tensorflow 0.1.0 → 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +7 -4
- data/lib/tensorflow/ffi.rb +7 -0
- data/lib/tensorflow/keras/datasets/mnist.rb +17 -0
- data/lib/tensorflow/keras/layers/dense.rb +10 -0
- data/lib/tensorflow/keras/layers/dropout.rb +10 -0
- data/lib/tensorflow/keras/layers/flatten.rb +10 -0
- data/lib/tensorflow/keras/models/sequential.rb +31 -0
- data/lib/tensorflow/math.rb +465 -0
- data/lib/tensorflow/ops.rb +51 -0
- data/lib/tensorflow/raw_ops.rb +4606 -0
- data/lib/tensorflow/tensor.rb +79 -61
- data/lib/tensorflow/utils.rb +133 -14
- data/lib/tensorflow/variable.rb +6 -6
- data/lib/tensorflow/version.rb +1 -1
- data/lib/tensorflow.rb +21 -147
- metadata +52 -2
|
@@ -0,0 +1,4606 @@
|
|
|
1
|
+
# Generated by `rake generate_ops`
|
|
2
|
+
module TensorFlow
|
|
3
|
+
module RawOps
|
|
4
|
+
class << self
|
|
5
|
+
def abort(error_msg: nil, exit_without_error: nil)
|
|
6
|
+
Utils.execute("Abort", [], error_msg: error_msg, exit_without_error: exit_without_error)
|
|
7
|
+
end
|
|
8
|
+
|
|
9
|
+
def abs(x: nil)
|
|
10
|
+
Utils.execute("Abs", [x])
|
|
11
|
+
end
|
|
12
|
+
|
|
13
|
+
def accumulate_nv2(inputs: nil, shape: nil)
|
|
14
|
+
Utils.execute("AccumulateNV2", [inputs], shape: shape)
|
|
15
|
+
end
|
|
16
|
+
|
|
17
|
+
def accumulator_apply_gradient(handle: nil, local_step: nil, gradient: nil, dtype: nil)
|
|
18
|
+
Utils.execute("AccumulatorApplyGradient", [handle, local_step, gradient], dtype: dtype)
|
|
19
|
+
end
|
|
20
|
+
|
|
21
|
+
def accumulator_num_accumulated(handle: nil)
|
|
22
|
+
Utils.execute("AccumulatorNumAccumulated", [handle])
|
|
23
|
+
end
|
|
24
|
+
|
|
25
|
+
def accumulator_set_global_step(handle: nil, new_global_step: nil)
|
|
26
|
+
Utils.execute("AccumulatorSetGlobalStep", [handle, new_global_step])
|
|
27
|
+
end
|
|
28
|
+
|
|
29
|
+
def accumulator_take_gradient(handle: nil, num_required: nil, dtype: nil)
|
|
30
|
+
Utils.execute("AccumulatorTakeGradient", [handle, num_required], dtype: dtype)
|
|
31
|
+
end
|
|
32
|
+
|
|
33
|
+
def acos(x: nil)
|
|
34
|
+
Utils.execute("Acos", [x])
|
|
35
|
+
end
|
|
36
|
+
|
|
37
|
+
def acosh(x: nil)
|
|
38
|
+
Utils.execute("Acosh", [x])
|
|
39
|
+
end
|
|
40
|
+
|
|
41
|
+
def add(x: nil, y: nil)
|
|
42
|
+
Utils.execute("Add", [x, y])
|
|
43
|
+
end
|
|
44
|
+
|
|
45
|
+
def add_many_sparse_to_tensors_map(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, container: nil, shared_name: nil)
|
|
46
|
+
Utils.execute("AddManySparseToTensorsMap", [sparse_indices, sparse_values, sparse_shape], container: container, shared_name: shared_name)
|
|
47
|
+
end
|
|
48
|
+
|
|
49
|
+
def add_n(inputs: nil)
|
|
50
|
+
Utils.execute("AddN", [inputs])
|
|
51
|
+
end
|
|
52
|
+
|
|
53
|
+
def add_sparse_to_tensors_map(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, container: nil, shared_name: nil)
|
|
54
|
+
Utils.execute("AddSparseToTensorsMap", [sparse_indices, sparse_values, sparse_shape], container: container, shared_name: shared_name)
|
|
55
|
+
end
|
|
56
|
+
|
|
57
|
+
def add_v2(x: nil, y: nil)
|
|
58
|
+
Utils.execute("AddV2", [x, y])
|
|
59
|
+
end
|
|
60
|
+
|
|
61
|
+
def adjust_contrast(images: nil, contrast_factor: nil, min_value: nil, max_value: nil)
|
|
62
|
+
Utils.execute("AdjustContrast", [images, contrast_factor, min_value, max_value])
|
|
63
|
+
end
|
|
64
|
+
|
|
65
|
+
def adjust_contrastv2(images: nil, contrast_factor: nil)
|
|
66
|
+
Utils.execute("AdjustContrastv2", [images, contrast_factor])
|
|
67
|
+
end
|
|
68
|
+
|
|
69
|
+
def adjust_hue(images: nil, delta: nil)
|
|
70
|
+
Utils.execute("AdjustHue", [images, delta])
|
|
71
|
+
end
|
|
72
|
+
|
|
73
|
+
def adjust_saturation(images: nil, scale: nil)
|
|
74
|
+
Utils.execute("AdjustSaturation", [images, scale])
|
|
75
|
+
end
|
|
76
|
+
|
|
77
|
+
def all(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
78
|
+
Utils.execute("All", [input, reduction_indices], keep_dims: keep_dims)
|
|
79
|
+
end
|
|
80
|
+
|
|
81
|
+
def all_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, seed: nil, seed2: nil)
|
|
82
|
+
Utils.execute("AllCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, seed: seed, seed2: seed2)
|
|
83
|
+
end
|
|
84
|
+
|
|
85
|
+
def all_to_all(input: nil, group_assignment: nil, concat_dimension: nil, split_dimension: nil, split_count: nil)
|
|
86
|
+
Utils.execute("AllToAll", [input, group_assignment], concat_dimension: concat_dimension, split_dimension: split_dimension, split_count: split_count)
|
|
87
|
+
end
|
|
88
|
+
|
|
89
|
+
def angle(input: nil)
|
|
90
|
+
Utils.execute("Angle", [input])
|
|
91
|
+
end
|
|
92
|
+
|
|
93
|
+
def anonymous_iterator(output_types: nil, output_shapes: nil)
|
|
94
|
+
Utils.execute("AnonymousIterator", [], output_types: output_types, output_shapes: output_shapes)
|
|
95
|
+
end
|
|
96
|
+
|
|
97
|
+
def anonymous_iterator_v2(output_types: nil, output_shapes: nil)
|
|
98
|
+
Utils.execute("AnonymousIteratorV2", [], output_types: output_types, output_shapes: output_shapes)
|
|
99
|
+
end
|
|
100
|
+
|
|
101
|
+
def any(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
102
|
+
Utils.execute("Any", [input, reduction_indices], keep_dims: keep_dims)
|
|
103
|
+
end
|
|
104
|
+
|
|
105
|
+
def apply_ada_max(var: nil, m: nil, v: nil, beta1_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
106
|
+
Utils.execute("ApplyAdaMax", [var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
|
|
107
|
+
end
|
|
108
|
+
|
|
109
|
+
def apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
110
|
+
Utils.execute("ApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad], use_locking: use_locking)
|
|
111
|
+
end
|
|
112
|
+
|
|
113
|
+
def apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, use_locking: nil, update_slots: nil)
|
|
114
|
+
Utils.execute("ApplyAdagrad", [var, accum, lr, grad], use_locking: use_locking, update_slots: update_slots)
|
|
115
|
+
end
|
|
116
|
+
|
|
117
|
+
def apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
|
118
|
+
Utils.execute("ApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step], use_locking: use_locking)
|
|
119
|
+
end
|
|
120
|
+
|
|
121
|
+
def apply_adam(var: nil, m: nil, v: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil, use_nesterov: nil)
|
|
122
|
+
Utils.execute("ApplyAdam", [var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
123
|
+
end
|
|
124
|
+
|
|
125
|
+
def apply_add_sign(var: nil, m: nil, lr: nil, alpha: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
|
126
|
+
Utils.execute("ApplyAddSign", [var, m, lr, alpha, sign_decay, beta, grad], use_locking: use_locking)
|
|
127
|
+
end
|
|
128
|
+
|
|
129
|
+
def apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
130
|
+
Utils.execute("ApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
|
131
|
+
end
|
|
132
|
+
|
|
133
|
+
def apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
|
134
|
+
Utils.execute("ApplyFtrl", [var, accum, linear, grad, lr, l1, l2, lr_power], use_locking: use_locking)
|
|
135
|
+
end
|
|
136
|
+
|
|
137
|
+
def apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
|
138
|
+
Utils.execute("ApplyFtrlV2", [var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
|
139
|
+
end
|
|
140
|
+
|
|
141
|
+
def apply_gradient_descent(var: nil, alpha: nil, delta: nil, use_locking: nil)
|
|
142
|
+
Utils.execute("ApplyGradientDescent", [var, alpha, delta], use_locking: use_locking)
|
|
143
|
+
end
|
|
144
|
+
|
|
145
|
+
def apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
|
146
|
+
Utils.execute("ApplyMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
147
|
+
end
|
|
148
|
+
|
|
149
|
+
def apply_power_sign(var: nil, m: nil, lr: nil, logbase: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
|
150
|
+
Utils.execute("ApplyPowerSign", [var, m, lr, logbase, sign_decay, beta, grad], use_locking: use_locking)
|
|
151
|
+
end
|
|
152
|
+
|
|
153
|
+
def apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, use_locking: nil)
|
|
154
|
+
Utils.execute("ApplyProximalAdagrad", [var, accum, lr, l1, l2, grad], use_locking: use_locking)
|
|
155
|
+
end
|
|
156
|
+
|
|
157
|
+
def apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, delta: nil, use_locking: nil)
|
|
158
|
+
Utils.execute("ApplyProximalGradientDescent", [var, alpha, l1, l2, delta], use_locking: use_locking)
|
|
159
|
+
end
|
|
160
|
+
|
|
161
|
+
def apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
162
|
+
Utils.execute("ApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
|
163
|
+
end
|
|
164
|
+
|
|
165
|
+
def approximate_equal(x: nil, y: nil, tolerance: nil)
|
|
166
|
+
Utils.execute("ApproximateEqual", [x, y], tolerance: tolerance)
|
|
167
|
+
end
|
|
168
|
+
|
|
169
|
+
def arg_max(input: nil, dimension: nil, output_type: nil)
|
|
170
|
+
Utils.execute("ArgMax", [input, dimension], output_type: output_type)
|
|
171
|
+
end
|
|
172
|
+
|
|
173
|
+
def arg_min(input: nil, dimension: nil, output_type: nil)
|
|
174
|
+
Utils.execute("ArgMin", [input, dimension], output_type: output_type)
|
|
175
|
+
end
|
|
176
|
+
|
|
177
|
+
def as_string(input: nil, precision: nil, scientific: nil, shortest: nil, width: nil, fill: nil)
|
|
178
|
+
Utils.execute("AsString", [input], precision: precision, scientific: scientific, shortest: shortest, width: width, fill: fill)
|
|
179
|
+
end
|
|
180
|
+
|
|
181
|
+
def asin(x: nil)
|
|
182
|
+
Utils.execute("Asin", [x])
|
|
183
|
+
end
|
|
184
|
+
|
|
185
|
+
def asinh(x: nil)
|
|
186
|
+
Utils.execute("Asinh", [x])
|
|
187
|
+
end
|
|
188
|
+
|
|
189
|
+
def assert(condition: nil, data: nil, summarize: nil)
|
|
190
|
+
Utils.execute("Assert", [condition, data], summarize: summarize)
|
|
191
|
+
end
|
|
192
|
+
|
|
193
|
+
def assign(ref: nil, value: nil, validate_shape: nil, use_locking: nil)
|
|
194
|
+
Utils.execute("Assign", [ref, value], validate_shape: validate_shape, use_locking: use_locking)
|
|
195
|
+
end
|
|
196
|
+
|
|
197
|
+
def assign_add(ref: nil, value: nil, use_locking: nil)
|
|
198
|
+
Utils.execute("AssignAdd", [ref, value], use_locking: use_locking)
|
|
199
|
+
end
|
|
200
|
+
|
|
201
|
+
def assign_add_variable_op(resource: nil, value: nil, dtype: nil)
|
|
202
|
+
Utils.execute("AssignAddVariableOp", [resource, value], dtype: dtype)
|
|
203
|
+
end
|
|
204
|
+
|
|
205
|
+
def assign_sub(ref: nil, value: nil, use_locking: nil)
|
|
206
|
+
Utils.execute("AssignSub", [ref, value], use_locking: use_locking)
|
|
207
|
+
end
|
|
208
|
+
|
|
209
|
+
def assign_sub_variable_op(resource: nil, value: nil, dtype: nil)
|
|
210
|
+
Utils.execute("AssignSubVariableOp", [resource, value], dtype: dtype)
|
|
211
|
+
end
|
|
212
|
+
|
|
213
|
+
def assign_variable_op(resource: nil, value: nil, dtype: nil)
|
|
214
|
+
Utils.execute("AssignVariableOp", [resource, value], dtype: dtype)
|
|
215
|
+
end
|
|
216
|
+
|
|
217
|
+
def atan(x: nil)
|
|
218
|
+
Utils.execute("Atan", [x])
|
|
219
|
+
end
|
|
220
|
+
|
|
221
|
+
def atan2(y: nil, x: nil)
|
|
222
|
+
Utils.execute("Atan2", [y, x])
|
|
223
|
+
end
|
|
224
|
+
|
|
225
|
+
def atanh(x: nil)
|
|
226
|
+
Utils.execute("Atanh", [x])
|
|
227
|
+
end
|
|
228
|
+
|
|
229
|
+
def audio_spectrogram(input: nil, window_size: nil, stride: nil, magnitude_squared: nil)
|
|
230
|
+
Utils.execute("AudioSpectrogram", [input], window_size: window_size, stride: stride, magnitude_squared: magnitude_squared)
|
|
231
|
+
end
|
|
232
|
+
|
|
233
|
+
def audio_summary(tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
|
|
234
|
+
Utils.execute("AudioSummary", [tag, tensor], sample_rate: sample_rate, max_outputs: max_outputs)
|
|
235
|
+
end
|
|
236
|
+
|
|
237
|
+
def audio_summary_v2(tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
|
|
238
|
+
Utils.execute("AudioSummaryV2", [tag, tensor, sample_rate], max_outputs: max_outputs)
|
|
239
|
+
end
|
|
240
|
+
|
|
241
|
+
def avg_pool(value: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
242
|
+
Utils.execute("AvgPool", [value], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
243
|
+
end
|
|
244
|
+
|
|
245
|
+
def avg_pool3d(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
246
|
+
Utils.execute("AvgPool3D", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
247
|
+
end
|
|
248
|
+
|
|
249
|
+
def avg_pool3d_grad(orig_input_shape: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
250
|
+
Utils.execute("AvgPool3DGrad", [orig_input_shape, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
251
|
+
end
|
|
252
|
+
|
|
253
|
+
def avg_pool_grad(orig_input_shape: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
254
|
+
Utils.execute("AvgPoolGrad", [orig_input_shape, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
255
|
+
end
|
|
256
|
+
|
|
257
|
+
def barrier(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
258
|
+
Utils.execute("Barrier", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
259
|
+
end
|
|
260
|
+
|
|
261
|
+
def barrier_close(handle: nil, cancel_pending_enqueues: nil)
|
|
262
|
+
Utils.execute("BarrierClose", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
|
|
263
|
+
end
|
|
264
|
+
|
|
265
|
+
def barrier_incomplete_size(handle: nil)
|
|
266
|
+
Utils.execute("BarrierIncompleteSize", [handle])
|
|
267
|
+
end
|
|
268
|
+
|
|
269
|
+
def barrier_insert_many(handle: nil, keys: nil, values: nil, component_index: nil)
|
|
270
|
+
Utils.execute("BarrierInsertMany", [handle, keys, values], component_index: component_index)
|
|
271
|
+
end
|
|
272
|
+
|
|
273
|
+
def barrier_ready_size(handle: nil)
|
|
274
|
+
Utils.execute("BarrierReadySize", [handle])
|
|
275
|
+
end
|
|
276
|
+
|
|
277
|
+
def barrier_take_many(handle: nil, num_elements: nil, component_types: nil, allow_small_batch: nil, wait_for_incomplete: nil, timeout_ms: nil)
|
|
278
|
+
Utils.execute("BarrierTakeMany", [handle, num_elements], component_types: component_types, allow_small_batch: allow_small_batch, wait_for_incomplete: wait_for_incomplete, timeout_ms: timeout_ms)
|
|
279
|
+
end
|
|
280
|
+
|
|
281
|
+
def batch(in_tensors: nil, num_batch_threads: nil, max_batch_size: nil, max_enqueued_batches: nil, batch_timeout_micros: nil, allowed_batch_sizes: nil, grad_timeout_micros: nil, container: nil, shared_name: nil, batching_queue: nil)
|
|
282
|
+
Utils.execute("Batch", [in_tensors], num_batch_threads: num_batch_threads, max_batch_size: max_batch_size, max_enqueued_batches: max_enqueued_batches, batch_timeout_micros: batch_timeout_micros, allowed_batch_sizes: allowed_batch_sizes, grad_timeout_micros: grad_timeout_micros, container: container, shared_name: shared_name, batching_queue: batching_queue)
|
|
283
|
+
end
|
|
284
|
+
|
|
285
|
+
def batch_cholesky(input: nil)
|
|
286
|
+
Utils.execute("BatchCholesky", [input])
|
|
287
|
+
end
|
|
288
|
+
|
|
289
|
+
def batch_cholesky_grad(l: nil, grad: nil)
|
|
290
|
+
Utils.execute("BatchCholeskyGrad", [l, grad])
|
|
291
|
+
end
|
|
292
|
+
|
|
293
|
+
def batch_dataset(input_dataset: nil, batch_size: nil, output_types: nil, output_shapes: nil)
|
|
294
|
+
Utils.execute("BatchDataset", [input_dataset, batch_size], output_types: output_types, output_shapes: output_shapes)
|
|
295
|
+
end
|
|
296
|
+
|
|
297
|
+
def batch_dataset_v2(input_dataset: nil, batch_size: nil, drop_remainder: nil, parallel_copy: nil, output_types: nil, output_shapes: nil)
|
|
298
|
+
Utils.execute("BatchDatasetV2", [input_dataset, batch_size, drop_remainder], parallel_copy: parallel_copy, output_types: output_types, output_shapes: output_shapes)
|
|
299
|
+
end
|
|
300
|
+
|
|
301
|
+
def batch_fft(input: nil)
|
|
302
|
+
Utils.execute("BatchFFT", [input])
|
|
303
|
+
end
|
|
304
|
+
|
|
305
|
+
def batch_fft2d(input: nil)
|
|
306
|
+
Utils.execute("BatchFFT2D", [input])
|
|
307
|
+
end
|
|
308
|
+
|
|
309
|
+
def batch_fft3d(input: nil)
|
|
310
|
+
Utils.execute("BatchFFT3D", [input])
|
|
311
|
+
end
|
|
312
|
+
|
|
313
|
+
def batch_function(in_tensors: nil, captured_tensors: nil, f: nil, num_batch_threads: nil, max_batch_size: nil, batch_timeout_micros: nil, max_enqueued_batches: nil, allowed_batch_sizes: nil, container: nil, shared_name: nil, batching_queue: nil)
|
|
314
|
+
Utils.execute("BatchFunction", [in_tensors, captured_tensors], f: f, num_batch_threads: num_batch_threads, max_batch_size: max_batch_size, batch_timeout_micros: batch_timeout_micros, max_enqueued_batches: max_enqueued_batches, allowed_batch_sizes: allowed_batch_sizes, container: container, shared_name: shared_name, batching_queue: batching_queue)
|
|
315
|
+
end
|
|
316
|
+
|
|
317
|
+
def batch_ifft(input: nil)
|
|
318
|
+
Utils.execute("BatchIFFT", [input])
|
|
319
|
+
end
|
|
320
|
+
|
|
321
|
+
def batch_ifft2d(input: nil)
|
|
322
|
+
Utils.execute("BatchIFFT2D", [input])
|
|
323
|
+
end
|
|
324
|
+
|
|
325
|
+
def batch_ifft3d(input: nil)
|
|
326
|
+
Utils.execute("BatchIFFT3D", [input])
|
|
327
|
+
end
|
|
328
|
+
|
|
329
|
+
def batch_mat_mul(x: nil, y: nil, adj_x: nil, adj_y: nil)
|
|
330
|
+
Utils.execute("BatchMatMul", [x, y], adj_x: adj_x, adj_y: adj_y)
|
|
331
|
+
end
|
|
332
|
+
|
|
333
|
+
def batch_mat_mul_v2(x: nil, y: nil, adj_x: nil, adj_y: nil)
|
|
334
|
+
Utils.execute("BatchMatMulV2", [x, y], adj_x: adj_x, adj_y: adj_y)
|
|
335
|
+
end
|
|
336
|
+
|
|
337
|
+
def batch_matrix_band_part(input: nil, num_lower: nil, num_upper: nil)
|
|
338
|
+
Utils.execute("BatchMatrixBandPart", [input, num_lower, num_upper])
|
|
339
|
+
end
|
|
340
|
+
|
|
341
|
+
def batch_matrix_determinant(input: nil)
|
|
342
|
+
Utils.execute("BatchMatrixDeterminant", [input])
|
|
343
|
+
end
|
|
344
|
+
|
|
345
|
+
def batch_matrix_diag(diagonal: nil)
|
|
346
|
+
Utils.execute("BatchMatrixDiag", [diagonal])
|
|
347
|
+
end
|
|
348
|
+
|
|
349
|
+
def batch_matrix_diag_part(input: nil)
|
|
350
|
+
Utils.execute("BatchMatrixDiagPart", [input])
|
|
351
|
+
end
|
|
352
|
+
|
|
353
|
+
def batch_matrix_inverse(input: nil, adjoint: nil)
|
|
354
|
+
Utils.execute("BatchMatrixInverse", [input], adjoint: adjoint)
|
|
355
|
+
end
|
|
356
|
+
|
|
357
|
+
def batch_matrix_set_diag(input: nil, diagonal: nil)
|
|
358
|
+
Utils.execute("BatchMatrixSetDiag", [input, diagonal])
|
|
359
|
+
end
|
|
360
|
+
|
|
361
|
+
def batch_matrix_solve(matrix: nil, rhs: nil, adjoint: nil)
|
|
362
|
+
Utils.execute("BatchMatrixSolve", [matrix, rhs], adjoint: adjoint)
|
|
363
|
+
end
|
|
364
|
+
|
|
365
|
+
def batch_matrix_solve_ls(matrix: nil, rhs: nil, l2_regularizer: nil, fast: nil)
|
|
366
|
+
Utils.execute("BatchMatrixSolveLs", [matrix, rhs, l2_regularizer], fast: fast)
|
|
367
|
+
end
|
|
368
|
+
|
|
369
|
+
def batch_matrix_triangular_solve(matrix: nil, rhs: nil, lower: nil, adjoint: nil)
|
|
370
|
+
Utils.execute("BatchMatrixTriangularSolve", [matrix, rhs], lower: lower, adjoint: adjoint)
|
|
371
|
+
end
|
|
372
|
+
|
|
373
|
+
def batch_norm_with_global_normalization(t: nil, m: nil, v: nil, beta: nil, gamma: nil, variance_epsilon: nil, scale_after_normalization: nil)
|
|
374
|
+
Utils.execute("BatchNormWithGlobalNormalization", [t, m, v, beta, gamma], variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
|
|
375
|
+
end
|
|
376
|
+
|
|
377
|
+
def batch_norm_with_global_normalization_grad(t: nil, m: nil, v: nil, gamma: nil, backprop: nil, variance_epsilon: nil, scale_after_normalization: nil)
|
|
378
|
+
Utils.execute("BatchNormWithGlobalNormalizationGrad", [t, m, v, gamma, backprop], variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
|
|
379
|
+
end
|
|
380
|
+
|
|
381
|
+
def batch_self_adjoint_eig(input: nil)
|
|
382
|
+
Utils.execute("BatchSelfAdjointEig", [input])
|
|
383
|
+
end
|
|
384
|
+
|
|
385
|
+
def batch_self_adjoint_eig_v2(input: nil, compute_v: nil)
|
|
386
|
+
Utils.execute("BatchSelfAdjointEigV2", [input], compute_v: compute_v)
|
|
387
|
+
end
|
|
388
|
+
|
|
389
|
+
def batch_svd(input: nil, compute_uv: nil, full_matrices: nil)
|
|
390
|
+
Utils.execute("BatchSvd", [input], compute_uv: compute_uv, full_matrices: full_matrices)
|
|
391
|
+
end
|
|
392
|
+
|
|
393
|
+
def batch_to_space(input: nil, crops: nil, block_size: nil)
|
|
394
|
+
Utils.execute("BatchToSpace", [input, crops], block_size: block_size)
|
|
395
|
+
end
|
|
396
|
+
|
|
397
|
+
def batch_to_space_nd(input: nil, block_shape: nil, crops: nil)
|
|
398
|
+
Utils.execute("BatchToSpaceND", [input, block_shape, crops])
|
|
399
|
+
end
|
|
400
|
+
|
|
401
|
+
def bessel_i0e(x: nil)
|
|
402
|
+
Utils.execute("BesselI0e", [x])
|
|
403
|
+
end
|
|
404
|
+
|
|
405
|
+
def bessel_i1e(x: nil)
|
|
406
|
+
Utils.execute("BesselI1e", [x])
|
|
407
|
+
end
|
|
408
|
+
|
|
409
|
+
def betainc(a: nil, b: nil, x: nil)
|
|
410
|
+
Utils.execute("Betainc", [a, b, x])
|
|
411
|
+
end
|
|
412
|
+
|
|
413
|
+
def bias_add(value: nil, bias: nil, data_format: nil)
|
|
414
|
+
Utils.execute("BiasAdd", [value, bias], data_format: data_format)
|
|
415
|
+
end
|
|
416
|
+
|
|
417
|
+
def bias_add_grad(out_backprop: nil, data_format: nil)
|
|
418
|
+
Utils.execute("BiasAddGrad", [out_backprop], data_format: data_format)
|
|
419
|
+
end
|
|
420
|
+
|
|
421
|
+
def bias_add_v1(value: nil, bias: nil)
|
|
422
|
+
Utils.execute("BiasAddV1", [value, bias])
|
|
423
|
+
end
|
|
424
|
+
|
|
425
|
+
def big_query_reader(container: nil, shared_name: nil, project_id: nil, dataset_id: nil, table_id: nil, columns: nil, timestamp_millis: nil, test_end_point: nil)
|
|
426
|
+
Utils.execute("BigQueryReader", [], container: container, shared_name: shared_name, project_id: project_id, dataset_id: dataset_id, table_id: table_id, columns: columns, timestamp_millis: timestamp_millis, test_end_point: test_end_point)
|
|
427
|
+
end
|
|
428
|
+
|
|
429
|
+
def bincount(arr: nil, size: nil, weights: nil)
|
|
430
|
+
Utils.execute("Bincount", [arr, size, weights])
|
|
431
|
+
end
|
|
432
|
+
|
|
433
|
+
def bitcast(input: nil, type: nil)
|
|
434
|
+
Utils.execute("Bitcast", [input], type: type)
|
|
435
|
+
end
|
|
436
|
+
|
|
437
|
+
def bitwise_and(x: nil, y: nil)
|
|
438
|
+
Utils.execute("BitwiseAnd", [x, y])
|
|
439
|
+
end
|
|
440
|
+
|
|
441
|
+
def bitwise_or(x: nil, y: nil)
|
|
442
|
+
Utils.execute("BitwiseOr", [x, y])
|
|
443
|
+
end
|
|
444
|
+
|
|
445
|
+
def bitwise_xor(x: nil, y: nil)
|
|
446
|
+
Utils.execute("BitwiseXor", [x, y])
|
|
447
|
+
end
|
|
448
|
+
|
|
449
|
+
def boosted_trees_aggregate_stats(node_ids: nil, gradients: nil, hessians: nil, feature: nil, max_splits: nil, num_buckets: nil)
|
|
450
|
+
Utils.execute("BoostedTreesAggregateStats", [node_ids, gradients, hessians, feature], max_splits: max_splits, num_buckets: num_buckets)
|
|
451
|
+
end
|
|
452
|
+
|
|
453
|
+
def boosted_trees_bucketize(float_values: nil, bucket_boundaries: nil, num_features: nil)
|
|
454
|
+
Utils.execute("BoostedTreesBucketize", [float_values, bucket_boundaries], num_features: num_features)
|
|
455
|
+
end
|
|
456
|
+
|
|
457
|
+
def boosted_trees_calculate_best_feature_split(node_id_range: nil, stats_summary: nil, l1: nil, l2: nil, tree_complexity: nil, min_node_weight: nil, logits_dimension: nil, split_type: nil)
|
|
458
|
+
Utils.execute("BoostedTreesCalculateBestFeatureSplit", [node_id_range, stats_summary, l1, l2, tree_complexity, min_node_weight], logits_dimension: logits_dimension, split_type: split_type)
|
|
459
|
+
end
|
|
460
|
+
|
|
461
|
+
def boosted_trees_calculate_best_gains_per_feature(node_id_range: nil, stats_summary_list: nil, l1: nil, l2: nil, tree_complexity: nil, min_node_weight: nil, max_splits: nil, num_features: nil)
|
|
462
|
+
Utils.execute("BoostedTreesCalculateBestGainsPerFeature", [node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight], max_splits: max_splits, num_features: num_features)
|
|
463
|
+
end
|
|
464
|
+
|
|
465
|
+
def boosted_trees_center_bias(tree_ensemble_handle: nil, mean_gradients: nil, mean_hessians: nil, l1: nil, l2: nil)
|
|
466
|
+
Utils.execute("BoostedTreesCenterBias", [tree_ensemble_handle, mean_gradients, mean_hessians, l1, l2])
|
|
467
|
+
end
|
|
468
|
+
|
|
469
|
+
def boosted_trees_create_ensemble(tree_ensemble_handle: nil, stamp_token: nil, tree_ensemble_serialized: nil)
|
|
470
|
+
Utils.execute("BoostedTreesCreateEnsemble", [tree_ensemble_handle, stamp_token, tree_ensemble_serialized])
|
|
471
|
+
end
|
|
472
|
+
|
|
473
|
+
def boosted_trees_create_quantile_stream_resource(quantile_stream_resource_handle: nil, epsilon: nil, num_streams: nil, max_elements: nil)
|
|
474
|
+
Utils.execute("BoostedTreesCreateQuantileStreamResource", [quantile_stream_resource_handle, epsilon, num_streams], max_elements: max_elements)
|
|
475
|
+
end
|
|
476
|
+
|
|
477
|
+
def boosted_trees_deserialize_ensemble(tree_ensemble_handle: nil, stamp_token: nil, tree_ensemble_serialized: nil)
|
|
478
|
+
Utils.execute("BoostedTreesDeserializeEnsemble", [tree_ensemble_handle, stamp_token, tree_ensemble_serialized])
|
|
479
|
+
end
|
|
480
|
+
|
|
481
|
+
def boosted_trees_ensemble_resource_handle_op(container: nil, shared_name: nil)
|
|
482
|
+
Utils.execute("BoostedTreesEnsembleResourceHandleOp", [], container: container, shared_name: shared_name)
|
|
483
|
+
end
|
|
484
|
+
|
|
485
|
+
def boosted_trees_example_debug_outputs(tree_ensemble_handle: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
|
|
486
|
+
Utils.execute("BoostedTreesExampleDebugOutputs", [tree_ensemble_handle, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
|
|
487
|
+
end
|
|
488
|
+
|
|
489
|
+
def boosted_trees_get_ensemble_states(tree_ensemble_handle: nil)
|
|
490
|
+
Utils.execute("BoostedTreesGetEnsembleStates", [tree_ensemble_handle])
|
|
491
|
+
end
|
|
492
|
+
|
|
493
|
+
def boosted_trees_make_quantile_summaries(float_values: nil, example_weights: nil, epsilon: nil, num_features: nil)
|
|
494
|
+
Utils.execute("BoostedTreesMakeQuantileSummaries", [float_values, example_weights, epsilon], num_features: num_features)
|
|
495
|
+
end
|
|
496
|
+
|
|
497
|
+
def boosted_trees_make_stats_summary(node_ids: nil, gradients: nil, hessians: nil, bucketized_features_list: nil, max_splits: nil, num_buckets: nil, num_features: nil)
|
|
498
|
+
Utils.execute("BoostedTreesMakeStatsSummary", [node_ids, gradients, hessians, bucketized_features_list], max_splits: max_splits, num_buckets: num_buckets, num_features: num_features)
|
|
499
|
+
end
|
|
500
|
+
|
|
501
|
+
def boosted_trees_predict(tree_ensemble_handle: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
|
|
502
|
+
Utils.execute("BoostedTreesPredict", [tree_ensemble_handle, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
|
|
503
|
+
end
|
|
504
|
+
|
|
505
|
+
def boosted_trees_quantile_stream_resource_add_summaries(quantile_stream_resource_handle: nil, summaries: nil, num_features: nil)
|
|
506
|
+
Utils.execute("BoostedTreesQuantileStreamResourceAddSummaries", [quantile_stream_resource_handle, summaries], num_features: num_features)
|
|
507
|
+
end
|
|
508
|
+
|
|
509
|
+
def boosted_trees_quantile_stream_resource_deserialize(quantile_stream_resource_handle: nil, bucket_boundaries: nil, num_streams: nil)
|
|
510
|
+
Utils.execute("BoostedTreesQuantileStreamResourceDeserialize", [quantile_stream_resource_handle, bucket_boundaries], num_streams: num_streams)
|
|
511
|
+
end
|
|
512
|
+
|
|
513
|
+
def boosted_trees_quantile_stream_resource_flush(quantile_stream_resource_handle: nil, num_buckets: nil, generate_quantiles: nil)
|
|
514
|
+
Utils.execute("BoostedTreesQuantileStreamResourceFlush", [quantile_stream_resource_handle, num_buckets], generate_quantiles: generate_quantiles)
|
|
515
|
+
end
|
|
516
|
+
|
|
517
|
+
def boosted_trees_quantile_stream_resource_get_bucket_boundaries(quantile_stream_resource_handle: nil, num_features: nil)
|
|
518
|
+
Utils.execute("BoostedTreesQuantileStreamResourceGetBucketBoundaries", [quantile_stream_resource_handle], num_features: num_features)
|
|
519
|
+
end
|
|
520
|
+
|
|
521
|
+
def boosted_trees_quantile_stream_resource_handle_op(container: nil, shared_name: nil)
|
|
522
|
+
Utils.execute("BoostedTreesQuantileStreamResourceHandleOp", [], container: container, shared_name: shared_name)
|
|
523
|
+
end
|
|
524
|
+
|
|
525
|
+
def boosted_trees_serialize_ensemble(tree_ensemble_handle: nil)
|
|
526
|
+
Utils.execute("BoostedTreesSerializeEnsemble", [tree_ensemble_handle])
|
|
527
|
+
end
|
|
528
|
+
|
|
529
|
+
def boosted_trees_training_predict(tree_ensemble_handle: nil, cached_tree_ids: nil, cached_node_ids: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
|
|
530
|
+
Utils.execute("BoostedTreesTrainingPredict", [tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
|
|
531
|
+
end
|
|
532
|
+
|
|
533
|
+
def boosted_trees_update_ensemble(tree_ensemble_handle: nil, feature_ids: nil, node_ids: nil, gains: nil, thresholds: nil, left_node_contribs: nil, right_node_contribs: nil, max_depth: nil, learning_rate: nil, pruning_mode: nil, num_features: nil)
|
|
534
|
+
Utils.execute("BoostedTreesUpdateEnsemble", [tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate], pruning_mode: pruning_mode, num_features: num_features)
|
|
535
|
+
end
|
|
536
|
+
|
|
537
|
+
def broadcast_args(s0: nil, s1: nil)
|
|
538
|
+
Utils.execute("BroadcastArgs", [s0, s1])
|
|
539
|
+
end
|
|
540
|
+
|
|
541
|
+
def broadcast_gradient_args(s0: nil, s1: nil)
|
|
542
|
+
Utils.execute("BroadcastGradientArgs", [s0, s1])
|
|
543
|
+
end
|
|
544
|
+
|
|
545
|
+
def broadcast_to(input: nil, shape: nil)
|
|
546
|
+
Utils.execute("BroadcastTo", [input, shape])
|
|
547
|
+
end
|
|
548
|
+
|
|
549
|
+
def bucketize(input: nil, boundaries: nil)
|
|
550
|
+
Utils.execute("Bucketize", [input], boundaries: boundaries)
|
|
551
|
+
end
|
|
552
|
+
|
|
553
|
+
def ctc_beam_search_decoder(inputs: nil, sequence_length: nil, beam_width: nil, top_paths: nil, merge_repeated: nil)
|
|
554
|
+
Utils.execute("CTCBeamSearchDecoder", [inputs, sequence_length], beam_width: beam_width, top_paths: top_paths, merge_repeated: merge_repeated)
|
|
555
|
+
end
|
|
556
|
+
|
|
557
|
+
def ctc_greedy_decoder(inputs: nil, sequence_length: nil, merge_repeated: nil)
|
|
558
|
+
Utils.execute("CTCGreedyDecoder", [inputs, sequence_length], merge_repeated: merge_repeated)
|
|
559
|
+
end
|
|
560
|
+
|
|
561
|
+
def ctc_loss(inputs: nil, labels_indices: nil, labels_values: nil, sequence_length: nil, preprocess_collapse_repeated: nil, ctc_merge_repeated: nil, ignore_longer_outputs_than_inputs: nil)
|
|
562
|
+
Utils.execute("CTCLoss", [inputs, labels_indices, labels_values, sequence_length], preprocess_collapse_repeated: preprocess_collapse_repeated, ctc_merge_repeated: ctc_merge_repeated, ignore_longer_outputs_than_inputs: ignore_longer_outputs_than_inputs)
|
|
563
|
+
end
|
|
564
|
+
|
|
565
|
+
def cache_dataset(input_dataset: nil, filename: nil, output_types: nil, output_shapes: nil)
|
|
566
|
+
Utils.execute("CacheDataset", [input_dataset, filename], output_types: output_types, output_shapes: output_shapes)
|
|
567
|
+
end
|
|
568
|
+
|
|
569
|
+
def case(branch_index: nil, input: nil, branches: nil, output_shapes: nil)
|
|
570
|
+
Utils.execute("Case", [branch_index, input], branches: branches, output_shapes: output_shapes)
|
|
571
|
+
end
|
|
572
|
+
|
|
573
|
+
def cast(x: nil)
|
|
574
|
+
Utils.execute("Cast", [x])
|
|
575
|
+
end
|
|
576
|
+
|
|
577
|
+
def ceil(x: nil)
|
|
578
|
+
Utils.execute("Ceil", [x])
|
|
579
|
+
end
|
|
580
|
+
|
|
581
|
+
def check_numerics(tensor: nil, message: nil)
|
|
582
|
+
Utils.execute("CheckNumerics", [tensor], message: message)
|
|
583
|
+
end
|
|
584
|
+
|
|
585
|
+
def cholesky(input: nil)
|
|
586
|
+
Utils.execute("Cholesky", [input])
|
|
587
|
+
end
|
|
588
|
+
|
|
589
|
+
def cholesky_grad(l: nil, grad: nil)
|
|
590
|
