text_rank 1.2.4 → 1.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.codeclimate.yml +11 -1
- data/.github/workflows/ci.yml +48 -0
- data/.gitignore +4 -0
- data/.rubocop.yml +105 -45
- data/.ruby-version +1 -1
- data/.yardopts +6 -0
- data/CODE_OF_CONDUCT.md +120 -36
- data/README.md +4 -3
- data/Rakefile +9 -7
- data/ext/text_rank/extconf.rb +3 -0
- data/ext/text_rank/page_rank_sparse_native.c +293 -0
- data/ext/text_rank/page_rank_sparse_native.h +93 -0
- data/ext/text_rank/text_rank.c +6 -0
- data/lib/page_rank/base.rb +4 -2
- data/lib/page_rank/dense.rb +1 -1
- data/lib/page_rank/sparse.rb +3 -3
- data/lib/page_rank/sparse_native.rb +21 -0
- data/lib/page_rank.rb +5 -4
- data/lib/text_rank/char_filter/ascii_folding.rb +0 -2
- data/lib/text_rank/char_filter/strip_html.rb +1 -0
- data/lib/text_rank/fingerprint.rb +2 -2
- data/lib/text_rank/graph_strategy/coocurrence.rb +6 -6
- data/lib/text_rank/keyword_extractor.rb +13 -5
- data/lib/text_rank/rank_filter/collapse_adjacent.rb +3 -3
- data/lib/text_rank/rank_filter/sort_by_value.rb +1 -1
- data/lib/text_rank/tokenizer/money.rb +2 -4
- data/lib/text_rank/version.rb +1 -1
- data/lib/text_rank.rb +3 -1
- data/text_rank.gemspec +12 -1
- metadata +102 -11
- data/.travis.yml +0 -15
@@ -0,0 +1,293 @@
|
|
1
|
+
#include <ruby.h>
|
2
|
+
#include <math.h>
|
3
|
+
#include <page_rank_sparse_native.h>
|
4
|
+
|
5
|
+
const size_t NODE_LIST_SIZE = sizeof(NodeListStruct);
|
6
|
+
const size_t EDGE_LIST_SIZE = sizeof(EdgeListStruct);
|
7
|
+
const size_t NODE_SIZE = sizeof(NodeStruct);
|
8
|
+
const size_t EDGE_SIZE = sizeof(EdgeStruct);
|
9
|
+
const size_t GRAPH_SIZE = sizeof(GraphStruct);
|
10
|
+
|
11
|
+
static const rb_data_type_t graph_typed_data = {
|
12
|
+
"PageRank/SparseNative/Graph",
|
13
|
+
{ 0, free_graph, },
|
14
|
+
0, 0,
|
15
|
+
RUBY_TYPED_FREE_IMMEDIATELY,
|
16
|
+
};
|
17
|
+
|
18
|
+
|
19
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
20
|
+
|
21
|
+
void Init_sparse_native() {
|
22
|
+
VALUE PageRankModule, SparseNativeClass;
|
23
|
+
|
24
|
+
PageRankModule = rb_const_get(rb_cObject, rb_intern("PageRank"));
|
25
|
+
SparseNativeClass = rb_const_get(PageRankModule, rb_intern("SparseNative"));
|
26
|
+
|
27
|
+
rb_define_alloc_func(SparseNativeClass, sparse_native_allocate);
|
28
|
+
rb_define_private_method(SparseNativeClass, "_add_edge", sparse_native_add_edge, 3);
|
29
|
+
rb_define_private_method(SparseNativeClass, "_calculate", sparse_native_calculate, 3);
|
30
|
+
}
|
31
|
+
|
32
|
+
VALUE sparse_native_allocate(VALUE self) {
|
33
|
+
Graph g = malloc(GRAPH_SIZE);
|
34
|
+
|
35
|
+
// Grab a reference to the hash type used by a generic Ruby {}
|
36
|
+
// which accepts any key and any value. We'll need this type to create
|
37
|
+
// a st_table in which to put arbitrary VALUE keys. This hash type
|
38
|
+
// should be a static constant and thus should be safe to utilize without
|
39
|
+
// fear of garbage collection.
