31
|
+
# @see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.LowerCaseFilterFactory
|
32
|
+
def lowercase_filter
|
33
|
+
self.class.new UnicodeUtils.downcase(self, :fr)
|
34
|
+
end
|
35
|
+
|
36
|
+
# @return [Token] a string with no English possessive or periods in acronyms
|
37
|
+
#
|
38
|
+
# @see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.ClassicFilterFactory
|
39
|
+
def classic_filter
|
40
|
+
self.class.new self.gsub('.', '').chomp("'s")
|
41
|
+
end
|
42
|
+
end
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# -*- encoding: utf-8 -*-
|
2
|
+
$:.push File.expand_path("../lib", __FILE__)
|
3
|
+
require "tf-idf-similarity/version"
|
4
|
+
|
5
|
+
Gem::Specification.new do |s|
|
6
|
+
s.name = "tf-idf-similarity"
|
7
|
+
s.version = TfIdfSimilarity::VERSION
|
8
|
+
s.platform = Gem::Platform::RUBY
|
9
|
+
s.authors = ["Open North"]
|
10
|
+
s.email = ["info@opennorth.ca"]
|
11
|
+
s.homepage = "http://github.com/opennorth/tf-idf-similarity"
|
12
|
+
s.summary = %q{Calculates the similarity between texts using tf*idf}
|
13
|
+
|
14
|
+
s.files = `git ls-files`.split("\n")
|
15
|
+
s.test_files = `git ls-files -- {test,spec,features}/*`.split("\n")
|
16
|
+
s.executables = `git ls-files -- bin/*`.split("\n").map{ |f| File.basename(f) }
|
17
|
+
s.require_paths = ["lib"]
|
18
|
+
|
19
|
+
s.add_runtime_dependency('unicode_utils')
|
20
|
+
s.add_development_dependency('rspec', '~> 2.10')
|
21
|
+
s.add_development_dependency('rake')
|
22
|
+
end
|
metadata
ADDED
@@ -0,0 +1,114 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: tf-idf-similarity
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
prerelease:
|
6
|
+
platform: ruby
|
7
|
+
authors:
|
8
|
+
- Open North
|
9
|
+
autorequire:
|
10
|
+
bindir: bin
|
11
|
+
cert_chain: []
|
12
|
+
date: 2012-09-10 00:00:00.000000000 Z
|
13
|
+
dependencies:
|
14
|
+
- !ruby/object:Gem::Dependency
|
15
|
+
name: unicode_utils
|
16
|
+
requirement: !ruby/object:Gem::Requirement
|
17
|
+
none: false
|
18
|
+
requirements:
|
19
|
+
- - ! '>='
|
20
|
+
- !ruby/object:Gem::Version
|
21
|
+
version: '0'
|
22
|
+
type: :runtime
|
23
|
+
prerelease: false
|
24
|
+
version_requirements: !ruby/object:Gem::Requirement
|
25
|
+
none: false
|
26
|
+
requirements:
|
27
|
+
- - ! '>='
|
28
|
+
- !ruby/object:Gem::Version
|
29
|
+
version: '0'
|
30
|
+
- !ruby/object:Gem::Dependency
|
31
|
+
name: rspec
|
32
|
+
requirement: !ruby/object:Gem::Requirement
|
33
|
+
none: false
|
34
|
+
requirements:
|
35
|
+
- - ~>
|
36
|
+
- !ruby/object:Gem::Version
|
37
|
+
version: '2.10'
|
38
|
+
type: :development
|
39
|
+
prerelease: false
|
40
|
+
version_requirements: !ruby/object:Gem::Requirement
|
41
|
+
none: false
|
42
|
+
requirements:
|
43
|
+
- - ~>
|
44
|
+
- !ruby/object:Gem::Version
|
45
|
+
version: '2.10'
|
46
|
+
- !ruby/object:Gem::Dependency
|
47
|
+
name: rake
|
48
|
+
requirement: !ruby/object:Gem::Requirement
|
49
|
+
none: false
|
50
|
+
requirements:
|
51
|
+
- - ! '>='
|
52
|
+
- !ruby/object:Gem::Version
|
53
|
+
version: '0'
|
54
|
+
type: :development
|
55
|
+
prerelease: false
|
56
|
+
version_requirements: !ruby/object:Gem::Requirement
|
57
|
+
none: false
|
58
|
+
requirements:
|
59
|
+
- - ! '>='
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '0'
|
62
|
+
description:
|
63
|
+
email:
|
64
|
+
- info@opennorth.ca
|
65
|
+
executables: []
|
66
|
+
extensions: []
|
67
|
+
extra_rdoc_files: []
|
68
|
+
files:
|
69
|
+
- .gitignore
|
70
|
+
- .travis.yml
|
71
|
+
- Gemfile
|
72
|
+
- LICENSE
|
73
|
+
- README.md
|
74
|
+
- Rakefile
|
75
|
+
- USAGE
|
76
|
+
- lib/tf-idf-similarity.rb
|
77
|
+
- lib/tf-idf-similarity/collection.rb
|
78
|
+
- lib/tf-idf-similarity/document.rb
|
79
|
+
- lib/tf-idf-similarity/extras/collection.rb
|
80
|
+
- lib/tf-idf-similarity/extras/document.rb
|
81
|
+
- lib/tf-idf-similarity/token.rb
|
82
|
+
- lib/tf-idf-similarity/version.rb
|
83
|
+
- td-idf-similarity.gemspec
|
84
|
+
homepage: http://github.com/opennorth/tf-idf-similarity
|
85
|
+
licenses: []
|
86
|
+
post_install_message:
|
87
|
+
rdoc_options: []
|
88
|
+
require_paths:
|
89
|
+
- lib
|
90
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
91
|
+
none: false
|
92
|
+
requirements:
|
93
|
+
- - ! '>='
|
94
|
+
- !ruby/object:Gem::Version
|
95
|
+
version: '0'
|
96
|
+
segments:
|
97
|
+
- 0
|
98
|
+
hash: 697007281194730821
|
99
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
100
|
+
none: false
|
101
|
+
requirements:
|
102
|
+
- - ! '>='
|
103
|
+
- !ruby/object:Gem::Version
|
104
|
+
version: '0'
|
105
|
+
segments:
|
106
|
+
- 0
|
107
|
+
hash: 697007281194730821
|
108
|
+
requirements: []
|
109
|
+
rubyforge_project:
|
110
|
+
rubygems_version: 1.8.24
|
111
|
+
signing_key:
|
112
|
+
specification_version: 3
|
113
|
+
summary: Calculates the similarity between texts using tf*idf
|
114
|
+
test_files: []
|