+
Utils.execute("CholeskyGrad", [l, grad])
|
|
591
|
+
end
|
|
592
|
+
|
|
593
|
+
def choose_fastest_branch_dataset(input_dataset: nil, ratio_numerator: nil, ratio_denominator: nil, other_arguments: nil, num_elements_per_branch: nil, branches: nil, other_arguments_lengths: nil, output_types: nil, output_shapes: nil)
|
|
594
|
+
Utils.execute("ChooseFastestBranchDataset", [input_dataset, ratio_numerator, ratio_denominator, other_arguments], num_elements_per_branch: num_elements_per_branch, branches: branches, other_arguments_lengths: other_arguments_lengths, output_types: output_types, output_shapes: output_shapes)
|
|
595
|
+
end
|
|
596
|
+
|
|
597
|
+
def clip_by_value(t: nil, clip_value_min: nil, clip_value_max: nil)
|
|
598
|
+
Utils.execute("ClipByValue", [t, clip_value_min, clip_value_max])
|
|
599
|
+
end
|
|
600
|
+
|
|
601
|
+
def close_summary_writer(writer: nil)
|
|
602
|
+
Utils.execute("CloseSummaryWriter", [writer])
|
|
603
|
+
end
|
|
604
|
+
|
|
605
|
+
def collective_bcast_recv(group_size: nil, group_key: nil, instance_key: nil, shape: nil)
|
|
606
|
+
Utils.execute("CollectiveBcastRecv", [], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
|
|
607
|
+
end
|
|
608
|
+
|
|
609
|
+
def collective_bcast_send(input: nil, group_size: nil, group_key: nil, instance_key: nil, shape: nil)
|
|
610
|
+
Utils.execute("CollectiveBcastSend", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
|
|
611
|
+
end
|
|
612
|
+
|
|
613
|
+
def collective_gather(input: nil, group_size: nil, group_key: nil, instance_key: nil, shape: nil)
|
|
614
|
+
Utils.execute("CollectiveGather", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
|
|
615
|
+
end
|
|
616
|
+
|
|
617
|
+
def collective_permute(input: nil, source_target_pairs: nil)
|
|
618
|
+
Utils.execute("CollectivePermute", [input, source_target_pairs])
|
|
619
|
+
end
|
|
620
|
+
|
|
621
|
+
def collective_reduce(input: nil, group_size: nil, group_key: nil, instance_key: nil, merge_op: nil, final_op: nil, subdiv_offsets: nil, wait_for: nil)
|
|
622
|
+
Utils.execute("CollectiveReduce", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, merge_op: merge_op, final_op: final_op, subdiv_offsets: subdiv_offsets, wait_for: wait_for)
|
|
623
|
+
end
|
|
624
|
+
|
|
625
|
+
def combined_non_max_suppression(boxes: nil, scores: nil, max_output_size_per_class: nil, max_total_size: nil, iou_threshold: nil, score_threshold: nil, pad_per_class: nil, clip_boxes: nil)
|
|
626
|
+
Utils.execute("CombinedNonMaxSuppression", [boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold], pad_per_class: pad_per_class, clip_boxes: clip_boxes)
|
|
627
|
+
end
|
|
628
|
+
|
|
629
|
+
def compare_and_bitpack(input: nil, threshold: nil)
|
|
630
|
+
Utils.execute("CompareAndBitpack", [input, threshold])
|
|
631
|
+
end
|
|
632
|
+
|
|
633
|
+
def complex(real: nil, imag: nil)
|
|
634
|
+
Utils.execute("Complex", [real, imag])
|
|
635
|
+
end
|
|
636
|
+
|
|
637
|
+
def complex_abs(x: nil)
|
|
638
|
+
Utils.execute("ComplexAbs", [x])
|
|
639
|
+
end
|
|
640
|
+
|
|
641
|
+
def compute_accidental_hits(true_classes: nil, sampled_candidates: nil, num_true: nil, seed: nil, seed2: nil)
|
|
642
|
+
Utils.execute("ComputeAccidentalHits", [true_classes, sampled_candidates], num_true: num_true, seed: seed, seed2: seed2)
|
|
643
|
+
end
|
|
644
|
+
|
|
645
|
+
def concat(concat_dim: nil, values: nil)
|
|
646
|
+
Utils.execute("Concat", [concat_dim, values])
|
|
647
|
+
end
|
|
648
|
+
|
|
649
|
+
def concat_offset(concat_dim: nil, shape: nil)
|
|
650
|
+
Utils.execute("ConcatOffset", [concat_dim, shape])
|
|
651
|
+
end
|
|
652
|
+
|
|
653
|
+
def concat_v2(values: nil, axis: nil)
|
|
654
|
+
Utils.execute("ConcatV2", [values, axis])
|
|
655
|
+
end
|
|
656
|
+
|
|
657
|
+
def concatenate_dataset(input_dataset: nil, another_dataset: nil, output_types: nil, output_shapes: nil)
|
|
658
|
+
Utils.execute("ConcatenateDataset", [input_dataset, another_dataset], output_types: output_types, output_shapes: output_shapes)
|
|
659
|
+
end
|
|
660
|
+
|
|
661
|
+
def conditional_accumulator(dtype: nil, shape: nil, container: nil, shared_name: nil, reduction_type: nil)
|
|
662
|
+
Utils.execute("ConditionalAccumulator", [], dtype: dtype, shape: shape, container: container, shared_name: shared_name, reduction_type: reduction_type)
|
|
663
|
+
end
|
|
664
|
+
|
|
665
|
+
def configure_distributed_tpu(embedding_config: nil, tpu_embedding_config: nil, is_global_init: nil)
|
|
666
|
+
Utils.execute("ConfigureDistributedTPU", [], embedding_config: embedding_config, tpu_embedding_config: tpu_embedding_config, is_global_init: is_global_init)
|
|
667
|
+
end
|
|
668
|
+
|
|
669
|
+
def conj(input: nil)
|
|
670
|
+
Utils.execute("Conj", [input])
|
|
671
|
+
end
|
|
672
|
+
|
|
673
|
+
def conjugate_transpose(x: nil, perm: nil)
|
|
674
|
+
Utils.execute("ConjugateTranspose", [x, perm])
|
|
675
|
+
end
|
|
676
|
+
|
|
677
|
+
def const(value: nil, dtype: nil)
|
|
678
|
+
Utils.execute("Const", [], value: value, dtype: dtype)
|
|
679
|
+
end
|
|
680
|
+
|
|
681
|
+
def consume_mutex_lock(mutex_lock: nil)
|
|
682
|
+
Utils.execute("ConsumeMutexLock", [mutex_lock])
|
|
683
|
+
end
|
|
684
|
+
|
|
685
|
+
def control_trigger
|
|
686
|
+
Utils.execute("ControlTrigger", [])
|
|
687
|
+
end
|
|
688
|
+
|
|
689
|
+
def conv2d(input: nil, filter: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
|
|
690
|
+
Utils.execute("Conv2D", [input, filter], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
|
|
691
|
+
end
|
|
692
|
+
|
|
693
|
+
def conv2d_backprop_filter(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
|
|
694
|
+
Utils.execute("Conv2DBackpropFilter", [input, filter_sizes, out_backprop], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
|
|
695
|
+
end
|
|
696
|
+
|
|
697
|
+
def conv2d_backprop_input(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
|
|
698
|
+
Utils.execute("Conv2DBackpropInput", [input_sizes, filter, out_backprop], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
|
|
699
|
+
end
|
|
700
|
+
|
|
701
|
+
def conv3d(input: nil, filter: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
|
702
|
+
Utils.execute("Conv3D", [input, filter], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
|
703
|
+
end
|
|
704
|
+
|
|
705
|
+
def conv3d_backprop_filter(input: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, dilations: nil)
|
|
706
|
+
Utils.execute("Conv3DBackpropFilter", [input, filter, out_backprop], strides: strides, padding: padding, dilations: dilations)
|
|
707
|
+
end
|
|
708
|
+
|
|
709
|
+
def conv3d_backprop_filter_v2(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
|
710
|
+
Utils.execute("Conv3DBackpropFilterV2", [input, filter_sizes, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
|
711
|
+
end
|
|
712
|
+
|
|
713
|
+
def conv3d_backprop_input(input: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, dilations: nil)
|
|
714
|
+
Utils.execute("Conv3DBackpropInput", [input, filter, out_backprop], strides: strides, padding: padding, dilations: dilations)
|
|
715
|
+
end
|
|
716
|
+
|
|
717
|
+
def conv3d_backprop_input_v2(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
|
718
|
+
Utils.execute("Conv3DBackpropInputV2", [input_sizes, filter, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
|
719
|
+
end
|
|
720
|
+
|
|
721
|
+
def copy(input: nil, tensor_name: nil, debug_ops_spec: nil)
|
|
722
|
+
Utils.execute("Copy", [input], tensor_name: tensor_name, debug_ops_spec: debug_ops_spec)
|
|
723
|
+
end
|
|
724
|
+
|
|
725
|
+
def copy_host(input: nil, tensor_name: nil, debug_ops_spec: nil)
|
|
726
|
+
Utils.execute("CopyHost", [input], tensor_name: tensor_name, debug_ops_spec: debug_ops_spec)
|
|
727
|
+
end
|
|
728
|
+
|
|
729
|
+
def cos(x: nil)
|
|
730
|
+
Utils.execute("Cos", [x])
|
|
731
|
+
end
|
|
732
|
+
|
|
733
|
+
def cosh(x: nil)
|
|
734
|
+
Utils.execute("Cosh", [x])
|
|
735
|
+
end
|
|
736
|
+
|
|
737
|
+
def count_up_to(ref: nil, limit: nil)
|
|
738
|
+
Utils.execute("CountUpTo", [ref], limit: limit)
|
|
739
|
+
end
|
|
740
|
+
|
|
741
|
+
def create_summary_db_writer(writer: nil, db_uri: nil, experiment_name: nil, run_name: nil, user_name: nil)
|
|
742
|
+
Utils.execute("CreateSummaryDbWriter", [writer, db_uri, experiment_name, run_name, user_name])
|
|
743
|
+
end
|
|
744
|
+
|
|
745
|
+
def create_summary_file_writer(writer: nil, logdir: nil, max_queue: nil, flush_millis: nil, filename_suffix: nil)
|
|
746
|
+
Utils.execute("CreateSummaryFileWriter", [writer, logdir, max_queue, flush_millis, filename_suffix])
|
|
747
|
+
end
|
|
748
|
+
|
|
749
|
+
def crop_and_resize(image: nil, boxes: nil, box_ind: nil, crop_size: nil, method: nil, extrapolation_value: nil)
|
|
750
|
+
Utils.execute("CropAndResize", [image, boxes, box_ind, crop_size], method: method, extrapolation_value: extrapolation_value)
|
|
751
|
+
end
|
|
752
|
+
|
|
753
|
+
def crop_and_resize_grad_boxes(grads: nil, image: nil, boxes: nil, box_ind: nil, method: nil)
|
|
754
|
+
Utils.execute("CropAndResizeGradBoxes", [grads, image, boxes, box_ind], method: method)
|
|
755
|
+
end
|
|
756
|
+
|
|
757
|
+
def crop_and_resize_grad_image(grads: nil, boxes: nil, box_ind: nil, image_size: nil, method: nil)
|
|
758
|
+
Utils.execute("CropAndResizeGradImage", [grads, boxes, box_ind, image_size], method: method)
|
|
759
|
+
end
|
|
760
|
+
|
|
761
|
+
def cross(a: nil, b: nil)
|
|
762
|
+
Utils.execute("Cross", [a, b])
|
|
763
|
+
end
|
|
764
|
+
|
|
765
|
+
def cross_replica_sum(input: nil, group_assignment: nil)
|
|
766
|
+
Utils.execute("CrossReplicaSum", [input, group_assignment])
|
|
767
|
+
end
|
|
768
|
+
|
|
769
|
+
def cudnn_rnn(input: nil, input_h: nil, input_c: nil, params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil)
|
|
770
|
+
Utils.execute("CudnnRNN", [input, input_h, input_c, params], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training)
|
|
771
|
+
end
|
|
772
|
+
|
|
773
|
+
def cudnn_rnn_backprop(input: nil, input_h: nil, input_c: nil, params: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
|
774
|
+
Utils.execute("CudnnRNNBackprop", [input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
|
775
|
+
end
|
|
776
|
+
|
|
777
|
+
def cudnn_rnn_backprop_v2(input: nil, input_h: nil, input_c: nil, params: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, host_reserved: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
|
778
|
+
Utils.execute("CudnnRNNBackpropV2", [input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
|
779
|
+
end
|
|
780
|
+
|
|
781
|
+
def cudnn_rnn_backprop_v3(input: nil, input_h: nil, input_c: nil, params: nil, sequence_lengths: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, host_reserved: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, time_major: nil)
|
|
782
|
+
Utils.execute("CudnnRNNBackpropV3", [input, input_h, input_c, params, sequence_lengths, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, time_major: time_major)
|
|
783
|
+
end
|
|
784
|
+
|
|
785
|
+
def cudnn_rnn_canonical_to_params(num_layers: nil, num_units: nil, input_size: nil, weights: nil, biases: nil, num_params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
|
786
|
+
Utils.execute("CudnnRNNCanonicalToParams", [num_layers, num_units, input_size, weights, biases], num_params: num_params, rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
|
787
|
+
end
|
|
788
|
+
|
|
789
|
+
def cudnn_rnn_params_size(num_layers: nil, num_units: nil, input_size: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
|
790
|
+
Utils.execute("CudnnRNNParamsSize", [num_layers, num_units, input_size], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
|
791
|
+
end
|
|
792
|
+
|
|
793
|
+
def cudnn_rnn_params_to_canonical(num_layers: nil, num_units: nil, input_size: nil, params: nil, num_params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
|
794
|
+
Utils.execute("CudnnRNNParamsToCanonical", [num_layers, num_units, input_size, params], num_params: num_params, rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
|
795
|
+
end
|
|
796
|
+
|
|
797
|
+
def cudnn_rnnv2(input: nil, input_h: nil, input_c: nil, params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil)
|
|
798
|
+
Utils.execute("CudnnRNNV2", [input, input_h, input_c, params], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training)
|
|
799
|
+
end
|
|
800
|
+
|
|
801
|
+
def cudnn_rnnv3(input: nil, input_h: nil, input_c: nil, params: nil, sequence_lengths: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil, time_major: nil)
|
|
802
|
+
Utils.execute("CudnnRNNV3", [input, input_h, input_c, params, sequence_lengths], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training, time_major: time_major)
|
|
803
|
+
end
|
|
804
|
+
|
|
805
|
+
def cumprod(x: nil, axis: nil, exclusive: nil, reverse: nil)
|
|
806
|
+
Utils.execute("Cumprod", [x, axis], exclusive: exclusive, reverse: reverse)
|
|
807
|
+
end
|
|
808
|
+
|
|
809
|
+
def cumsum(x: nil, axis: nil, exclusive: nil, reverse: nil)
|
|
810
|
+
Utils.execute("Cumsum", [x, axis], exclusive: exclusive, reverse: reverse)
|
|
811
|
+
end
|
|
812
|
+
|
|
813
|
+
def data_format_dim_map(x: nil, src_format: nil, dst_format: nil)
|
|
814
|
+
Utils.execute("DataFormatDimMap", [x], src_format: src_format, dst_format: dst_format)
|
|
815
|
+
end
|
|
816
|
+
|
|
817
|
+
def data_format_vec_permute(x: nil, src_format: nil, dst_format: nil)
|
|
818
|
+
Utils.execute("DataFormatVecPermute", [x], src_format: src_format, dst_format: dst_format)
|
|
819
|
+
end
|
|
820
|
+
|
|
821
|
+
def dataset_to_graph(input_dataset: nil)
|
|
822
|
+
Utils.execute("DatasetToGraph", [input_dataset])
|
|
823
|
+
end
|
|
824
|
+
|
|
825
|
+
def dataset_to_single_element(dataset: nil, output_types: nil, output_shapes: nil)
|
|
826
|
+
Utils.execute("DatasetToSingleElement", [dataset], output_types: output_types, output_shapes: output_shapes)
|
|
827
|
+
end
|
|
828
|
+
|
|
829
|
+
def debug_gradient_identity(input: nil)
|
|
830
|
+
Utils.execute("DebugGradientIdentity", [input])
|
|
831
|
+
end
|
|
832
|
+
|
|
833
|
+
def debug_gradient_ref_identity(input: nil)
|
|
834
|
+
Utils.execute("DebugGradientRefIdentity", [input])
|
|
835
|
+
end
|
|
836
|
+
|
|
837
|
+
def debug_identity(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, gated_grpc: nil)
|
|
838
|
+
Utils.execute("DebugIdentity", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, gated_grpc: gated_grpc)
|
|
839
|
+
end
|
|
840
|
+
|
|
841
|
+
def debug_nan_count(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, gated_grpc: nil)
|
|
842
|
+
Utils.execute("DebugNanCount", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, gated_grpc: gated_grpc)
|
|
843
|
+
end
|
|
844
|
+
|
|
845
|
+
def debug_numeric_summary(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, lower_bound: nil, upper_bound: nil, mute_if_healthy: nil, gated_grpc: nil)
|
|
846
|
+
Utils.execute("DebugNumericSummary", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, lower_bound: lower_bound, upper_bound: upper_bound, mute_if_healthy: mute_if_healthy, gated_grpc: gated_grpc)
|
|
847
|
+
end
|
|
848
|
+
|
|
849
|
+
def decode_and_crop_jpeg(contents: nil, crop_window: nil, channels: nil, ratio: nil, fancy_upscaling: nil, try_recover_truncated: nil, acceptable_fraction: nil, dct_method: nil)
|
|
850
|
+
Utils.execute("DecodeAndCropJpeg", [contents, crop_window], channels: channels, ratio: ratio, fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, acceptable_fraction: acceptable_fraction, dct_method: dct_method)
|
|
851
|
+
end
|
|
852
|
+
|
|
853
|
+
def decode_base64(input: nil)
|
|
854
|
+
Utils.execute("DecodeBase64", [input])
|
|
855
|
+
end
|
|
856
|
+
|
|
857
|
+
def decode_bmp(contents: nil, channels: nil)
|
|
858
|
+
Utils.execute("DecodeBmp", [contents], channels: channels)
|
|
859
|
+
end
|
|
860
|
+
|
|
861
|
+
def decode_csv(records: nil, record_defaults: nil, field_delim: nil, use_quote_delim: nil, na_value: nil, select_cols: nil)
|
|
862
|
+
Utils.execute("DecodeCSV", [records, record_defaults], field_delim: field_delim, use_quote_delim: use_quote_delim, na_value: na_value, select_cols: select_cols)
|
|
863
|
+
end
|
|
864
|
+
|
|
865
|
+
def decode_compressed(bytes: nil, compression_type: nil)
|
|
866
|
+
Utils.execute("DecodeCompressed", [bytes], compression_type: compression_type)
|
|
867
|
+
end
|
|
868
|
+
|
|
869
|
+
def decode_gif(contents: nil)
|
|
870
|
+
Utils.execute("DecodeGif", [contents])
|
|
871
|
+
end
|
|
872
|
+
|
|
873
|
+
def decode_json_example(json_examples: nil)
|
|
874
|
+
Utils.execute("DecodeJSONExample", [json_examples])
|
|
875
|
+
end
|
|
876
|
+
|
|
877
|
+
def decode_jpeg(contents: nil, channels: nil, ratio: nil, fancy_upscaling: nil, try_recover_truncated: nil, acceptable_fraction: nil, dct_method: nil)
|
|
878
|
+
Utils.execute("DecodeJpeg", [contents], channels: channels, ratio: ratio, fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, acceptable_fraction: acceptable_fraction, dct_method: dct_method)
|
|
879
|
+
end
|
|
880
|
+
|
|
881
|
+
def decode_padded_raw(input_bytes: nil, fixed_length: nil, out_type: nil, little_endian: nil)
|
|
882
|
+
Utils.execute("DecodePaddedRaw", [input_bytes, fixed_length], out_type: out_type, little_endian: little_endian)
|
|
883
|
+
end
|
|
884
|
+
|
|
885
|
+
def decode_png(contents: nil, channels: nil, dtype: nil)
|
|
886
|
+
Utils.execute("DecodePng", [contents], channels: channels, dtype: dtype)
|
|
887
|
+
end
|
|
888
|
+
|
|
889
|
+
def decode_proto_v2(bytes: nil, message_type: nil, field_names: nil, output_types: nil, descriptor_source: nil, message_format: nil, sanitize: nil)
|
|
890
|
+
Utils.execute("DecodeProtoV2", [bytes], message_type: message_type, field_names: field_names, output_types: output_types, descriptor_source: descriptor_source, message_format: message_format, sanitize: sanitize)
|
|
891
|
+
end
|
|
892
|
+
|
|
893
|
+
def decode_raw(bytes: nil, out_type: nil, little_endian: nil)
|
|
894
|
+
Utils.execute("DecodeRaw", [bytes], out_type: out_type, little_endian: little_endian)
|
|
895
|
+
end
|
|
896
|
+
|
|
897
|
+
def decode_wav(contents: nil, desired_channels: nil, desired_samples: nil)
|
|
898
|
+
Utils.execute("DecodeWav", [contents], desired_channels: desired_channels, desired_samples: desired_samples)
|
|
899
|
+
end
|
|
900
|
+
|
|
901
|
+
def deep_copy(x: nil)
|
|
902
|
+
Utils.execute("DeepCopy", [x])
|
|
903
|
+
end
|
|
904
|
+
|
|
905
|
+
def delete_iterator(handle: nil, deleter: nil)
|
|
906
|
+
Utils.execute("DeleteIterator", [handle, deleter])
|
|
907
|
+
end
|
|
908
|
+
|
|
909
|
+
def delete_session_tensor(handle: nil)
|
|
910
|
+
Utils.execute("DeleteSessionTensor", [handle])
|
|
911
|
+
end
|
|
912
|
+
|
|
913
|
+
def dense_to_dense_set_operation(set1: nil, set2: nil, set_operation: nil, validate_indices: nil)
|
|
914
|
+
Utils.execute("DenseToDenseSetOperation", [set1, set2], set_operation: set_operation, validate_indices: validate_indices)
|
|
915
|
+
end
|
|
916
|
+
|
|
917
|
+
def dense_to_sparse_set_operation(set1: nil, set2_indices: nil, set2_values: nil, set2_shape: nil, set_operation: nil, validate_indices: nil)
|
|
918
|
+
Utils.execute("DenseToSparseSetOperation", [set1, set2_indices, set2_values, set2_shape], set_operation: set_operation, validate_indices: validate_indices)
|
|
919
|
+
end
|
|
920
|
+
|
|
921
|
+
def depth_to_space(input: nil, block_size: nil, data_format: nil)
|
|
922
|
+
Utils.execute("DepthToSpace", [input], block_size: block_size, data_format: data_format)
|
|
923
|
+
end
|
|
924
|
+
|
|
925
|
+
def depthwise_conv2d_native(input: nil, filter: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
|
926
|
+
Utils.execute("DepthwiseConv2dNative", [input, filter], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
|
927
|
+
end
|
|
928
|
+
|
|
929
|
+
def depthwise_conv2d_native_backprop_filter(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
|
930
|
+
Utils.execute("DepthwiseConv2dNativeBackpropFilter", [input, filter_sizes, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
|
931
|
+
end
|
|
932
|
+
|
|
933
|
+
def depthwise_conv2d_native_backprop_input(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
|
934
|
+
Utils.execute("DepthwiseConv2dNativeBackpropInput", [input_sizes, filter, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
|
935
|
+
end
|
|
936
|
+
|
|
937
|
+
def dequantize(input: nil, min_range: nil, max_range: nil, mode: nil)
|
|
938
|
+
Utils.execute("Dequantize", [input, min_range, max_range], mode: mode)
|
|
939
|
+
end
|
|
940
|
+
|
|
941
|
+
def deserialize_iterator(resource_handle: nil, serialized: nil)
|
|
942
|
+
Utils.execute("DeserializeIterator", [resource_handle, serialized])
|
|
943
|
+
end
|
|
944
|
+
|
|
945
|
+
def deserialize_many_sparse(serialized_sparse: nil, dtype: nil)
|
|
946
|
+
Utils.execute("DeserializeManySparse", [serialized_sparse], dtype: dtype)
|
|
947
|
+
end
|
|
948
|
+
|
|
949
|
+
def deserialize_sparse(serialized_sparse: nil, dtype: nil)
|
|
950
|
+
Utils.execute("DeserializeSparse", [serialized_sparse], dtype: dtype)
|
|
951
|
+
end
|
|
952
|
+
|
|
953
|
+
def destroy_resource_op(resource: nil, ignore_lookup_error: nil)
|
|
954
|
+
Utils.execute("DestroyResourceOp", [resource], ignore_lookup_error: ignore_lookup_error)
|
|
955
|
+
end
|
|
956
|
+
|
|
957
|
+
def destroy_temporary_variable(ref: nil, var_name: nil)
|
|
958
|
+
Utils.execute("DestroyTemporaryVariable", [ref], var_name: var_name)
|
|
959
|
+
end
|
|
960
|
+
|
|
961
|
+
def diag(diagonal: nil)
|
|
962
|
+
Utils.execute("Diag", [diagonal])
|
|
963
|
+
end
|
|
964
|
+
|
|
965
|
+
def diag_part(input: nil)
|
|
966
|
+
Utils.execute("DiagPart", [input])
|
|
967
|
+
end
|
|
968
|
+
|
|
969
|
+
def digamma(x: nil)
|
|
970
|
+
Utils.execute("Digamma", [x])
|
|
971
|
+
end
|
|
972
|
+
|
|
973
|
+
def dilation2d(input: nil, filter: nil, strides: nil, rates: nil, padding: nil)
|
|
974
|
+
Utils.execute("Dilation2D", [input, filter], strides: strides, rates: rates, padding: padding)
|
|
975
|
+
end
|
|
976
|
+
|
|
977
|
+
def dilation2d_backprop_filter(input: nil, filter: nil, out_backprop: nil, strides: nil, rates: nil, padding: nil)
|
|
978
|
+
Utils.execute("Dilation2DBackpropFilter", [input, filter, out_backprop], strides: strides, rates: rates, padding: padding)
|
|
979
|
+
end
|
|
980
|
+
|
|
981
|
+
def dilation2d_backprop_input(input: nil, filter: nil, out_backprop: nil, strides: nil, rates: nil, padding: nil)
|
|
982
|
+
Utils.execute("Dilation2DBackpropInput", [input, filter, out_backprop], strides: strides, rates: rates, padding: padding)
|
|
983
|
+
end
|
|
984
|
+
|
|
985
|
+
def div(x: nil, y: nil)
|
|
986
|
+
Utils.execute("Div", [x, y])
|
|
987
|
+
end
|
|
988
|
+
|
|
989
|
+
def div_no_nan(x: nil, y: nil)
|
|
990
|
+
Utils.execute("DivNoNan", [x, y])
|
|
991
|
+
end
|
|
992
|
+
|
|
993
|
+
def draw_bounding_boxes(images: nil, boxes: nil)
|
|
994
|
+
Utils.execute("DrawBoundingBoxes", [images, boxes])
|
|
995
|
+
end
|
|
996
|
+
|
|
997
|
+
def draw_bounding_boxes_v2(images: nil, boxes: nil, colors: nil)
|
|
998
|
+
Utils.execute("DrawBoundingBoxesV2", [images, boxes, colors])
|
|
999
|
+
end
|
|
1000
|
+
|
|
1001
|
+
def dynamic_partition(data: nil, partitions: nil, num_partitions: nil)
|
|
1002
|
+
Utils.execute("DynamicPartition", [data, partitions], num_partitions: num_partitions)
|
|
1003
|
+
end
|
|
1004
|
+
|
|
1005
|
+
def dynamic_stitch(indices: nil, data: nil)
|
|
1006
|
+
Utils.execute("DynamicStitch", [indices, data])
|
|
1007
|
+
end
|
|
1008
|
+
|
|
1009
|
+
def eager_py_func(input: nil, token: nil)
|
|
1010
|
+
Utils.execute("EagerPyFunc", [input], token: token)
|
|
1011
|
+
end
|
|
1012
|
+
|
|
1013
|
+
def edit_distance(hypothesis_indices: nil, hypothesis_values: nil, hypothesis_shape: nil, truth_indices: nil, truth_values: nil, truth_shape: nil, normalize: nil)
|
|
1014
|
+
Utils.execute("EditDistance", [hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape], normalize: normalize)
|
|
1015
|
+
end
|
|
1016
|
+
|
|
1017
|
+
def elu(features: nil)
|
|
1018
|
+
Utils.execute("Elu", [features])
|
|
1019
|
+
end
|
|
1020
|
+
|
|
1021
|
+
def elu_grad(gradients: nil, outputs: nil)
|
|
1022
|
+
Utils.execute("EluGrad", [gradients, outputs])
|
|
1023
|
+
end
|
|
1024
|
+
|
|
1025
|
+
def empty(shape: nil, dtype: nil, init: nil)
|
|
1026
|
+
Utils.execute("Empty", [shape], dtype: dtype, init: init)
|
|
1027
|
+
end
|
|
1028
|
+
|
|
1029
|
+
def empty_tensor_list(element_shape: nil, max_num_elements: nil, element_dtype: nil, shape_type: nil)
|
|
1030
|
+
Utils.execute("EmptyTensorList", [element_shape, max_num_elements], element_dtype: element_dtype, shape_type: shape_type)
|
|
1031
|
+
end
|
|
1032
|
+
|
|
1033
|
+
def encode_base64(input: nil, pad: nil)
|
|
1034
|
+
Utils.execute("EncodeBase64", [input], pad: pad)
|
|
1035
|
+
end
|
|
1036
|
+
|
|
1037
|
+
def encode_jpeg(image: nil, format: nil, quality: nil, progressive: nil, optimize_size: nil, chroma_downsampling: nil, density_unit: nil, x_density: nil, y_density: nil, xmp_metadata: nil)
|
|
1038
|
+
Utils.execute("EncodeJpeg", [image], format: format, quality: quality, progressive: progressive, optimize_size: optimize_size, chroma_downsampling: chroma_downsampling, density_unit: density_unit, x_density: x_density, y_density: y_density, xmp_metadata: xmp_metadata)
|
|
1039
|
+
end
|
|
1040
|
+
|
|
1041
|
+
def encode_jpeg_variable_quality(images: nil, quality: nil)
|
|
1042
|
+
Utils.execute("EncodeJpegVariableQuality", [images, quality])
|
|
1043
|
+
end
|
|
1044
|
+
|
|
1045
|
+
def encode_png(image: nil, compression: nil)
|
|
1046
|
+
Utils.execute("EncodePng", [image], compression: compression)
|
|
1047
|
+
end
|
|
1048
|
+
|
|
1049
|
+
def encode_proto(sizes: nil, values: nil, field_names: nil, message_type: nil, descriptor_source: nil)
|
|
1050
|
+
Utils.execute("EncodeProto", [sizes, values], field_names: field_names, message_type: message_type, descriptor_source: descriptor_source)
|
|
1051
|
+
end
|
|
1052
|
+
|
|
1053
|
+
def encode_wav(audio: nil, sample_rate: nil)
|
|
1054
|
+
Utils.execute("EncodeWav", [audio, sample_rate])
|
|
1055
|
+
end
|
|
1056
|
+
|
|
1057
|
+
def enqueue_tpu_embedding_integer_batch(batch: nil, mode_override: nil, device_ordinal: nil)
|
|
1058
|
+
Utils.execute("EnqueueTPUEmbeddingIntegerBatch", [batch, mode_override], device_ordinal: device_ordinal)
|
|
1059
|
+
end
|
|
1060
|
+
|
|
1061
|
+
def enqueue_tpu_embedding_sparse_batch(sample_indices: nil, embedding_indices: nil, aggregation_weights: nil, mode_override: nil, device_ordinal: nil, combiners: nil)
|
|
1062
|
+
Utils.execute("EnqueueTPUEmbeddingSparseBatch", [sample_indices, embedding_indices, aggregation_weights, mode_override], device_ordinal: device_ordinal, combiners: combiners)
|
|
1063
|
+
end
|
|
1064
|
+
|
|
1065
|
+
def enqueue_tpu_embedding_sparse_tensor_batch(sample_indices: nil, embedding_indices: nil, aggregation_weights: nil, mode_override: nil, device_ordinal: nil, combiners: nil, table_ids: nil, max_sequence_lengths: nil)
|
|
1066
|
+
Utils.execute("EnqueueTPUEmbeddingSparseTensorBatch", [sample_indices, embedding_indices, aggregation_weights, mode_override], device_ordinal: device_ordinal, combiners: combiners, table_ids: table_ids, max_sequence_lengths: max_sequence_lengths)
|
|
1067
|
+
end
|
|
1068
|
+
|
|
1069
|
+
def ensure_shape(input: nil, shape: nil)
|
|
1070
|
+
Utils.execute("EnsureShape", [input], shape: shape)
|
|
1071
|
+
end
|
|
1072
|
+
|
|
1073
|
+
def enter(data: nil, frame_name: nil, is_constant: nil, parallel_iterations: nil)
|
|
1074
|
+
Utils.execute("Enter", [data], frame_name: frame_name, is_constant: is_constant, parallel_iterations: parallel_iterations)
|
|
1075
|
+
end
|
|
1076
|
+
|
|
1077
|
+
def equal(x: nil, y: nil)
|
|
1078
|
+
Utils.execute("Equal", [x, y])
|
|
1079
|
+
end
|
|
1080
|
+
|
|
1081
|
+
def erf(x: nil)
|
|
1082
|
+
Utils.execute("Erf", [x])
|
|
1083
|
+
end
|
|
1084
|
+
|
|
1085
|
+
def erfc(x: nil)
|
|
1086
|
+
Utils.execute("Erfc", [x])
|
|
1087
|
+
end
|
|
1088
|
+
|
|
1089
|
+
def euclidean_norm(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
1090
|
+
Utils.execute("EuclideanNorm", [input, reduction_indices], keep_dims: keep_dims)
|
|
1091
|
+
end
|
|
1092
|
+
|
|
1093
|
+
def exit(data: nil)
|
|
1094
|
+
Utils.execute("Exit", [data])
|
|
1095
|
+
end
|
|
1096
|
+
|
|
1097
|
+
def exp(x: nil)
|
|
1098
|
+
Utils.execute("Exp", [x])
|
|
1099
|
+
end
|
|
1100
|
+
|
|
1101
|
+
def expand_dims(input: nil, dim: nil)
|
|
1102
|
+
Utils.execute("ExpandDims", [input, dim])
|
|
1103
|
+
end
|
|
1104
|
+
|
|
1105
|
+
def experimental_assert_next_dataset(input_dataset: nil, transformations: nil, output_types: nil, output_shapes: nil)
|
|
1106
|
+
Utils.execute("ExperimentalAssertNextDataset", [input_dataset, transformations], output_types: output_types, output_shapes: output_shapes)
|
|
1107
|
+
end
|
|
1108
|
+
|
|
1109
|
+
def experimental_auto_shard_dataset(input_dataset: nil, num_workers: nil, index: nil, output_types: nil, output_shapes: nil)
|
|
1110
|
+
Utils.execute("ExperimentalAutoShardDataset", [input_dataset, num_workers, index], output_types: output_types, output_shapes: output_shapes)
|
|
1111
|
+
end
|
|
1112
|
+
|
|
1113
|
+
def experimental_bytes_produced_stats_dataset(input_dataset: nil, tag: nil, output_types: nil, output_shapes: nil)
|
|
1114
|
+
Utils.execute("ExperimentalBytesProducedStatsDataset", [input_dataset, tag], output_types: output_types, output_shapes: output_shapes)
|
|
1115
|
+
end
|
|
1116
|
+
|
|
1117
|
+
def experimental_csv_dataset(filenames: nil, compression_type: nil, buffer_size: nil, header: nil, field_delim: nil, use_quote_delim: nil, na_value: nil, select_cols: nil, record_defaults: nil, output_types: nil, output_shapes: nil)
|
|
1118
|
+
Utils.execute("ExperimentalCSVDataset", [filenames, compression_type, buffer_size, header, field_delim, use_quote_delim, na_value, select_cols, record_defaults], output_types: output_types, output_shapes: output_shapes)
|
|
1119
|
+
end
|
|
1120
|
+
|
|
1121
|
+
def experimental_choose_fastest_dataset(input_datasets: nil, num_experiments: nil, output_types: nil, output_shapes: nil)
|
|
1122
|
+
Utils.execute("ExperimentalChooseFastestDataset", [input_datasets], num_experiments: num_experiments, output_types: output_types, output_shapes: output_shapes)
|
|
1123
|
+
end
|
|
1124
|
+
|
|
1125
|
+
def experimental_dataset_cardinality(input_dataset: nil)
|
|
1126
|
+
Utils.execute("ExperimentalDatasetCardinality", [input_dataset])
|
|
1127
|
+
end
|
|
1128
|
+
|
|
1129
|
+
def experimental_dataset_to_tf_record(input_dataset: nil, filename: nil, compression_type: nil)
|
|
1130
|
+
Utils.execute("ExperimentalDatasetToTFRecord", [input_dataset, filename, compression_type])
|
|
1131
|
+
end
|
|
1132
|
+
|
|
1133
|
+
def experimental_dense_to_sparse_batch_dataset(input_dataset: nil, batch_size: nil, row_shape: nil, output_types: nil, output_shapes: nil)
|
|
1134
|
+
Utils.execute("ExperimentalDenseToSparseBatchDataset", [input_dataset, batch_size, row_shape], output_types: output_types, output_shapes: output_shapes)
|
|
1135
|
+
end
|
|
1136
|
+
|
|
1137
|
+
def experimental_directed_interleave_dataset(selector_input_dataset: nil, data_input_datasets: nil, output_types: nil, output_shapes: nil)
|
|
1138
|
+
Utils.execute("ExperimentalDirectedInterleaveDataset", [selector_input_dataset, data_input_datasets], output_types: output_types, output_shapes: output_shapes)
|
|
1139
|
+
end
|
|
1140
|
+
|
|
1141
|
+