|
40
|
+
const struct st_hash_type *objhash = rb_hash_tbl(rb_hash_new(), "page_rank_sparse_native.c", 40)->type;
|
41
|
+
|
42
|
+
g->node_count = 0;
|
43
|
+
g->nodes = NULL;
|
44
|
+
g->dangling_nodes = NULL;
|
45
|
+
g->node_lookup = st_init_table_with_size(objhash, 0);
|
46
|
+
|
47
|
+
return TypedData_Wrap_Struct(self, &graph_typed_data, g);
|
48
|
+
}
|
49
|
+
|
50
|
+
VALUE sparse_native_add_edge(VALUE self, VALUE source, VALUE dest, VALUE weight) {
|
51
|
+
Graph g;
|
52
|
+
|
53
|
+
TypedData_Get_Struct(self, GraphStruct, &graph_typed_data, g);
|
54
|
+
add_edge_with_labels(g, source, dest, NUM2DBL(weight));
|
55
|
+
return Qnil;
|
56
|
+
}
|
57
|
+
|
58
|
+
VALUE sparse_native_calculate(VALUE self, VALUE max_iterations, VALUE damping, VALUE tolerance) {
|
59
|
+
Graph g;
|
60
|
+
VALUE ranks;
|
61
|
+
|
62
|
+
TypedData_Get_Struct(self, GraphStruct, &graph_typed_data, g);
|
63
|
+
calculate(g, FIX2INT(max_iterations), NUM2DBL(damping), NUM2DBL(tolerance));
|
64
|
+
|
65
|
+
ranks = rb_hash_new();
|
66
|
+
sort_and_normalize_ranks(g, rb_hash_dset, ranks);
|
67
|
+
return ranks;
|
68
|
+
}
|
69
|
+
|
70
|
+
void rb_hash_dset(VALUE hash, VALUE key, double value) {
|
71
|
+
rb_hash_aset(hash, key, DBL2NUM(value));
|
72
|
+
}
|
73
|
+
|
74
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
75
|
+
|
76
|
+
void free_graph(void *data) {
|
77
|
+
Graph g = (Graph)data;
|
78
|
+
free_node_list(g->nodes, free_node);
|
79
|
+
free_node_list(g->dangling_nodes, NULL);
|
80
|
+
free(g->node_lookup);
|
81
|
+
free(g);
|
82
|
+
}
|
83
|
+
|
84
|
+
void free_node(Node n) {
|
85
|
+
free_edge_list(n->source_edges, free_edge);
|
86
|
+
free(n);
|
87
|
+
}
|
88
|
+
|
89
|
+
void free_node_list(NodeList nodes, void (*free_item)(Node)) {
|
90
|
+
while (nodes != NULL) {
|
91
|
+
NodeList tmp = nodes;
|
92
|
+
nodes = nodes->next;
|
93
|
+
if (free_item) {
|
94
|
+
free_item(tmp->node);
|
95
|
+
}
|
96
|
+
free(tmp);
|
97
|
+
}
|
98
|
+
}
|
99
|
+
|
100
|
+
void free_edge(Edge e) {
|
101
|
+
// Assume source node was allocated elsewhere and will be free'd elsewhere
|
102
|
+
free(e);
|
103
|
+
}
|
104
|
+
|
105
|
+
void free_edge_list(EdgeList edges, void (*free_item)(Edge)) {
|
106
|
+
while (edges != NULL) {
|
107
|
+
EdgeList tmp = edges;
|
108
|
+
edges = edges->next;
|
109
|
+
if (free_item) {
|
110
|
+
free_item(tmp->edge);
|
111
|
+
}
|
112
|
+
free(tmp);
|
113
|
+
}
|
114
|
+
}
|
115
|
+
|
116
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
117
|
+
|
118
|
+
Node add_node(Graph g, VALUE label) {
|
119
|
+
NodeList tmp = malloc(NODE_LIST_SIZE);
|
120
|
+
|
121
|
+
tmp->node = malloc(NODE_SIZE);
|
122
|
+
tmp->node->label = label;
|
123
|
+
tmp->node->source_edges = NULL;
|
124
|
+
tmp->node->rank = 0.0;
|
125
|
+
tmp->node->prev_rank = 0.0;
|
126
|
+
tmp->node->outbound_weight_total = 0.0;
|
127
|
+
|
128
|
+
tmp->next = g->nodes;
|
129
|
+
g->nodes = tmp;
|
130
|
+
g->node_count += 1;
|
131
|
+
|
132
|
+
return tmp->node;
|
133
|
+
}
|
134
|
+
|
135
|
+
Node add_dangling_node(Graph g, Node n) {
|
136
|
+
NodeList tmp = malloc(NODE_LIST_SIZE);