def experimental_group_by_reducer_dataset(input_dataset: nil, key_func_other_arguments: nil, init_func_other_arguments: nil, reduce_func_other_arguments: nil, finalize_func_other_arguments: nil, key_func: nil, init_func: nil, reduce_func: nil, finalize_func: nil, output_types: nil, output_shapes: nil)
|
|
1142
|
+
Utils.execute("ExperimentalGroupByReducerDataset", [input_dataset, key_func_other_arguments, init_func_other_arguments, reduce_func_other_arguments, finalize_func_other_arguments], key_func: key_func, init_func: init_func, reduce_func: reduce_func, finalize_func: finalize_func, output_types: output_types, output_shapes: output_shapes)
|
|
1143
|
+
end
|
|
1144
|
+
|
|
1145
|
+
def experimental_group_by_window_dataset(input_dataset: nil, key_func_other_arguments: nil, reduce_func_other_arguments: nil, window_size_func_other_arguments: nil, key_func: nil, reduce_func: nil, window_size_func: nil, output_types: nil, output_shapes: nil)
|
|
1146
|
+
Utils.execute("ExperimentalGroupByWindowDataset", [input_dataset, key_func_other_arguments, reduce_func_other_arguments, window_size_func_other_arguments], key_func: key_func, reduce_func: reduce_func, window_size_func: window_size_func, output_types: output_types, output_shapes: output_shapes)
|
|
1147
|
+
end
|
|
1148
|
+
|
|
1149
|
+
def experimental_identity_indexed_dataset(size: nil)
|
|
1150
|
+
Utils.execute("ExperimentalIdentityIndexedDataset", [size])
|
|
1151
|
+
end
|
|
1152
|
+
|
|
1153
|
+
def experimental_ignore_errors_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
|
1154
|
+
Utils.execute("ExperimentalIgnoreErrorsDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
|
1155
|
+
end
|
|
1156
|
+
|
|
1157
|
+
def experimental_indexed_dataset_get(materialized: nil, index: nil, output_types: nil, output_shapes: nil)
|
|
1158
|
+
Utils.execute("ExperimentalIndexedDatasetGet", [materialized, index], output_types: output_types, output_shapes: output_shapes)
|
|
1159
|
+
end
|
|
1160
|
+
|
|
1161
|
+
def experimental_indexed_dataset_materialize(dataset: nil, materialized: nil)
|
|
1162
|
+
Utils.execute("ExperimentalIndexedDatasetMaterialize", [dataset, materialized])
|
|
1163
|
+
end
|
|
1164
|
+
|
|
1165
|
+
def experimental_iterator_get_device(resource: nil)
|
|
1166
|
+
Utils.execute("ExperimentalIteratorGetDevice", [resource])
|
|
1167
|
+
end
|
|
1168
|
+
|
|
1169
|
+
def experimental_lmdb_dataset(filenames: nil, output_types: nil, output_shapes: nil)
|
|
1170
|
+
Utils.execute("ExperimentalLMDBDataset", [filenames], output_types: output_types, output_shapes: output_shapes)
|
|
1171
|
+
end
|
|
1172
|
+
|
|
1173
|
+
def experimental_latency_stats_dataset(input_dataset: nil, tag: nil, output_types: nil, output_shapes: nil)
|
|
1174
|
+
Utils.execute("ExperimentalLatencyStatsDataset", [input_dataset, tag], output_types: output_types, output_shapes: output_shapes)
|
|
1175
|
+
end
|
|
1176
|
+
|
|
1177
|
+
def experimental_map_and_batch_dataset(input_dataset: nil, other_arguments: nil, batch_size: nil, num_parallel_calls: nil, drop_remainder: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
|
|
1178
|
+
Utils.execute("ExperimentalMapAndBatchDataset", [input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
|
|
1179
|
+
end
|
|
1180
|
+
|
|
1181
|
+
def experimental_map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, preserve_cardinality: nil)
|
|
1182
|
+
Utils.execute("ExperimentalMapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, preserve_cardinality: preserve_cardinality)
|
|
1183
|
+
end
|
|
1184
|
+
|
|
1185
|
+
def experimental_matching_files_dataset(patterns: nil)
|
|
1186
|
+
Utils.execute("ExperimentalMatchingFilesDataset", [patterns])
|
|
1187
|
+
end
|
|
1188
|
+
|
|
1189
|
+
def experimental_materialized_index_dataset_handle(container: nil, shared_name: nil, output_types: nil, output_shapes: nil)
|
|
1190
|
+
Utils.execute("ExperimentalMaterializedIndexDatasetHandle", [], container: container, shared_name: shared_name, output_types: output_types, output_shapes: output_shapes)
|
|
1191
|
+
end
|
|
1192
|
+
|
|
1193
|
+
def experimental_max_intra_op_parallelism_dataset(input_dataset: nil, max_intra_op_parallelism: nil, output_types: nil, output_shapes: nil)
|
|
1194
|
+
Utils.execute("ExperimentalMaxIntraOpParallelismDataset", [input_dataset, max_intra_op_parallelism], output_types: output_types, output_shapes: output_shapes)
|
|
1195
|
+
end
|
|
1196
|
+
|
|
1197
|
+
def experimental_non_serializable_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
|
1198
|
+
Utils.execute("ExperimentalNonSerializableDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
|
1199
|
+
end
|
|
1200
|
+
|
|
1201
|
+
def experimental_numa_map_and_batch_dataset(input_dataset: nil, other_arguments: nil, batch_size: nil, num_parallel_calls: nil, drop_remainder: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
|
|
1202
|
+
Utils.execute("ExperimentalNumaMapAndBatchDataset", [input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
|
|
1203
|
+
end
|
|
1204
|
+
|
|
1205
|
+
def experimental_parallel_interleave_dataset(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, sloppy: nil, buffer_output_elements: nil, prefetch_input_elements: nil, f: nil, output_types: nil, output_shapes: nil)
|
|
1206
|
+
Utils.execute("ExperimentalParallelInterleaveDataset", [input_dataset, other_arguments, cycle_length, block_length, sloppy, buffer_output_elements, prefetch_input_elements], f: f, output_types: output_types, output_shapes: output_shapes)
|
|
1207
|
+
end
|
|
1208
|
+
|
|
1209
|
+
def experimental_parse_example_dataset(input_dataset: nil, num_parallel_calls: nil, dense_defaults: nil, sparse_keys: nil, dense_keys: nil, sparse_types: nil, dense_shapes: nil, output_types: nil, output_shapes: nil, sloppy: nil)
|
|
1210
|
+
Utils.execute("ExperimentalParseExampleDataset", [input_dataset, num_parallel_calls, dense_defaults], sparse_keys: sparse_keys, dense_keys: dense_keys, sparse_types: sparse_types, dense_shapes: dense_shapes, output_types: output_types, output_shapes: output_shapes, sloppy: sloppy)
|
|
1211
|
+
end
|
|
1212
|
+
|
|
1213
|
+
def experimental_private_thread_pool_dataset(input_dataset: nil, num_threads: nil, output_types: nil, output_shapes: nil)
|
|
1214
|
+
Utils.execute("ExperimentalPrivateThreadPoolDataset", [input_dataset, num_threads], output_types: output_types, output_shapes: output_shapes)
|
|
1215
|
+
end
|
|
1216
|
+
|
|
1217
|
+
def experimental_random_dataset(seed: nil, seed2: nil, output_types: nil, output_shapes: nil)
|
|
1218
|
+
Utils.execute("ExperimentalRandomDataset", [seed, seed2], output_types: output_types, output_shapes: output_shapes)
|
|
1219
|
+
end
|
|
1220
|
+
|
|
1221
|
+
def experimental_rebatch_dataset(input_dataset: nil, num_workers: nil, output_types: nil, output_shapes: nil)
|
|
1222
|
+
Utils.execute("ExperimentalRebatchDataset", [input_dataset, num_workers], output_types: output_types, output_shapes: output_shapes)
|
|
1223
|
+
end
|
|
1224
|
+
|
|
1225
|
+
def experimental_scan_dataset(input_dataset: nil, initial_state: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
|
|
1226
|
+
Utils.execute("ExperimentalScanDataset", [input_dataset, initial_state, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
|
|
1227
|
+
end
|
|
1228
|
+
|
|
1229
|
+
def experimental_set_stats_aggregator_dataset(input_dataset: nil, stats_aggregator: nil, tag: nil, counter_prefix: nil, output_types: nil, output_shapes: nil)
|
|
1230
|
+
Utils.execute("ExperimentalSetStatsAggregatorDataset", [input_dataset, stats_aggregator, tag, counter_prefix], output_types: output_types, output_shapes: output_shapes)
|
|
1231
|
+
end
|
|
1232
|
+
|
|
1233
|
+
def experimental_sleep_dataset(input_dataset: nil, sleep_microseconds: nil, output_types: nil, output_shapes: nil)
|
|
1234
|
+
Utils.execute("ExperimentalSleepDataset", [input_dataset, sleep_microseconds], output_types: output_types, output_shapes: output_shapes)
|
|
1235
|
+
end
|
|
1236
|
+
|
|
1237
|
+
def experimental_sliding_window_dataset(input_dataset: nil, window_size: nil, window_shift: nil, window_stride: nil, output_types: nil, output_shapes: nil)
|
|
1238
|
+
Utils.execute("ExperimentalSlidingWindowDataset", [input_dataset, window_size, window_shift, window_stride], output_types: output_types, output_shapes: output_shapes)
|
|
1239
|
+
end
|
|
1240
|
+
|
|
1241
|
+
def experimental_sql_dataset(driver_name: nil, data_source_name: nil, query: nil, output_types: nil, output_shapes: nil)
|
|
1242
|
+
Utils.execute("ExperimentalSqlDataset", [driver_name, data_source_name, query], output_types: output_types, output_shapes: output_shapes)
|
|
1243
|
+
end
|
|
1244
|
+
|
|
1245
|
+
def experimental_stats_aggregator_handle(container: nil, shared_name: nil)
|
|
1246
|
+
Utils.execute("ExperimentalStatsAggregatorHandle", [], container: container, shared_name: shared_name)
|
|
1247
|
+
end
|
|
1248
|
+
|
|
1249
|
+
def experimental_stats_aggregator_summary(iterator: nil)
|
|
1250
|
+
Utils.execute("ExperimentalStatsAggregatorSummary", [iterator])
|
|
1251
|
+
end
|
|
1252
|
+
|
|
1253
|
+
def experimental_take_while_dataset(input_dataset: nil, other_arguments: nil, predicate: nil, output_types: nil, output_shapes: nil)
|
|
1254
|
+
Utils.execute("ExperimentalTakeWhileDataset", [input_dataset, other_arguments], predicate: predicate, output_types: output_types, output_shapes: output_shapes)
|
|
1255
|
+
end
|
|
1256
|
+
|
|
1257
|
+
def experimental_thread_pool_dataset(input_dataset: nil, thread_pool: nil, output_types: nil, output_shapes: nil)
|
|
1258
|
+
Utils.execute("ExperimentalThreadPoolDataset", [input_dataset, thread_pool], output_types: output_types, output_shapes: output_shapes)
|
|
1259
|
+
end
|
|
1260
|
+
|
|
1261
|
+
def experimental_thread_pool_handle(num_threads: nil, max_intra_op_parallelism: nil, display_name: nil, container: nil, shared_name: nil)
|
|
1262
|
+
Utils.execute("ExperimentalThreadPoolHandle", [], num_threads: num_threads, max_intra_op_parallelism: max_intra_op_parallelism, display_name: display_name, container: container, shared_name: shared_name)
|
|
1263
|
+
end
|
|
1264
|
+
|
|
1265
|
+
def experimental_unbatch_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
|
1266
|
+
Utils.execute("ExperimentalUnbatchDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
|
1267
|
+
end
|
|
1268
|
+
|
|
1269
|
+
def experimental_unique_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
|
1270
|
+
Utils.execute("ExperimentalUniqueDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
|
1271
|
+
end
|
|
1272
|
+
|
|
1273
|
+
def expm1(x: nil)
|
|
1274
|
+
Utils.execute("Expm1", [x])
|
|
1275
|
+
end
|
|
1276
|
+
|
|
1277
|
+
def extract_glimpse(input: nil, size: nil, offsets: nil, centered: nil, normalized: nil, uniform_noise: nil, noise: nil)
|
|
1278
|
+
Utils.execute("ExtractGlimpse", [input, size, offsets], centered: centered, normalized: normalized, uniform_noise: uniform_noise, noise: noise)
|
|
1279
|
+
end
|
|
1280
|
+
|
|
1281
|
+
def extract_image_patches(images: nil, ksizes: nil, strides: nil, rates: nil, padding: nil)
|
|
1282
|
+
Utils.execute("ExtractImagePatches", [images], ksizes: ksizes, strides: strides, rates: rates, padding: padding)
|
|
1283
|
+
end
|
|
1284
|
+
|
|
1285
|
+
def extract_jpeg_shape(contents: nil, output_type: nil)
|
|
1286
|
+
Utils.execute("ExtractJpegShape", [contents], output_type: output_type)
|
|
1287
|
+
end
|
|
1288
|
+
|
|
1289
|
+
def extract_volume_patches(input: nil, ksizes: nil, strides: nil, padding: nil)
|
|
1290
|
+
Utils.execute("ExtractVolumePatches", [input], ksizes: ksizes, strides: strides, padding: padding)
|
|
1291
|
+
end
|
|
1292
|
+
|
|
1293
|
+
def fft(input: nil)
|
|
1294
|
+
Utils.execute("FFT", [input])
|
|
1295
|
+
end
|
|
1296
|
+
|
|
1297
|
+
def fft2d(input: nil)
|
|
1298
|
+
Utils.execute("FFT2D", [input])
|
|
1299
|
+
end
|
|
1300
|
+
|
|
1301
|
+
def fft3d(input: nil)
|
|
1302
|
+
Utils.execute("FFT3D", [input])
|
|
1303
|
+
end
|
|
1304
|
+
|
|
1305
|
+
def fifo_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
1306
|
+
Utils.execute("FIFOQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
1307
|
+
end
|
|
1308
|
+
|
|
1309
|
+
def fifo_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
1310
|
+
Utils.execute("FIFOQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
1311
|
+
end
|
|
1312
|
+
|
|
1313
|
+
def fact
|
|
1314
|
+
Utils.execute("Fact", [])
|
|
1315
|
+
end
|
|
1316
|
+
|
|
1317
|
+
def fake_param(dtype: nil, shape: nil)
|
|
1318
|
+
Utils.execute("FakeParam", [], dtype: dtype, shape: shape)
|
|
1319
|
+
end
|
|
1320
|
+
|
|
1321
|
+
def fake_quant_with_min_max_args(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
|
1322
|
+
Utils.execute("FakeQuantWithMinMaxArgs", [inputs], min: min, max: max, num_bits: num_bits, narrow_range: narrow_range)
|
|
1323
|
+
end
|
|
1324
|
+
|
|
1325
|
+
def fake_quant_with_min_max_args_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
|
1326
|
+
Utils.execute("FakeQuantWithMinMaxArgsGradient", [gradients, inputs], min: min, max: max, num_bits: num_bits, narrow_range: narrow_range)
|
|
1327
|
+
end
|
|
1328
|
+
|
|
1329
|
+
def fake_quant_with_min_max_vars(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
|
1330
|
+
Utils.execute("FakeQuantWithMinMaxVars", [inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
|
1331
|
+
end
|
|
1332
|
+
|
|
1333
|
+
def fake_quant_with_min_max_vars_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
|
1334
|
+
Utils.execute("FakeQuantWithMinMaxVarsGradient", [gradients, inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
|
1335
|
+
end
|
|
1336
|
+
|
|
1337
|
+
def fake_quant_with_min_max_vars_per_channel(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
|
1338
|
+
Utils.execute("FakeQuantWithMinMaxVarsPerChannel", [inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
|
1339
|
+
end
|
|
1340
|
+
|
|
1341
|
+
def fake_quant_with_min_max_vars_per_channel_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
|
1342
|
+
Utils.execute("FakeQuantWithMinMaxVarsPerChannelGradient", [gradients, inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
|
1343
|
+
end
|
|
1344
|
+
|
|
1345
|
+
def fake_queue(resource: nil)
|
|
1346
|
+
Utils.execute("FakeQueue", [resource])
|
|
1347
|
+
end
|
|
1348
|
+
|
|
1349
|
+
def fill(dims: nil, value: nil, index_type: nil)
|
|
1350
|
+
Utils.execute("Fill", [dims, value], index_type: index_type)
|
|
1351
|
+
end
|
|
1352
|
+
|
|
1353
|
+
def filter_by_last_component_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
|
1354
|
+
Utils.execute("FilterByLastComponentDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
|
1355
|
+
end
|
|
1356
|
+
|
|
1357
|
+
def filter_dataset(input_dataset: nil, other_arguments: nil, predicate: nil, output_types: nil, output_shapes: nil)
|
|
1358
|
+
Utils.execute("FilterDataset", [input_dataset, other_arguments], predicate: predicate, output_types: output_types, output_shapes: output_shapes)
|
|
1359
|
+
end
|
|
1360
|
+
|
|
1361
|
+
def fingerprint(data: nil, method: nil)
|
|
1362
|
+
Utils.execute("Fingerprint", [data, method])
|
|
1363
|
+
end
|
|
1364
|
+
|
|
1365
|
+
def fixed_length_record_dataset(filenames: nil, header_bytes: nil, record_bytes: nil, footer_bytes: nil, buffer_size: nil)
|
|
1366
|
+
Utils.execute("FixedLengthRecordDataset", [filenames, header_bytes, record_bytes, footer_bytes, buffer_size])
|
|
1367
|
+
end
|
|
1368
|
+
|
|
1369
|
+
def fixed_length_record_dataset_v2(filenames: nil, header_bytes: nil, record_bytes: nil, footer_bytes: nil, buffer_size: nil, compression_type: nil)
|
|
1370
|
+
Utils.execute("FixedLengthRecordDatasetV2", [filenames, header_bytes, record_bytes, footer_bytes, buffer_size, compression_type])
|
|
1371
|
+
end
|
|
1372
|
+
|
|
1373
|
+
def fixed_length_record_reader(header_bytes: nil, record_bytes: nil, footer_bytes: nil, hop_bytes: nil, container: nil, shared_name: nil)
|
|
1374
|
+
Utils.execute("FixedLengthRecordReader", [], header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name)
|
|
1375
|
+
end
|
|
1376
|
+
|
|
1377
|
+
def fixed_length_record_reader_v2(header_bytes: nil, record_bytes: nil, footer_bytes: nil, hop_bytes: nil, container: nil, shared_name: nil, encoding: nil)
|
|
1378
|
+
Utils.execute("FixedLengthRecordReaderV2", [], header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name, encoding: encoding)
|
|
1379
|
+
end
|
|
1380
|
+
|
|
1381
|
+
def fixed_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, vocab_file: nil, distortion: nil, num_reserved_ids: nil, num_shards: nil, shard: nil, unigrams: nil, seed: nil, seed2: nil)
|
|
1382
|
+
Utils.execute("FixedUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, vocab_file: vocab_file, distortion: distortion, num_reserved_ids: num_reserved_ids, num_shards: num_shards, shard: shard, unigrams: unigrams, seed: seed, seed2: seed2)
|
|
1383
|
+
end
|
|
1384
|
+
|
|
1385
|
+
def flat_map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil)
|
|
1386
|
+
Utils.execute("FlatMapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes)
|
|
1387
|
+
end
|
|
1388
|
+
|
|
1389
|
+
def floor(x: nil)
|
|
1390
|
+
Utils.execute("Floor", [x])
|
|
1391
|
+
end
|
|
1392
|
+
|
|
1393
|
+
def floor_div(x: nil, y: nil)
|
|
1394
|
+
Utils.execute("FloorDiv", [x, y])
|
|
1395
|
+
end
|
|
1396
|
+
|
|
1397
|
+
def floor_mod(x: nil, y: nil)
|
|
1398
|
+
Utils.execute("FloorMod", [x, y])
|
|
1399
|
+
end
|
|
1400
|
+
|
|
1401
|
+
def flush_summary_writer(writer: nil)
|
|
1402
|
+
Utils.execute("FlushSummaryWriter", [writer])
|
|
1403
|
+
end
|
|
1404
|
+
|
|
1405
|
+
def for(start: nil, limit: nil, delta: nil, input: nil, body: nil)
|
|
1406
|
+
Utils.execute("For", [start, limit, delta, input], body: body)
|
|
1407
|
+
end
|
|
1408
|
+
|
|
1409
|
+
def fractional_avg_pool(value: nil, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil)
|
|
1410
|
+
Utils.execute("FractionalAvgPool", [value], pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2)
|
|
1411
|
+
end
|
|
1412
|
+
|
|
1413
|
+
def fractional_avg_pool_grad(orig_input_tensor_shape: nil, out_backprop: nil, row_pooling_sequence: nil, col_pooling_sequence: nil, overlapping: nil)
|
|
1414
|
+
Utils.execute("FractionalAvgPoolGrad", [orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence], overlapping: overlapping)
|
|
1415
|
+
end
|
|
1416
|
+
|
|
1417
|
+
def fractional_max_pool(value: nil, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil)
|
|
1418
|
+
Utils.execute("FractionalMaxPool", [value], pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2)
|
|
1419
|
+
end
|
|
1420
|
+
|
|
1421
|
+
def fractional_max_pool_grad(orig_input: nil, orig_output: nil, out_backprop: nil, row_pooling_sequence: nil, col_pooling_sequence: nil, overlapping: nil)
|
|
1422
|
+
Utils.execute("FractionalMaxPoolGrad", [orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence], overlapping: overlapping)
|
|
1423
|
+
end
|
|
1424
|
+
|
|
1425
|
+
def fused_batch_norm(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
|
|
1426
|
+
Utils.execute("FusedBatchNorm", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
|
1427
|
+
end
|
|
1428
|
+
|
|
1429
|
+
def fused_batch_norm_grad(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, epsilon: nil, data_format: nil, is_training: nil)
|
|
1430
|
+
Utils.execute("FusedBatchNormGrad", [y_backprop, x, scale, reserve_space_1, reserve_space_2], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
|
1431
|
+
end
|
|
1432
|
+
|
|
1433
|
+
def fused_batch_norm_grad_v2(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, epsilon: nil, data_format: nil, is_training: nil)
|
|
1434
|
+
Utils.execute("FusedBatchNormGradV2", [y_backprop, x, scale, reserve_space_1, reserve_space_2], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
|
1435
|
+
end
|
|
1436
|
+
|
|
1437
|
+
def fused_batch_norm_grad_v3(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, reserve_space_3: nil, epsilon: nil, data_format: nil, is_training: nil)
|
|
1438
|
+
Utils.execute("FusedBatchNormGradV3", [y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
|
1439
|
+
end
|
|
1440
|
+
|
|
1441
|
+
def fused_batch_norm_v2(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
|
|
1442
|
+
Utils.execute("FusedBatchNormV2", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
|
1443
|
+
end
|
|
1444
|
+
|
|
1445
|
+
def fused_batch_norm_v3(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
|
|
1446
|
+
Utils.execute("FusedBatchNormV3", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
|
1447
|
+
end
|
|
1448
|
+
|
|
1449
|
+
def fused_pad_conv2d(input: nil, paddings: nil, filter: nil, mode: nil, strides: nil, padding: nil)
|
|
1450
|
+
Utils.execute("FusedPadConv2D", [input, paddings, filter], mode: mode, strides: strides, padding: padding)
|
|
1451
|
+
end
|
|
1452
|
+
|
|
1453
|
+
def fused_resize_and_pad_conv2d(input: nil, size: nil, paddings: nil, filter: nil, resize_align_corners: nil, mode: nil, strides: nil, padding: nil)
|
|
1454
|
+
Utils.execute("FusedResizeAndPadConv2D", [input, size, paddings, filter], resize_align_corners: resize_align_corners, mode: mode, strides: strides, padding: padding)
|
|
1455
|
+
end
|
|
1456
|
+
|
|
1457
|
+
def gather(params: nil, indices: nil, validate_indices: nil)
|
|
1458
|
+
Utils.execute("Gather", [params, indices], validate_indices: validate_indices)
|
|
1459
|
+
end
|
|
1460
|
+
|
|
1461
|
+
def gather_nd(params: nil, indices: nil)
|
|
1462
|
+
Utils.execute("GatherNd", [params, indices])
|
|
1463
|
+
end
|
|
1464
|
+
|
|
1465
|
+
def gather_v2(params: nil, indices: nil, axis: nil, batch_dims: nil)
|
|
1466
|
+
Utils.execute("GatherV2", [params, indices, axis], batch_dims: batch_dims)
|
|
1467
|
+
end
|
|
1468
|
+
|
|
1469
|
+
def gcs_configure_block_cache(max_cache_size: nil, block_size: nil, max_staleness: nil)
|
|
1470
|
+
Utils.execute("GcsConfigureBlockCache", [max_cache_size, block_size, max_staleness])
|
|
1471
|
+
end
|
|
1472
|
+
|
|
1473
|
+
def gcs_configure_credentials(json: nil)
|
|
1474
|
+
Utils.execute("GcsConfigureCredentials", [json])
|
|
1475
|
+
end
|
|
1476
|
+
|
|
1477
|
+
def generate_big_query_reader_partitions(project_id: nil, dataset_id: nil, table_id: nil, columns: nil, timestamp_millis: nil, num_partitions: nil, test_end_point: nil)
|
|
1478
|
+
Utils.execute("GenerateBigQueryReaderPartitions", [], project_id: project_id, dataset_id: dataset_id, table_id: table_id, columns: columns, timestamp_millis: timestamp_millis, num_partitions: num_partitions, test_end_point: test_end_point)
|
|
1479
|
+
end
|
|
1480
|
+
|
|
1481
|
+
def generate_vocab_remapping(new_vocab_file: nil, old_vocab_file: nil, new_vocab_offset: nil, num_new_vocab: nil, old_vocab_size: nil)
|
|
1482
|
+
Utils.execute("GenerateVocabRemapping", [new_vocab_file, old_vocab_file], new_vocab_offset: new_vocab_offset, num_new_vocab: num_new_vocab, old_vocab_size: old_vocab_size)
|
|
1483
|
+
end
|
|
1484
|
+
|
|
1485
|
+
def generator_dataset(init_func_other_args: nil, next_func_other_args: nil, finalize_func_other_args: nil, init_func: nil, next_func: nil, finalize_func: nil, output_types: nil, output_shapes: nil)
|
|
1486
|
+
Utils.execute("GeneratorDataset", [init_func_other_args, next_func_other_args, finalize_func_other_args], init_func: init_func, next_func: next_func, finalize_func: finalize_func, output_types: output_types, output_shapes: output_shapes)
|
|
1487
|
+
end
|
|
1488
|
+
|
|
1489
|
+
def get_session_handle(value: nil)
|
|
1490
|
+
Utils.execute("GetSessionHandle", [value])
|
|
1491
|
+
end
|
|
1492
|
+
|
|
1493
|
+
def get_session_handle_v2(value: nil)
|
|
1494
|
+
Utils.execute("GetSessionHandleV2", [value])
|
|
1495
|
+
end
|
|
1496
|
+
|
|
1497
|
+
def get_session_tensor(handle: nil, dtype: nil)
|
|
1498
|
+
Utils.execute("GetSessionTensor", [handle], dtype: dtype)
|
|
1499
|
+
end
|
|
1500
|
+
|
|
1501
|
+
def greater(x: nil, y: nil)
|
|
1502
|
+
Utils.execute("Greater", [x, y])
|
|
1503
|
+
end
|
|
1504
|
+
|
|
1505
|
+
def greater_equal(x: nil, y: nil)
|
|
1506
|
+
Utils.execute("GreaterEqual", [x, y])
|
|
1507
|
+
end
|
|
1508
|
+
|
|
1509
|
+
def guarantee_const(input: nil)
|
|
1510
|
+
Utils.execute("GuaranteeConst", [input])
|
|
1511
|
+
end
|
|
1512
|
+
|
|
1513
|
+
def hsv_to_rgb(images: nil)
|
|
1514
|
+
Utils.execute("HSVToRGB", [images])
|
|
1515
|
+
end
|
|
1516
|
+
|
|
1517
|
+
def hash_table(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
|
1518
|
+
Utils.execute("HashTable", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
|
1519
|
+
end
|
|
1520
|
+
|
|
1521
|
+
def hash_table_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
|
1522
|
+
Utils.execute("HashTableV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
|
1523
|
+
end
|
|
1524
|
+
|
|
1525
|
+
def histogram_fixed_width(values: nil, value_range: nil, nbins: nil, dtype: nil)
|
|
1526
|
+
Utils.execute("HistogramFixedWidth", [values, value_range, nbins], dtype: dtype)
|
|
1527
|
+
end
|
|
1528
|
+
|
|
1529
|
+
def histogram_summary(tag: nil, values: nil)
|
|
1530
|
+
Utils.execute("HistogramSummary", [tag, values])
|
|
1531
|
+
end
|
|
1532
|
+
|
|
1533
|
+
def host_const(value: nil, dtype: nil)
|
|
1534
|
+
Utils.execute("HostConst", [], value: value, dtype: dtype)
|
|
1535
|
+
end
|
|
1536
|
+
|
|
1537
|
+
def ifft(input: nil)
|
|
1538
|
+
Utils.execute("IFFT", [input])
|
|
1539
|
+
end
|
|
1540
|
+
|
|
1541
|
+
def ifft2d(input: nil)
|
|
1542
|
+
Utils.execute("IFFT2D", [input])
|
|
1543
|
+
end
|
|
1544
|
+
|
|
1545
|
+
def ifft3d(input: nil)
|
|
1546
|
+
Utils.execute("IFFT3D", [input])
|
|
1547
|
+
end
|
|
1548
|
+
|
|
1549
|
+
def irfft(input: nil, fft_length: nil)
|
|
1550
|
+
Utils.execute("IRFFT", [input, fft_length])
|
|
1551
|
+
end
|
|
1552
|
+
|
|
1553
|
+
def irfft2d(input: nil, fft_length: nil)
|
|
1554
|
+
Utils.execute("IRFFT2D", [input, fft_length])
|
|
1555
|
+
end
|
|
1556
|
+
|
|
1557
|
+
def irfft3d(input: nil, fft_length: nil)
|
|
1558
|
+
Utils.execute("IRFFT3D", [input, fft_length])
|
|
1559
|
+
end
|
|
1560
|
+
|
|
1561
|
+
def identity(input: nil)
|
|
1562
|
+
Utils.execute("Identity", [input])
|
|
1563
|
+
end
|
|
1564
|
+
|
|
1565
|
+
def identity_n(input: nil)
|
|
1566
|
+
Utils.execute("IdentityN", [input])
|
|
1567
|
+
end
|
|
1568
|
+
|
|
1569
|
+
def identity_reader(container: nil, shared_name: nil)
|
|
1570
|
+
Utils.execute("IdentityReader", [], container: container, shared_name: shared_name)
|
|
1571
|
+
end
|
|
1572
|
+
|
|
1573
|
+
def identity_reader_v2(container: nil, shared_name: nil)
|
|
1574
|
+
Utils.execute("IdentityReaderV2", [], container: container, shared_name: shared_name)
|
|
1575
|
+
end
|
|
1576
|
+
|
|
1577
|
+
def if(cond: nil, input: nil, then_branch: nil, else_branch: nil, output_shapes: nil)
|
|
1578
|
+
Utils.execute("If", [cond, input], then_branch: then_branch, else_branch: else_branch, output_shapes: output_shapes)
|
|
1579
|
+
end
|
|
1580
|
+
|
|
1581
|
+
def igamma(a: nil, x: nil)
|
|
1582
|
+
Utils.execute("Igamma", [a, x])
|
|
1583
|
+
end
|
|
1584
|
+
|
|
1585
|
+
def igamma_grad_a(a: nil, x: nil)
|
|
1586
|
+
Utils.execute("IgammaGradA", [a, x])
|
|
1587
|
+
end
|
|
1588
|
+
|
|
1589
|
+
def igammac(a: nil, x: nil)
|
|
1590
|
+
Utils.execute("Igammac", [a, x])
|
|
1591
|
+
end
|
|
1592
|
+
|
|
1593
|
+
def imag(input: nil)
|
|
1594
|
+
Utils.execute("Imag", [input])
|
|
1595
|
+
end
|
|
1596
|
+
|
|
1597
|
+
def image_summary(tag: nil, tensor: nil, max_images: nil, bad_color: nil)
|
|
1598
|
+
Utils.execute("ImageSummary", [tag, tensor], max_images: max_images, bad_color: bad_color)
|
|
1599
|
+
end
|
|
1600
|
+
|
|
1601
|
+
def immutable_const(dtype: nil, shape: nil, memory_region_name: nil)
|
|
1602
|
+
Utils.execute("ImmutableConst", [], dtype: dtype, shape: shape, memory_region_name: memory_region_name)
|
|
1603
|
+
end
|
|
1604
|
+
|
|
1605
|
+
def import_event(writer: nil, event: nil)
|
|
1606
|
+
Utils.execute("ImportEvent", [writer, event])
|
|
1607
|
+
end
|
|
1608
|
+
|
|
1609
|
+
def in_top_k(predictions: nil, targets: nil, k: nil)
|
|
1610
|
+
Utils.execute("InTopK", [predictions, targets], k: k)
|
|
1611
|
+
end
|
|
1612
|
+
|
|
1613
|
+
def in_top_kv2(predictions: nil, targets: nil, k: nil)
|
|
1614
|
+
Utils.execute("InTopKV2", [predictions, targets, k])
|
|
1615
|
+
end
|
|
1616
|
+
|
|
1617
|
+
def infeed_dequeue(dtype: nil, shape: nil)
|
|
1618
|
+
Utils.execute("InfeedDequeue", [], dtype: dtype, shape: shape)
|
|
1619
|
+
end
|
|
1620
|
+
|
|
1621
|
+
def infeed_dequeue_tuple(dtypes: nil, shapes: nil)
|
|
1622
|
+
Utils.execute("InfeedDequeueTuple", [], dtypes: dtypes, shapes: shapes)
|
|
1623
|
+
end
|
|
1624
|
+
|
|
1625
|
+
def infeed_enqueue(input: nil, dtype: nil, shape: nil, layout: nil, device_ordinal: nil)
|
|
1626
|
+
Utils.execute("InfeedEnqueue", [input], dtype: dtype, shape: shape, layout: layout, device_ordinal: device_ordinal)
|
|
1627
|
+
end
|
|
1628
|
+
|
|
1629
|
+
def infeed_enqueue_prelinearized_buffer(input: nil, device_ordinal: nil)
|
|
1630
|
+
Utils.execute("InfeedEnqueuePrelinearizedBuffer", [input], device_ordinal: device_ordinal)
|
|
1631
|
+
end
|
|
1632
|
+
|
|
1633
|
+
def infeed_enqueue_tuple(inputs: nil, dtypes: nil, shapes: nil, layouts: nil, device_ordinal: nil)
|
|
1634
|
+
Utils.execute("InfeedEnqueueTuple", [inputs], dtypes: dtypes, shapes: shapes, layouts: layouts, device_ordinal: device_ordinal)
|
|
1635
|
+
end
|
|
1636
|
+
|
|
1637
|
+
def initialize_table(table_handle: nil, keys: nil, values: nil)
|
|
1638
|
+
Utils.execute("InitializeTable", [table_handle, keys, values])
|
|
1639
|
+
end
|
|
1640
|
+
|
|
1641
|
+
def initialize_table_from_text_file(table_handle: nil, filename: nil, key_index: nil, value_index: nil, vocab_size: nil, delimiter: nil)
|
|
1642
|
+
Utils.execute("InitializeTableFromTextFile", [table_handle, filename], key_index: key_index, value_index: value_index, vocab_size: vocab_size, delimiter: delimiter)
|
|
1643
|
+
end
|
|
1644
|
+
|
|
1645
|
+
def initialize_table_from_text_file_v2(table_handle: nil, filename: nil, key_index: nil, value_index: nil, vocab_size: nil, delimiter: nil)
|
|
1646
|
+
Utils.execute("InitializeTableFromTextFileV2", [table_handle, filename], key_index: key_index, value_index: value_index, vocab_size: vocab_size, delimiter: delimiter)
|
|
1647
|
+
end
|
|
1648
|
+
|
|
1649
|
+
def initialize_table_v2(table_handle: nil, keys: nil, values: nil)
|
|
1650
|
+
Utils.execute("InitializeTableV2", [table_handle, keys, values])
|
|
1651
|
+
end
|
|
1652
|
+
|
|
1653
|
+
def inplace_add(x: nil, i: nil, v: nil)
|
|
1654
|
+
Utils.execute("InplaceAdd", [x, i, v])
|
|
1655
|
+
end
|
|
1656
|
+
|
|
1657
|
+
def inplace_sub(x: nil, i: nil, v: nil)
|
|
1658
|
+
Utils.execute("InplaceSub", [x, i, v])
|
|
1659
|
+
end
|
|
1660
|
+
|
|
1661
|
+
def inplace_update(x: nil, i: nil, v: nil)
|
|
1662
|
+
Utils.execute("InplaceUpdate", [x, i, v])
|
|
1663
|
+
end
|
|
1664
|
+
|
|
1665
|
+
def interleave_dataset(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, f: nil, output_types: nil, output_shapes: nil)
|
|
1666
|
+
Utils.execute("InterleaveDataset", [input_dataset, other_arguments, cycle_length, block_length], f: f, output_types: output_types, output_shapes: output_shapes)
|
|
1667
|
+
end
|
|
1668
|
+
|
|
1669
|
+
def inv(x: nil)
|
|
1670
|
+
Utils.execute("Inv", [x])
|
|
1671
|
+
end
|
|
1672
|
+
|
|
1673
|
+
def inv_grad(y: nil, dy: nil)
|
|
1674
|
+
Utils.execute("InvGrad", [y, dy])
|
|
1675
|
+
end
|
|
1676
|
+
|
|
1677
|
+
def invert(x: nil)
|
|
1678
|
+
Utils.execute("Invert", [x])