|
137
|
+
|
138
|
+
tmp->node = n;
|
139
|
+
tmp->next = g->dangling_nodes;
|
140
|
+
g->dangling_nodes = tmp;
|
141
|
+
|
142
|
+
return n;
|
143
|
+
}
|
144
|
+
|
145
|
+
Edge add_edge(Node source, Node destination, double weight) {
|
146
|
+
EdgeList tmp = malloc(EDGE_LIST_SIZE);
|
147
|
+
|
148
|
+
tmp->edge = malloc(EDGE_SIZE);
|
149
|
+
tmp->edge->source = source;
|
150
|
+
tmp->edge->weight = weight;
|
151
|
+
|
152
|
+
tmp->next = destination->source_edges;
|
153
|
+
destination->source_edges = tmp;
|
154
|
+
source->outbound_weight_total += weight;
|
155
|
+
|
156
|
+
return tmp->edge;
|
157
|
+
}
|
158
|
+
|
159
|
+
Edge add_edge_with_labels(Graph g, VALUE source_label, VALUE dest_label, double weight) {
|
160
|
+
Node source, dest;
|
161
|
+
|
162
|
+
source = lookup_node(g, source_label);
|
163
|
+
dest = lookup_node(g, dest_label);
|
164
|
+
|
165
|
+
return add_edge(source, dest, weight);
|
166
|
+
}
|
167
|
+
|
168
|
+
Node lookup_node(Graph g, VALUE label) {
|
169
|
+
Node n;
|
170
|
+
|
171
|
+
if (!st_lookup(g->node_lookup, (st_data_t)label, (st_data_t *)&n)) {
|
172
|
+
n = add_node(g, label);
|
173
|
+
st_add_direct(g->node_lookup, (st_data_t)label, (st_data_t)n);
|
174
|
+
}
|
175
|
+
return n;
|
176
|
+
}
|
177
|
+
|
178
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
179
|
+
|
180
|
+
void calculate_start(Graph g) {
|
181
|
+
NodeList nodes;
|
182
|
+
Node source, destination;
|
183
|
+
EdgeList edges;
|
184
|
+
Edge e;
|
185
|
+
|
186
|
+
for (nodes = g->nodes; nodes != NULL; nodes = nodes->next) {
|
187
|
+
destination = nodes->node;
|
188
|
+
|
189
|
+
// If there is no outband, this is a "dangling" node
|
190
|
+
if (destination->outbound_weight_total == 0.0) {
|
191
|
+
add_dangling_node(g, destination);
|
192
|
+
}
|
193
|
+
|
194
|
+
// Normalize all source edge weights
|
195
|
+
for (edges = destination->source_edges; edges != NULL; edges = edges->next) {
|
196
|
+
e = edges->edge;
|
197
|
+
source = e->source;
|
198
|
+
e->weight = e->weight / source->outbound_weight_total;
|
199
|
+
}
|
200
|
+
|
201
|
+
// Set the initial rank
|
202
|
+
destination->prev_rank = 0;
|
203
|
+
destination->rank = 1.0 / g->node_count;
|
204
|
+
}
|
205
|
+
}
|
206
|
+
|
207
|
+
void calculate_step(Graph g, double damping) {
|
208
|
+
NodeList nodes, dangling_nodes;
|
209
|
+
Node source, destination;
|
210
|
+
EdgeList edges;
|
211
|
+
Edge e;
|
212
|
+
|
213
|
+
// Set prev rank to rank for all nodes
|
214
|
+
for (nodes = g->nodes; nodes != NULL; nodes = nodes->next) {
|
215
|
+
destination = nodes->node;
|
216
|
+
destination->prev_rank = destination->rank;
|
217
|
+
}
|
218
|
+
|
219
|
+
// Re-destribute the rankings according to weight
|
220
|
+
for (nodes = g->nodes; nodes != NULL; nodes = nodes->next) {
|
221
|
+
destination = nodes->node;
|
222
|
+
double sum = 0.0;
|
223
|
+
for (edges = destination->source_edges; edges != NULL; edges = edges->next) {
|
224
|
+
e = edges->edge;
|
225
|
+
source = e->source;
|
226
|
+
sum += source->prev_rank * e->weight;
|
227
|
+
}
|
228
|
+