|
|
1679
|
+
end
|
|
1680
|
+
|
|
1681
|
+
def invert_permutation(x: nil)
|
|
1682
|
+
Utils.execute("InvertPermutation", [x])
|
|
1683
|
+
end
|
|
1684
|
+
|
|
1685
|
+
def is_boosted_trees_ensemble_initialized(tree_ensemble_handle: nil)
|
|
1686
|
+
Utils.execute("IsBoostedTreesEnsembleInitialized", [tree_ensemble_handle])
|
|
1687
|
+
end
|
|
1688
|
+
|
|
1689
|
+
def is_boosted_trees_quantile_stream_resource_initialized(quantile_stream_resource_handle: nil)
|
|
1690
|
+
Utils.execute("IsBoostedTreesQuantileStreamResourceInitialized", [quantile_stream_resource_handle])
|
|
1691
|
+
end
|
|
1692
|
+
|
|
1693
|
+
def is_finite(x: nil)
|
|
1694
|
+
Utils.execute("IsFinite", [x])
|
|
1695
|
+
end
|
|
1696
|
+
|
|
1697
|
+
def is_inf(x: nil)
|
|
1698
|
+
Utils.execute("IsInf", [x])
|
|
1699
|
+
end
|
|
1700
|
+
|
|
1701
|
+
def is_nan(x: nil)
|
|
1702
|
+
Utils.execute("IsNan", [x])
|
|
1703
|
+
end
|
|
1704
|
+
|
|
1705
|
+
def is_variable_initialized(ref: nil, dtype: nil)
|
|
1706
|
+
Utils.execute("IsVariableInitialized", [ref], dtype: dtype)
|
|
1707
|
+
end
|
|
1708
|
+
|
|
1709
|
+
def iterator(shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
|
|
1710
|
+
Utils.execute("Iterator", [], shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
|
|
1711
|
+
end
|
|
1712
|
+
|
|
1713
|
+
def iterator_from_string_handle(string_handle: nil, output_types: nil, output_shapes: nil)
|
|
1714
|
+
Utils.execute("IteratorFromStringHandle", [string_handle], output_types: output_types, output_shapes: output_shapes)
|
|
1715
|
+
end
|
|
1716
|
+
|
|
1717
|
+
def iterator_from_string_handle_v2(string_handle: nil, output_types: nil, output_shapes: nil)
|
|
1718
|
+
Utils.execute("IteratorFromStringHandleV2", [string_handle], output_types: output_types, output_shapes: output_shapes)
|
|
1719
|
+
end
|
|
1720
|
+
|
|
1721
|
+
def iterator_get_next(iterator: nil, output_types: nil, output_shapes: nil)
|
|
1722
|
+
Utils.execute("IteratorGetNext", [iterator], output_types: output_types, output_shapes: output_shapes)
|
|
1723
|
+
end
|
|
1724
|
+
|
|
1725
|
+
def iterator_get_next_as_optional(iterator: nil, output_types: nil, output_shapes: nil)
|
|
1726
|
+
Utils.execute("IteratorGetNextAsOptional", [iterator], output_types: output_types, output_shapes: output_shapes)
|
|
1727
|
+
end
|
|
1728
|
+
|
|
1729
|
+
def iterator_get_next_sync(iterator: nil, output_types: nil, output_shapes: nil)
|
|
1730
|
+
Utils.execute("IteratorGetNextSync", [iterator], output_types: output_types, output_shapes: output_shapes)
|
|
1731
|
+
end
|
|
1732
|
+
|
|
1733
|
+
def iterator_to_string_handle(resource_handle: nil)
|
|
1734
|
+
Utils.execute("IteratorToStringHandle", [resource_handle])
|
|
1735
|
+
end
|
|
1736
|
+
|
|
1737
|
+
def iterator_v2(shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
|
|
1738
|
+
Utils.execute("IteratorV2", [], shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
|
|
1739
|
+
end
|
|
1740
|
+
|
|
1741
|
+
def kmc2_chain_initialization(distances: nil, seed: nil)
|
|
1742
|
+
Utils.execute("KMC2ChainInitialization", [distances, seed])
|
|
1743
|
+
end
|
|
1744
|
+
|
|
1745
|
+
def kmeans_plus_plus_initialization(points: nil, num_to_sample: nil, seed: nil, num_retries_per_sample: nil)
|
|
1746
|
+
Utils.execute("KmeansPlusPlusInitialization", [points, num_to_sample, seed, num_retries_per_sample])
|
|
1747
|
+
end
|
|
1748
|
+
|
|
1749
|
+
def l2_loss(t: nil)
|
|
1750
|
+
Utils.execute("L2Loss", [t])
|
|
1751
|
+
end
|
|
1752
|
+
|
|
1753
|
+
def lmdb_reader(container: nil, shared_name: nil)
|
|
1754
|
+
Utils.execute("LMDBReader", [], container: container, shared_name: shared_name)
|
|
1755
|
+
end
|
|
1756
|
+
|
|
1757
|
+
def lrn(input: nil, depth_radius: nil, bias: nil, alpha: nil, beta: nil)
|
|
1758
|
+
Utils.execute("LRN", [input], depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta)
|
|
1759
|
+
end
|
|
1760
|
+
|
|
1761
|
+
def lrn_grad(input_grads: nil, input_image: nil, output_image: nil, depth_radius: nil, bias: nil, alpha: nil, beta: nil)
|
|
1762
|
+
Utils.execute("LRNGrad", [input_grads, input_image, output_image], depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta)
|
|
1763
|
+
end
|
|
1764
|
+
|
|
1765
|
+
def leaky_relu(features: nil, alpha: nil)
|
|
1766
|
+
Utils.execute("LeakyRelu", [features], alpha: alpha)
|
|
1767
|
+
end
|
|
1768
|
+
|
|
1769
|
+
def leaky_relu_grad(gradients: nil, features: nil, alpha: nil)
|
|
1770
|
+
Utils.execute("LeakyReluGrad", [gradients, features], alpha: alpha)
|
|
1771
|
+
end
|
|
1772
|
+
|
|
1773
|
+
def learned_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
|
1774
|
+
Utils.execute("LearnedUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
|
1775
|
+
end
|
|
1776
|
+
|
|
1777
|
+
def left_shift(x: nil, y: nil)
|
|
1778
|
+
Utils.execute("LeftShift", [x, y])
|
|
1779
|
+
end
|
|
1780
|
+
|
|
1781
|
+
def less(x: nil, y: nil)
|
|
1782
|
+
Utils.execute("Less", [x, y])
|
|
1783
|
+
end
|
|
1784
|
+
|
|
1785
|
+
def less_equal(x: nil, y: nil)
|
|
1786
|
+
Utils.execute("LessEqual", [x, y])
|
|
1787
|
+
end
|
|
1788
|
+
|
|
1789
|
+
def lgamma(x: nil)
|
|
1790
|
+
Utils.execute("Lgamma", [x])
|
|
1791
|
+
end
|
|
1792
|
+
|
|
1793
|
+
def lin_space(start: nil, stop: nil, num: nil)
|
|
1794
|
+
Utils.execute("LinSpace", [start, stop, num])
|
|
1795
|
+
end
|
|
1796
|
+
|
|
1797
|
+
def list_diff(x: nil, y: nil, out_idx: nil)
|
|
1798
|
+
Utils.execute("ListDiff", [x, y], out_idx: out_idx)
|
|
1799
|
+
end
|
|
1800
|
+
|
|
1801
|
+
def load_and_remap_matrix(ckpt_path: nil, old_tensor_name: nil, row_remapping: nil, col_remapping: nil, initializing_values: nil, num_rows: nil, num_cols: nil, max_rows_in_memory: nil)
|
|
1802
|
+
Utils.execute("LoadAndRemapMatrix", [ckpt_path, old_tensor_name, row_remapping, col_remapping, initializing_values], num_rows: num_rows, num_cols: num_cols, max_rows_in_memory: max_rows_in_memory)
|
|
1803
|
+
end
|
|
1804
|
+
|
|
1805
|
+
def load_tpu_embedding_adam_parameters(parameters: nil, momenta: nil, velocities: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1806
|
+
Utils.execute("LoadTPUEmbeddingADAMParameters", [parameters, momenta, velocities], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1807
|
+
end
|
|
1808
|
+
|
|
1809
|
+
def load_tpu_embedding_adam_parameters_grad_accum_debug(parameters: nil, momenta: nil, velocities: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1810
|
+
Utils.execute("LoadTPUEmbeddingADAMParametersGradAccumDebug", [parameters, momenta, velocities, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1811
|
+
end
|
|
1812
|
+
|
|
1813
|
+
def load_tpu_embedding_adadelta_parameters(parameters: nil, accumulators: nil, updates: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1814
|
+
Utils.execute("LoadTPUEmbeddingAdadeltaParameters", [parameters, accumulators, updates], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1815
|
+
end
|
|
1816
|
+
|
|
1817
|
+
def load_tpu_embedding_adadelta_parameters_grad_accum_debug(parameters: nil, accumulators: nil, updates: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1818
|
+
Utils.execute("LoadTPUEmbeddingAdadeltaParametersGradAccumDebug", [parameters, accumulators, updates, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1819
|
+
end
|
|
1820
|
+
|
|
1821
|
+
def load_tpu_embedding_adagrad_parameters(parameters: nil, accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1822
|
+
Utils.execute("LoadTPUEmbeddingAdagradParameters", [parameters, accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1823
|
+
end
|
|
1824
|
+
|
|
1825
|
+
def load_tpu_embedding_adagrad_parameters_grad_accum_debug(parameters: nil, accumulators: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1826
|
+
Utils.execute("LoadTPUEmbeddingAdagradParametersGradAccumDebug", [parameters, accumulators, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1827
|
+
end
|
|
1828
|
+
|
|
1829
|
+
def load_tpu_embedding_centered_rms_prop_parameters(parameters: nil, ms: nil, mom: nil, mg: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1830
|
+
Utils.execute("LoadTPUEmbeddingCenteredRMSPropParameters", [parameters, ms, mom, mg], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1831
|
+
end
|
|
1832
|
+
|
|
1833
|
+
def load_tpu_embedding_ftrl_parameters(parameters: nil, accumulators: nil, linears: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1834
|
+
Utils.execute("LoadTPUEmbeddingFTRLParameters", [parameters, accumulators, linears], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1835
|
+
end
|
|
1836
|
+
|
|
1837
|
+
def load_tpu_embedding_ftrl_parameters_grad_accum_debug(parameters: nil, accumulators: nil, linears: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1838
|
+
Utils.execute("LoadTPUEmbeddingFTRLParametersGradAccumDebug", [parameters, accumulators, linears, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1839
|
+
end
|
|
1840
|
+
|
|
1841
|
+
def load_tpu_embedding_mdl_adagrad_light_parameters(parameters: nil, accumulators: nil, weights: nil, benefits: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1842
|
+
Utils.execute("LoadTPUEmbeddingMDLAdagradLightParameters", [parameters, accumulators, weights, benefits], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1843
|
+
end
|
|
1844
|
+
|
|
1845
|
+
def load_tpu_embedding_momentum_parameters(parameters: nil, momenta: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1846
|
+
Utils.execute("LoadTPUEmbeddingMomentumParameters", [parameters, momenta], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1847
|
+
end
|
|
1848
|
+
|
|
1849
|
+
def load_tpu_embedding_momentum_parameters_grad_accum_debug(parameters: nil, momenta: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1850
|
+
Utils.execute("LoadTPUEmbeddingMomentumParametersGradAccumDebug", [parameters, momenta, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1851
|
+
end
|
|
1852
|
+
|
|
1853
|
+
def load_tpu_embedding_proximal_adagrad_parameters(parameters: nil, accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1854
|
+
Utils.execute("LoadTPUEmbeddingProximalAdagradParameters", [parameters, accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1855
|
+
end
|
|
1856
|
+
|
|
1857
|
+
def load_tpu_embedding_proximal_adagrad_parameters_grad_accum_debug(parameters: nil, accumulators: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1858
|
+
Utils.execute("LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug", [parameters, accumulators, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1859
|
+
end
|
|
1860
|
+
|
|
1861
|
+
def load_tpu_embedding_rms_prop_parameters(parameters: nil, ms: nil, mom: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1862
|
+
Utils.execute("LoadTPUEmbeddingRMSPropParameters", [parameters, ms, mom], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1863
|
+
end
|
|
1864
|
+
|
|
1865
|
+
def load_tpu_embedding_rms_prop_parameters_grad_accum_debug(parameters: nil, ms: nil, mom: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1866
|
+
Utils.execute("LoadTPUEmbeddingRMSPropParametersGradAccumDebug", [parameters, ms, mom, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1867
|
+
end
|
|
1868
|
+
|
|
1869
|
+
def load_tpu_embedding_stochastic_gradient_descent_parameters(parameters: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
1870
|
+
Utils.execute("LoadTPUEmbeddingStochasticGradientDescentParameters", [parameters], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
1871
|
+
end
|
|
1872
|
+
|
|
1873
|
+
def log(x: nil)
|
|
1874
|
+
Utils.execute("Log", [x])
|
|
1875
|
+
end
|
|
1876
|
+
|
|
1877
|
+
def log1p(x: nil)
|
|
1878
|
+
Utils.execute("Log1p", [x])
|
|
1879
|
+
end
|
|
1880
|
+
|
|
1881
|
+
def log_matrix_determinant(input: nil)
|
|
1882
|
+
Utils.execute("LogMatrixDeterminant", [input])
|
|
1883
|
+
end
|
|
1884
|
+
|
|
1885
|
+
def log_softmax(logits: nil)
|
|
1886
|
+
Utils.execute("LogSoftmax", [logits])
|
|
1887
|
+
end
|
|
1888
|
+
|
|
1889
|
+
def log_uniform_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
|
1890
|
+
Utils.execute("LogUniformCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
|
1891
|
+
end
|
|
1892
|
+
|
|
1893
|
+
def logical_and(x: nil, y: nil)
|
|
1894
|
+
Utils.execute("LogicalAnd", [x, y])
|
|
1895
|
+
end
|
|
1896
|
+
|
|
1897
|
+
def logical_not(x: nil)
|
|
1898
|
+
Utils.execute("LogicalNot", [x])
|
|
1899
|
+
end
|
|
1900
|
+
|
|
1901
|
+
def logical_or(x: nil, y: nil)
|
|
1902
|
+
Utils.execute("LogicalOr", [x, y])
|
|
1903
|
+
end
|
|
1904
|
+
|
|
1905
|
+
def lookup_table_export(table_handle: nil)
|
|
1906
|
+
Utils.execute("LookupTableExport", [table_handle])
|
|
1907
|
+
end
|
|
1908
|
+
|
|
1909
|
+
def lookup_table_export_v2(table_handle: nil)
|
|
1910
|
+
Utils.execute("LookupTableExportV2", [table_handle])
|
|
1911
|
+
end
|
|
1912
|
+
|
|
1913
|
+
def lookup_table_find(table_handle: nil, keys: nil, default_value: nil)
|
|
1914
|
+
Utils.execute("LookupTableFind", [table_handle, keys, default_value])
|
|
1915
|
+
end
|
|
1916
|
+
|
|
1917
|
+
def lookup_table_find_v2(table_handle: nil, keys: nil, default_value: nil)
|
|
1918
|
+
Utils.execute("LookupTableFindV2", [table_handle, keys, default_value])
|
|
1919
|
+
end
|
|
1920
|
+
|
|
1921
|
+
def lookup_table_import(table_handle: nil, keys: nil, values: nil)
|
|
1922
|
+
Utils.execute("LookupTableImport", [table_handle, keys, values])
|
|
1923
|
+
end
|
|
1924
|
+
|
|
1925
|
+
def lookup_table_import_v2(table_handle: nil, keys: nil, values: nil)
|
|
1926
|
+
Utils.execute("LookupTableImportV2", [table_handle, keys, values])
|
|
1927
|
+
end
|
|
1928
|
+
|
|
1929
|
+
def lookup_table_insert(table_handle: nil, keys: nil, values: nil)
|
|
1930
|
+
Utils.execute("LookupTableInsert", [table_handle, keys, values])
|
|
1931
|
+
end
|
|
1932
|
+
|
|
1933
|
+
def lookup_table_insert_v2(table_handle: nil, keys: nil, values: nil)
|
|
1934
|
+
Utils.execute("LookupTableInsertV2", [table_handle, keys, values])
|
|
1935
|
+
end
|
|
1936
|
+
|
|
1937
|
+
def lookup_table_remove_v2(table_handle: nil, keys: nil)
|
|
1938
|
+
Utils.execute("LookupTableRemoveV2", [table_handle, keys])
|
|
1939
|
+
end
|
|
1940
|
+
|
|
1941
|
+
def lookup_table_size(table_handle: nil)
|
|
1942
|
+
Utils.execute("LookupTableSize", [table_handle])
|
|
1943
|
+
end
|
|
1944
|
+
|
|
1945
|
+
def lookup_table_size_v2(table_handle: nil)
|
|
1946
|
+
Utils.execute("LookupTableSizeV2", [table_handle])
|
|
1947
|
+
end
|
|
1948
|
+
|
|
1949
|
+
def loop_cond(input: nil)
|
|
1950
|
+
Utils.execute("LoopCond", [input])
|
|
1951
|
+
end
|
|
1952
|
+
|
|
1953
|
+
def lower_bound(sorted_inputs: nil, values: nil, out_type: nil)
|
|
1954
|
+
Utils.execute("LowerBound", [sorted_inputs, values], out_type: out_type)
|
|
1955
|
+
end
|
|
1956
|
+
|
|
1957
|
+
def lu(input: nil, output_idx_type: nil)
|
|
1958
|
+
Utils.execute("Lu", [input], output_idx_type: output_idx_type)
|
|
1959
|
+
end
|
|
1960
|
+
|
|
1961
|
+
def make_iterator(dataset: nil, iterator: nil)
|
|
1962
|
+
Utils.execute("MakeIterator", [dataset, iterator])
|
|
1963
|
+
end
|
|
1964
|
+
|
|
1965
|
+
def map_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
1966
|
+
Utils.execute("MapClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
1967
|
+
end
|
|
1968
|
+
|
|
1969
|
+
def map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, preserve_cardinality: nil)
|
|
1970
|
+
Utils.execute("MapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, preserve_cardinality: preserve_cardinality)
|
|
1971
|
+
end
|
|
1972
|
+
|
|
1973
|
+
def map_defun(arguments: nil, captured_inputs: nil, output_types: nil, output_shapes: nil, f: nil, max_intra_op_parallelism: nil)
|
|
1974
|
+
Utils.execute("MapDefun", [arguments, captured_inputs], output_types: output_types, output_shapes: output_shapes, f: f, max_intra_op_parallelism: max_intra_op_parallelism)
|
|
1975
|
+
end
|
|
1976
|
+
|
|
1977
|
+
def map_incomplete_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
1978
|
+
Utils.execute("MapIncompleteSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
1979
|
+
end
|
|
1980
|
+
|
|
1981
|
+
def map_peek(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
1982
|
+
Utils.execute("MapPeek", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
1983
|
+
end
|
|
1984
|
+
|
|
1985
|
+
def map_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
1986
|
+
Utils.execute("MapSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
1987
|
+
end
|
|
1988
|
+
|
|
1989
|
+
def map_stage(key: nil, indices: nil, values: nil, capacity: nil, memory_limit: nil, dtypes: nil, fake_dtypes: nil, container: nil, shared_name: nil)
|
|
1990
|
+
Utils.execute("MapStage", [key, indices, values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, fake_dtypes: fake_dtypes, container: container, shared_name: shared_name)
|
|
1991
|
+
end
|
|
1992
|
+
|
|
1993
|
+
def map_unstage(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
1994
|
+
Utils.execute("MapUnstage", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
1995
|
+
end
|
|
1996
|
+
|
|
1997
|
+
def map_unstage_no_key(indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
1998
|
+
Utils.execute("MapUnstageNoKey", [indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
1999
|
+
end
|
|
2000
|
+
|
|
2001
|
+
def mat_mul(a: nil, b: nil, transpose_a: nil, transpose_b: nil)
|
|
2002
|
+
Utils.execute("MatMul", [a, b], transpose_a: transpose_a, transpose_b: transpose_b)
|
|
2003
|
+
end
|
|
2004
|
+
|
|
2005
|
+
def matching_files(pattern: nil)
|
|
2006
|
+
Utils.execute("MatchingFiles", [pattern])
|
|
2007
|
+
end
|
|
2008
|
+
|
|
2009
|
+
def matrix_band_part(input: nil, num_lower: nil, num_upper: nil)
|
|
2010
|
+
Utils.execute("MatrixBandPart", [input, num_lower, num_upper])
|
|
2011
|
+
end
|
|
2012
|
+
|
|
2013
|
+
def matrix_determinant(input: nil)
|
|
2014
|
+
Utils.execute("MatrixDeterminant", [input])
|
|
2015
|
+
end
|
|
2016
|
+
|
|
2017
|
+
def matrix_diag(diagonal: nil)
|
|
2018
|
+
Utils.execute("MatrixDiag", [diagonal])
|
|
2019
|
+
end
|
|
2020
|
+
|
|
2021
|
+
def matrix_diag_part(input: nil)
|
|
2022
|
+
Utils.execute("MatrixDiagPart", [input])
|
|
2023
|
+
end
|
|
2024
|
+
|
|
2025
|
+
def matrix_exponential(input: nil)
|
|
2026
|
+
Utils.execute("MatrixExponential", [input])
|
|
2027
|
+
end
|
|
2028
|
+
|
|
2029
|
+
def matrix_inverse(input: nil, adjoint: nil)
|
|
2030
|
+
Utils.execute("MatrixInverse", [input], adjoint: adjoint)
|
|
2031
|
+
end
|
|
2032
|
+
|
|
2033
|
+
def matrix_logarithm(input: nil)
|
|
2034
|
+
Utils.execute("MatrixLogarithm", [input])
|
|
2035
|
+
end
|
|
2036
|
+
|
|
2037
|
+
def matrix_set_diag(input: nil, diagonal: nil)
|
|
2038
|
+
Utils.execute("MatrixSetDiag", [input, diagonal])
|
|
2039
|
+
end
|
|
2040
|
+
|
|
2041
|
+
def matrix_solve(matrix: nil, rhs: nil, adjoint: nil)
|
|
2042
|
+
Utils.execute("MatrixSolve", [matrix, rhs], adjoint: adjoint)
|
|
2043
|
+
end
|
|
2044
|
+
|
|
2045
|
+
def matrix_solve_ls(matrix: nil, rhs: nil, l2_regularizer: nil, fast: nil)
|
|
2046
|
+
Utils.execute("MatrixSolveLs", [matrix, rhs, l2_regularizer], fast: fast)
|
|
2047
|
+
end
|
|
2048
|
+
|
|
2049
|
+
def matrix_square_root(input: nil)
|
|
2050
|
+
Utils.execute("MatrixSquareRoot", [input])
|
|
2051
|
+
end
|
|
2052
|
+
|
|
2053
|
+
def matrix_triangular_solve(matrix: nil, rhs: nil, lower: nil, adjoint: nil)
|
|
2054
|
+
Utils.execute("MatrixTriangularSolve", [matrix, rhs], lower: lower, adjoint: adjoint)
|
|
2055
|
+
end
|
|
2056
|
+
|
|
2057
|
+
def max(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
2058
|
+
Utils.execute("Max", [input, reduction_indices], keep_dims: keep_dims)
|
|
2059
|
+
end
|
|
2060
|
+
|
|
2061
|
+
def max_pool(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2062
|
+
Utils.execute("MaxPool", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
2063
|
+
end
|
|
2064
|
+
|
|
2065
|
+
def max_pool3d(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2066
|
+
Utils.execute("MaxPool3D", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
2067
|
+
end
|
|
2068
|
+
|
|
2069
|
+
def max_pool3d_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2070
|
+
Utils.execute("MaxPool3DGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
2071
|
+
end
|
|
2072
|
+
|
|
2073
|
+
def max_pool3d_grad_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2074
|
+
Utils.execute("MaxPool3DGradGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
2075
|
+
end
|
|
2076
|
+
|
|
2077
|
+
def max_pool_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2078
|
+
Utils.execute("MaxPoolGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
2079
|
+
end
|
|
2080
|
+
|
|
2081
|
+
def max_pool_grad_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2082
|
+
Utils.execute("MaxPoolGradGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
|
2083
|
+
end
|
|
2084
|
+
|
|
2085
|
+
def max_pool_grad_grad_v2(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2086
|
+
Utils.execute("MaxPoolGradGradV2", [orig_input, orig_output, grad, ksize, strides], padding: padding, data_format: data_format)
|
|
2087
|
+
end
|
|
2088
|
+
|
|
2089
|
+
def max_pool_grad_grad_with_argmax(input: nil, grad: nil, argmax: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
|
|
2090
|
+
Utils.execute("MaxPoolGradGradWithArgmax", [input, grad, argmax], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
|
|
2091
|
+
end
|
|
2092
|
+
|
|
2093
|
+
def max_pool_grad_v2(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2094
|
+
Utils.execute("MaxPoolGradV2", [orig_input, orig_output, grad, ksize, strides], padding: padding, data_format: data_format)
|
|
2095
|
+
end
|
|
2096
|
+
|
|
2097
|
+
def max_pool_grad_with_argmax(input: nil, grad: nil, argmax: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
|
|
2098
|
+
Utils.execute("MaxPoolGradWithArgmax", [input, grad, argmax], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
|
|
2099
|
+
end
|
|
2100
|
+
|
|
2101
|
+
def max_pool_v2(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
|
2102
|
+
Utils.execute("MaxPoolV2", [input, ksize, strides], padding: padding, data_format: data_format)
|
|
2103
|
+
end
|
|
2104
|
+
|
|
2105
|
+
def max_pool_with_argmax(input: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
|
|
2106
|
+
Utils.execute("MaxPoolWithArgmax", [input], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
|
|
2107
|
+
end
|
|
2108
|
+
|
|
2109
|
+
def maximum(x: nil, y: nil)
|
|
2110
|
+
Utils.execute("Maximum", [x, y])
|
|
2111
|
+
end
|
|
2112
|
+
|
|
2113
|
+
def mean(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
2114
|
+
Utils.execute("Mean", [input, reduction_indices], keep_dims: keep_dims)
|
|
2115
|
+
end
|
|
2116
|
+
|
|
2117
|
+
def merge(inputs: nil)
|
|
2118
|
+
Utils.execute("Merge", [inputs])
|
|
2119
|
+
end
|
|
2120
|
+
|
|
2121
|
+
def merge_summary(inputs: nil)
|
|
2122
|
+
Utils.execute("MergeSummary", [inputs])
|
|
2123
|
+
end
|
|
2124
|
+
|
|
2125
|
+
def merge_v2_checkpoints(checkpoint_prefixes: nil, destination_prefix: nil, delete_old_dirs: nil)
|
|
2126
|
+
Utils.execute("MergeV2Checkpoints", [checkpoint_prefixes, destination_prefix], delete_old_dirs: delete_old_dirs)
|
|
2127
|
+
end
|
|
2128
|
+
|
|
2129
|
+
def mfcc(spectrogram: nil, sample_rate: nil, upper_frequency_limit: nil, lower_frequency_limit: nil, filterbank_channel_count: nil, dct_coefficient_count: nil)
|
|
2130
|
+
Utils.execute("Mfcc", [spectrogram, sample_rate], upper_frequency_limit: upper_frequency_limit, lower_frequency_limit: lower_frequency_limit, filterbank_channel_count: filterbank_channel_count, dct_coefficient_count: dct_coefficient_count)
|
|
2131
|
+
end
|
|
2132
|
+
|
|
2133
|
+
def min(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
2134
|
+
Utils.execute("Min", [input, reduction_indices], keep_dims: keep_dims)
|
|
2135
|
+
end
|
|
2136
|
+
|
|
2137
|
+
def minimum(x: nil, y: nil)
|
|
2138
|
+
Utils.execute("Minimum", [x, y])
|
|
2139
|
+
end
|
|
2140
|
+
|
|
2141
|
+
def mirror_pad(input: nil, paddings: nil, mode: nil)
|
|
2142
|
+
Utils.execute("MirrorPad", [input, paddings], mode: mode)
|
|
2143
|
+
end
|
|
2144
|
+
|
|
2145
|
+
def mirror_pad_grad(input: nil, paddings: nil, mode: nil)
|
|
2146
|
+
Utils.execute("MirrorPadGrad", [input, paddings], mode: mode)
|
|
2147
|
+
end
|
|
2148
|
+
|
|
2149
|
+
def mod(x: nil, y: nil)
|
|
2150
|
+
Utils.execute("Mod", [x, y])
|
|
2151
|
+
end
|
|
2152
|
+
|
|
2153
|
+
def model_dataset(input_dataset: nil, cpu_budget: nil, output_types: nil, output_shapes: nil)
|
|
2154
|
+
Utils.execute("ModelDataset", [input_dataset], cpu_budget: cpu_budget, output_types: output_types, output_shapes: output_shapes)
|
|
2155
|
+
end
|
|
2156
|
+
|
|
2157
|
+
def mul(x: nil, y: nil)
|
|
2158
|
+
Utils.execute("Mul", [x, y])
|
|
2159
|
+
end
|
|
2160
|
+
|
|
2161
|
+
def mul_no_nan(x: nil, y: nil)
|
|
2162
|
+
Utils.execute("MulNoNan", [x, y])
|
|
2163
|
+
end
|
|
2164
|
+
|
|
2165
|
+
def multi_device_iterator(devices: nil, shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
|
|
2166
|
+
Utils.execute("MultiDeviceIterator", [], devices: devices, shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
|
|
2167
|
+
end
|
|
2168
|
+
|
|
2169
|
+
def multi_device_iterator_from_string_handle(string_handle: nil, output_types: nil, output_shapes: nil)
|
|
2170
|
+
Utils.execute("MultiDeviceIteratorFromStringHandle", [string_handle], output_types: output_types, output_shapes: output_shapes)
|
|
2171
|
+
end
|
|
2172
|
+
|
|
2173
|
+
def multi_device_iterator_get_next_from_shard(multi_device_iterator: nil, shard_num: nil, incarnation_id: nil, output_types: nil, output_shapes: nil)
|
|
2174
|
+
Utils.execute("MultiDeviceIteratorGetNextFromShard", [multi_device_iterator, shard_num, incarnation_id], output_types: output_types, output_shapes: output_shapes)
|
|
2175
|
+
end
|
|
2176
|
+
|
|
2177
|
+
def multi_device_iterator_init(dataset: nil, multi_device_iterator: nil, max_buffer_size: nil)
|
|
2178
|
+
Utils.execute("MultiDeviceIteratorInit", [dataset, multi_device_iterator, max_buffer_size])
|
|
2179
|
+
end
|
|
2180
|
+
|
|
2181
|
+
def multi_device_iterator_to_string_handle(multi_device_iterator: nil)
|
|
2182
|
+
Utils.execute("MultiDeviceIteratorToStringHandle", [multi_device_iterator])
|
|
2183
|
+
end
|
|
2184
|
+
|
|
2185
|
+
def multinomial(logits: nil, num_samples: nil, seed: nil, seed2: nil, output_dtype: nil)
|
|
2186
|
+
Utils.execute("Multinomial", [logits, num_samples], seed: seed, seed2: seed2, output_dtype: output_dtype)
|
|
2187
|
+
end
|
|
2188
|
+
|
|
2189
|
+
def mutable_dense_hash_table(empty_key: nil, container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil, initial_num_buckets: nil, max_load_factor: nil)
|
|
2190
|
+
Utils.execute("MutableDenseHashTable", [empty_key], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape, initial_num_buckets: initial_num_buckets, max_load_factor: max_load_factor)
|
|
2191
|
+
end
|
|
2192
|
+
|
|
2193
|
+
def mutable_dense_hash_table_v2(empty_key: nil, deleted_key: nil, container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil, initial_num_buckets: nil, max_load_factor: nil)
|
|
2194
|
+
Utils.execute("MutableDenseHashTableV2", [empty_key, deleted_key], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape, initial_num_buckets: initial_num_buckets, max_load_factor: max_load_factor)
|
|
2195
|
+
end
|
|
2196
|
+
|
|
2197
|
+
def mutable_hash_table(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
|
2198
|
+
Utils.execute("MutableHashTable", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
|
2199
|
+
end
|
|
2200
|
+
|
|
2201
|
+
def mutable_hash_table_of_tensors(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil)
|
|
2202
|
+
Utils.execute("MutableHashTableOfTensors", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape)
|
|
2203
|
+
end
|
|
2204
|
+
|
|
2205
|
+
def mutable_hash_table_of_tensors_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil)
|
|
2206
|
+
Utils.execute("MutableHashTableOfTensorsV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape)
|
|
2207
|
+
end
|
|
2208
|
+
|
|
2209
|
+
def mutable_hash_table_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
|
2210
|
+
Utils.execute("MutableHashTableV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
|
2211
|
+
end
|
|
2212
|
+
|
|
2213
|
+
def mutex_lock(mutex: nil)
|
|
2214
|
+
Utils.execute("MutexLock", [mutex])
|
|
2215
|
+
end
|
|
2216
|
+
|
|
2217
|
+
def mutex_v2(container: nil, shared_name: nil)
|
|
2218
|
+
Utils.execute("MutexV2", [], container: container, shared_name: shared_name)
|
|
2219
|
+
end
|
|
2220
|
+
|
|
2221
|
+
def nccl_all_reduce(input: nil, reduction: nil, num_devices: nil, shared_name: nil)
|
|
2222
|
+
Utils.execute("NcclAllReduce", [input], reduction: reduction, num_devices: num_devices, shared_name: shared_name)
|
|
2223
|
+
end
|
|
2224
|
+
|
|
2225
|
+
def nccl_broadcast(input: nil, shape: nil)
|
|
2226
|
+
Utils.execute("NcclBroadcast", [input], shape: shape)
|
|
2227
|
+
end
|
|
2228
|
+
|
|
2229
|
+
def nccl_reduce(input: nil, reduction: nil, num_devices: nil)
|
|
2230
|
+
Utils.execute("NcclReduce", [input], reduction: reduction, num_devices: num_devices)
|
|
2231
|
+
end
|
|
2232
|
+
|
|
2233
|
+
def nearest_neighbors(points: nil, centers: nil, k: nil)
|
|
2234
|
+
Utils.execute("NearestNeighbors", [points, centers, k])
|
|
2235
|
+
end
|
|
2236
|
+
|
|
2237
|
+
def neg(x: nil)
|
|
2238
|
+
Utils.execute("Neg", [x])
|
|
2239
|
+
end
|
|
2240
|
+
|
|
2241
|
+
def neg_train(w_in: nil, w_out: nil, examples: nil, labels: nil, lr: nil, vocab_count: nil, num_negative_samples: nil)
|
|
2242
|
+
Utils.execute("NegTrain", [w_in, w_out, examples, labels, lr], vocab_count: vocab_count, num_negative_samples: num_negative_samples)
|
|
2243
|
+
end
|
|
2244
|
+
|
|
2245
|
+
def next_after(x1: nil, x2: nil)
|
|
2246
|
+
Utils.execute("NextAfter", [x1, x2])
|
|
2247
|
+
end
|
|
2248
|
+
|
|
2249
|
+
def next_iteration(data: nil)
|
|
2250
|
+
Utils.execute("NextIteration", [data])
|
|
2251
|
+
end
|
|
2252
|
+
|
|
2253
|
+
def no_op
|
|
2254
|
+
Utils.execute("NoOp", [])
|
|
2255
|
+
end
|
|
2256
|
+
|
|
2257
|
+
def non_deterministic_ints(shape: nil, dtype: nil, shape_dtype: nil)
|
|
2258
|
+
Utils.execute("NonDeterministicInts", [shape], dtype: dtype, shape_dtype: shape_dtype)
|
|
2259
|
+
end
|
|
2260
|
+
|
|
2261
|
+
def non_max_suppression(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil)
|
|
2262
|
+
Utils.execute("NonMaxSuppression", [boxes, scores, max_output_size], iou_threshold: iou_threshold)
|
|
2263
|
+
end
|
|
2264
|
+
|
|
2265
|
+
def non_max_suppression_v2(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil)
|
|
2266
|
+
Utils.execute("NonMaxSuppressionV2", [boxes, scores, max_output_size, iou_threshold])
|
|
2267
|
+
end
|
|
2268
|
+
|
|
2269
|
+
def non_max_suppression_v3(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil, score_threshold: nil)
|
|
2270
|
+
Utils.execute("NonMaxSuppressionV3", [boxes, scores, max_output_size, iou_threshold, score_threshold])
|
|
2271
|
+
end
|
|
2272
|
+
|
|
2273
|
+
def non_max_suppression_v4(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil, score_threshold: nil, pad_to_max_output_size: nil)
|
|
2274
|
+
Utils.execute("NonMaxSuppressionV4", [boxes, scores, max_output_size, iou_threshold, score_threshold], pad_to_max_output_size: pad_to_max_output_size)
|
|
2275
|
+
end
|
|
2276
|
+
|
|
2277
|
+
def non_max_suppression_with_overlaps(overlaps: nil, scores: nil, max_output_size: nil, overlap_threshold: nil, score_threshold: nil)
|
|
2278
|
+
Utils.execute("NonMaxSuppressionWithOverlaps", [overlaps, scores, max_output_size, overlap_threshold, score_threshold])
|
|
2279
|
+
end
|
|
2280
|
+
|
|
2281
|
+
def not_equal(x: nil, y: nil)
|
|
2282
|
+
Utils.execute("NotEqual", [x, y])
|
|
2283
|
+
end
|
|
2284
|
+
|
|
2285
|
+
def nth_element(input: nil, n: nil, reverse: nil)
|
|
2286
|
+
Utils.execute("NthElement", [input, n], reverse: reverse)
|
|
2287
|
+
end
|
|
2288
|
+
|
|
2289
|
+
def one_hot(indices: nil, depth: nil, on_value: nil, off_value: nil, axis: nil)
|
|
2290
|
+
Utils.execute("OneHot", [indices, depth, on_value, off_value], axis: axis)
|
|
2291
|
+
end
|
|
2292
|
+
|
|
2293
|
+
def one_shot_iterator(dataset_factory: nil, output_types: nil, output_shapes: nil, container: nil, shared_name: nil)
|
|
2294
|
+
Utils.execute("OneShotIterator", [], dataset_factory: dataset_factory, output_types: output_types, output_shapes: output_shapes, container: container, shared_name: shared_name)
|
|
2295
|
+
end
|
|
2296
|
+
|
|
2297
|
+
def ones_like(x: nil)
|
|
2298
|
+
Utils.execute("OnesLike", [x])
|
|
2299
|
+
end
|
|
2300
|
+
|
|
2301
|
+
def optimize_dataset(input_dataset: nil, optimizations: nil, output_types: nil, output_shapes: nil, optimization_configs: nil)
|
|
2302
|
+
Utils.execute("OptimizeDataset", [input_dataset, optimizations], output_types: output_types, output_shapes: output_shapes, optimization_configs: optimization_configs)
|
|
2303
|
+
end
|
|
2304
|
+
|
|
2305
|
+
def optional_from_value(components: nil)
|
|
2306
|
+
Utils.execute("OptionalFromValue", [components])
|
|
2307
|
+
end
|
|
2308
|
+
|
|
2309
|
+
def optional_get_value(optional: nil, output_types: nil, output_shapes: nil)
|
|
2310
|
+
Utils.execute("OptionalGetValue", [optional], output_types: output_types, output_shapes: output_shapes)
|
|
2311
|
+
end
|
|
2312
|
+
|
|
2313
|
+
def optional_has_value(optional: nil)
|
|
2314
|
+
Utils.execute("OptionalHasValue", [optional])
|
|
2315
|
+
end
|
|
2316
|
+
|
|
2317
|
+
def optional_none
|
|
2318
|
+
Utils.execute("OptionalNone", [])
|
|
2319
|
+
end
|
|
2320
|
+
|
|
2321
|
+
def ordered_map_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
2322
|
+
Utils.execute("OrderedMapClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
2323
|
+
end
|
|
2324
|
+
|
|
2325
|
+
def ordered_map_incomplete_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
2326
|
+
Utils.execute("OrderedMapIncompleteSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
2327
|
+
end
|
|
2328
|
+
|
|
2329
|
+
def ordered_map_peek(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
2330
|
+
Utils.execute("OrderedMapPeek", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
2331
|
+
end
|
|
2332
|
+
|
|
2333
|
+
def ordered_map_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
2334
|
+
Utils.execute("OrderedMapSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
2335
|
+
end
|
|
2336
|
+
|
|
2337
|
+
def ordered_map_stage(key: nil, indices: nil, values: nil, capacity: nil, memory_limit: nil, dtypes: nil, fake_dtypes: nil, container: nil, shared_name: nil)
|
|
2338
|
+
Utils.execute("OrderedMapStage", [key, indices, values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, fake_dtypes: fake_dtypes, container: container, shared_name: shared_name)
|
|
2339
|
+
end
|
|
2340
|
+
|
|
2341
|
+
def ordered_map_unstage(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
2342
|
+
Utils.execute("OrderedMapUnstage", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
2343
|
+
end
|
|
2344
|
+
|
|
2345
|
+
def ordered_map_unstage_no_key(indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
2346
|
+
Utils.execute("OrderedMapUnstageNoKey", [indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
2347
|
+
end
|
|
2348
|
+
|
|
2349
|
+
def outfeed_dequeue(dtype: nil, shape: nil, device_ordinal: nil)
|
|
2350
|
+
Utils.execute("OutfeedDequeue", [], dtype: dtype, shape: shape, device_ordinal: device_ordinal)
|
|
2351
|
+
end
|
|
2352
|
+
|
|
2353
|
+
def outfeed_dequeue_tuple(dtypes: nil, shapes: nil, device_ordinal: nil)
|
|
2354
|
+
Utils.execute("OutfeedDequeueTuple", [], dtypes: dtypes, shapes: shapes, device_ordinal: device_ordinal)
|
|
2355
|
+
end
|
|
2356
|
+
|
|
2357
|
+
def outfeed_enqueue(input: nil, dtype: nil)
|
|
2358
|
+
Utils.execute("OutfeedEnqueue", [input], dtype: dtype)
|
|
2359
|
+
end
|
|
2360
|
+
|
|
2361
|
+
def outfeed_enqueue_tuple(inputs: nil, dtypes: nil)
|
|
2362
|
+
Utils.execute("OutfeedEnqueueTuple", [inputs], dtypes: dtypes)
|
|
2363
|
+
end
|
|
2364
|
+
|
|
2365
|
+
def pack(values: nil, axis: nil)
|
|
2366
|
+
Utils.execute("Pack", [values], axis: axis)
|
|
2367
|
+
end
|
|
2368
|
+
|
|
2369
|
+
def pad(input: nil, paddings: nil)
|
|
2370
|
+
Utils.execute("Pad", [input, paddings])
|
|
2371
|
+
end
|
|
2372
|
+
|
|
2373
|
+
def pad_v2(input: nil, paddings: nil, constant_values: nil)
|
|
2374
|
+
Utils.execute("PadV2", [input, paddings, constant_values])
|
|
2375
|
+
end
|
|
2376
|
+
|
|
2377
|
+
def padded_batch_dataset(input_dataset: nil, batch_size: nil, padded_shapes: nil, padding_values: nil, output_shapes: nil)
|
|
2378
|
+
Utils.execute("PaddedBatchDataset", [input_dataset, batch_size, padded_shapes, padding_values], output_shapes: output_shapes)
|
|
2379
|
+
end
|
|
2380
|
+
|
|
2381
|
+
def padded_batch_dataset_v2(input_dataset: nil, batch_size: nil, padded_shapes: nil, padding_values: nil, drop_remainder: nil, parallel_copy: nil, output_shapes: nil)
|
|
2382
|
+
Utils.execute("PaddedBatchDatasetV2", [input_dataset, batch_size, padded_shapes, padding_values, drop_remainder], parallel_copy: parallel_copy, output_shapes: output_shapes)
|
|
2383
|
+
end
|
|
2384
|
+
|
|
2385
|
+
def padding_fifo_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
2386
|
+
Utils.execute("PaddingFIFOQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
2387
|
+
end
|
|
2388
|
+
|
|
2389
|
+
def padding_fifo_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
2390
|
+
Utils.execute("PaddingFIFOQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
2391
|
+
end
|
|
2392
|
+
|
|
2393
|
+
def parallel_concat(values: nil, shape: nil)
|
|
2394
|
+
Utils.execute("ParallelConcat", [values], shape: shape)
|
|
2395
|
+
end
|
|
2396
|
+
|
|
2397
|
+
def parallel_dynamic_stitch(indices: nil, data: nil)
|
|
2398
|
+
Utils.execute("ParallelDynamicStitch", [indices, data])
|
|
2399
|
+
end
|
|
2400
|
+
|
|
2401
|
+
def parallel_interleave_dataset_v2(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, num_parallel_calls: nil, f: nil, output_types: nil, output_shapes: nil, sloppy: nil)
|
|
2402
|
+
Utils.execute("ParallelInterleaveDatasetV2", [input_dataset, other_arguments, cycle_length, block_length, num_parallel_calls], f: f, output_types: output_types, output_shapes: output_shapes, sloppy: sloppy)
|
|
2403
|
+
end
|
|
2404
|
+
|
|
2405
|
+
def parallel_map_dataset(input_dataset: nil, other_arguments: nil, num_parallel_calls: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, sloppy: nil, preserve_cardinality: nil)
|
|
2406
|
+
Utils.execute("ParallelMapDataset", [input_dataset, other_arguments, num_parallel_calls], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, sloppy: sloppy, preserve_cardinality: preserve_cardinality)
|
|
2407
|
+
end
|
|
2408
|
+
|
|
2409
|
+
def parameterized_truncated_normal(shape: nil, means: nil, stdevs: nil, minvals: nil, maxvals: nil, seed: nil, seed2: nil, dtype: nil)
|
|
2410
|
+
Utils.execute("ParameterizedTruncatedNormal", [shape, means, stdevs, minvals, maxvals], seed: seed, seed2: seed2, dtype: dtype)
|
|
2411
|
+
end
|
|
2412
|
+
|
|
2413
|
+
def parse_example(serialized: nil, names: nil, sparse_keys: nil, dense_keys: nil, dense_defaults: nil, sparse_types: nil, dense_shapes: nil)
|
|
2414
|
+
Utils.execute("ParseExample", [serialized, names, sparse_keys, dense_keys, dense_defaults], sparse_types: sparse_types, dense_shapes: dense_shapes)
|
|
2415
|
+
end
|
|
2416
|
+
|
|
2417
|
+
def parse_sequence_example(serialized: nil, debug_name: nil, context_dense_defaults: nil, feature_list_dense_missing_assumed_empty: nil, context_sparse_keys: nil, context_dense_keys: nil, feature_list_sparse_keys: nil, feature_list_dense_keys: nil, context_sparse_types: nil, feature_list_dense_types: nil, context_dense_shapes: nil, feature_list_sparse_types: nil, feature_list_dense_shapes: nil)
|
|
2418
|
+
Utils.execute("ParseSequenceExample", [serialized, debug_name, context_dense_defaults], feature_list_dense_missing_assumed_empty: feature_list_dense_missing_assumed_empty, context_sparse_keys: context_sparse_keys, context_dense_keys: context_dense_keys, feature_list_sparse_keys: feature_list_sparse_keys, feature_list_dense_keys: feature_list_dense_keys, context_sparse_types: context_sparse_types, feature_list_dense_types: feature_list_dense_types, context_dense_shapes: context_dense_shapes, feature_list_sparse_types: feature_list_sparse_types, feature_list_dense_shapes: feature_list_dense_shapes)
|
|
2419
|
+
end
|
|
2420
|
+
|
|
2421
|
+
def parse_single_example(serialized: nil, dense_defaults: nil, num_sparse: nil, sparse_keys: nil, dense_keys: nil, sparse_types: nil, dense_shapes: nil)
|
|
2422
|
+
Utils.execute("ParseSingleExample", [serialized, dense_defaults], num_sparse: num_sparse, sparse_keys: sparse_keys, dense_keys: dense_keys, sparse_types: sparse_types, dense_shapes: dense_shapes)
|
|
2423
|
+
end
|
|
2424
|
+
|
|
2425
|
+
def parse_single_sequence_example(serialized: nil, feature_list_dense_missing_assumed_empty: nil, context_sparse_keys: nil, context_dense_keys: nil, feature_list_sparse_keys: nil, feature_list_dense_keys: nil, context_dense_defaults: nil, debug_name: nil, context_sparse_types: nil, feature_list_dense_types: nil, context_dense_shapes: nil, feature_list_sparse_types: nil, feature_list_dense_shapes: nil)
|
|
2426
|
+
Utils.execute("ParseSingleSequenceExample", [serialized, feature_list_dense_missing_assumed_empty, context_sparse_keys, context_dense_keys, feature_list_sparse_keys, feature_list_dense_keys, context_dense_defaults, debug_name], context_sparse_types: context_sparse_types, feature_list_dense_types: feature_list_dense_types, context_dense_shapes: context_dense_shapes, feature_list_sparse_types: feature_list_sparse_types, feature_list_dense_shapes: feature_list_dense_shapes)
|
|
2427
|
+
end
|
|
2428
|
+
|
|
2429
|
+
def parse_tensor(serialized: nil, out_type: nil)
|
|
2430
|
+
Utils.execute("ParseTensor", [serialized], out_type: out_type)
|
|
2431
|
+
end
|
|
2432
|
+
|
|
2433
|
+
def partitioned_call(args: nil, f: nil, config: nil, config_proto: nil, executor_type: nil)
|
|
2434
|
+
Utils.execute("PartitionedCall", [args], f: f, config: config, config_proto: config_proto, executor_type: executor_type)
|
|
2435
|
+
end
|
|
2436
|
+
|
|
2437
|
+
def placeholder(dtype: nil, shape: nil)
|
|
2438
|
+
Utils.execute("Placeholder", [], dtype: dtype, shape: shape)
|
|
2439
|
+
end
|
|
2440
|
+
|
|
2441
|
+
def placeholder_v2(dtype: nil, shape: nil)
|
|
2442
|
+
Utils.execute("PlaceholderV2", [], dtype: dtype, shape: shape)
|
|
2443
|
+
end
|
|
2444
|
+
|
|
2445
|
+
def placeholder_with_default(input: nil, dtype: nil, shape: nil)
|
|
2446
|
+
Utils.execute("PlaceholderWithDefault", [input], dtype: dtype, shape: shape)
|
|
2447
|
+
end
|
|
2448
|
+
|
|
2449
|
+
def polygamma(a: nil, x: nil)
|
|
2450
|
+
Utils.execute("Polygamma", [a, x])
|
|
2451
|
+
end
|
|
2452
|
+
|
|
2453
|
+
def population_count(x: nil)
|
|
2454
|
+
Utils.execute("PopulationCount", [x])
|
|
2455
|
+
end
|
|
2456
|
+
|
|
2457
|
+
def pow(x: nil, y: nil)
|
|
2458
|
+
Utils.execute("Pow", [x, y])
|
|
2459
|
+
end
|
|
2460
|
+
|
|
2461
|
+
def prefetch_dataset(input_dataset: nil, buffer_size: nil, output_types: nil, output_shapes: nil, slack_period: nil)
|
|
2462
|
+
Utils.execute("PrefetchDataset", [input_dataset, buffer_size], output_types: output_types, output_shapes: output_shapes, slack_period: slack_period)
|
|
2463
|
+
end
|
|
2464
|
+
|
|
2465
|
+
def prelinearize(input: nil, dtype: nil, shape: nil, layout: nil)
|
|
2466
|
+
Utils.execute("Prelinearize", [input], dtype: dtype, shape: shape, layout: layout)
|
|
2467
|
+
end
|
|
2468
|
+
|
|
2469
|
+
def prelinearize_tuple(inputs: nil, dtypes: nil, shapes: nil, layouts: nil)
|
|
2470
|
+
Utils.execute("PrelinearizeTuple", [inputs], dtypes: dtypes, shapes: shapes, layouts: layouts)
|
|
2471
|
+
end
|
|
2472
|
+
|
|
2473
|
+
def prevent_gradient(input: nil, message: nil)
|
|
2474
|
+
Utils.execute("PreventGradient", [input], message: message)
|
|
2475
|
+
end
|
|
2476
|
+
|
|
2477
|
+
def print(input: nil, data: nil, message: nil, first_n: nil, summarize: nil)
|
|
2478
|
+
Utils.execute("Print", [input, data], message: message, first_n: first_n, summarize: summarize)
|
|
2479
|
+
end
|
|
2480
|
+
|
|
2481
|
+
def print_v2(input: nil, output_stream: nil, stop: nil)
|
|
2482
|
+
Utils.execute("PrintV2", [input], output_stream: output_stream, stop: stop)
|
|
2483
|
+
end
|
|
2484
|
+
|
|
2485
|
+
def priority_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
2486
|
+
Utils.execute("PriorityQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
2487
|
+
end
|
|
2488
|
+
|
|
2489
|
+
def priority_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
|
2490
|
+
Utils.execute("PriorityQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
|
2491
|
+
end
|
|
2492
|
+
|
|
2493
|
+
def prod(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
2494
|
+
Utils.execute("Prod", [input, reduction_indices], keep_dims: keep_dims)
|
|
2495
|
+
end
|
|
2496
|
+
|
|
2497
|
+
def py_func(input: nil, token: nil)
|
|
2498
|
+
Utils.execute("PyFunc", [input], token: token)
|
|
2499
|
+
end
|
|
2500
|
+
|
|
2501
|
+
def py_func_stateless(input: nil, token: nil)
|
|
2502
|
+
Utils.execute("PyFuncStateless", [input], token: token)
|
|
2503
|
+
end
|
|
2504
|
+
|
|
2505
|
+
def qr(input: nil, full_matrices: nil)
|
|
2506
|
+
Utils.execute("Qr", [input], full_matrices: full_matrices)
|
|
2507
|
+
end
|
|
2508
|
+
|
|
2509
|
+
def quantize_and_dequantize(input: nil, signed_input: nil, num_bits: nil, range_given: nil, input_min: nil, input_max: nil)
|
|
2510
|
+
Utils.execute("QuantizeAndDequantize", [input], signed_input: signed_input, num_bits: num_bits, range_given: range_given, input_min: input_min, input_max: input_max)
|
|
2511
|
+
end
|
|
2512
|
+
|
|
2513
|
+
def quantize_and_dequantize_v2(input: nil, input_min: nil, input_max: nil, signed_input: nil, num_bits: nil, range_given: nil, round_mode: nil)
|
|
2514
|
+
Utils.execute("QuantizeAndDequantizeV2", [input, input_min, input_max], signed_input: signed_input, num_bits: num_bits, range_given: range_given, round_mode: round_mode)
|
|
2515
|
+
end
|
|
2516
|
+
|
|
2517
|
+
def quantize_and_dequantize_v3(input: nil, input_min: nil, input_max: nil, num_bits: nil, signed_input: nil, range_given: nil)
|
|
2518
|
+
Utils.execute("QuantizeAndDequantizeV3", [input, input_min, input_max, num_bits], signed_input: signed_input, range_given: range_given)
|
|
2519
|
+
end
|
|
2520
|
+
|
|
2521
|
+
def quantize_down_and_shrink_range(input: nil, input_min: nil, input_max: nil, out_type: nil)
|
|
2522
|
+
Utils.execute("QuantizeDownAndShrinkRange", [input, input_min, input_max], out_type: out_type)
|
|
2523
|
+
end
|
|
2524
|
+
|
|
2525
|
+
def quantize_v2(input: nil, min_range: nil, max_range: nil, mode: nil, round_mode: nil)
|
|
2526
|
+
Utils.execute("QuantizeV2", [input, min_range, max_range], mode: mode, round_mode: round_mode)
|
|
2527
|
+
end
|
|
2528
|
+
|
|
2529
|
+
def quantized_add(x: nil, y: nil, min_x: nil, max_x: nil, min_y: nil, max_y: nil)
|
|
2530
|
+
Utils.execute("QuantizedAdd", [x, y, min_x, max_x, min_y, max_y])
|
|
2531
|
+
end
|
|
2532
|
+
|
|
2533
|
+
def quantized_avg_pool(input: nil, min_input: nil, max_input: nil, ksize: nil, strides: nil, padding: nil)
|
|
2534
|
+
Utils.execute("QuantizedAvgPool", [input, min_input, max_input], ksize: ksize, strides: strides, padding: padding)
|
|
2535
|
+
end
|
|
2536
|
+
|
|
2537
|
+
def quantized_batch_norm_with_global_normalization(t: nil, t_min: nil, t_max: nil, m: nil, m_min: nil, m_max: nil, v: nil, v_min: nil, v_max: nil, beta: nil, beta_min: nil, beta_max: nil, gamma: nil, gamma_min: nil, gamma_max: nil, out_type: nil, variance_epsilon: nil, scale_after_normalization: nil)
|
|
2538
|
+
Utils.execute("QuantizedBatchNormWithGlobalNormalization", [t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max], out_type: out_type, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
|
|
2539
|
+
end
|
|
2540
|
+
|
|
2541
|
+
def quantized_bias_add(input: nil, bias: nil, min_input: nil, max_input: nil, min_bias: nil, max_bias: nil, out_type: nil)
|
|
2542
|
+
Utils.execute("QuantizedBiasAdd", [input, bias, min_input, max_input, min_bias, max_bias], out_type: out_type)
|
|
2543
|
+
end
|
|
2544
|
+
|
|
2545
|
+
def quantized_concat(concat_dim: nil, values: nil, input_mins: nil, input_maxes: nil)
|
|
2546
|
+
Utils.execute("QuantizedConcat", [concat_dim, values, input_mins, input_maxes])
|
|
2547
|
+
end
|
|
2548
|
+
|
|
2549
|
+
def quantized_conv2d(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
|
2550
|
+
Utils.execute("QuantizedConv2D", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
|
2551
|
+
end
|
|
2552
|
+
|
|
2553
|
+
def quantized_conv2d_and_relu(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2554
|
+
Utils.execute("QuantizedConv2DAndRelu", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2555
|
+
end
|
|
2556
|
+
|
|
2557
|
+
def quantized_conv2d_and_relu_and_requantize(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2558
|
+
Utils.execute("QuantizedConv2DAndReluAndRequantize", [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2559
|
+
end
|
|
2560
|
+
|
|
2561
|
+
def quantized_conv2d_and_requantize(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2562
|
+
Utils.execute("QuantizedConv2DAndRequantize", [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2563
|
+
end
|
|
2564
|
+
|
|
2565
|
+
def quantized_conv2d_per_channel(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
|
2566
|
+
Utils.execute("QuantizedConv2DPerChannel", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
|
2567
|
+
end
|
|
2568
|
+
|
|
2569
|
+
def quantized_conv2d_with_bias(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2570
|
+
Utils.execute("QuantizedConv2DWithBias", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2571
|
+
end
|
|
2572
|
+
|
|
2573
|
+
def quantized_conv2d_with_bias_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2574
|
+
Utils.execute("QuantizedConv2DWithBiasAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2575
|
+
end
|
|
2576
|
+
|
|
2577
|
+
def quantized_conv2d_with_bias_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2578
|
+
Utils.execute("QuantizedConv2DWithBiasAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2579
|
+
end
|
|
2580
|
+
|
|
2581
|
+
def quantized_conv2d_with_bias_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2582
|
+
Utils.execute("QuantizedConv2DWithBiasAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2583
|
+
end
|
|
2584
|
+
|
|
2585
|
+
def quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, summand: nil, min_summand: nil, max_summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2586
|
+
Utils.execute("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2587
|
+
end
|
|
2588
|
+
|
|
2589
|
+
def quantized_conv2d_with_bias_sum_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2590
|
+
Utils.execute("QuantizedConv2DWithBiasSumAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter, summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2591
|
+
end
|
|
2592
|
+
|
|
2593
|
+
def quantized_conv2d_with_bias_sum_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, summand: nil, min_summand: nil, max_summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
|
2594
|
+
Utils.execute("QuantizedConv2DWithBiasSumAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
|
2595
|
+
end
|
|
2596
|
+
|
|
2597
|
+
def quantized_depthwise_conv2d(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
|
2598
|
+
Utils.execute("QuantizedDepthwiseConv2D", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
|
2599
|
+
end
|
|
2600
|
+
|
|
2601
|
+
def quantized_depthwise_conv2d_with_bias(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
|
2602
|
+
Utils.execute("QuantizedDepthwiseConv2DWithBias", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
|
2603
|
+
end
|
|
2604
|
+
|
|
2605
|
+
def quantized_depthwise_conv2d_with_bias_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
|
2606
|
+
Utils.execute("QuantizedDepthwiseConv2DWithBiasAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
|
2607
|
+
end
|
|
2608
|
+
|
|
2609
|
+
def quantized_depthwise_conv2d_with_bias_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
|
2610
|
+
Utils.execute("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
|
2611
|
+
end
|
|
2612
|
+
|
|
2613
|
+
def quantized_instance_norm(x: nil, x_min: nil, x_max: nil, output_range_given: nil, given_y_min: nil, given_y_max: nil, variance_epsilon: nil, min_separation: nil)
|
|
2614
|
+
Utils.execute("QuantizedInstanceNorm", [x, x_min, x_max], output_range_given: output_range_given, given_y_min: given_y_min, given_y_max: given_y_max, variance_epsilon: variance_epsilon, min_separation: min_separation)
|
|
2615
|
+
end
|
|
2616
|
+
|
|
2617
|
+
def quantized_mat_mul(a: nil, b: nil, min_a: nil, max_a: nil, min_b: nil, max_b: nil, transpose_a: nil, transpose_b: nil)
|
|
2618
|
+
Utils.execute("QuantizedMatMul", [a, b, min_a, max_a, min_b, max_b], transpose_a: transpose_a, transpose_b: transpose_b)
|
|
2619
|
+
end
|
|
2620
|
+
|
|
2621
|
+
def quantized_max_pool(input: nil, min_input: nil, max_input: nil, ksize: nil, strides: nil, padding: nil)
|
|
2622
|
+
Utils.execute("QuantizedMaxPool", [input, min_input, max_input], ksize: ksize, strides: strides, padding: padding)
|
|
2623
|
+
end
|
|
2624
|
+
|
|
2625
|
+
def quantized_mul(x: nil, y: nil, min_x: nil, max_x: nil, min_y: nil, max_y: nil)
|
|
2626
|
+
Utils.execute("QuantizedMul", [x, y, min_x, max_x, min_y, max_y])
|
|
2627
|
+
end
|
|
2628
|
+
|
|
2629
|
+
def quantized_relu(features: nil, min_features: nil, max_features: nil, out_type: nil)
|
|
2630
|
+
Utils.execute("QuantizedRelu", [features, min_features, max_features], out_type: out_type)
|
|
2631
|
+
end
|
|
2632
|
+
|
|
2633
|
+
def quantized_relu6(features: nil, min_features: nil, max_features: nil, out_type: nil)
|
|
2634
|
+
Utils.execute("QuantizedRelu6", [features, min_features, max_features], out_type: out_type)
|
|
2635
|
+
end
|
|
2636
|
+
|
|
2637
|
+
def quantized_relu_x(features: nil, max_value: nil, min_features: nil, max_features: nil, out_type: nil)
|
|
2638
|
+
Utils.execute("QuantizedReluX", [features, max_value, min_features, max_features], out_type: out_type)
|
|
2639
|
+
end
|
|
2640
|
+
|
|
2641
|
+
def quantized_reshape(tensor: nil, shape: nil, input_min: nil, input_max: nil)
|
|
2642
|
+
Utils.execute("QuantizedReshape", [tensor, shape, input_min, input_max])
|
|
2643
|
+
end
|
|
2644
|
+
|
|
2645
|
+
def quantized_resize_bilinear(images: nil, size: nil, min: nil, max: nil, align_corners: nil, half_pixel_centers: nil)
|
|
2646
|
+
Utils.execute("QuantizedResizeBilinear", [images, size, min, max], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
2647
|
+
end
|
|
2648
|
+
|
|
2649
|
+
def queue_close(handle: nil, cancel_pending_enqueues: nil)
|
|
2650
|
+
Utils.execute("QueueClose", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
|
|
2651
|
+
end
|
|
2652
|
+
|
|
2653
|
+
def queue_close_v2(handle: nil, cancel_pending_enqueues: nil)
|
|
2654
|
+
Utils.execute("QueueCloseV2", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
|
|
2655
|
+
end
|
|
2656
|
+
|
|
2657
|
+
def queue_dequeue(handle: nil, component_types: nil, timeout_ms: nil)
|
|
2658
|
+
Utils.execute("QueueDequeue", [handle], component_types: component_types, timeout_ms: timeout_ms)
|
|
2659
|
+
end
|
|
2660
|
+
|
|
2661
|
+
def queue_dequeue_many(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
|
2662
|
+
Utils.execute("QueueDequeueMany", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
|
2663
|
+
end
|
|
2664
|
+
|
|
2665
|
+
def queue_dequeue_many_v2(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
|
2666
|
+
Utils.execute("QueueDequeueManyV2", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
|
2667
|
+
end
|
|
2668
|
+
|
|
2669
|
+
def queue_dequeue_up_to(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
|
2670
|
+
Utils.execute("QueueDequeueUpTo", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
|
2671
|
+
end
|
|
2672
|
+
|
|
2673
|
+
def queue_dequeue_up_to_v2(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
|
2674
|
+
Utils.execute("QueueDequeueUpToV2", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
|
2675
|
+
end
|
|
2676
|
+
|
|
2677
|
+
def queue_dequeue_v2(handle: nil, component_types: nil, timeout_ms: nil)
|
|
2678
|
+
Utils.execute("QueueDequeueV2", [handle], component_types: component_types, timeout_ms: timeout_ms)
|
|
2679
|
+
end
|
|
2680
|
+
|
|
2681
|
+
def queue_enqueue(handle: nil, components: nil, timeout_ms: nil)
|
|
2682
|
+
Utils.execute("QueueEnqueue", [handle, components], timeout_ms: timeout_ms)
|
|
2683
|
+
end
|
|
2684
|
+
|
|
2685
|
+
def queue_enqueue_many(handle: nil, components: nil, timeout_ms: nil)
|
|
2686
|
+
Utils.execute("QueueEnqueueMany", [handle, components], timeout_ms: timeout_ms)
|
|
2687
|
+
end
|
|
2688
|
+
|
|
2689
|
+
def queue_enqueue_many_v2(handle: nil, components: nil, timeout_ms: nil)
|
|
2690
|
+
Utils.execute("QueueEnqueueManyV2", [handle, components], timeout_ms: timeout_ms)
|
|
2691
|
+
end
|
|
2692
|
+
|
|
2693
|
+
def queue_enqueue_v2(handle: nil, components: nil, timeout_ms: nil)
|
|
2694
|
+
Utils.execute("QueueEnqueueV2", [handle, components], timeout_ms: timeout_ms)
|
|
2695
|
+
end
|
|
2696
|
+
|
|
2697
|
+
def queue_is_closed(handle: nil)
|
|
2698
|
+
Utils.execute("QueueIsClosed", [handle])
|
|
2699
|
+
end
|
|
2700
|
+
|
|
2701
|
+
def queue_is_closed_v2(handle: nil)
|
|
2702
|
+
Utils.execute("QueueIsClosedV2", [handle])
|
|
2703
|
+
end
|
|
2704
|
+
|
|
2705
|
+
def queue_size(handle: nil)
|
|
2706
|
+
Utils.execute("QueueSize", [handle])
|
|
2707
|
+
end
|
|
2708
|
+
|
|
2709
|
+
def queue_size_v2(handle: nil)
|
|
2710
|
+
Utils.execute("QueueSizeV2", [handle])
|
|
2711
|
+
end
|
|
2712
|
+
|
|
2713
|
+
def rfft(input: nil, fft_length: nil)
|
|
2714
|
+
Utils.execute("RFFT", [input, fft_length])
|
|
2715
|
+
end
|
|
2716
|
+
|
|
2717
|
+
def rfft2d(input: nil, fft_length: nil)
|
|
2718
|
+
Utils.execute("RFFT2D", [input, fft_length])
|
|
2719
|
+
end
|
|
2720
|
+
|
|
2721
|
+
def rfft3d(input: nil, fft_length: nil)
|
|
2722
|
+
Utils.execute("RFFT3D", [input, fft_length])
|
|
2723
|
+
end
|
|
2724
|
+
|
|
2725
|
+
def rgb_to_hsv(images: nil)
|
|
2726
|
+
Utils.execute("RGBToHSV", [images])
|
|
2727
|
+
end
|
|
2728
|
+
|
|
2729
|
+
def ragged_gather(params_nested_splits: nil, params_dense_values: nil, indices: nil)
|
|
2730
|
+
Utils.execute("RaggedGather", [params_nested_splits, params_dense_values, indices])
|
|
2731
|
+
end
|
|
2732
|
+
|
|
2733
|
+
def ragged_range(starts: nil, limits: nil, deltas: nil)
|
|
2734
|
+
Utils.execute("RaggedRange", [starts, limits, deltas])
|
|
2735
|
+
end
|
|
2736
|
+
|
|
2737
|
+
def ragged_tensor_from_variant(encoded_ragged: nil, input_ragged_rank: nil, output_ragged_rank: nil)
|
|
2738
|
+
Utils.execute("RaggedTensorFromVariant", [encoded_ragged], input_ragged_rank: input_ragged_rank, output_ragged_rank: output_ragged_rank)
|
|
2739
|
+
end
|
|
2740
|
+
|
|
2741
|
+
def ragged_tensor_to_sparse(rt_nested_splits: nil, rt_dense_values: nil)
|
|
2742
|
+
Utils.execute("RaggedTensorToSparse", [rt_nested_splits, rt_dense_values])
|
|
2743
|
+
end
|
|
2744
|
+
|
|
2745
|
+
def ragged_tensor_to_variant(rt_nested_splits: nil, rt_dense_values: nil, batched_input: nil)
|
|
2746
|
+
Utils.execute("RaggedTensorToVariant", [rt_nested_splits, rt_dense_values], batched_input: batched_input)
|
|
2747
|
+
end
|
|
2748
|
+
|
|
2749
|
+
def random_crop(image: nil, size: nil, seed: nil, seed2: nil)
|
|
2750
|
+
Utils.execute("RandomCrop", [image, size], seed: seed, seed2: seed2)
|
|
2751
|
+
end
|
|
2752
|
+
|
|
2753
|
+
def random_gamma(shape: nil, alpha: nil, seed: nil, seed2: nil)
|
|
2754
|
+
Utils.execute("RandomGamma", [shape, alpha], seed: seed, seed2: seed2)
|
|
2755
|
+
end
|
|
2756
|
+
|
|
2757
|
+
def random_gamma_grad(alpha: nil, sample: nil)
|
|
2758
|
+
Utils.execute("RandomGammaGrad", [alpha, sample])
|
|
2759
|
+
end
|
|
2760
|
+
|
|
2761
|
+
def random_poisson(shape: nil, rate: nil, seed: nil, seed2: nil, dtype: nil)
|
|
2762
|
+
Utils.execute("RandomPoisson", [shape, rate], seed: seed, seed2: seed2, dtype: dtype)
|
|
2763
|
+
end
|
|
2764
|
+
|
|
2765
|
+
def random_poisson_v2(shape: nil, rate: nil, seed: nil, seed2: nil, dtype: nil)
|
|
2766
|
+
Utils.execute("RandomPoissonV2", [shape, rate], seed: seed, seed2: seed2, dtype: dtype)
|
|
2767
|
+
end
|
|
2768
|
+
|
|
2769
|
+
def random_shuffle(value: nil, seed: nil, seed2: nil)
|
|
2770
|
+
Utils.execute("RandomShuffle", [value], seed: seed, seed2: seed2)
|
|
2771
|
+
end
|
|
2772
|
+
|
|
2773
|
+
def random_shuffle_queue(component_types: nil, shapes: nil, capacity: nil, min_after_dequeue: nil, seed: nil, seed2: nil, container: nil, shared_name: nil)
|
|
2774
|
+
Utils.execute("RandomShuffleQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, min_after_dequeue: min_after_dequeue, seed: seed, seed2: seed2, container: container, shared_name: shared_name)
|
|
2775
|
+
end
|
|
2776
|
+
|
|
2777
|
+
def random_shuffle_queue_v2(component_types: nil, shapes: nil, capacity: nil, min_after_dequeue: nil, seed: nil, seed2: nil, container: nil, shared_name: nil)
|
|
2778
|
+
Utils.execute("RandomShuffleQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, min_after_dequeue: min_after_dequeue, seed: seed, seed2: seed2, container: container, shared_name: shared_name)
|
|
2779
|
+
end
|
|
2780
|
+
|
|
2781
|
+
def random_standard_normal(shape: nil, seed: nil, seed2: nil, dtype: nil)
|
|
2782
|
+
Utils.execute("RandomStandardNormal", [shape], seed: seed, seed2: seed2, dtype: dtype)
|
|
2783
|
+
end
|
|
2784
|
+
|
|
2785
|
+
def random_uniform(shape: nil, seed: nil, seed2: nil, dtype: nil)
|
|
2786
|
+
Utils.execute("RandomUniform", [shape], seed: seed, seed2: seed2, dtype: dtype)
|
|
2787
|
+
end
|
|
2788
|
+
|
|
2789
|
+
def random_uniform_int(shape: nil, minval: nil, maxval: nil, seed: nil, seed2: nil)
|
|
2790
|
+
Utils.execute("RandomUniformInt", [shape, minval, maxval], seed: seed, seed2: seed2)
|
|
2791
|
+
end
|
|
2792
|
+
|
|
2793
|
+
def range(start: nil, limit: nil, delta: nil)
|
|
2794
|
+
Utils.execute("Range", [start, limit, delta])
|
|
2795
|
+
end
|
|
2796
|
+
|
|
2797
|
+
def range_dataset(start: nil, stop: nil, step: nil, output_types: nil, output_shapes: nil)
|
|
2798
|
+
Utils.execute("RangeDataset", [start, stop, step], output_types: output_types, output_shapes: output_shapes)
|
|
2799
|
+
end
|
|
2800
|
+
|
|
2801
|
+
def rank(input: nil)
|
|
2802
|
+
Utils.execute("Rank", [input])
|
|
2803
|
+
end
|
|
2804
|
+
|
|
2805
|
+
def read_file(filename: nil)
|
|
2806
|
+
Utils.execute("ReadFile", [filename])
|
|
2807
|
+
end
|
|
2808
|
+
|
|
2809
|
+
def read_variable_op(resource: nil, dtype: nil)
|
|
2810
|
+