for (dangling_nodes = g->dangling_nodes; dangling_nodes != NULL; dangling_nodes = dangling_nodes->next) {
|
229
|
+
source = dangling_nodes->node;
|
230
|
+
sum += source->prev_rank / g->node_count;
|
231
|
+
}
|
232
|
+
destination->rank = damping * sum + (1 - damping) / g->node_count;
|
233
|
+
}
|
234
|
+
}
|
235
|
+
|
236
|
+
// Calculate the Euclidean distance from prev_rank to rank across all nodes
|
237
|
+
double prev_distance(Graph g) {
|
238
|
+
double sum_squares = 0.0;
|
239
|
+
|
240
|
+
for (NodeList nodes = g->nodes; nodes != NULL; nodes = nodes->next) {
|
241
|
+
Node n = nodes->node;
|
242
|
+
double rank_diff = n->prev_rank - n->rank;
|
243
|
+
sum_squares += rank_diff * rank_diff;
|
244
|
+
}
|
245
|
+
|
246
|
+
return sqrt(sum_squares);
|
247
|
+
}
|
248
|
+
|
249
|
+
void calculate(Graph g, int max_iterations, double damping, double tolerance) {
|
250
|
+
calculate_start(g);
|
251
|
+
|
252
|
+
while (max_iterations != 0) { // If negative one, allow to go without limit
|
253
|
+
calculate_step(g, damping);
|
254
|
+
if (prev_distance(g) < tolerance) {
|
255
|
+
break;
|
256
|
+
}
|
257
|
+
max_iterations--;
|
258
|
+
}
|
259
|
+
}
|
260
|
+
|
261
|
+
int node_compare(const void *v1, const void *v2) {
|
262
|
+
double rank1 = (*(Node *)v1)->rank;
|
263
|
+
double rank2 = (*(Node *)v2)->rank;
|
264
|
+
double cmp = rank2 - rank1; // Decreasing order
|
265
|
+
if (cmp < 0) return -1;
|
266
|
+
if (cmp > 0) return 1;
|
267
|
+
return 0;
|
268
|
+
}
|
269
|
+
|
270
|
+
void sort_and_normalize_ranks(Graph g, void (*callback)(VALUE, VALUE, double), VALUE callback_arg) {
|
271
|
+
NodeList nodes;
|
272
|
+
Node n;
|
273
|
+
double sum = 0.0;
|
274
|
+
unsigned long i;
|
275
|
+
Node *tmp;
|
276
|
+
|
277
|
+
i = g->node_count;
|
278
|
+
tmp = malloc(g->node_count * sizeof(Node));
|
279
|
+
for (nodes = g->nodes; nodes != NULL; nodes = nodes->next) {
|
280
|
+
n = nodes->node;
|
281
|
+
tmp[--i] = n;
|
282
|
+
sum += n->rank;
|
283
|
+
}
|
284
|
+
|
285
|
+
qsort(tmp, g->node_count, sizeof(Node), node_compare);
|
286
|
+
|
287
|
+
for (i = 0; i < g->node_count; i++) {
|
288
|
+
n = tmp[i];
|
289
|
+
callback(callback_arg, n->label, n->rank / sum);
|
290
|
+
}
|
291
|
+
|
292
|
+
free(tmp);
|
293
|
+
}
|
@@ -0,0 +1,93 @@
|
|
1
|
+
#ifndef PAGE_RANK_SPARSE_NATIVE_H
|
2
|
+
#define PAGE_RANK_SPARSE_NATIVE_H
|
3
|
+
|
4
|
+
#include <ruby.h>
|
5
|
+
|
6
|
+
struct NodeListStruct;
|
7
|
+
typedef struct NodeListStruct* NodeList;
|
8
|
+
|
9
|
+
typedef struct NodeListStruct {
|
10
|
+
struct NodeStruct *node;
|
11
|
+
struct NodeListStruct *next;
|
12
|
+
} NodeListStruct;
|
13
|
+
|
14
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
15
|
+
|
16
|
+
struct EdgeListStruct;
|
17
|
+
typedef struct EdgeListStruct* EdgeList;
|
18
|
+
|
19
|
+
typedef struct EdgeListStruct {
|
20
|
+
struct EdgeStruct *edge;
|
21
|
+
struct EdgeListStruct *next;
|
22
|
+
} EdgeListStruct;
|
23
|
+
|
24
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
25
|
+
|
26
|
+
struct NodeStruct;
|
27
|
+
typedef struct NodeStruct* Node;
|
28
|
+
|
29
|
+