Utils.execute("ReadVariableOp", [resource], dtype: dtype)
|
|
2811
|
+
end
|
|
2812
|
+
|
|
2813
|
+
def reader_num_records_produced(reader_handle: nil)
|
|
2814
|
+
Utils.execute("ReaderNumRecordsProduced", [reader_handle])
|
|
2815
|
+
end
|
|
2816
|
+
|
|
2817
|
+
def reader_num_records_produced_v2(reader_handle: nil)
|
|
2818
|
+
Utils.execute("ReaderNumRecordsProducedV2", [reader_handle])
|
|
2819
|
+
end
|
|
2820
|
+
|
|
2821
|
+
def reader_num_work_units_completed(reader_handle: nil)
|
|
2822
|
+
Utils.execute("ReaderNumWorkUnitsCompleted", [reader_handle])
|
|
2823
|
+
end
|
|
2824
|
+
|
|
2825
|
+
def reader_num_work_units_completed_v2(reader_handle: nil)
|
|
2826
|
+
Utils.execute("ReaderNumWorkUnitsCompletedV2", [reader_handle])
|
|
2827
|
+
end
|
|
2828
|
+
|
|
2829
|
+
def reader_read(reader_handle: nil, queue_handle: nil)
|
|
2830
|
+
Utils.execute("ReaderRead", [reader_handle, queue_handle])
|
|
2831
|
+
end
|
|
2832
|
+
|
|
2833
|
+
def reader_read_up_to(reader_handle: nil, queue_handle: nil, num_records: nil)
|
|
2834
|
+
Utils.execute("ReaderReadUpTo", [reader_handle, queue_handle, num_records])
|
|
2835
|
+
end
|
|
2836
|
+
|
|
2837
|
+
def reader_read_up_to_v2(reader_handle: nil, queue_handle: nil, num_records: nil)
|
|
2838
|
+
Utils.execute("ReaderReadUpToV2", [reader_handle, queue_handle, num_records])
|
|
2839
|
+
end
|
|
2840
|
+
|
|
2841
|
+
def reader_read_v2(reader_handle: nil, queue_handle: nil)
|
|
2842
|
+
Utils.execute("ReaderReadV2", [reader_handle, queue_handle])
|
|
2843
|
+
end
|
|
2844
|
+
|
|
2845
|
+
def reader_reset(reader_handle: nil)
|
|
2846
|
+
Utils.execute("ReaderReset", [reader_handle])
|
|
2847
|
+
end
|
|
2848
|
+
|
|
2849
|
+
def reader_reset_v2(reader_handle: nil)
|
|
2850
|
+
Utils.execute("ReaderResetV2", [reader_handle])
|
|
2851
|
+
end
|
|
2852
|
+
|
|
2853
|
+
def reader_restore_state(reader_handle: nil, state: nil)
|
|
2854
|
+
Utils.execute("ReaderRestoreState", [reader_handle, state])
|
|
2855
|
+
end
|
|
2856
|
+
|
|
2857
|
+
def reader_restore_state_v2(reader_handle: nil, state: nil)
|
|
2858
|
+
Utils.execute("ReaderRestoreStateV2", [reader_handle, state])
|
|
2859
|
+
end
|
|
2860
|
+
|
|
2861
|
+
def reader_serialize_state(reader_handle: nil)
|
|
2862
|
+
Utils.execute("ReaderSerializeState", [reader_handle])
|
|
2863
|
+
end
|
|
2864
|
+
|
|
2865
|
+
def reader_serialize_state_v2(reader_handle: nil)
|
|
2866
|
+
Utils.execute("ReaderSerializeStateV2", [reader_handle])
|
|
2867
|
+
end
|
|
2868
|
+
|
|
2869
|
+
def real(input: nil)
|
|
2870
|
+
Utils.execute("Real", [input])
|
|
2871
|
+
end
|
|
2872
|
+
|
|
2873
|
+
def real_div(x: nil, y: nil)
|
|
2874
|
+
Utils.execute("RealDiv", [x, y])
|
|
2875
|
+
end
|
|
2876
|
+
|
|
2877
|
+
def reciprocal(x: nil)
|
|
2878
|
+
Utils.execute("Reciprocal", [x])
|
|
2879
|
+
end
|
|
2880
|
+
|
|
2881
|
+
def reciprocal_grad(y: nil, dy: nil)
|
|
2882
|
+
Utils.execute("ReciprocalGrad", [y, dy])
|
|
2883
|
+
end
|
|
2884
|
+
|
|
2885
|
+
def record_input(file_pattern: nil, file_random_seed: nil, file_shuffle_shift_ratio: nil, file_buffer_size: nil, file_parallelism: nil, batch_size: nil, compression_type: nil)
|
|
2886
|
+
Utils.execute("RecordInput", [], file_pattern: file_pattern, file_random_seed: file_random_seed, file_shuffle_shift_ratio: file_shuffle_shift_ratio, file_buffer_size: file_buffer_size, file_parallelism: file_parallelism, batch_size: batch_size, compression_type: compression_type)
|
|
2887
|
+
end
|
|
2888
|
+
|
|
2889
|
+
def recv_tpu_embedding_activations(num_outputs: nil, config: nil)
|
|
2890
|
+
Utils.execute("RecvTPUEmbeddingActivations", [], num_outputs: num_outputs, config: config)
|
|
2891
|
+
end
|
|
2892
|
+
|
|
2893
|
+
def reduce_dataset(input_dataset: nil, initial_state: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil)
|
|
2894
|
+
Utils.execute("ReduceDataset", [input_dataset, initial_state, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism)
|
|
2895
|
+
end
|
|
2896
|
+
|
|
2897
|
+
def reduce_join(inputs: nil, reduction_indices: nil, keep_dims: nil, separator: nil)
|
|
2898
|
+
Utils.execute("ReduceJoin", [inputs, reduction_indices], keep_dims: keep_dims, separator: separator)
|
|
2899
|
+
end
|
|
2900
|
+
|
|
2901
|
+
def ref_enter(data: nil, frame_name: nil, is_constant: nil, parallel_iterations: nil)
|
|
2902
|
+
Utils.execute("RefEnter", [data], frame_name: frame_name, is_constant: is_constant, parallel_iterations: parallel_iterations)
|
|
2903
|
+
end
|
|
2904
|
+
|
|
2905
|
+
def ref_exit(data: nil)
|
|
2906
|
+
Utils.execute("RefExit", [data])
|
|
2907
|
+
end
|
|
2908
|
+
|
|
2909
|
+
def ref_identity(input: nil)
|
|
2910
|
+
Utils.execute("RefIdentity", [input])
|
|
2911
|
+
end
|
|
2912
|
+
|
|
2913
|
+
def ref_merge(inputs: nil)
|
|
2914
|
+
Utils.execute("RefMerge", [inputs])
|
|
2915
|
+
end
|
|
2916
|
+
|
|
2917
|
+
def ref_next_iteration(data: nil)
|
|
2918
|
+
Utils.execute("RefNextIteration", [data])
|
|
2919
|
+
end
|
|
2920
|
+
|
|
2921
|
+
def ref_select(index: nil, inputs: nil)
|
|
2922
|
+
Utils.execute("RefSelect", [index, inputs])
|
|
2923
|
+
end
|
|
2924
|
+
|
|
2925
|
+
def ref_switch(data: nil, pred: nil)
|
|
2926
|
+
Utils.execute("RefSwitch", [data, pred])
|
|
2927
|
+
end
|
|
2928
|
+
|
|
2929
|
+
def regex_full_match(input: nil, pattern: nil)
|
|
2930
|
+
Utils.execute("RegexFullMatch", [input, pattern])
|
|
2931
|
+
end
|
|
2932
|
+
|
|
2933
|
+
def regex_replace(input: nil, pattern: nil, rewrite: nil, replace_global: nil)
|
|
2934
|
+
Utils.execute("RegexReplace", [input, pattern, rewrite], replace_global: replace_global)
|
|
2935
|
+
end
|
|
2936
|
+
|
|
2937
|
+
def relu(features: nil)
|
|
2938
|
+
Utils.execute("Relu", [features])
|
|
2939
|
+
end
|
|
2940
|
+
|
|
2941
|
+
def relu6(features: nil)
|
|
2942
|
+
Utils.execute("Relu6", [features])
|
|
2943
|
+
end
|
|
2944
|
+
|
|
2945
|
+
def relu6_grad(gradients: nil, features: nil)
|
|
2946
|
+
Utils.execute("Relu6Grad", [gradients, features])
|
|
2947
|
+
end
|
|
2948
|
+
|
|
2949
|
+
def relu_grad(gradients: nil, features: nil)
|
|
2950
|
+
Utils.execute("ReluGrad", [gradients, features])
|
|
2951
|
+
end
|
|
2952
|
+
|
|
2953
|
+
def remote_call(target: nil, args: nil, f: nil)
|
|
2954
|
+
Utils.execute("RemoteCall", [target, args], f: f)
|
|
2955
|
+
end
|
|
2956
|
+
|
|
2957
|
+
def remote_fused_graph_execute(inputs: nil, serialized_remote_fused_graph_execute_info: nil)
|
|
2958
|
+
Utils.execute("RemoteFusedGraphExecute", [inputs], serialized_remote_fused_graph_execute_info: serialized_remote_fused_graph_execute_info)
|
|
2959
|
+
end
|
|
2960
|
+
|
|
2961
|
+
def repeat_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
|
|
2962
|
+
Utils.execute("RepeatDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
|
|
2963
|
+
end
|
|
2964
|
+
|
|
2965
|
+
def requantization_range(input: nil, input_min: nil, input_max: nil)
|
|
2966
|
+
Utils.execute("RequantizationRange", [input, input_min, input_max])
|
|
2967
|
+
end
|
|
2968
|
+
|
|
2969
|
+
def requantization_range_per_channel(input: nil, input_min: nil, input_max: nil, clip_value_max: nil)
|
|
2970
|
+
Utils.execute("RequantizationRangePerChannel", [input, input_min, input_max], clip_value_max: clip_value_max)
|
|
2971
|
+
end
|
|
2972
|
+
|
|
2973
|
+
def requantize(input: nil, input_min: nil, input_max: nil, requested_output_min: nil, requested_output_max: nil, out_type: nil)
|
|
2974
|
+
Utils.execute("Requantize", [input, input_min, input_max, requested_output_min, requested_output_max], out_type: out_type)
|
|
2975
|
+
end
|
|
2976
|
+
|
|
2977
|
+
def requantize_per_channel(input: nil, input_min: nil, input_max: nil, requested_output_min: nil, requested_output_max: nil, out_type: nil)
|
|
2978
|
+
Utils.execute("RequantizePerChannel", [input, input_min, input_max, requested_output_min, requested_output_max], out_type: out_type)
|
|
2979
|
+
end
|
|
2980
|
+
|
|
2981
|
+
def reshape(tensor: nil, shape: nil)
|
|
2982
|
+
Utils.execute("Reshape", [tensor, shape])
|
|
2983
|
+
end
|
|
2984
|
+
|
|
2985
|
+
def resize_area(images: nil, size: nil, align_corners: nil)
|
|
2986
|
+
Utils.execute("ResizeArea", [images, size], align_corners: align_corners)
|
|
2987
|
+
end
|
|
2988
|
+
|
|
2989
|
+
def resize_bicubic(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
|
2990
|
+
Utils.execute("ResizeBicubic", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
2991
|
+
end
|
|
2992
|
+
|
|
2993
|
+
def resize_bicubic_grad(grads: nil, original_image: nil, align_corners: nil, half_pixel_centers: nil)
|
|
2994
|
+
Utils.execute("ResizeBicubicGrad", [grads, original_image], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
2995
|
+
end
|
|
2996
|
+
|
|
2997
|
+
def resize_bilinear(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
|
2998
|
+
Utils.execute("ResizeBilinear", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
2999
|
+
end
|
|
3000
|
+
|
|
3001
|
+
def resize_bilinear_grad(grads: nil, original_image: nil, align_corners: nil, half_pixel_centers: nil)
|
|
3002
|
+
Utils.execute("ResizeBilinearGrad", [grads, original_image], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
3003
|
+
end
|
|
3004
|
+
|
|
3005
|
+
def resize_nearest_neighbor(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
|
3006
|
+
Utils.execute("ResizeNearestNeighbor", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
3007
|
+
end
|
|
3008
|
+
|
|
3009
|
+
def resize_nearest_neighbor_grad(grads: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
|
3010
|
+
Utils.execute("ResizeNearestNeighborGrad", [grads, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
|
3011
|
+
end
|
|
3012
|
+
|
|
3013
|
+
def resource_apply_ada_max(var: nil, m: nil, v: nil, beta1_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
3014
|
+
Utils.execute("ResourceApplyAdaMax", [var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
|
|
3015
|
+
end
|
|
3016
|
+
|
|
3017
|
+
def resource_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
3018
|
+
Utils.execute("ResourceApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad], use_locking: use_locking)
|
|
3019
|
+
end
|
|
3020
|
+
|
|
3021
|
+
def resource_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, use_locking: nil, update_slots: nil)
|
|
3022
|
+
Utils.execute("ResourceApplyAdagrad", [var, accum, lr, grad], use_locking: use_locking, update_slots: update_slots)
|
|
3023
|
+
end
|
|
3024
|
+
|
|
3025
|
+
def resource_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
|
3026
|
+
Utils.execute("ResourceApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step], use_locking: use_locking)
|
|
3027
|
+
end
|
|
3028
|
+
|
|
3029
|
+
def resource_apply_adam(var: nil, m: nil, v: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil, use_nesterov: nil)
|
|
3030
|
+
Utils.execute("ResourceApplyAdam", [var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
3031
|
+
end
|
|
3032
|
+
|
|
3033
|
+
def resource_apply_adam_with_amsgrad(var: nil, m: nil, v: nil, vhat: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
3034
|
+
Utils.execute("ResourceApplyAdamWithAmsgrad", [var, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
|
|
3035
|
+
end
|
|
3036
|
+
|
|
3037
|
+
def resource_apply_add_sign(var: nil, m: nil, lr: nil, alpha: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
|
3038
|
+
Utils.execute("ResourceApplyAddSign", [var, m, lr, alpha, sign_decay, beta, grad], use_locking: use_locking)
|
|
3039
|
+
end
|
|
3040
|
+
|
|
3041
|
+
def resource_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
3042
|
+
Utils.execute("ResourceApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
|
3043
|
+
end
|
|
3044
|
+
|
|
3045
|
+
def resource_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
|
3046
|
+
Utils.execute("ResourceApplyFtrl", [var, accum, linear, grad, lr, l1, l2, lr_power], use_locking: use_locking)
|
|
3047
|
+
end
|
|
3048
|
+
|
|
3049
|
+
def resource_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
|
3050
|
+
Utils.execute("ResourceApplyFtrlV2", [var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
|
3051
|
+
end
|
|
3052
|
+
|
|
3053
|
+
def resource_apply_gradient_descent(var: nil, alpha: nil, delta: nil, use_locking: nil)
|
|
3054
|
+
Utils.execute("ResourceApplyGradientDescent", [var, alpha, delta], use_locking: use_locking)
|
|
3055
|
+
end
|
|
3056
|
+
|
|
3057
|
+
def resource_apply_keras_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
|
3058
|
+
Utils.execute("ResourceApplyKerasMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
3059
|
+
end
|
|
3060
|
+
|
|
3061
|
+
def resource_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
|
3062
|
+
Utils.execute("ResourceApplyMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
3063
|
+
end
|
|
3064
|
+
|
|
3065
|
+
def resource_apply_power_sign(var: nil, m: nil, lr: nil, logbase: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
|
3066
|
+
Utils.execute("ResourceApplyPowerSign", [var, m, lr, logbase, sign_decay, beta, grad], use_locking: use_locking)
|
|
3067
|
+
end
|
|
3068
|
+
|
|
3069
|
+
def resource_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, use_locking: nil)
|
|
3070
|
+
Utils.execute("ResourceApplyProximalAdagrad", [var, accum, lr, l1, l2, grad], use_locking: use_locking)
|
|
3071
|
+
end
|
|
3072
|
+
|
|
3073
|
+
def resource_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, delta: nil, use_locking: nil)
|
|
3074
|
+
Utils.execute("ResourceApplyProximalGradientDescent", [var, alpha, l1, l2, delta], use_locking: use_locking)
|
|
3075
|
+
end
|
|
3076
|
+
|
|
3077
|
+
def resource_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
|
3078
|
+
Utils.execute("ResourceApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
|
3079
|
+
end
|
|
3080
|
+
|
|
3081
|
+
def resource_count_up_to(resource: nil, limit: nil)
|
|
3082
|
+
Utils.execute("ResourceCountUpTo", [resource], limit: limit)
|
|
3083
|
+
end
|
|
3084
|
+
|
|
3085
|
+
def resource_gather(resource: nil, indices: nil, batch_dims: nil, validate_indices: nil, dtype: nil)
|
|
3086
|
+
Utils.execute("ResourceGather", [resource, indices], batch_dims: batch_dims, validate_indices: validate_indices, dtype: dtype)
|
|
3087
|
+
end
|
|
3088
|
+
|
|
3089
|
+
def resource_gather_nd(resource: nil, indices: nil, dtype: nil)
|
|
3090
|
+
Utils.execute("ResourceGatherNd", [resource, indices], dtype: dtype)
|
|
3091
|
+
end
|
|
3092
|
+
|
|
3093
|
+
def resource_scatter_add(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3094
|
+
Utils.execute("ResourceScatterAdd", [resource, indices, updates], dtype: dtype)
|
|
3095
|
+
end
|
|
3096
|
+
|
|
3097
|
+
def resource_scatter_div(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3098
|
+
Utils.execute("ResourceScatterDiv", [resource, indices, updates], dtype: dtype)
|
|
3099
|
+
end
|
|
3100
|
+
|
|
3101
|
+
def resource_scatter_max(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3102
|
+
Utils.execute("ResourceScatterMax", [resource, indices, updates], dtype: dtype)
|
|
3103
|
+
end
|
|
3104
|
+
|
|
3105
|
+
def resource_scatter_min(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3106
|
+
Utils.execute("ResourceScatterMin", [resource, indices, updates], dtype: dtype)
|
|
3107
|
+
end
|
|
3108
|
+
|
|
3109
|
+
def resource_scatter_mul(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3110
|
+
Utils.execute("ResourceScatterMul", [resource, indices, updates], dtype: dtype)
|
|
3111
|
+
end
|
|
3112
|
+
|
|
3113
|
+
def resource_scatter_nd_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3114
|
+
Utils.execute("ResourceScatterNdAdd", [ref, indices, updates], use_locking: use_locking)
|
|
3115
|
+
end
|
|
3116
|
+
|
|
3117
|
+
def resource_scatter_nd_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3118
|
+
Utils.execute("ResourceScatterNdSub", [ref, indices, updates], use_locking: use_locking)
|
|
3119
|
+
end
|
|
3120
|
+
|
|
3121
|
+
def resource_scatter_nd_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3122
|
+
Utils.execute("ResourceScatterNdUpdate", [ref, indices, updates], use_locking: use_locking)
|
|
3123
|
+
end
|
|
3124
|
+
|
|
3125
|
+
def resource_scatter_sub(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3126
|
+
Utils.execute("ResourceScatterSub", [resource, indices, updates], dtype: dtype)
|
|
3127
|
+
end
|
|
3128
|
+
|
|
3129
|
+
def resource_scatter_update(resource: nil, indices: nil, updates: nil, dtype: nil)
|
|
3130
|
+
Utils.execute("ResourceScatterUpdate", [resource, indices, updates], dtype: dtype)
|
|
3131
|
+
end
|
|
3132
|
+
|
|
3133
|
+
def resource_sparse_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3134
|
+
Utils.execute("ResourceSparseApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad, indices], use_locking: use_locking)
|
|
3135
|
+
end
|
|
3136
|
+
|
|
3137
|
+
def resource_sparse_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, use_locking: nil, update_slots: nil)
|
|
3138
|
+
Utils.execute("ResourceSparseApplyAdagrad", [var, accum, lr, grad, indices], use_locking: use_locking, update_slots: update_slots)
|
|
3139
|
+
end
|
|
3140
|
+
|
|
3141
|
+
def resource_sparse_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
|
3142
|
+
Utils.execute("ResourceSparseApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step], use_locking: use_locking)
|
|
3143
|
+
end
|
|
3144
|
+
|
|
3145
|
+
def resource_sparse_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3146
|
+
Utils.execute("ResourceSparseApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
|
3147
|
+
end
|
|
3148
|
+
|
|
3149
|
+
def resource_sparse_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
|
3150
|
+
Utils.execute("ResourceSparseApplyFtrl", [var, accum, linear, grad, indices, lr, l1, l2, lr_power], use_locking: use_locking)
|
|
3151
|
+
end
|
|
3152
|
+
|
|
3153
|
+
def resource_sparse_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
|
3154
|
+
Utils.execute("ResourceSparseApplyFtrlV2", [var, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
|
3155
|
+
end
|
|
3156
|
+
|
|
3157
|
+
def resource_sparse_apply_keras_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
|
3158
|
+
Utils.execute("ResourceSparseApplyKerasMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
3159
|
+
end
|
|
3160
|
+
|
|
3161
|
+
def resource_sparse_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
|
3162
|
+
Utils.execute("ResourceSparseApplyMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
3163
|
+
end
|
|
3164
|
+
|
|
3165
|
+
def resource_sparse_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3166
|
+
Utils.execute("ResourceSparseApplyProximalAdagrad", [var, accum, lr, l1, l2, grad, indices], use_locking: use_locking)
|
|
3167
|
+
end
|
|
3168
|
+
|
|
3169
|
+
def resource_sparse_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3170
|
+
Utils.execute("ResourceSparseApplyProximalGradientDescent", [var, alpha, l1, l2, grad, indices], use_locking: use_locking)
|
|
3171
|
+
end
|
|
3172
|
+
|
|
3173
|
+
def resource_sparse_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3174
|
+
Utils.execute("ResourceSparseApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
|
3175
|
+
end
|
|
3176
|
+
|
|
3177
|
+
def resource_strided_slice_assign(ref: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
|
3178
|
+
Utils.execute("ResourceStridedSliceAssign", [ref, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
|
3179
|
+
end
|
|
3180
|
+
|
|
3181
|
+
def restore(file_pattern: nil, tensor_name: nil, dt: nil, preferred_shard: nil)
|
|
3182
|
+
Utils.execute("Restore", [file_pattern, tensor_name], dt: dt, preferred_shard: preferred_shard)
|
|
3183
|
+
end
|
|
3184
|
+
|
|
3185
|
+
def restore_slice(file_pattern: nil, tensor_name: nil, shape_and_slice: nil, dt: nil, preferred_shard: nil)
|
|
3186
|
+
Utils.execute("RestoreSlice", [file_pattern, tensor_name, shape_and_slice], dt: dt, preferred_shard: preferred_shard)
|
|
3187
|
+
end
|
|
3188
|
+
|
|
3189
|
+
def restore_v2(prefix: nil, tensor_names: nil, shape_and_slices: nil, dtypes: nil)
|
|
3190
|
+
Utils.execute("RestoreV2", [prefix, tensor_names, shape_and_slices], dtypes: dtypes)
|
|
3191
|
+
end
|
|
3192
|
+
|
|
3193
|
+
def retrieve_tpu_embedding_adam_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3194
|
+
Utils.execute("RetrieveTPUEmbeddingADAMParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3195
|
+
end
|
|
3196
|
+
|
|
3197
|
+
def retrieve_tpu_embedding_adam_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3198
|
+
Utils.execute("RetrieveTPUEmbeddingADAMParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3199
|
+
end
|
|
3200
|
+
|
|
3201
|
+
def retrieve_tpu_embedding_adadelta_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3202
|
+
Utils.execute("RetrieveTPUEmbeddingAdadeltaParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3203
|
+
end
|
|
3204
|
+
|
|
3205
|
+
def retrieve_tpu_embedding_adadelta_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3206
|
+
Utils.execute("RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3207
|
+
end
|
|
3208
|
+
|
|
3209
|
+
def retrieve_tpu_embedding_adagrad_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3210
|
+
Utils.execute("RetrieveTPUEmbeddingAdagradParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3211
|
+
end
|
|
3212
|
+
|
|
3213
|
+
def retrieve_tpu_embedding_adagrad_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3214
|
+
Utils.execute("RetrieveTPUEmbeddingAdagradParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3215
|
+
end
|
|
3216
|
+
|
|
3217
|
+
def retrieve_tpu_embedding_centered_rms_prop_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3218
|
+
Utils.execute("RetrieveTPUEmbeddingCenteredRMSPropParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3219
|
+
end
|
|
3220
|
+
|
|
3221
|
+
def retrieve_tpu_embedding_ftrl_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3222
|
+
Utils.execute("RetrieveTPUEmbeddingFTRLParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3223
|
+
end
|
|
3224
|
+
|
|
3225
|
+
def retrieve_tpu_embedding_ftrl_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3226
|
+
Utils.execute("RetrieveTPUEmbeddingFTRLParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3227
|
+
end
|
|
3228
|
+
|
|
3229
|
+
def retrieve_tpu_embedding_mdl_adagrad_light_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3230
|
+
Utils.execute("RetrieveTPUEmbeddingMDLAdagradLightParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3231
|
+
end
|
|
3232
|
+
|
|
3233
|
+
def retrieve_tpu_embedding_momentum_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3234
|
+
Utils.execute("RetrieveTPUEmbeddingMomentumParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3235
|
+
end
|
|
3236
|
+
|
|
3237
|
+
def retrieve_tpu_embedding_momentum_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3238
|
+
Utils.execute("RetrieveTPUEmbeddingMomentumParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3239
|
+
end
|
|
3240
|
+
|
|
3241
|
+
def retrieve_tpu_embedding_proximal_adagrad_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3242
|
+
Utils.execute("RetrieveTPUEmbeddingProximalAdagradParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3243
|
+
end
|
|
3244
|
+
|
|
3245
|
+
def retrieve_tpu_embedding_proximal_adagrad_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3246
|
+
Utils.execute("RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3247
|
+
end
|
|
3248
|
+
|
|
3249
|
+
def retrieve_tpu_embedding_rms_prop_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3250
|
+
Utils.execute("RetrieveTPUEmbeddingRMSPropParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3251
|
+
end
|
|
3252
|
+
|
|
3253
|
+
def retrieve_tpu_embedding_rms_prop_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3254
|
+
Utils.execute("RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3255
|
+
end
|
|
3256
|
+
|
|
3257
|
+
def retrieve_tpu_embedding_stochastic_gradient_descent_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
|
3258
|
+
Utils.execute("RetrieveTPUEmbeddingStochasticGradientDescentParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
|
3259
|
+
end
|
|
3260
|
+
|
|
3261
|
+
def reverse(tensor: nil, dims: nil)
|
|
3262
|
+
Utils.execute("Reverse", [tensor, dims])
|
|
3263
|
+
end
|
|
3264
|
+
|
|
3265
|
+
def reverse_sequence(input: nil, seq_lengths: nil, seq_dim: nil, batch_dim: nil)
|
|
3266
|
+
Utils.execute("ReverseSequence", [input, seq_lengths], seq_dim: seq_dim, batch_dim: batch_dim)
|
|
3267
|
+
end
|
|
3268
|
+
|
|
3269
|
+
def reverse_v2(tensor: nil, axis: nil)
|
|
3270
|
+
Utils.execute("ReverseV2", [tensor, axis])
|
|
3271
|
+
end
|
|
3272
|
+
|
|
3273
|
+
def right_shift(x: nil, y: nil)
|
|
3274
|
+
Utils.execute("RightShift", [x, y])
|
|
3275
|
+
end
|
|
3276
|
+
|
|
3277
|
+
def rint(x: nil)
|
|
3278
|
+
Utils.execute("Rint", [x])
|
|
3279
|
+
end
|
|
3280
|
+
|
|
3281
|
+
def rng_skip(resource: nil, algorithm: nil, delta: nil)
|
|
3282
|
+
Utils.execute("RngSkip", [resource, algorithm, delta])
|
|
3283
|
+
end
|
|
3284
|
+
|
|
3285
|
+
def roll(input: nil, shift: nil, axis: nil)
|
|
3286
|
+
Utils.execute("Roll", [input, shift, axis])
|
|
3287
|
+
end
|
|
3288
|
+
|
|
3289
|
+
def round(x: nil)
|
|
3290
|
+
Utils.execute("Round", [x])
|
|
3291
|
+
end
|
|
3292
|
+
|
|
3293
|
+
def rpc(address: nil, method: nil, request: nil, protocol: nil, fail_fast: nil, timeout_in_ms: nil)
|
|
3294
|
+
Utils.execute("Rpc", [address, method, request], protocol: protocol, fail_fast: fail_fast, timeout_in_ms: timeout_in_ms)
|
|
3295
|
+
end
|
|
3296
|
+
|
|
3297
|
+
def rsqrt(x: nil)
|
|
3298
|
+
Utils.execute("Rsqrt", [x])
|
|
3299
|
+
end
|
|
3300
|
+
|
|
3301
|
+
def rsqrt_grad(y: nil, dy: nil)
|
|
3302
|
+
Utils.execute("RsqrtGrad", [y, dy])
|
|
3303
|
+
end
|
|
3304
|
+
|
|
3305
|
+
def sample_distorted_bounding_box(image_size: nil, bounding_boxes: nil, seed: nil, seed2: nil, min_object_covered: nil, aspect_ratio_range: nil, area_range: nil, max_attempts: nil, use_image_if_no_bounding_boxes: nil)
|
|
3306
|
+
Utils.execute("SampleDistortedBoundingBox", [image_size, bounding_boxes], seed: seed, seed2: seed2, min_object_covered: min_object_covered, aspect_ratio_range: aspect_ratio_range, area_range: area_range, max_attempts: max_attempts, use_image_if_no_bounding_boxes: use_image_if_no_bounding_boxes)
|
|
3307
|
+
end
|
|
3308
|
+
|
|
3309
|
+
def sample_distorted_bounding_box_v2(image_size: nil, bounding_boxes: nil, min_object_covered: nil, seed: nil, seed2: nil, aspect_ratio_range: nil, area_range: nil, max_attempts: nil, use_image_if_no_bounding_boxes: nil)
|
|
3310
|
+
Utils.execute("SampleDistortedBoundingBoxV2", [image_size, bounding_boxes, min_object_covered], seed: seed, seed2: seed2, aspect_ratio_range: aspect_ratio_range, area_range: area_range, max_attempts: max_attempts, use_image_if_no_bounding_boxes: use_image_if_no_bounding_boxes)
|
|
3311
|
+
end
|
|
3312
|
+
|
|
3313
|
+
def sampling_dataset(input_dataset: nil, rate: nil, seed: nil, seed2: nil, output_types: nil, output_shapes: nil)
|
|
3314
|
+
Utils.execute("SamplingDataset", [input_dataset, rate, seed, seed2], output_types: output_types, output_shapes: output_shapes)
|
|
3315
|
+
end
|
|
3316
|
+
|
|
3317
|
+
def save(filename: nil, tensor_names: nil, data: nil)
|
|
3318
|
+
Utils.execute("Save", [filename, tensor_names, data])
|
|
3319
|
+
end
|
|
3320
|
+
|
|
3321
|
+
def save_slices(filename: nil, tensor_names: nil, shapes_and_slices: nil, data: nil)
|
|
3322
|
+
Utils.execute("SaveSlices", [filename, tensor_names, shapes_and_slices, data])
|
|
3323
|
+
end
|
|
3324
|
+
|
|
3325
|
+
def save_v2(prefix: nil, tensor_names: nil, shape_and_slices: nil, tensors: nil, dtypes: nil)
|
|
3326
|
+
Utils.execute("SaveV2", [prefix, tensor_names, shape_and_slices, tensors], dtypes: dtypes)
|
|
3327
|
+
end
|
|
3328
|
+
|
|
3329
|
+
def scalar_summary(tags: nil, values: nil)
|
|
3330
|
+
Utils.execute("ScalarSummary", [tags, values])
|
|
3331
|
+
end
|
|
3332
|
+
|
|
3333
|
+
def scale_and_translate(images: nil, size: nil, scale: nil, translation: nil, kernel_type: nil, antialias: nil)
|
|
3334
|
+
Utils.execute("ScaleAndTranslate", [images, size, scale, translation], kernel_type: kernel_type, antialias: antialias)
|
|
3335
|
+
end
|
|
3336
|
+
|
|
3337
|
+
def scale_and_translate_grad(grads: nil, original_image: nil, scale: nil, translation: nil, kernel_type: nil, antialias: nil)
|
|
3338
|
+
Utils.execute("ScaleAndTranslateGrad", [grads, original_image, scale, translation], kernel_type: kernel_type, antialias: antialias)
|
|
3339
|
+
end
|
|
3340
|
+
|
|
3341
|
+
def scatter_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3342
|
+
Utils.execute("ScatterAdd", [ref, indices, updates], use_locking: use_locking)
|
|
3343
|
+
end
|
|
3344
|
+
|
|
3345
|
+
def scatter_div(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3346
|
+
Utils.execute("ScatterDiv", [ref, indices, updates], use_locking: use_locking)
|
|
3347
|
+
end
|
|
3348
|
+
|
|
3349
|
+
def scatter_max(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3350
|
+
Utils.execute("ScatterMax", [ref, indices, updates], use_locking: use_locking)
|
|
3351
|
+
end
|
|
3352
|
+
|
|
3353
|
+
def scatter_min(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3354
|
+
Utils.execute("ScatterMin", [ref, indices, updates], use_locking: use_locking)
|
|
3355
|
+
end
|
|
3356
|
+
|
|
3357
|
+
def scatter_mul(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3358
|
+
Utils.execute("ScatterMul", [ref, indices, updates], use_locking: use_locking)
|
|
3359
|
+
end
|
|
3360
|
+
|
|
3361
|
+
def scatter_nd(indices: nil, updates: nil, shape: nil)
|
|
3362
|
+
Utils.execute("ScatterNd", [indices, updates, shape])
|
|
3363
|
+
end
|
|
3364
|
+
|
|
3365
|
+
def scatter_nd_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3366
|
+
Utils.execute("ScatterNdAdd", [ref, indices, updates], use_locking: use_locking)
|
|
3367
|
+
end
|
|
3368
|
+
|
|
3369
|
+
def scatter_nd_non_aliasing_add(input: nil, indices: nil, updates: nil)
|
|
3370
|
+
Utils.execute("ScatterNdNonAliasingAdd", [input, indices, updates])
|
|
3371
|
+
end
|
|
3372
|
+
|
|
3373
|
+
def scatter_nd_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3374
|
+
Utils.execute("ScatterNdSub", [ref, indices, updates], use_locking: use_locking)
|
|
3375
|
+
end
|
|
3376
|
+
|
|
3377
|
+
def scatter_nd_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3378
|
+
Utils.execute("ScatterNdUpdate", [ref, indices, updates], use_locking: use_locking)
|
|
3379
|
+
end
|
|
3380
|
+
|
|
3381
|
+
def scatter_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3382
|
+
Utils.execute("ScatterSub", [ref, indices, updates], use_locking: use_locking)
|
|
3383
|
+
end
|
|
3384
|
+
|
|
3385
|
+
def scatter_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
|
3386
|
+
Utils.execute("ScatterUpdate", [ref, indices, updates], use_locking: use_locking)
|
|
3387
|
+
end
|
|
3388
|
+
|
|
3389
|
+
def sdca_fprint(input: nil)
|
|
3390
|
+
Utils.execute("SdcaFprint", [input])
|
|
3391
|
+
end
|
|
3392
|
+
|
|
3393
|
+
def sdca_optimizer(sparse_example_indices: nil, sparse_feature_indices: nil, sparse_feature_values: nil, dense_features: nil, example_weights: nil, example_labels: nil, sparse_indices: nil, sparse_weights: nil, dense_weights: nil, example_state_data: nil, loss_type: nil, adaptative: nil, num_sparse_features: nil, num_sparse_features_with_values: nil, num_dense_features: nil, l1: nil, l2: nil, num_loss_partitions: nil, num_inner_iterations: nil)
|
|
3394
|
+