typedef struct NodeStruct {
|
30
|
+
EdgeList source_edges;
|
31
|
+
VALUE label;
|
32
|
+
double prev_rank;
|
33
|
+
double rank;
|
34
|
+
double outbound_weight_total;
|
35
|
+
} NodeStruct;
|
36
|
+
|
37
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
38
|
+
|
39
|
+
struct EdgeStruct;
|
40
|
+
typedef struct EdgeStruct* Edge;
|
41
|
+
|
42
|
+
typedef struct EdgeStruct {
|
43
|
+
Node source;
|
44
|
+
double weight;
|
45
|
+
} EdgeStruct;
|
46
|
+
|
47
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
48
|
+
|
49
|
+
struct GraphStruct;
|
50
|
+
typedef struct GraphStruct* Graph;
|
51
|
+
|
52
|
+
typedef struct GraphStruct {
|
53
|
+
unsigned long node_count;
|
54
|
+
NodeList nodes;
|
55
|
+
NodeList dangling_nodes;
|
56
|
+
st_table *node_lookup;
|
57
|
+
} GraphStruct;
|
58
|
+
|
59
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
60
|
+
|
61
|
+
void free_graph(void *data);
|
62
|
+
void free_node(Node n);
|
63
|
+
void free_node_list(NodeList nodes, void (*free_item)(Node));
|
64
|
+
void free_edge(Edge e);
|
65
|
+
void free_edge_list(EdgeList edges, void (*free_item)(Edge));
|
66
|
+
|
67
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
68
|
+
|
69
|
+
Node add_node(Graph g, VALUE label);
|
70
|
+
Node add_dangling_node(Graph g, Node n);
|
71
|
+
Edge add_edge(Node source, Node destination, double weight);
|
72
|
+
Edge add_edge_with_labels(Graph g, VALUE source_label, VALUE dest_label, double weight);
|
73
|
+
Node lookup_node(Graph g, VALUE label);
|
74
|
+
|
75
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
76
|
+
|
77
|
+
void calculate_start(Graph g);
|
78
|
+
void calculate_step(Graph g, double damping);
|
79
|
+
double prev_distance(Graph g);
|
80
|
+
void calculate(Graph g, int max_iterations, double damping, double tolerance);
|
81
|
+
int node_compare(const void *v1, const void *v2);
|
82
|
+
void sort_and_normalize_ranks(Graph g, void (*callback)(VALUE, VALUE, double), VALUE callback_arg);
|
83
|
+
|
84
|
+
//////////////////////////////////////////////////////////////////////////////////////
|
85
|
+
|
86
|
+
void Init_sparse_native();
|
87
|
+
VALUE sparse_native_allocate(VALUE self);
|
88
|
+
VALUE sparse_native_add_edge(VALUE self, VALUE source, VALUE dest, VALUE weight);
|
89
|
+
VALUE sparse_native_calculate(VALUE self, VALUE max_iterations, VALUE damping, VALUE tolerance);
|
90
|
+
VALUE sorted_and_normalized_ranks(Graph g);
|
91
|
+
void rb_hash_dset(VALUE hash, VALUE key, double value);
|
92
|
+
|
93
|
+
#endif
|
data/lib/page_rank/base.rb
CHANGED
@@ -7,6 +7,8 @@ module PageRank
|
|
7
7
|
##
|
8
8
|
class Base
|
9
9
|
|
10
|
+
attr_reader :damping, :tolerance
|
11
|
+
|
10
12
|
# @param (see #damping=)
|
11
13
|
# @param (see #tolerance=)
|
12
14
|
def initialize(damping: nil, tolerance: nil, **_)
|
@@ -48,7 +50,7 @@ module PageRank
|
|
48
50
|
|
49
51
|
prev_ranks = ranks
|
50
52
|
ranks = calculate_step(ranks)
|
51
|
-
break if distance(ranks, prev_ranks) <
|
53
|
+
break if distance(ranks, prev_ranks) < tolerance
|
52
54
|
|
53
55
|
max_iterations -= 1
|
54
56
|
end
|
@@ -81,7 +83,7 @@ module PageRank
|
|
81
83
|
def distance(vector1, vector2)
|
82
84
|
sum_squares = node_count.times.reduce(0.0) do |sum, i|
|
83
85
|
d = vector1[i] - vector2[i]
|
84
|
-
sum + d * d
|
86
|
+
sum + (d * d)
|
85
87
|
end
|
86
88
|
Math.sqrt(sum_squares)
|
87
89
|
end
|
data/lib/page_rank/dense.rb
CHANGED
@@ -79,7 +79,7 @@ module PageRank
|
|
79
79
|
total = total_out_weights[source_idx]
|
80
80
|
if total
|
81
81
|
w = @out_links[source_idx][dest_idx] || 0.0
|
82
|
-
|
82
|
+
(damping * w / total) + ((1 - damping) / node_count.to_f)
|
83
83
|
else
|
84
84
|
1.0 / node_count.to_f
|
85
85
|
end
|
data/lib/page_rank/sparse.rb
CHANGED
@@ -56,7 +56,7 @@ module PageRank
|
|
56
56
|
w / @weight_totals[source]
|
57
57
|
end
|
58
58
|
end
|
59
|
-
|
59
|
+
@nodes.to_h { |k| [k, 1.0 / node_count.to_f] }
|
60
60
|
end
|
61
61
|
|
62
62
|
def calculate_step(ranks)
|
@@ -68,14 +68,14 @@ module PageRank
|
|
68
68
|
@dangling_nodes.each do |source|
|
69
69
|
sum += ranks[source] / node_count.to_f
|
70
70
|
end
|
71
|
-
new_ranks[dest] =
|
71
|
+
new_ranks[dest] = (damping * sum) + ((1 - damping) / node_count)
|
72
72
|
end
|
73
73
|
end
|
74
74
|
|
75
75
|
def sort_ranks(ranks)
|
76
76
|
sum = 0.0
|
77
77
|
ranks.each { |_, v| sum += v }
|
78
|
-
|
78
|
+
ranks.map { |k, v| [k, v / sum] }.sort_by { |_, v| -v }.to_h
|
79
79
|
end
|
80
80
|
|
81
81
|
def distance(vector1, vector2)
|
@@ -0,0 +1,21 @@
|
|
1
|
+
module PageRank
|
2
|
+
class SparseNative < Base
|
3
|
+
|
4
|
+
# require 'page_rank/sparse_native.so'
|
5
|
+
|
6
|
+
# @param (see Base#add)
|
7
|
+
# @param weight [Float] Optional weight for the graph edge
|
8
|
+
# @return (see Base#add)
|
9
|
+
def add(source, dest, weight: 1.0)
|
10
|
+
_add_edge(source, dest, weight) unless source == dest
|
11
|
+
end
|
12
|
+
|
13
|
+
# Perform the PageRank calculation
|
14
|
+
# @param max_iterations [Fixnum] Maximum number of PageRank iterations to perform (or -1 for no max)
|
15
|
+
# @return [Hash<Object, Float>] of nodes with rank
|
16
|
+
def calculate(max_iterations: -1, **_)
|
17
|
+
_calculate(max_iterations, damping, tolerance)
|
18
|
+
end
|
19
|
+
|
20
|
+
end
|
21
|
+
end
|
data/lib/page_rank.rb
CHANGED
@@ -17,16 +17,17 @@ require 'set'
|
|
17
17
|
##
|
18
18
|
module PageRank
|
19
19
|
|
20
|
-
autoload :Base,
|
21
|
-
autoload :Dense,
|
22
|
-
autoload :Sparse,
|
20
|
+
autoload :Base, 'page_rank/base'
|
21
|
+
autoload :Dense, 'page_rank/dense'
|
22
|
+
autoload :Sparse, 'page_rank/sparse'
|
23
|
+
autoload :SparseNative, 'page_rank/sparse_native'
|
23
24
|
|
24
25
|
# @option options [Symbol] :strategy PageRank strategy to use (either :sparse or :dense)
|
25
26
|
# @option options [Float] :damping The probability of following the graph vs. randomly choosing a new node
|
26
27
|
# @option options [Float] :tolerance The desired accuracy of the results
|
27
28
|
# @return [PageRank::Base]
|
28
29
|
def self.new(strategy: :sparse, **options)
|
29
|
-
const_get(strategy.to_s.capitalize).new(**options)
|
30
|
+
const_get(strategy.to_s.split('_').map(&:capitalize).join).new(**options)