Utils.execute("SdcaOptimizer", [sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data], loss_type: loss_type, adaptative: adaptative, num_sparse_features: num_sparse_features, num_sparse_features_with_values: num_sparse_features_with_values, num_dense_features: num_dense_features, l1: l1, l2: l2, num_loss_partitions: num_loss_partitions, num_inner_iterations: num_inner_iterations)
|
|
3395
|
+
end
|
|
3396
|
+
|
|
3397
|
+
def sdca_optimizer_v2(sparse_example_indices: nil, sparse_feature_indices: nil, sparse_feature_values: nil, dense_features: nil, example_weights: nil, example_labels: nil, sparse_indices: nil, sparse_weights: nil, dense_weights: nil, example_state_data: nil, loss_type: nil, adaptive: nil, num_sparse_features: nil, num_sparse_features_with_values: nil, num_dense_features: nil, l1: nil, l2: nil, num_loss_partitions: nil, num_inner_iterations: nil)
|
|
3398
|
+
Utils.execute("SdcaOptimizerV2", [sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data], loss_type: loss_type, adaptive: adaptive, num_sparse_features: num_sparse_features, num_sparse_features_with_values: num_sparse_features_with_values, num_dense_features: num_dense_features, l1: l1, l2: l2, num_loss_partitions: num_loss_partitions, num_inner_iterations: num_inner_iterations)
|
|
3399
|
+
end
|
|
3400
|
+
|
|
3401
|
+
def sdca_shrink_l1(weights: nil, num_features: nil, l1: nil, l2: nil)
|
|
3402
|
+
Utils.execute("SdcaShrinkL1", [weights], num_features: num_features, l1: l1, l2: l2)
|
|
3403
|
+
end
|
|
3404
|
+
|
|
3405
|
+
def segment_max(data: nil, segment_ids: nil)
|
|
3406
|
+
Utils.execute("SegmentMax", [data, segment_ids])
|
|
3407
|
+
end
|
|
3408
|
+
|
|
3409
|
+
def segment_mean(data: nil, segment_ids: nil)
|
|
3410
|
+
Utils.execute("SegmentMean", [data, segment_ids])
|
|
3411
|
+
end
|
|
3412
|
+
|
|
3413
|
+
def segment_min(data: nil, segment_ids: nil)
|
|
3414
|
+
Utils.execute("SegmentMin", [data, segment_ids])
|
|
3415
|
+
end
|
|
3416
|
+
|
|
3417
|
+
def segment_prod(data: nil, segment_ids: nil)
|
|
3418
|
+
Utils.execute("SegmentProd", [data, segment_ids])
|
|
3419
|
+
end
|
|
3420
|
+
|
|
3421
|
+
def segment_sum(data: nil, segment_ids: nil)
|
|
3422
|
+
Utils.execute("SegmentSum", [data, segment_ids])
|
|
3423
|
+
end
|
|
3424
|
+
|
|
3425
|
+
def select(condition: nil, t: nil, e: nil)
|
|
3426
|
+
Utils.execute("Select", [condition, t, e])
|
|
3427
|
+
end
|
|
3428
|
+
|
|
3429
|
+
def select_v2(condition: nil, t: nil, e: nil)
|
|
3430
|
+
Utils.execute("SelectV2", [condition, t, e])
|
|
3431
|
+
end
|
|
3432
|
+
|
|
3433
|
+
def self_adjoint_eig(input: nil)
|
|
3434
|
+
Utils.execute("SelfAdjointEig", [input])
|
|
3435
|
+
end
|
|
3436
|
+
|
|
3437
|
+
def self_adjoint_eig_v2(input: nil, compute_v: nil)
|
|
3438
|
+
Utils.execute("SelfAdjointEigV2", [input], compute_v: compute_v)
|
|
3439
|
+
end
|
|
3440
|
+
|
|
3441
|
+
def selu(features: nil)
|
|
3442
|
+
Utils.execute("Selu", [features])
|
|
3443
|
+
end
|
|
3444
|
+
|
|
3445
|
+
def selu_grad(gradients: nil, outputs: nil)
|
|
3446
|
+
Utils.execute("SeluGrad", [gradients, outputs])
|
|
3447
|
+
end
|
|
3448
|
+
|
|
3449
|
+
def send_tpu_embedding_gradients(inputs: nil, learning_rates: nil, config: nil)
|
|
3450
|
+
Utils.execute("SendTPUEmbeddingGradients", [inputs, learning_rates], config: config)
|
|
3451
|
+
end
|
|
3452
|
+
|
|
3453
|
+
def serialize_iterator(resource_handle: nil)
|
|
3454
|
+
Utils.execute("SerializeIterator", [resource_handle])
|
|
3455
|
+
end
|
|
3456
|
+
|
|
3457
|
+
def serialize_many_sparse(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, out_type: nil)
|
|
3458
|
+
Utils.execute("SerializeManySparse", [sparse_indices, sparse_values, sparse_shape], out_type: out_type)
|
|
3459
|
+
end
|
|
3460
|
+
|
|
3461
|
+
def serialize_sparse(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, out_type: nil)
|
|
3462
|
+
Utils.execute("SerializeSparse", [sparse_indices, sparse_values, sparse_shape], out_type: out_type)
|
|
3463
|
+
end
|
|
3464
|
+
|
|
3465
|
+
def serialize_tensor(tensor: nil)
|
|
3466
|
+
Utils.execute("SerializeTensor", [tensor])
|
|
3467
|
+
end
|
|
3468
|
+
|
|
3469
|
+
def set_size(set_indices: nil, set_values: nil, set_shape: nil, validate_indices: nil)
|
|
3470
|
+
Utils.execute("SetSize", [set_indices, set_values, set_shape], validate_indices: validate_indices)
|
|
3471
|
+
end
|
|
3472
|
+
|
|
3473
|
+
def shape(input: nil, out_type: nil)
|
|
3474
|
+
Utils.execute("Shape", [input], out_type: out_type)
|
|
3475
|
+
end
|
|
3476
|
+
|
|
3477
|
+
def shape_n(input: nil, out_type: nil)
|
|
3478
|
+
Utils.execute("ShapeN", [input], out_type: out_type)
|
|
3479
|
+
end
|
|
3480
|
+
|
|
3481
|
+
def shard_dataset(input_dataset: nil, num_shards: nil, index: nil, require_non_empty: nil, output_types: nil, output_shapes: nil)
|
|
3482
|
+
Utils.execute("ShardDataset", [input_dataset, num_shards, index], require_non_empty: require_non_empty, output_types: output_types, output_shapes: output_shapes)
|
|
3483
|
+
end
|
|
3484
|
+
|
|
3485
|
+
def sharded_filename(basename: nil, shard: nil, num_shards: nil)
|
|
3486
|
+
Utils.execute("ShardedFilename", [basename, shard, num_shards])
|
|
3487
|
+
end
|
|
3488
|
+
|
|
3489
|
+
def sharded_filespec(basename: nil, num_shards: nil)
|
|
3490
|
+
Utils.execute("ShardedFilespec", [basename, num_shards])
|
|
3491
|
+
end
|
|
3492
|
+
|
|
3493
|
+
def shuffle_and_repeat_dataset(input_dataset: nil, buffer_size: nil, seed: nil, seed2: nil, count: nil, output_types: nil, output_shapes: nil)
|
|
3494
|
+
Utils.execute("ShuffleAndRepeatDataset", [input_dataset, buffer_size, seed, seed2, count], output_types: output_types, output_shapes: output_shapes)
|
|
3495
|
+
end
|
|
3496
|
+
|
|
3497
|
+
def shuffle_dataset(input_dataset: nil, buffer_size: nil, seed: nil, seed2: nil, reshuffle_each_iteration: nil, output_types: nil, output_shapes: nil)
|
|
3498
|
+
Utils.execute("ShuffleDataset", [input_dataset, buffer_size, seed, seed2], reshuffle_each_iteration: reshuffle_each_iteration, output_types: output_types, output_shapes: output_shapes)
|
|
3499
|
+
end
|
|
3500
|
+
|
|
3501
|
+
def shutdown_distributed_tpu
|
|
3502
|
+
Utils.execute("ShutdownDistributedTPU", [])
|
|
3503
|
+
end
|
|
3504
|
+
|
|
3505
|
+
def sigmoid(x: nil)
|
|
3506
|
+
Utils.execute("Sigmoid", [x])
|
|
3507
|
+
end
|
|
3508
|
+
|
|
3509
|
+
def sigmoid_grad(y: nil, dy: nil)
|
|
3510
|
+
Utils.execute("SigmoidGrad", [y, dy])
|
|
3511
|
+
end
|
|
3512
|
+
|
|
3513
|
+
def sign(x: nil)
|
|
3514
|
+
Utils.execute("Sign", [x])
|
|
3515
|
+
end
|
|
3516
|
+
|
|
3517
|
+
def sin(x: nil)
|
|
3518
|
+
Utils.execute("Sin", [x])
|
|
3519
|
+
end
|
|
3520
|
+
|
|
3521
|
+
def sinh(x: nil)
|
|
3522
|
+
Utils.execute("Sinh", [x])
|
|
3523
|
+
end
|
|
3524
|
+
|
|
3525
|
+
def size(input: nil, out_type: nil)
|
|
3526
|
+
Utils.execute("Size", [input], out_type: out_type)
|
|
3527
|
+
end
|
|
3528
|
+
|
|
3529
|
+
def skip_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
|
|
3530
|
+
Utils.execute("SkipDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
|
|
3531
|
+
end
|
|
3532
|
+
|
|
3533
|
+
def skipgram(filename: nil, batch_size: nil, window_size: nil, min_count: nil, subsample: nil)
|
|
3534
|
+
Utils.execute("Skipgram", [], filename: filename, batch_size: batch_size, window_size: window_size, min_count: min_count, subsample: subsample)
|
|
3535
|
+
end
|
|
3536
|
+
|
|
3537
|
+
def slice(input: nil, start: nil, size: nil)
|
|
3538
|
+
Utils.execute("Slice", [input, start, size])
|
|
3539
|
+
end
|
|
3540
|
+
|
|
3541
|
+
def snapshot(input: nil)
|
|
3542
|
+
Utils.execute("Snapshot", [input])
|
|
3543
|
+
end
|
|
3544
|
+
|
|
3545
|
+
def snapshot_dataset(input_dataset: nil, path: nil, output_types: nil, output_shapes: nil)
|
|
3546
|
+
Utils.execute("SnapshotDataset", [input_dataset, path], output_types: output_types, output_shapes: output_shapes)
|
|
3547
|
+
end
|
|
3548
|
+
|
|
3549
|
+
def softmax(logits: nil)
|
|
3550
|
+
Utils.execute("Softmax", [logits])
|
|
3551
|
+
end
|
|
3552
|
+
|
|
3553
|
+
def softmax_cross_entropy_with_logits(features: nil, labels: nil)
|
|
3554
|
+
Utils.execute("SoftmaxCrossEntropyWithLogits", [features, labels])
|
|
3555
|
+
end
|
|
3556
|
+
|
|
3557
|
+
def softplus(features: nil)
|
|
3558
|
+
Utils.execute("Softplus", [features])
|
|
3559
|
+
end
|
|
3560
|
+
|
|
3561
|
+
def softplus_grad(gradients: nil, features: nil)
|
|
3562
|
+
Utils.execute("SoftplusGrad", [gradients, features])
|
|
3563
|
+
end
|
|
3564
|
+
|
|
3565
|
+
def softsign(features: nil)
|
|
3566
|
+
Utils.execute("Softsign", [features])
|
|
3567
|
+
end
|
|
3568
|
+
|
|
3569
|
+
def softsign_grad(gradients: nil, features: nil)
|
|
3570
|
+
Utils.execute("SoftsignGrad", [gradients, features])
|
|
3571
|
+
end
|
|
3572
|
+
|
|
3573
|
+
def space_to_batch(input: nil, paddings: nil, block_size: nil)
|
|
3574
|
+
Utils.execute("SpaceToBatch", [input, paddings], block_size: block_size)
|
|
3575
|
+
end
|
|
3576
|
+
|
|
3577
|
+
def space_to_batch_nd(input: nil, block_shape: nil, paddings: nil)
|
|
3578
|
+
Utils.execute("SpaceToBatchND", [input, block_shape, paddings])
|
|
3579
|
+
end
|
|
3580
|
+
|
|
3581
|
+
def space_to_depth(input: nil, block_size: nil, data_format: nil)
|
|
3582
|
+
Utils.execute("SpaceToDepth", [input], block_size: block_size, data_format: data_format)
|
|
3583
|
+
end
|
|
3584
|
+
|
|
3585
|
+
def sparse_accumulator_apply_gradient(handle: nil, local_step: nil, gradient_indices: nil, gradient_values: nil, gradient_shape: nil, dtype: nil, has_known_shape: nil)
|
|
3586
|
+
Utils.execute("SparseAccumulatorApplyGradient", [handle, local_step, gradient_indices, gradient_values, gradient_shape], dtype: dtype, has_known_shape: has_known_shape)
|
|
3587
|
+
end
|
|
3588
|
+
|
|
3589
|
+
def sparse_accumulator_take_gradient(handle: nil, num_required: nil, dtype: nil)
|
|
3590
|
+
Utils.execute("SparseAccumulatorTakeGradient", [handle, num_required], dtype: dtype)
|
|
3591
|
+
end
|
|
3592
|
+
|
|
3593
|
+
def sparse_add(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil, thresh: nil)
|
|
3594
|
+
Utils.execute("SparseAdd", [a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh])
|
|
3595
|
+
end
|
|
3596
|
+
|
|
3597
|
+
def sparse_add_grad(backprop_val_grad: nil, a_indices: nil, b_indices: nil, sum_indices: nil)
|
|
3598
|
+
Utils.execute("SparseAddGrad", [backprop_val_grad, a_indices, b_indices, sum_indices])
|
|
3599
|
+
end
|
|
3600
|
+
|
|
3601
|
+
def sparse_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3602
|
+
Utils.execute("SparseApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad, indices], use_locking: use_locking)
|
|
3603
|
+
end
|
|
3604
|
+
|
|
3605
|
+
def sparse_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, use_locking: nil, update_slots: nil)
|
|
3606
|
+
Utils.execute("SparseApplyAdagrad", [var, accum, lr, grad, indices], use_locking: use_locking, update_slots: update_slots)
|
|
3607
|
+
end
|
|
3608
|
+
|
|
3609
|
+
def sparse_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
|
3610
|
+
Utils.execute("SparseApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step], use_locking: use_locking)
|
|
3611
|
+
end
|
|
3612
|
+
|
|
3613
|
+
def sparse_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3614
|
+
Utils.execute("SparseApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
|
3615
|
+
end
|
|
3616
|
+
|
|
3617
|
+
def sparse_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
|
3618
|
+
Utils.execute("SparseApplyFtrl", [var, accum, linear, grad, indices, lr, l1, l2, lr_power], use_locking: use_locking)
|
|
3619
|
+
end
|
|
3620
|
+
|
|
3621
|
+
def sparse_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
|
3622
|
+
Utils.execute("SparseApplyFtrlV2", [var, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
|
3623
|
+
end
|
|
3624
|
+
|
|
3625
|
+
def sparse_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
|
3626
|
+
Utils.execute("SparseApplyMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
|
3627
|
+
end
|
|
3628
|
+
|
|
3629
|
+
def sparse_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3630
|
+
Utils.execute("SparseApplyProximalAdagrad", [var, accum, lr, l1, l2, grad, indices], use_locking: use_locking)
|
|
3631
|
+
end
|
|
3632
|
+
|
|
3633
|
+
def sparse_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3634
|
+
Utils.execute("SparseApplyProximalGradientDescent", [var, alpha, l1, l2, grad, indices], use_locking: use_locking)
|
|
3635
|
+
end
|
|
3636
|
+
|
|
3637
|
+
def sparse_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
|
3638
|
+
Utils.execute("SparseApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
|
3639
|
+
end
|
|
3640
|
+
|
|
3641
|
+
def sparse_concat(indices: nil, values: nil, shapes: nil, concat_dim: nil)
|
|
3642
|
+
Utils.execute("SparseConcat", [indices, values, shapes], concat_dim: concat_dim)
|
|
3643
|
+
end
|
|
3644
|
+
|
|
3645
|
+
def sparse_conditional_accumulator(dtype: nil, shape: nil, container: nil, shared_name: nil, reduction_type: nil)
|
|
3646
|
+
Utils.execute("SparseConditionalAccumulator", [], dtype: dtype, shape: shape, container: container, shared_name: shared_name, reduction_type: reduction_type)
|
|
3647
|
+
end
|
|
3648
|
+
|
|
3649
|
+
def sparse_cross(indices: nil, values: nil, shapes: nil, dense_inputs: nil, hashed_output: nil, num_buckets: nil, hash_key: nil, sparse_types: nil, dense_types: nil, out_type: nil, internal_type: nil)
|
|
3650
|
+
Utils.execute("SparseCross", [indices, values, shapes, dense_inputs], hashed_output: hashed_output, num_buckets: num_buckets, hash_key: hash_key, sparse_types: sparse_types, dense_types: dense_types, out_type: out_type, internal_type: internal_type)
|
|
3651
|
+
end
|
|
3652
|
+
|
|
3653
|
+
def sparse_dense_cwise_add(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
|
|
3654
|
+
Utils.execute("SparseDenseCwiseAdd", [sp_indices, sp_values, sp_shape, dense])
|
|
3655
|
+
end
|
|
3656
|
+
|
|
3657
|
+
def sparse_dense_cwise_div(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
|
|
3658
|
+
Utils.execute("SparseDenseCwiseDiv", [sp_indices, sp_values, sp_shape, dense])
|
|
3659
|
+
end
|
|
3660
|
+
|
|
3661
|
+
def sparse_dense_cwise_mul(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
|
|
3662
|
+
Utils.execute("SparseDenseCwiseMul", [sp_indices, sp_values, sp_shape, dense])
|
|
3663
|
+
end
|
|
3664
|
+
|
|
3665
|
+
def sparse_fill_empty_rows(indices: nil, values: nil, dense_shape: nil, default_value: nil)
|
|
3666
|
+
Utils.execute("SparseFillEmptyRows", [indices, values, dense_shape, default_value])
|
|
3667
|
+
end
|
|
3668
|
+
|
|
3669
|
+
def sparse_fill_empty_rows_grad(reverse_index_map: nil, grad_values: nil)
|
|
3670
|
+
Utils.execute("SparseFillEmptyRowsGrad", [reverse_index_map, grad_values])
|
|
3671
|
+
end
|
|
3672
|
+
|
|
3673
|
+
def sparse_mat_mul(a: nil, b: nil, transpose_a: nil, transpose_b: nil, a_is_sparse: nil, b_is_sparse: nil)
|
|
3674
|
+
Utils.execute("SparseMatMul", [a, b], transpose_a: transpose_a, transpose_b: transpose_b, a_is_sparse: a_is_sparse, b_is_sparse: b_is_sparse)
|
|
3675
|
+
end
|
|
3676
|
+
|
|
3677
|
+
def sparse_reduce_max(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
|
3678
|
+
Utils.execute("SparseReduceMax", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
|
3679
|
+
end
|
|
3680
|
+
|
|
3681
|
+
def sparse_reduce_max_sparse(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
|
3682
|
+
Utils.execute("SparseReduceMaxSparse", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
|
3683
|
+
end
|
|
3684
|
+
|
|
3685
|
+
def sparse_reduce_sum(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
|
3686
|
+
Utils.execute("SparseReduceSum", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
|
3687
|
+
end
|
|
3688
|
+
|
|
3689
|
+
def sparse_reduce_sum_sparse(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
|
3690
|
+
Utils.execute("SparseReduceSumSparse", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
|
3691
|
+
end
|
|
3692
|
+
|
|
3693
|
+
def sparse_reorder(input_indices: nil, input_values: nil, input_shape: nil)
|
|
3694
|
+
Utils.execute("SparseReorder", [input_indices, input_values, input_shape])
|
|
3695
|
+
end
|
|
3696
|
+
|
|
3697
|
+
def sparse_reshape(input_indices: nil, input_shape: nil, new_shape: nil)
|
|
3698
|
+
Utils.execute("SparseReshape", [input_indices, input_shape, new_shape])
|
|
3699
|
+
end
|
|
3700
|
+
|
|
3701
|
+
def sparse_segment_mean(data: nil, indices: nil, segment_ids: nil)
|
|
3702
|
+
Utils.execute("SparseSegmentMean", [data, indices, segment_ids])
|
|
3703
|
+
end
|
|
3704
|
+
|
|
3705
|
+
def sparse_segment_mean_grad(grad: nil, indices: nil, segment_ids: nil, output_dim0: nil)
|
|
3706
|
+
Utils.execute("SparseSegmentMeanGrad", [grad, indices, segment_ids, output_dim0])
|
|
3707
|
+
end
|
|
3708
|
+
|
|
3709
|
+
def sparse_segment_mean_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
|
|
3710
|
+
Utils.execute("SparseSegmentMeanWithNumSegments", [data, indices, segment_ids, num_segments])
|
|
3711
|
+
end
|
|
3712
|
+
|
|
3713
|
+
def sparse_segment_sqrt_n(data: nil, indices: nil, segment_ids: nil)
|
|
3714
|
+
Utils.execute("SparseSegmentSqrtN", [data, indices, segment_ids])
|
|
3715
|
+
end
|
|
3716
|
+
|
|
3717
|
+
def sparse_segment_sqrt_n_grad(grad: nil, indices: nil, segment_ids: nil, output_dim0: nil)
|
|
3718
|
+
Utils.execute("SparseSegmentSqrtNGrad", [grad, indices, segment_ids, output_dim0])
|
|
3719
|
+
end
|
|
3720
|
+
|
|
3721
|
+
def sparse_segment_sqrt_n_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
|
|
3722
|
+
Utils.execute("SparseSegmentSqrtNWithNumSegments", [data, indices, segment_ids, num_segments])
|
|
3723
|
+
end
|
|
3724
|
+
|
|
3725
|
+
def sparse_segment_sum(data: nil, indices: nil, segment_ids: nil)
|
|
3726
|
+
Utils.execute("SparseSegmentSum", [data, indices, segment_ids])
|
|
3727
|
+
end
|
|
3728
|
+
|
|
3729
|
+
def sparse_segment_sum_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
|
|
3730
|
+
Utils.execute("SparseSegmentSumWithNumSegments", [data, indices, segment_ids, num_segments])
|
|
3731
|
+
end
|
|
3732
|
+
|
|
3733
|
+
def sparse_slice(indices: nil, values: nil, shape: nil, start: nil, size: nil)
|
|
3734
|
+
Utils.execute("SparseSlice", [indices, values, shape, start, size])
|
|
3735
|
+
end
|
|
3736
|
+
|
|
3737
|
+
def sparse_slice_grad(backprop_val_grad: nil, input_indices: nil, input_start: nil, output_indices: nil)
|
|
3738
|
+
Utils.execute("SparseSliceGrad", [backprop_val_grad, input_indices, input_start, output_indices])
|
|
3739
|
+
end
|
|
3740
|
+
|
|
3741
|
+
def sparse_softmax(sp_indices: nil, sp_values: nil, sp_shape: nil)
|
|
3742
|
+
Utils.execute("SparseSoftmax", [sp_indices, sp_values, sp_shape])
|
|
3743
|
+
end
|
|
3744
|
+
|
|
3745
|
+
def sparse_softmax_cross_entropy_with_logits(features: nil, labels: nil)
|
|
3746
|
+
Utils.execute("SparseSoftmaxCrossEntropyWithLogits", [features, labels])
|
|
3747
|
+
end
|
|
3748
|
+
|
|
3749
|
+
def sparse_sparse_maximum(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil)
|
|
3750
|
+
Utils.execute("SparseSparseMaximum", [a_indices, a_values, a_shape, b_indices, b_values, b_shape])
|
|
3751
|
+
end
|
|
3752
|
+
|
|
3753
|
+
def sparse_sparse_minimum(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil)
|
|
3754
|
+
Utils.execute("SparseSparseMinimum", [a_indices, a_values, a_shape, b_indices, b_values, b_shape])
|
|
3755
|
+
end
|
|
3756
|
+
|
|
3757
|
+
def sparse_split(split_dim: nil, indices: nil, values: nil, shape: nil, num_split: nil)
|
|
3758
|
+
Utils.execute("SparseSplit", [split_dim, indices, values, shape], num_split: num_split)
|
|
3759
|
+
end
|
|
3760
|
+
|
|
3761
|
+
def sparse_tensor_dense_add(a_indices: nil, a_values: nil, a_shape: nil, b: nil)
|
|
3762
|
+
Utils.execute("SparseTensorDenseAdd", [a_indices, a_values, a_shape, b])
|
|
3763
|
+
end
|
|
3764
|
+
|
|
3765
|
+
def sparse_tensor_dense_mat_mul(a_indices: nil, a_values: nil, a_shape: nil, b: nil, adjoint_a: nil, adjoint_b: nil)
|
|
3766
|
+
Utils.execute("SparseTensorDenseMatMul", [a_indices, a_values, a_shape, b], adjoint_a: adjoint_a, adjoint_b: adjoint_b)
|
|
3767
|
+
end
|
|
3768
|
+
|
|
3769
|
+
def sparse_tensor_slice_dataset(indices: nil, values: nil, dense_shape: nil)
|
|
3770
|
+
Utils.execute("SparseTensorSliceDataset", [indices, values, dense_shape])
|
|
3771
|
+
end
|
|
3772
|
+
|
|
3773
|
+
def sparse_to_dense(sparse_indices: nil, output_shape: nil, sparse_values: nil, default_value: nil, validate_indices: nil)
|
|
3774
|
+
Utils.execute("SparseToDense", [sparse_indices, output_shape, sparse_values, default_value], validate_indices: validate_indices)
|
|
3775
|
+
end
|
|
3776
|
+
|
|
3777
|
+
def sparse_to_sparse_set_operation(set1_indices: nil, set1_values: nil, set1_shape: nil, set2_indices: nil, set2_values: nil, set2_shape: nil, set_operation: nil, validate_indices: nil)
|
|
3778
|
+
Utils.execute("SparseToSparseSetOperation", [set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape], set_operation: set_operation, validate_indices: validate_indices)
|
|
3779
|
+
end
|
|
3780
|
+
|
|
3781
|
+
def split(split_dim: nil, value: nil, num_split: nil)
|
|
3782
|
+
Utils.execute("Split", [split_dim, value], num_split: num_split)
|
|
3783
|
+
end
|
|
3784
|
+
|
|
3785
|
+
def split_v(value: nil, size_splits: nil, split_dim: nil, num_split: nil)
|
|
3786
|
+
Utils.execute("SplitV", [value, size_splits, split_dim], num_split: num_split)
|
|
3787
|
+
end
|
|
3788
|
+
|
|
3789
|
+
def sqrt(x: nil)
|
|
3790
|
+
Utils.execute("Sqrt", [x])
|
|
3791
|
+
end
|
|
3792
|
+
|
|
3793
|
+
def sqrt_grad(y: nil, dy: nil)
|
|
3794
|
+
Utils.execute("SqrtGrad", [y, dy])
|
|
3795
|
+
end
|
|
3796
|
+
|
|
3797
|
+
def square(x: nil)
|
|
3798
|
+
Utils.execute("Square", [x])
|
|
3799
|
+
end
|
|
3800
|
+
|
|
3801
|
+
def squared_difference(x: nil, y: nil)
|
|
3802
|
+
Utils.execute("SquaredDifference", [x, y])
|
|
3803
|
+
end
|
|
3804
|
+
|
|
3805
|
+
def squeeze(input: nil, squeeze_dims: nil)
|
|
3806
|
+
Utils.execute("Squeeze", [input], squeeze_dims: squeeze_dims)
|
|
3807
|
+
end
|
|
3808
|
+
|
|
3809
|
+
def stack(elem_type: nil, stack_name: nil)
|
|
3810
|
+
Utils.execute("Stack", [], elem_type: elem_type, stack_name: stack_name)
|
|
3811
|
+
end
|
|
3812
|
+
|
|
3813
|
+
def stack_close(handle: nil)
|
|
3814
|
+
Utils.execute("StackClose", [handle])
|
|
3815
|
+
end
|
|
3816
|
+
|
|
3817
|
+
def stack_close_v2(handle: nil)
|
|
3818
|
+
Utils.execute("StackCloseV2", [handle])
|
|
3819
|
+
end
|
|
3820
|
+
|
|
3821
|
+
def stack_pop(handle: nil, elem_type: nil)
|
|
3822
|
+
Utils.execute("StackPop", [handle], elem_type: elem_type)
|
|
3823
|
+
end
|
|
3824
|
+
|
|
3825
|
+
def stack_pop_v2(handle: nil, elem_type: nil)
|
|
3826
|
+
Utils.execute("StackPopV2", [handle], elem_type: elem_type)
|
|
3827
|
+
end
|
|
3828
|
+
|
|
3829
|
+
def stack_push(handle: nil, elem: nil, swap_memory: nil)
|
|
3830
|
+
Utils.execute("StackPush", [handle, elem], swap_memory: swap_memory)
|
|
3831
|
+
end
|
|
3832
|
+
|
|
3833
|
+
def stack_push_v2(handle: nil, elem: nil, swap_memory: nil)
|
|
3834
|
+
Utils.execute("StackPushV2", [handle, elem], swap_memory: swap_memory)
|
|
3835
|
+
end
|
|
3836
|
+
|
|
3837
|
+
def stack_v2(max_size: nil, elem_type: nil, stack_name: nil)
|
|
3838
|
+
Utils.execute("StackV2", [max_size], elem_type: elem_type, stack_name: stack_name)
|
|
3839
|
+
end
|
|
3840
|
+
|
|
3841
|
+
def stage(values: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
3842
|
+
Utils.execute("Stage", [values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
3843
|
+
end
|
|
3844
|
+
|
|
3845
|
+
def stage_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
3846
|
+
Utils.execute("StageClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
3847
|
+
end
|
|
3848
|
+
|
|
3849
|
+
def stage_peek(index: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
3850
|
+
Utils.execute("StagePeek", [index], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
3851
|
+
end
|
|
3852
|
+
|
|
3853
|
+
def stage_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
3854
|
+
Utils.execute("StageSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
3855
|
+
end
|
|
3856
|
+
|
|
3857
|
+
def stateful_partitioned_call(args: nil, f: nil, config: nil, config_proto: nil, executor_type: nil)
|
|
3858
|
+
Utils.execute("StatefulPartitionedCall", [args], f: f, config: config, config_proto: config_proto, executor_type: executor_type)
|
|
3859
|
+
end
|
|
3860
|
+
|
|
3861
|
+
def stateful_random_binomial(resource: nil, algorithm: nil, shape: nil, counts: nil, probs: nil, dtype: nil)
|
|
3862
|
+
Utils.execute("StatefulRandomBinomial", [resource, algorithm, shape, counts, probs], dtype: dtype)
|
|
3863
|
+
end
|
|
3864
|
+
|
|
3865
|
+
def stateful_standard_normal(resource: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
|
3866
|
+
Utils.execute("StatefulStandardNormal", [resource, shape], dtype: dtype, shape_dtype: shape_dtype)
|
|
3867
|
+
end
|
|
3868
|
+
|
|
3869
|
+
def stateful_standard_normal_v2(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
|
3870
|
+
Utils.execute("StatefulStandardNormalV2", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
|
3871
|
+
end
|
|
3872
|
+
|
|
3873
|
+
def stateful_truncated_normal(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
|
3874
|
+
Utils.execute("StatefulTruncatedNormal", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
|
3875
|
+
end
|
|
3876
|
+
|
|
3877
|
+
def stateful_uniform(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
|
3878
|
+
Utils.execute("StatefulUniform", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
|
3879
|
+
end
|
|
3880
|
+
|
|
3881
|
+
def stateful_uniform_full_int(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
|
3882
|
+
Utils.execute("StatefulUniformFullInt", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
|
3883
|
+
end
|
|
3884
|
+
|
|
3885
|
+
def stateful_uniform_int(resource: nil, algorithm: nil, shape: nil, minval: nil, maxval: nil, dtype: nil, shape_dtype: nil)
|
|
3886
|
+
Utils.execute("StatefulUniformInt", [resource, algorithm, shape, minval, maxval], dtype: dtype, shape_dtype: shape_dtype)
|
|
3887
|
+
end
|
|
3888
|
+
|
|
3889
|
+
def stateless_if(cond: nil, input: nil, then_branch: nil, else_branch: nil)
|
|
3890
|
+
Utils.execute("StatelessIf", [cond, input], then_branch: then_branch, else_branch: else_branch)
|
|
3891
|
+
end
|
|
3892
|
+
|
|
3893
|
+
def stateless_multinomial(logits: nil, num_samples: nil, seed: nil, output_dtype: nil)
|
|
3894
|
+
Utils.execute("StatelessMultinomial", [logits, num_samples, seed], output_dtype: output_dtype)
|
|
3895
|
+
end
|
|
3896
|
+
|
|
3897
|
+
def stateless_random_normal(shape: nil, seed: nil, dtype: nil)
|
|
3898
|
+
Utils.execute("StatelessRandomNormal", [shape, seed], dtype: dtype)
|
|
3899
|
+
end
|
|
3900
|
+
|
|
3901
|
+
def stateless_random_uniform(shape: nil, seed: nil, dtype: nil)
|
|
3902
|
+
Utils.execute("StatelessRandomUniform", [shape, seed], dtype: dtype)
|
|
3903
|
+
end
|
|
3904
|
+
|
|
3905
|
+
def stateless_random_uniform_int(shape: nil, seed: nil, minval: nil, maxval: nil, dtype: nil)
|
|
3906
|
+
Utils.execute("StatelessRandomUniformInt", [shape, seed, minval, maxval], dtype: dtype)
|
|
3907
|
+
end
|
|
3908
|
+
|
|
3909
|
+
def stateless_truncated_normal(shape: nil, seed: nil, dtype: nil)
|
|
3910
|
+
Utils.execute("StatelessTruncatedNormal", [shape, seed], dtype: dtype)
|
|
3911
|
+
end
|
|
3912
|
+
|
|
3913
|
+
def stateless_while(input: nil, cond: nil, body: nil)
|
|
3914
|
+
Utils.execute("StatelessWhile", [input], cond: cond, body: body)
|
|
3915
|
+
end
|
|
3916
|
+
|
|
3917
|
+
def static_regex_full_match(input: nil, pattern: nil)
|
|
3918
|
+
Utils.execute("StaticRegexFullMatch", [input], pattern: pattern)
|
|
3919
|
+
end
|
|
3920
|
+
|
|
3921
|
+
def static_regex_replace(input: nil, pattern: nil, rewrite: nil, replace_global: nil)
|
|
3922
|
+
Utils.execute("StaticRegexReplace", [input], pattern: pattern, rewrite: rewrite, replace_global: replace_global)
|
|
3923
|
+
end
|
|
3924
|
+
|
|
3925
|
+
def stats_aggregator_handle_v2(container: nil, shared_name: nil)
|
|
3926
|
+
Utils.execute("StatsAggregatorHandleV2", [], container: container, shared_name: shared_name)
|
|
3927
|
+
end
|
|
3928
|
+
|
|
3929
|
+
def stats_aggregator_set_summary_writer(stats_aggregator: nil, summary: nil)
|
|
3930
|
+
Utils.execute("StatsAggregatorSetSummaryWriter", [stats_aggregator, summary])
|
|
3931
|
+
end
|
|
3932
|
+
|
|
3933
|
+
def stop_gradient(input: nil)
|
|
3934
|
+
Utils.execute("StopGradient", [input])
|
|
3935
|
+
end
|
|
3936
|
+
|
|
3937
|
+
def strided_slice(input: nil, start: nil, stop: nil, strides: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
|
3938
|
+
Utils.execute("StridedSlice", [input, start, stop, strides], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
|
3939
|
+
end
|
|
3940
|
+
|
|
3941
|
+
def strided_slice_assign(ref: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
|
3942
|
+
Utils.execute("StridedSliceAssign", [ref, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
|
3943
|
+
end
|
|
3944
|
+
|
|
3945
|
+
def strided_slice_grad(shape: nil, start: nil, stop: nil, strides: nil, dy: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
|
3946
|
+
Utils.execute("StridedSliceGrad", [shape, start, stop, strides, dy], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
|
3947
|
+
end
|
|
3948
|
+
|
|
3949
|
+
def string_format(inputs: nil, template: nil, placeholder: nil, summarize: nil)
|
|
3950
|
+
Utils.execute("StringFormat", [inputs], template: template, placeholder: placeholder, summarize: summarize)
|
|
3951
|
+
end
|
|
3952
|
+
|
|
3953
|
+
def string_join(inputs: nil, separator: nil)
|
|
3954
|
+
Utils.execute("StringJoin", [inputs], separator: separator)
|
|
3955
|
+
end
|
|
3956
|
+
|
|
3957
|
+
def string_length(input: nil, unit: nil)
|
|
3958
|
+
Utils.execute("StringLength", [input], unit: unit)
|
|
3959
|
+
end
|
|
3960
|
+
|
|
3961
|
+
def string_lower(input: nil, encoding: nil)
|
|
3962
|
+
Utils.execute("StringLower", [input], encoding: encoding)
|
|
3963
|
+
end
|
|
3964
|
+
|
|
3965
|
+
def string_split(input: nil, delimiter: nil, skip_empty: nil)
|
|
3966
|
+
Utils.execute("StringSplit", [input, delimiter], skip_empty: skip_empty)
|
|
3967
|
+
end
|
|
3968
|
+
|
|
3969
|
+
def string_split_v2(input: nil, sep: nil, maxsplit: nil)
|
|
3970
|
+
Utils.execute("StringSplitV2", [input, sep], maxsplit: maxsplit)
|
|
3971
|
+
end
|
|
3972
|
+
|
|
3973
|
+
def string_strip(input: nil)
|
|
3974
|
+
Utils.execute("StringStrip", [input])
|
|
3975
|
+
end
|
|
3976
|
+
|
|
3977
|
+
def string_to_hash_bucket(string_tensor: nil, num_buckets: nil)
|
|
3978
|
+
Utils.execute("StringToHashBucket", [string_tensor], num_buckets: num_buckets)
|
|
3979
|
+
end
|
|
3980
|
+
|
|
3981
|
+
def string_to_hash_bucket_fast(input: nil, num_buckets: nil)
|
|
3982
|
+
Utils.execute("StringToHashBucketFast", [input], num_buckets: num_buckets)
|
|
3983
|
+
end
|
|
3984
|
+
|
|
3985
|
+
def string_to_hash_bucket_strong(input: nil, num_buckets: nil, key: nil)
|
|
3986
|
+
Utils.execute("StringToHashBucketStrong", [input], num_buckets: num_buckets, key: key)
|
|
3987
|
+
end
|
|
3988
|
+
|
|
3989
|
+
def string_to_number(string_tensor: nil, out_type: nil)
|
|
3990
|
+
Utils.execute("StringToNumber", [string_tensor], out_type: out_type)
|
|
3991
|
+
end
|
|
3992
|
+
|
|
3993
|
+
def string_upper(input: nil, encoding: nil)
|
|
3994
|
+
Utils.execute("StringUpper", [input], encoding: encoding)