|
30
31
|
end
|
31
32
|
|
32
33
|
# Convenience method to quickly calculate PageRank. In the calling block, graph edges can be added.
|
@@ -3,14 +3,12 @@ module TextRank
|
|
3
3
|
##
|
4
4
|
# Characater filter to transform non-ASCII (unicode) characters into ASCII-friendly versions.
|
5
5
|
#
|
6
|
-
# rubocop:disable Style/AsciiComments
|
7
6
|
#
|
8
7
|
# = Example
|
9
8
|
#
|
10
9
|
# AsciiFolding.new.filter!("the Perigordian Abbé then made answer, because a poor beggar of the country of Atrébatie heard some foolish things said")
|
11
10
|
# => "the Perigordian Abbe then made answer, because a poor beggar of the country of Atrebatie heard some foolish things said"
|
12
11
|
#
|
13
|
-
# rubocop:enable Style/AsciiComments
|
14
12
|
#
|
15
13
|
##
|
16
14
|
class AsciiFolding
|
@@ -57,7 +57,7 @@ module TextRank
|
|
57
57
|
end
|
58
58
|
|
59
59
|
# Calculates the "similarity" between this fingerprint and another
|
60
|
-
# @param {Fingerprint} A second fingerprint to compare
|
60
|
+
# @param {Fingerprint} other A second fingerprint to compare
|
61
61
|
# @return [Number] A number between 0.0 (different) and 1.0 (same)
|
62
62
|
def similarity(other)
|
63
63
|
return 1.0 if values == other.values # Short-circuit for efficiency
|
@@ -83,7 +83,7 @@ module TextRank
|
|
83
83
|
|
84
84
|
def norm_factor
|
85
85
|
@norm_factor ||= size.times.reduce(0.0) do |s, i|
|
86
|
-
s + (i + 1) / Math.log(i + 2) / size.to_f
|
86
|
+
s + ((i + 1) / Math.log(i + 2) / size.to_f)
|
87
87
|
end
|
88
88
|
end
|
89
89
|
|
@@ -60,7 +60,7 @@ module TextRank
|
|
60
60
|
# @param graph [PageRank::Base] a PageRank graph into which to add nodes/edges
|
61
61
|
# return [nil]
|
62
62
|
def build_graph(tokens, graph)
|
63
|
-
ngram_window = @ngram_size * 2 + 1
|
63
|
+
ngram_window = (@ngram_size * 2) + 1
|
64
64
|
tokens.size.times do |i|
|
65
65
|
ngram_window.times do |j|
|
66
66
|
consider_ngram_window(tokens, graph, i, j)
|
@@ -71,14 +71,14 @@ module TextRank
|
|
71
71
|
|
72
72
|
private
|
73
73
|
|
74
|
-
def consider_ngram_window(tokens, graph,
|
75
|
-
return if
|
74
|
+
def consider_ngram_window(tokens, graph, idx_i, idx_j)
|
75
|
+
return if idx_j == @ngram_size || idx_i + idx_j < @ngram_size
|
76
76
|
|
77
|
-
token_i = tokens[
|
78
|
-
token_j = tokens[
|
77
|
+
token_i = tokens[idx_i]
|
78
|
+
token_j = tokens[idx_i - @ngram_size + idx_j]
|
79
79
|
|
80
80
|
if token_j
|
81
|
-
graph.add(token_i, token_j, weight: 1.0 / (
|
81
|
+
graph.add(token_i, token_j, weight: 1.0 / (idx_j - @ngram_size).abs)
|
82
82
|
end
|
83
83
|
end
|
84
84
|
|
@@ -71,7 +71,6 @@ module TextRank
|
|
71
71
|
end
|
72
72
|
|
73
73
|
# Sets the graph strategy for producing a graph from tokens
|
74
|
-
# @param strategy [Class, Symbol, #build_graph] Strategy for producing a graph from tokens
|
75
74
|
# @return [Class, Symbol, #build_graph]
|
76
75
|
attr_writer :graph_strategy
|
77
76
|
|
@@ -103,14 +102,23 @@ module TextRank
|
|
103
102
|
end
|
104
103
|
|
105
104
|
# Filter & tokenize text, and return PageRank
|
106
|
-
# @param text [String] unfiltered text to be processed
|
105
|
+
# @param text [String,Array<String>] unfiltered text to be processed
|
107
106
|
# @return [Hash<String, Float>] tokens and page ranks (in descending order)
|
108
107
|
def extract(text, **options)
|
109
|
-
|
108
|
+
text = Array(text)
|
109
|
+
tokens_per_text = text.map do |t|
|
110
|
+
tokenize(t)
|
111
|
+
end
|
110
112
|
graph = PageRank.new(**@page_rank_options)
|
111
|
-
classify(@graph_strategy, context: GraphStrategy)
|
113
|
+
strategy = classify(@graph_strategy, context: GraphStrategy)
|
114
|
+
tokens_per_text.each do |tokens|
|
115
|
+
strategy.build_graph(tokens, graph)
|
116
|
+
end
|
112
117
|
ranks = graph.calculate(**options)
|
113
|
-
|
118
|
+
tokens_per_text.each_with_index do |tokens, i|
|
119
|
+
ranks = apply_rank_filters(ranks, tokens: tokens, original_text: text[i])
|
120
|
+
end
|
121
|
+
ranks
|
114
122
|
end
|
115
123
|
|
116
124
|
private
|
@@ -151,7 +151,7 @@ module TextRank
|
|
151
151
|
# tokenization (e.g. ASCII folding). That's okay. We're just making the best effort we can
|
152
152
|
# to find what we can.
|
153
153
|
def scan_text_for_all_permutations_of(single_tokens)
|
154
|
-
# NOTE that by reversing the order we craft the regex to prefer larger combinations over
|
154
|
+
# NOTE: that by reversing the order we craft the regex to prefer larger combinations over
|
155
155
|
# smaller combinations (or singletons).
|
156
156
|
perms = (1..@max_tokens_to_combine).to_a.reverse.flat_map do |n|
|
157
157
|
scan_text_for_n_permutations_of(single_tokens, n)
|
@@ -162,8 +162,8 @@ module TextRank
|
|
162
162
|
end unless perms.empty?
|
163
163
|
end
|
164
164
|
|
165
|
-
def scan_text_for_n_permutations_of(single_tokens,
|
166
|
-
single_tokens.permutation(
|
165
|
+
def scan_text_for_n_permutations_of(single_tokens, n_perms)
|
166
|
+
single_tokens.permutation(n_perms).map do |perm|
|
167
167
|
unless @permutations_scanned.key?(perm)
|
168
168
|
@permutations_scanned[perm] = 0
|
169
169
|
perm
|
@@ -14,7 +14,7 @@ module TextRank
|
|
14
14
|
# @param ranks [Hash<String, Float>] the results of the PageRank algorithm
|
15
15
|
# @return [Hash<String, Float>]
|
16
16
|
def filter!(ranks, **_)
|
17
|
-
|
17
|
+
ranks.sort_by { |_, v| @descending ? -v : v }.to_h
|
18
18
|
end
|
19
19
|
|
20
20
|
end
|
@@ -1,7 +1,7 @@
|
|
1
1
|
module TextRank
|
2
2
|
module Tokenizer
|
3
3
|
|
4
|
-
CURRENCY_SYMBOLS =
|
4
|
+
CURRENCY_SYMBOLS = "[#{[
|
5
5
|
"\u00a4", # Generic Currency Symbol
|
6
6
|
"\u0024", # Dollar Sign
|
7
7
|
"\u00a2", # Cent Sign
|
@@ -26,14 +26,13 @@ module TextRank
|
|
26
26
|
"\u20ab", # Dong Sign
|
27
27
|
"\u0025", # Percent
|
28
28
|
"\u2030", # Per Million
|
29
|
-
].join
|
29
|
+
].join}]"
|
30
30
|
private_constant :CURRENCY_SYMBOLS # Do not expose this to avoid confusion
|
31
31
|
|
32
32
|
##
|
33
33
|
# A tokenizer regex that preserves money or formatted numbers as a single token. This
|
34
34
|
# currently supports 24 different currency symbols:
|
35
35
|
#
|
36
|
-
# rubocop:disable Style/AsciiComments
|
37
36
|
#
|
38
37
|
# * ¤
|
39
38
|
# * $
|
@@ -60,7 +59,6 @@ module TextRank
|
|
60
59
|
# * %
|
61
60
|
# * ‰
|
62
61
|
|
63
|
-
# rubocop:enable Style/AsciiComments
|
64
62
|
#
|
65
63
|
# It also supports two alternative formats for negatives as well as optional three digit comma
|
66
64
|
# separation and optional decimals.
|