|
|
3995
|
+
end
|
|
3996
|
+
|
|
3997
|
+
def sub(x: nil, y: nil)
|
|
3998
|
+
Utils.execute("Sub", [x, y])
|
|
3999
|
+
end
|
|
4000
|
+
|
|
4001
|
+
def substr(input: nil, pos: nil, len: nil, unit: nil)
|
|
4002
|
+
Utils.execute("Substr", [input, pos, len], unit: unit)
|
|
4003
|
+
end
|
|
4004
|
+
|
|
4005
|
+
def sum(input: nil, reduction_indices: nil, keep_dims: nil)
|
|
4006
|
+
Utils.execute("Sum", [input, reduction_indices], keep_dims: keep_dims)
|
|
4007
|
+
end
|
|
4008
|
+
|
|
4009
|
+
def summary_writer(shared_name: nil, container: nil)
|
|
4010
|
+
Utils.execute("SummaryWriter", [], shared_name: shared_name, container: container)
|
|
4011
|
+
end
|
|
4012
|
+
|
|
4013
|
+
def svd(input: nil, compute_uv: nil, full_matrices: nil)
|
|
4014
|
+
Utils.execute("Svd", [input], compute_uv: compute_uv, full_matrices: full_matrices)
|
|
4015
|
+
end
|
|
4016
|
+
|
|
4017
|
+
def switch(data: nil, pred: nil)
|
|
4018
|
+
Utils.execute("Switch", [data, pred])
|
|
4019
|
+
end
|
|
4020
|
+
|
|
4021
|
+
def symbolic_gradient(input: nil, f: nil)
|
|
4022
|
+
Utils.execute("SymbolicGradient", [input], f: f)
|
|
4023
|
+
end
|
|
4024
|
+
|
|
4025
|
+
def tf_record_dataset(filenames: nil, compression_type: nil, buffer_size: nil)
|
|
4026
|
+
Utils.execute("TFRecordDataset", [filenames, compression_type, buffer_size])
|
|
4027
|
+
end
|
|
4028
|
+
|
|
4029
|
+
def tf_record_reader(container: nil, shared_name: nil, compression_type: nil)
|
|
4030
|
+
Utils.execute("TFRecordReader", [], container: container, shared_name: shared_name, compression_type: compression_type)
|
|
4031
|
+
end
|
|
4032
|
+
|
|
4033
|
+
def tf_record_reader_v2(container: nil, shared_name: nil, compression_type: nil)
|
|
4034
|
+
Utils.execute("TFRecordReaderV2", [], container: container, shared_name: shared_name, compression_type: compression_type)
|
|
4035
|
+
end
|
|
4036
|
+
|
|
4037
|
+
def tpu_compilation_result
|
|
4038
|
+
Utils.execute("TPUCompilationResult", [])
|
|
4039
|
+
end
|
|
4040
|
+
|
|
4041
|
+
def tpu_embedding_activations(embedding_variable: nil, sliced_activations: nil, table_id: nil, lookup_id: nil)
|
|
4042
|
+
Utils.execute("TPUEmbeddingActivations", [embedding_variable, sliced_activations], table_id: table_id, lookup_id: lookup_id)
|
|
4043
|
+
end
|
|
4044
|
+
|
|
4045
|
+
def tpu_ordinal_selector
|
|
4046
|
+
Utils.execute("TPUOrdinalSelector", [])
|
|
4047
|
+
end
|
|
4048
|
+
|
|
4049
|
+
def tpu_partitioned_call(args: nil, device_ordinal: nil, f: nil)
|
|
4050
|
+
Utils.execute("TPUPartitionedCall", [args, device_ordinal], f: f)
|
|
4051
|
+
end
|
|
4052
|
+
|
|
4053
|
+
def tpu_replicate_metadata(num_replicas: nil, num_cores_per_replica: nil, topology: nil, use_tpu: nil, device_assignment: nil, computation_shape: nil, host_compute_core: nil, padding_map: nil, step_marker_location: nil)
|
|
4054
|
+
Utils.execute("TPUReplicateMetadata", [], num_replicas: num_replicas, num_cores_per_replica: num_cores_per_replica, topology: topology, use_tpu: use_tpu, device_assignment: device_assignment, computation_shape: computation_shape, host_compute_core: host_compute_core, padding_map: padding_map, step_marker_location: step_marker_location)
|
|
4055
|
+
end
|
|
4056
|
+
|
|
4057
|
+
def tpu_replicated_input(inputs: nil)
|
|
4058
|
+
Utils.execute("TPUReplicatedInput", [inputs])
|
|
4059
|
+
end
|
|
4060
|
+
|
|
4061
|
+
def tpu_replicated_output(input: nil, num_replicas: nil)
|
|
4062
|
+
Utils.execute("TPUReplicatedOutput", [input], num_replicas: num_replicas)
|
|
4063
|
+
end
|
|
4064
|
+
|
|
4065
|
+
def take_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
|
|
4066
|
+
Utils.execute("TakeDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
|
|
4067
|
+
end
|
|
4068
|
+
|
|
4069
|
+
def take_many_sparse_from_tensors_map(sparse_handles: nil, dtype: nil, container: nil, shared_name: nil)
|
|
4070
|
+
Utils.execute("TakeManySparseFromTensorsMap", [sparse_handles], dtype: dtype, container: container, shared_name: shared_name)
|
|
4071
|
+
end
|
|
4072
|
+
|
|
4073
|
+
def tan(x: nil)
|
|
4074
|
+
Utils.execute("Tan", [x])
|
|
4075
|
+
end
|
|
4076
|
+
|
|
4077
|
+
def tanh(x: nil)
|
|
4078
|
+
Utils.execute("Tanh", [x])
|
|
4079
|
+
end
|
|
4080
|
+
|
|
4081
|
+
def tanh_grad(y: nil, dy: nil)
|
|
4082
|
+
Utils.execute("TanhGrad", [y, dy])
|
|
4083
|
+
end
|
|
4084
|
+
|
|
4085
|
+
def temporary_variable(shape: nil, dtype: nil, var_name: nil)
|
|
4086
|
+
Utils.execute("TemporaryVariable", [], shape: shape, dtype: dtype, var_name: var_name)
|
|
4087
|
+
end
|
|
4088
|
+
|
|
4089
|
+
def tensor_array(size: nil, dtype: nil, dynamic_size: nil, clear_after_read: nil, tensor_array_name: nil, element_shape: nil)
|
|
4090
|
+
Utils.execute("TensorArray", [size], dtype: dtype, dynamic_size: dynamic_size, clear_after_read: clear_after_read, tensor_array_name: tensor_array_name, element_shape: element_shape)
|
|
4091
|
+
end
|
|
4092
|
+
|
|
4093
|
+
def tensor_array_close(handle: nil)
|
|
4094
|
+
Utils.execute("TensorArrayClose", [handle])
|
|
4095
|
+
end
|
|
4096
|
+
|
|
4097
|
+
def tensor_array_close_v2(handle: nil)
|
|
4098
|
+
Utils.execute("TensorArrayCloseV2", [handle])
|
|
4099
|
+
end
|
|
4100
|
+
|
|
4101
|
+
def tensor_array_close_v3(handle: nil)
|
|
4102
|
+
Utils.execute("TensorArrayCloseV3", [handle])
|
|
4103
|
+
end
|
|
4104
|
+
|
|
4105
|
+
def tensor_array_concat(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
|
|
4106
|
+
Utils.execute("TensorArrayConcat", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
|
|
4107
|
+
end
|
|
4108
|
+
|
|
4109
|
+
def tensor_array_concat_v2(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
|
|
4110
|
+
Utils.execute("TensorArrayConcatV2", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
|
|
4111
|
+
end
|
|
4112
|
+
|
|
4113
|
+
def tensor_array_concat_v3(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
|
|
4114
|
+
Utils.execute("TensorArrayConcatV3", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
|
|
4115
|
+
end
|
|
4116
|
+
|
|
4117
|
+
def tensor_array_gather(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
|
4118
|
+
Utils.execute("TensorArrayGather", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
|
|
4119
|
+
end
|
|
4120
|
+
|
|
4121
|
+
def tensor_array_gather_v2(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
|
4122
|
+
Utils.execute("TensorArrayGatherV2", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
|
|
4123
|
+
end
|
|
4124
|
+
|
|
4125
|
+
def tensor_array_gather_v3(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
|
4126
|
+
Utils.execute("TensorArrayGatherV3", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
|
|
4127
|
+
end
|
|
4128
|
+
|
|
4129
|
+
def tensor_array_grad(handle: nil, flow_in: nil, source: nil)
|
|
4130
|
+
Utils.execute("TensorArrayGrad", [handle, flow_in], source: source)
|
|
4131
|
+
end
|
|
4132
|
+
|
|
4133
|
+
def tensor_array_grad_v2(handle: nil, flow_in: nil, source: nil)
|
|
4134
|
+
Utils.execute("TensorArrayGradV2", [handle, flow_in], source: source)
|
|
4135
|
+
end
|
|
4136
|
+
|
|
4137
|
+
def tensor_array_grad_v3(handle: nil, flow_in: nil, source: nil)
|
|
4138
|
+
Utils.execute("TensorArrayGradV3", [handle, flow_in], source: source)
|
|
4139
|
+
end
|
|
4140
|
+
|
|
4141
|
+
def tensor_array_grad_with_shape(handle: nil, flow_in: nil, shape_to_prepend: nil, source: nil)
|
|
4142
|
+
Utils.execute("TensorArrayGradWithShape", [handle, flow_in, shape_to_prepend], source: source)
|
|
4143
|
+
end
|
|
4144
|
+
|
|
4145
|
+
def tensor_array_pack(handle: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
|
4146
|
+
Utils.execute("TensorArrayPack", [handle, flow_in], dtype: dtype, element_shape: element_shape)
|
|
4147
|
+
end
|
|
4148
|
+
|
|
4149
|
+
def tensor_array_read(handle: nil, index: nil, flow_in: nil, dtype: nil)
|
|
4150
|
+
Utils.execute("TensorArrayRead", [handle, index, flow_in], dtype: dtype)
|
|
4151
|
+
end
|
|
4152
|
+
|
|
4153
|
+
def tensor_array_read_v2(handle: nil, index: nil, flow_in: nil, dtype: nil)
|
|
4154
|
+
Utils.execute("TensorArrayReadV2", [handle, index, flow_in], dtype: dtype)
|
|
4155
|
+
end
|
|
4156
|
+
|
|
4157
|
+
def tensor_array_read_v3(handle: nil, index: nil, flow_in: nil, dtype: nil)
|
|
4158
|
+
Utils.execute("TensorArrayReadV3", [handle, index, flow_in], dtype: dtype)
|
|
4159
|
+
end
|
|
4160
|
+
|
|
4161
|
+
def tensor_array_scatter(handle: nil, indices: nil, value: nil, flow_in: nil)
|
|
4162
|
+
Utils.execute("TensorArrayScatter", [handle, indices, value, flow_in])
|
|
4163
|
+
end
|
|
4164
|
+
|
|
4165
|
+
def tensor_array_scatter_v2(handle: nil, indices: nil, value: nil, flow_in: nil)
|
|
4166
|
+
Utils.execute("TensorArrayScatterV2", [handle, indices, value, flow_in])
|
|
4167
|
+
end
|
|
4168
|
+
|
|
4169
|
+
def tensor_array_scatter_v3(handle: nil, indices: nil, value: nil, flow_in: nil)
|
|
4170
|
+
Utils.execute("TensorArrayScatterV3", [handle, indices, value, flow_in])
|
|
4171
|
+
end
|
|
4172
|
+
|
|
4173
|
+
def tensor_array_size(handle: nil, flow_in: nil)
|
|
4174
|
+
Utils.execute("TensorArraySize", [handle, flow_in])
|
|
4175
|
+
end
|
|
4176
|
+
|
|
4177
|
+
def tensor_array_size_v2(handle: nil, flow_in: nil)
|
|
4178
|
+
Utils.execute("TensorArraySizeV2", [handle, flow_in])
|
|
4179
|
+
end
|
|
4180
|
+
|
|
4181
|
+
def tensor_array_size_v3(handle: nil, flow_in: nil)
|
|
4182
|
+
Utils.execute("TensorArraySizeV3", [handle, flow_in])
|
|
4183
|
+
end
|
|
4184
|
+
|
|
4185
|
+
def tensor_array_split(handle: nil, value: nil, lengths: nil, flow_in: nil)
|
|
4186
|
+
Utils.execute("TensorArraySplit", [handle, value, lengths, flow_in])
|
|
4187
|
+
end
|
|
4188
|
+
|
|
4189
|
+
def tensor_array_split_v2(handle: nil, value: nil, lengths: nil, flow_in: nil)
|
|
4190
|
+
Utils.execute("TensorArraySplitV2", [handle, value, lengths, flow_in])
|
|
4191
|
+
end
|
|
4192
|
+
|
|
4193
|
+
def tensor_array_split_v3(handle: nil, value: nil, lengths: nil, flow_in: nil)
|
|
4194
|
+
Utils.execute("TensorArraySplitV3", [handle, value, lengths, flow_in])
|
|
4195
|
+
end
|
|
4196
|
+
|
|
4197
|
+
def tensor_array_unpack(handle: nil, value: nil, flow_in: nil)
|
|
4198
|
+
Utils.execute("TensorArrayUnpack", [handle, value, flow_in])
|
|
4199
|
+
end
|
|
4200
|
+
|
|
4201
|
+
def tensor_array_v2(size: nil, dtype: nil, element_shape: nil, dynamic_size: nil, clear_after_read: nil, tensor_array_name: nil)
|
|
4202
|
+
Utils.execute("TensorArrayV2", [size], dtype: dtype, element_shape: element_shape, dynamic_size: dynamic_size, clear_after_read: clear_after_read, tensor_array_name: tensor_array_name)
|
|
4203
|
+
end
|
|
4204
|
+
|
|
4205
|
+
def tensor_array_v3(size: nil, dtype: nil, element_shape: nil, dynamic_size: nil, clear_after_read: nil, identical_element_shapes: nil, tensor_array_name: nil)
|
|
4206
|
+
Utils.execute("TensorArrayV3", [size], dtype: dtype, element_shape: element_shape, dynamic_size: dynamic_size, clear_after_read: clear_after_read, identical_element_shapes: identical_element_shapes, tensor_array_name: tensor_array_name)
|
|
4207
|
+
end
|
|
4208
|
+
|
|
4209
|
+
def tensor_array_write(handle: nil, index: nil, value: nil, flow_in: nil)
|
|
4210
|
+
Utils.execute("TensorArrayWrite", [handle, index, value, flow_in])
|
|
4211
|
+
end
|
|
4212
|
+
|
|
4213
|
+
def tensor_array_write_v2(handle: nil, index: nil, value: nil, flow_in: nil)
|
|
4214
|
+
Utils.execute("TensorArrayWriteV2", [handle, index, value, flow_in])
|
|
4215
|
+
end
|
|
4216
|
+
|
|
4217
|
+
def tensor_array_write_v3(handle: nil, index: nil, value: nil, flow_in: nil)
|
|
4218
|
+
Utils.execute("TensorArrayWriteV3", [handle, index, value, flow_in])
|
|
4219
|
+
end
|
|
4220
|
+
|
|
4221
|
+
def tensor_dataset(components: nil, output_shapes: nil)
|
|
4222
|
+
Utils.execute("TensorDataset", [components], output_shapes: output_shapes)
|
|
4223
|
+
end
|
|
4224
|
+
|
|
4225
|
+
def tensor_forest_create_tree_variable(tree_handle: nil, tree_config: nil)
|
|
4226
|
+
Utils.execute("TensorForestCreateTreeVariable", [tree_handle, tree_config])
|
|
4227
|
+
end
|
|
4228
|
+
|
|
4229
|
+
def tensor_forest_tree_deserialize(tree_handle: nil, tree_config: nil)
|
|
4230
|
+
Utils.execute("TensorForestTreeDeserialize", [tree_handle, tree_config])
|
|
4231
|
+
end
|
|
4232
|
+
|
|
4233
|
+
def tensor_forest_tree_is_initialized_op(tree_handle: nil)
|
|
4234
|
+
Utils.execute("TensorForestTreeIsInitializedOp", [tree_handle])
|
|
4235
|
+
end
|
|
4236
|
+
|
|
4237
|
+
def tensor_forest_tree_predict(tree_handle: nil, dense_features: nil, logits_dimension: nil)
|
|
4238
|
+
Utils.execute("TensorForestTreePredict", [tree_handle, dense_features], logits_dimension: logits_dimension)
|
|
4239
|
+
end
|
|
4240
|
+
|
|
4241
|
+
def tensor_forest_tree_resource_handle_op(container: nil, shared_name: nil)
|
|
4242
|
+
Utils.execute("TensorForestTreeResourceHandleOp", [], container: container, shared_name: shared_name)
|
|
4243
|
+
end
|
|
4244
|
+
|
|
4245
|
+
def tensor_forest_tree_serialize(tree_handle: nil)
|
|
4246
|
+
Utils.execute("TensorForestTreeSerialize", [tree_handle])
|
|
4247
|
+
end
|
|
4248
|
+
|
|
4249
|
+
def tensor_forest_tree_size(tree_handle: nil)
|
|
4250
|
+
Utils.execute("TensorForestTreeSize", [tree_handle])
|
|
4251
|
+
end
|
|
4252
|
+
|
|
4253
|
+
def tensor_list_concat(input_handle: nil, element_dtype: nil, element_shape: nil)
|
|
4254
|
+
Utils.execute("TensorListConcat", [input_handle], element_dtype: element_dtype, element_shape: element_shape)
|
|
4255
|
+
end
|
|
4256
|
+
|
|
4257
|
+
def tensor_list_concat_lists(input_a: nil, input_b: nil, element_dtype: nil)
|
|
4258
|
+
Utils.execute("TensorListConcatLists", [input_a, input_b], element_dtype: element_dtype)
|
|
4259
|
+
end
|
|
4260
|
+
|
|
4261
|
+
def tensor_list_concat_v2(input_handle: nil, element_shape: nil, leading_dims: nil, element_dtype: nil, shape_type: nil)
|
|
4262
|
+
Utils.execute("TensorListConcatV2", [input_handle, element_shape, leading_dims], element_dtype: element_dtype, shape_type: shape_type)
|
|
4263
|
+
end
|
|
4264
|
+
|
|
4265
|
+
def tensor_list_element_shape(input_handle: nil, shape_type: nil)
|
|
4266
|
+
Utils.execute("TensorListElementShape", [input_handle], shape_type: shape_type)
|
|
4267
|
+
end
|
|
4268
|
+
|
|
4269
|
+
def tensor_list_from_tensor(tensor: nil, element_shape: nil, element_dtype: nil, shape_type: nil)
|
|
4270
|
+
Utils.execute("TensorListFromTensor", [tensor, element_shape], element_dtype: element_dtype, shape_type: shape_type)
|
|
4271
|
+
end
|
|
4272
|
+
|
|
4273
|
+
def tensor_list_gather(input_handle: nil, indices: nil, element_shape: nil, element_dtype: nil)
|
|
4274
|
+
Utils.execute("TensorListGather", [input_handle, indices, element_shape], element_dtype: element_dtype)
|
|
4275
|
+
end
|
|
4276
|
+
|
|
4277
|
+
def tensor_list_get_item(input_handle: nil, index: nil, element_shape: nil, element_dtype: nil)
|
|
4278
|
+
Utils.execute("TensorListGetItem", [input_handle, index, element_shape], element_dtype: element_dtype)
|
|
4279
|
+
end
|
|
4280
|
+
|
|
4281
|
+
def tensor_list_length(input_handle: nil)
|
|
4282
|
+
Utils.execute("TensorListLength", [input_handle])
|
|
4283
|
+
end
|
|
4284
|
+
|
|
4285
|
+
def tensor_list_pop_back(input_handle: nil, element_shape: nil, element_dtype: nil)
|
|
4286
|
+
Utils.execute("TensorListPopBack", [input_handle, element_shape], element_dtype: element_dtype)
|
|
4287
|
+
end
|
|
4288
|
+
|
|
4289
|
+
def tensor_list_push_back(input_handle: nil, tensor: nil, element_dtype: nil)
|
|
4290
|
+
Utils.execute("TensorListPushBack", [input_handle, tensor], element_dtype: element_dtype)
|
|
4291
|
+
end
|
|
4292
|
+
|
|
4293
|
+
def tensor_list_push_back_batch(input_handles: nil, tensor: nil, element_dtype: nil)
|
|
4294
|
+
Utils.execute("TensorListPushBackBatch", [input_handles, tensor], element_dtype: element_dtype)
|
|
4295
|
+
end
|
|
4296
|
+
|
|
4297
|
+
def tensor_list_reserve(element_shape: nil, num_elements: nil, element_dtype: nil, shape_type: nil)
|
|
4298
|
+
Utils.execute("TensorListReserve", [element_shape, num_elements], element_dtype: element_dtype, shape_type: shape_type)
|
|
4299
|
+
end
|
|
4300
|
+
|
|
4301
|
+
def tensor_list_resize(input_handle: nil, size: nil)
|
|
4302
|
+
Utils.execute("TensorListResize", [input_handle, size])
|
|
4303
|
+
end
|
|
4304
|
+
|
|
4305
|
+
def tensor_list_scatter(tensor: nil, indices: nil, element_shape: nil, element_dtype: nil, shape_type: nil)
|
|
4306
|
+
Utils.execute("TensorListScatter", [tensor, indices, element_shape], element_dtype: element_dtype, shape_type: shape_type)
|
|
4307
|
+
end
|
|
4308
|
+
|
|
4309
|
+
def tensor_list_scatter_into_existing_list(input_handle: nil, tensor: nil, indices: nil, element_dtype: nil)
|
|
4310
|
+
Utils.execute("TensorListScatterIntoExistingList", [input_handle, tensor, indices], element_dtype: element_dtype)
|
|
4311
|
+
end
|
|
4312
|
+
|
|
4313
|
+
def tensor_list_scatter_v2(tensor: nil, indices: nil, element_shape: nil, num_elements: nil, element_dtype: nil, shape_type: nil)
|
|
4314
|
+
Utils.execute("TensorListScatterV2", [tensor, indices, element_shape, num_elements], element_dtype: element_dtype, shape_type: shape_type)
|
|
4315
|
+
end
|
|
4316
|
+
|
|
4317
|
+
def tensor_list_set_item(input_handle: nil, index: nil, item: nil, element_dtype: nil)
|
|
4318
|
+
Utils.execute("TensorListSetItem", [input_handle, index, item], element_dtype: element_dtype)
|
|
4319
|
+
end
|
|
4320
|
+
|
|
4321
|
+
def tensor_list_split(tensor: nil, element_shape: nil, lengths: nil, element_dtype: nil, shape_type: nil)
|
|
4322
|
+
Utils.execute("TensorListSplit", [tensor, element_shape, lengths], element_dtype: element_dtype, shape_type: shape_type)
|
|
4323
|
+
end
|
|
4324
|
+
|
|
4325
|
+
def tensor_list_stack(input_handle: nil, element_shape: nil, element_dtype: nil, num_elements: nil)
|
|
4326
|
+
Utils.execute("TensorListStack", [input_handle, element_shape], element_dtype: element_dtype, num_elements: num_elements)
|
|
4327
|
+
end
|
|
4328
|
+
|
|
4329
|
+
def tensor_scatter_add(tensor: nil, indices: nil, updates: nil)
|
|
4330
|
+
Utils.execute("TensorScatterAdd", [tensor, indices, updates])
|
|
4331
|
+
end
|
|
4332
|
+
|
|
4333
|
+
def tensor_scatter_sub(tensor: nil, indices: nil, updates: nil)
|
|
4334
|
+
Utils.execute("TensorScatterSub", [tensor, indices, updates])
|
|
4335
|
+
end
|
|
4336
|
+
|
|
4337
|
+
def tensor_scatter_update(tensor: nil, indices: nil, updates: nil)
|
|
4338
|
+
Utils.execute("TensorScatterUpdate", [tensor, indices, updates])
|
|
4339
|
+
end
|
|
4340
|
+
|
|
4341
|
+
def tensor_slice_dataset(components: nil, output_shapes: nil)
|
|
4342
|
+
Utils.execute("TensorSliceDataset", [components], output_shapes: output_shapes)
|
|
4343
|
+
end
|
|
4344
|
+
|
|
4345
|
+
def tensor_strided_slice_update(input: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
|
4346
|
+
Utils.execute("TensorStridedSliceUpdate", [input, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
|
4347
|
+
end
|
|
4348
|
+
|
|
4349
|
+
def tensor_summary(tensor: nil, description: nil, labels: nil, display_name: nil)
|
|
4350
|
+
Utils.execute("TensorSummary", [tensor], description: description, labels: labels, display_name: display_name)
|
|
4351
|
+
end
|
|
4352
|
+
|
|
4353
|
+
def tensor_summary_v2(tag: nil, tensor: nil, serialized_summary_metadata: nil)
|
|
4354
|
+
Utils.execute("TensorSummaryV2", [tag, tensor, serialized_summary_metadata])
|
|
4355
|
+
end
|
|
4356
|
+
|
|
4357
|
+
def text_line_dataset(filenames: nil, compression_type: nil, buffer_size: nil)
|
|
4358
|
+
Utils.execute("TextLineDataset", [filenames, compression_type, buffer_size])
|
|
4359
|
+
end
|
|
4360
|
+
|
|
4361
|
+
def text_line_reader(skip_header_lines: nil, container: nil, shared_name: nil)
|
|
4362
|
+
Utils.execute("TextLineReader", [], skip_header_lines: skip_header_lines, container: container, shared_name: shared_name)
|
|
4363
|
+
end
|
|
4364
|
+
|
|
4365
|
+
def text_line_reader_v2(skip_header_lines: nil, container: nil, shared_name: nil)
|
|
4366
|
+
Utils.execute("TextLineReaderV2", [], skip_header_lines: skip_header_lines, container: container, shared_name: shared_name)
|
|
4367
|
+
end
|
|
4368
|
+
|
|
4369
|
+
def thread_unsafe_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
|
4370
|
+
Utils.execute("ThreadUnsafeUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
|
4371
|
+
end
|
|
4372
|
+
|
|
4373
|
+
def tile(input: nil, multiples: nil)
|
|
4374
|
+
Utils.execute("Tile", [input, multiples])
|
|
4375
|
+
end
|
|
4376
|
+
|
|
4377
|
+
def tile_grad(input: nil, multiples: nil)
|
|
4378
|
+
Utils.execute("TileGrad", [input, multiples])
|
|
4379
|
+
end
|
|
4380
|
+
|
|
4381
|
+
def timestamp
|
|
4382
|
+
Utils.execute("Timestamp", [])
|
|
4383
|
+
end
|
|
4384
|
+
|
|
4385
|
+
def top_k(input: nil, k: nil, sorted: nil)
|
|
4386
|
+
Utils.execute("TopK", [input], k: k, sorted: sorted)
|
|
4387
|
+
end
|
|
4388
|
+
|
|
4389
|
+
def top_kv2(input: nil, k: nil, sorted: nil)
|
|
4390
|
+
Utils.execute("TopKV2", [input, k], sorted: sorted)
|
|
4391
|
+
end
|
|
4392
|
+
|
|
4393
|
+
def transpose(x: nil, perm: nil)
|
|
4394
|
+
Utils.execute("Transpose", [x, perm])
|
|
4395
|
+
end
|
|
4396
|
+
|
|
4397
|
+
def tridiagonal_mat_mul(superdiag: nil, maindiag: nil, subdiag: nil, rhs: nil)
|
|
4398
|
+
Utils.execute("TridiagonalMatMul", [superdiag, maindiag, subdiag, rhs])
|
|
4399
|
+
end
|
|
4400
|
+
|
|
4401
|
+
def tridiagonal_solve(diagonals: nil, rhs: nil, partial_pivoting: nil)
|
|
4402
|
+
Utils.execute("TridiagonalSolve", [diagonals, rhs], partial_pivoting: partial_pivoting)
|
|
4403
|
+
end
|
|
4404
|
+
|
|
4405
|
+
def truncate_div(x: nil, y: nil)
|
|
4406
|
+
Utils.execute("TruncateDiv", [x, y])
|
|
4407
|
+
end
|
|
4408
|
+
|
|
4409
|
+
def truncate_mod(x: nil, y: nil)
|
|
4410
|
+
Utils.execute("TruncateMod", [x, y])
|
|
4411
|
+
end
|
|
4412
|
+
|
|
4413
|
+
def truncated_normal(shape: nil, seed: nil, seed2: nil, dtype: nil)
|
|
4414
|
+
Utils.execute("TruncatedNormal", [shape], seed: seed, seed2: seed2, dtype: dtype)
|
|
4415
|
+
end
|
|
4416
|
+
|
|
4417
|
+
def try_rpc(address: nil, method: nil, request: nil, protocol: nil, fail_fast: nil, timeout_in_ms: nil)
|
|
4418
|
+
Utils.execute("TryRpc", [address, method, request], protocol: protocol, fail_fast: fail_fast, timeout_in_ms: timeout_in_ms)
|
|
4419
|
+
end
|
|
4420
|
+
|
|
4421
|
+
def unbatch(batched_tensor: nil, batch_index: nil, id: nil, timeout_micros: nil, container: nil, shared_name: nil)
|
|
4422
|
+
Utils.execute("Unbatch", [batched_tensor, batch_index, id], timeout_micros: timeout_micros, container: container, shared_name: shared_name)
|
|
4423
|
+
end
|
|
4424
|
+
|
|
4425
|
+
def unbatch_grad(original_input: nil, batch_index: nil, grad: nil, id: nil, container: nil, shared_name: nil)
|
|
4426
|
+
Utils.execute("UnbatchGrad", [original_input, batch_index, grad, id], container: container, shared_name: shared_name)
|
|
4427
|
+
end
|
|
4428
|
+
|
|
4429
|
+
def unicode_decode(input: nil, input_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
|
|
4430
|
+
Utils.execute("UnicodeDecode", [input], input_encoding: input_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
|
|
4431
|
+
end
|
|
4432
|
+
|
|
4433
|
+
def unicode_decode_with_offsets(input: nil, input_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
|
|
4434
|
+
Utils.execute("UnicodeDecodeWithOffsets", [input], input_encoding: input_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
|
|
4435
|
+
end
|
|
4436
|
+
|
|
4437
|
+
def unicode_encode(input_values: nil, input_splits: nil, errors: nil, output_encoding: nil, replacement_char: nil)
|
|
4438
|
+
Utils.execute("UnicodeEncode", [input_values, input_splits], errors: errors, output_encoding: output_encoding, replacement_char: replacement_char)
|
|
4439
|
+
end
|
|
4440
|
+
|
|
4441
|
+
def unicode_script(input: nil)
|
|
4442
|
+
Utils.execute("UnicodeScript", [input])
|
|
4443
|
+
end
|
|
4444
|
+
|
|
4445
|
+
def unicode_transcode(input: nil, input_encoding: nil, output_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
|
|
4446
|
+
Utils.execute("UnicodeTranscode", [input], input_encoding: input_encoding, output_encoding: output_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
|
|
4447
|
+
end
|
|
4448
|
+
|
|
4449
|
+
def uniform_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
|
4450
|
+
Utils.execute("UniformCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
|
4451
|
+
end
|
|
4452
|
+
|
|
4453
|
+
def unique(x: nil, out_idx: nil)
|
|
4454
|
+
Utils.execute("Unique", [x], out_idx: out_idx)
|
|
4455
|
+
end
|
|
4456
|
+
|
|
4457
|
+
def unique_v2(x: nil, axis: nil, out_idx: nil)
|
|
4458
|
+
Utils.execute("UniqueV2", [x, axis], out_idx: out_idx)
|
|
4459
|
+
end
|
|
4460
|
+
|
|
4461
|
+
def unique_with_counts(x: nil, out_idx: nil)
|
|
4462
|
+
Utils.execute("UniqueWithCounts", [x], out_idx: out_idx)
|
|
4463
|
+
end
|
|
4464
|
+
|
|
4465
|
+
def unique_with_counts_v2(x: nil, axis: nil, out_idx: nil)
|
|
4466
|
+
Utils.execute("UniqueWithCountsV2", [x, axis], out_idx: out_idx)
|
|
4467
|
+
end
|
|
4468
|
+
|
|
4469
|
+
def unpack(value: nil, num: nil, axis: nil)
|
|
4470
|
+
Utils.execute("Unpack", [value], num: num, axis: axis)
|
|
4471
|
+
end
|
|
4472
|
+
|
|
4473
|
+
def unravel_index(indices: nil, dims: nil)
|
|
4474
|
+
Utils.execute("UnravelIndex", [indices, dims])
|
|
4475
|
+
end
|
|
4476
|
+
|
|
4477
|
+
def unsorted_segment_max(data: nil, segment_ids: nil, num_segments: nil)
|
|
4478
|
+
Utils.execute("UnsortedSegmentMax", [data, segment_ids, num_segments])
|
|
4479
|
+
end
|
|
4480
|
+
|
|
4481
|
+
def unsorted_segment_min(data: nil, segment_ids: nil, num_segments: nil)
|
|
4482
|
+
Utils.execute("UnsortedSegmentMin", [data, segment_ids, num_segments])
|
|
4483
|
+
end
|
|
4484
|
+
|
|
4485
|
+
def unsorted_segment_prod(data: nil, segment_ids: nil, num_segments: nil)
|
|
4486
|
+
Utils.execute("UnsortedSegmentProd", [data, segment_ids, num_segments])
|
|
4487
|
+
end
|
|
4488
|
+
|
|
4489
|
+
def unsorted_segment_sum(data: nil, segment_ids: nil, num_segments: nil)
|
|
4490
|
+
Utils.execute("UnsortedSegmentSum", [data, segment_ids, num_segments])
|
|
4491
|
+
end
|
|
4492
|
+
|
|
4493
|
+
def unstage(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
|
4494
|
+
Utils.execute("Unstage", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
|
4495
|
+
end
|
|
4496
|
+
|
|
4497
|
+
def unwrap_dataset_variant(input_handle: nil)
|
|
4498
|
+
Utils.execute("UnwrapDatasetVariant", [input_handle])
|
|
4499
|
+
end
|
|
4500
|
+
|
|
4501
|
+
def upper_bound(sorted_inputs: nil, values: nil, out_type: nil)
|
|
4502
|
+
Utils.execute("UpperBound", [sorted_inputs, values], out_type: out_type)
|
|
4503
|
+
end
|
|
4504
|
+
|
|
4505
|
+
def var_handle_op(container: nil, shared_name: nil, dtype: nil, shape: nil)
|
|
4506
|
+
Utils.execute("VarHandleOp", [], container: container, shared_name: shared_name, dtype: dtype, shape: shape)
|
|
4507
|
+
end
|
|
4508
|
+
|
|
4509
|
+
def var_is_initialized_op(resource: nil)
|
|
4510
|
+
Utils.execute("VarIsInitializedOp", [resource])
|
|
4511
|
+
end
|
|
4512
|
+
|
|
4513
|
+
def variable(shape: nil, dtype: nil, container: nil, shared_name: nil)
|
|
4514
|
+
Utils.execute("Variable", [], shape: shape, dtype: dtype, container: container, shared_name: shared_name)
|
|
4515
|
+
end
|
|
4516
|
+
|
|
4517
|
+
def variable_shape(input: nil, out_type: nil)
|
|
4518
|
+
Utils.execute("VariableShape", [input], out_type: out_type)
|
|
4519
|
+
end
|
|
4520
|
+
|
|
4521
|
+
def variable_v2(shape: nil, dtype: nil, container: nil, shared_name: nil)
|
|
4522
|
+
Utils.execute("VariableV2", [], shape: shape, dtype: dtype, container: container, shared_name: shared_name)
|
|
4523
|
+
end
|
|
4524
|
+
|
|
4525
|
+
def where(input: nil)
|
|
4526
|
+
Utils.execute("Where", [input])
|
|
4527
|
+
end
|
|
4528
|
+
|
|
4529
|
+
def while(input: nil, cond: nil, body: nil, output_shapes: nil, parallel_iterations: nil)
|
|
4530
|
+
Utils.execute("While", [input], cond: cond, body: body, output_shapes: output_shapes, parallel_iterations: parallel_iterations)
|
|
4531
|
+
end
|
|
4532
|
+
|
|
4533
|
+
def whole_file_reader(container: nil, shared_name: nil)
|
|
4534
|
+
Utils.execute("WholeFileReader", [], container: container, shared_name: shared_name)
|
|
4535
|
+
end
|
|
4536
|
+
|
|
4537
|
+
def whole_file_reader_v2(container: nil, shared_name: nil)
|
|
4538
|
+
Utils.execute("WholeFileReaderV2", [], container: container, shared_name: shared_name)
|
|
4539
|
+
end
|
|
4540
|
+
|
|
4541
|
+
def window_dataset(input_dataset: nil, size: nil, shift: nil, stride: nil, drop_remainder: nil, output_types: nil, output_shapes: nil)
|
|
4542
|
+
Utils.execute("WindowDataset", [input_dataset, size, shift, stride, drop_remainder], output_types: output_types, output_shapes: output_shapes)
|
|
4543
|
+
end
|
|
4544
|
+
|
|
4545
|
+
def worker_heartbeat(request: nil)
|
|
4546
|
+
Utils.execute("WorkerHeartbeat", [request])
|
|
4547
|
+
end
|
|
4548
|
+
|
|
4549
|
+
def wrap_dataset_variant(input_handle: nil)
|
|
4550
|
+
Utils.execute("WrapDatasetVariant", [input_handle])
|
|
4551
|
+
end
|
|
4552
|
+
|
|
4553
|
+
def write_audio_summary(writer: nil, step: nil, tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
|
|
4554
|
+
Utils.execute("WriteAudioSummary", [writer, step, tag, tensor, sample_rate], max_outputs: max_outputs)
|
|
4555
|
+
end
|
|
4556
|
+
|
|
4557
|
+
def write_file(filename: nil, contents: nil)
|
|
4558
|
+
Utils.execute("WriteFile", [filename, contents])
|
|
4559
|
+
end
|
|
4560
|
+
|
|
4561
|
+
def write_graph_summary(writer: nil, step: nil, tensor: nil)
|
|
4562
|
+
Utils.execute("WriteGraphSummary", [writer, step, tensor])
|
|
4563
|
+
end
|
|
4564
|
+
|
|
4565
|
+
def write_histogram_summary(writer: nil, step: nil, tag: nil, values: nil)
|
|
4566
|
+
Utils.execute("WriteHistogramSummary", [writer, step, tag, values])
|
|
4567
|
+
end
|
|
4568
|
+
|
|
4569
|
+
def write_image_summary(writer: nil, step: nil, tag: nil, tensor: nil, bad_color: nil, max_images: nil)
|
|
4570
|
+
Utils.execute("WriteImageSummary", [writer, step, tag, tensor, bad_color], max_images: max_images)
|
|
4571
|
+
end
|
|
4572
|
+
|
|
4573
|
+
def write_raw_proto_summary(writer: nil, step: nil, tensor: nil)
|
|
4574
|
+
Utils.execute("WriteRawProtoSummary", [writer, step, tensor])
|
|
4575
|
+
end
|
|
4576
|
+
|
|
4577
|
+
def write_scalar_summary(writer: nil, step: nil, tag: nil, value: nil)
|
|
4578
|
+
Utils.execute("WriteScalarSummary", [writer, step, tag, value])
|
|
4579
|
+
end
|
|
4580
|
+
|
|
4581
|
+
def write_summary(writer: nil, step: nil, tensor: nil, tag: nil, summary_metadata: nil)
|
|
4582
|
+
Utils.execute("WriteSummary", [writer, step, tensor, tag, summary_metadata])
|
|
4583
|
+
end
|
|
4584
|
+
|
|
4585
|
+
def xdivy(x: nil, y: nil)
|
|
4586
|
+
Utils.execute("Xdivy", [x, y])
|
|
4587
|
+
end
|
|
4588
|
+
|
|
4589
|
+
def xlogy(x: nil, y: nil)
|
|
4590
|
+
Utils.execute("Xlogy", [x, y])
|
|
4591
|
+
end
|
|
4592
|
+
|
|
4593
|
+
def zeros_like(x: nil)
|
|
4594
|
+
Utils.execute("ZerosLike", [x])
|
|
4595
|
+
end
|
|
4596
|
+
|
|
4597
|
+
def zeta(x: nil, q: nil)
|
|
4598
|
+
Utils.execute("Zeta", [x, q])
|
|
4599
|
+
end
|
|
4600
|
+
|
|
4601
|
+
def zip_dataset(input_datasets: nil, output_types: nil, output_shapes: nil)
|
|
4602
|
+
Utils.execute("ZipDataset", [input_datasets], output_types: output_types, output_shapes: output_shapes)
|
|
4603
|
+
end
|
|
4604
|
+
end
|
|
4605
|
+
end
|
|
4606
|
+
end
|