tensorflow 0.1.0 → 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +7 -4
- data/lib/tensorflow/ffi.rb +7 -0
- data/lib/tensorflow/keras/datasets/mnist.rb +17 -0
- data/lib/tensorflow/keras/layers/dense.rb +10 -0
- data/lib/tensorflow/keras/layers/dropout.rb +10 -0
- data/lib/tensorflow/keras/layers/flatten.rb +10 -0
- data/lib/tensorflow/keras/models/sequential.rb +31 -0
- data/lib/tensorflow/math.rb +465 -0
- data/lib/tensorflow/ops.rb +51 -0
- data/lib/tensorflow/raw_ops.rb +4606 -0
- data/lib/tensorflow/tensor.rb +79 -61
- data/lib/tensorflow/utils.rb +133 -14
- data/lib/tensorflow/variable.rb +6 -6
- data/lib/tensorflow/version.rb +1 -1
- data/lib/tensorflow.rb +21 -147
- metadata +52 -2
@@ -0,0 +1,4606 @@
|
|
1
|
+
# Generated by `rake generate_ops`
|
2
|
+
module TensorFlow
|
3
|
+
module RawOps
|
4
|
+
class << self
|
5
|
+
def abort(error_msg: nil, exit_without_error: nil)
|
6
|
+
Utils.execute("Abort", [], error_msg: error_msg, exit_without_error: exit_without_error)
|
7
|
+
end
|
8
|
+
|
9
|
+
def abs(x: nil)
|
10
|
+
Utils.execute("Abs", [x])
|
11
|
+
end
|
12
|
+
|
13
|
+
def accumulate_nv2(inputs: nil, shape: nil)
|
14
|
+
Utils.execute("AccumulateNV2", [inputs], shape: shape)
|
15
|
+
end
|
16
|
+
|
17
|
+
def accumulator_apply_gradient(handle: nil, local_step: nil, gradient: nil, dtype: nil)
|
18
|
+
Utils.execute("AccumulatorApplyGradient", [handle, local_step, gradient], dtype: dtype)
|
19
|
+
end
|
20
|
+
|
21
|
+
def accumulator_num_accumulated(handle: nil)
|
22
|
+
Utils.execute("AccumulatorNumAccumulated", [handle])
|
23
|
+
end
|
24
|
+
|
25
|
+
def accumulator_set_global_step(handle: nil, new_global_step: nil)
|
26
|
+
Utils.execute("AccumulatorSetGlobalStep", [handle, new_global_step])
|
27
|
+
end
|
28
|
+
|
29
|
+
def accumulator_take_gradient(handle: nil, num_required: nil, dtype: nil)
|
30
|
+
Utils.execute("AccumulatorTakeGradient", [handle, num_required], dtype: dtype)
|
31
|
+
end
|
32
|
+
|
33
|
+
def acos(x: nil)
|
34
|
+
Utils.execute("Acos", [x])
|
35
|
+
end
|
36
|
+
|
37
|
+
def acosh(x: nil)
|
38
|
+
Utils.execute("Acosh", [x])
|
39
|
+
end
|
40
|
+
|
41
|
+
def add(x: nil, y: nil)
|
42
|
+
Utils.execute("Add", [x, y])
|
43
|
+
end
|
44
|
+
|
45
|
+
def add_many_sparse_to_tensors_map(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, container: nil, shared_name: nil)
|
46
|
+
Utils.execute("AddManySparseToTensorsMap", [sparse_indices, sparse_values, sparse_shape], container: container, shared_name: shared_name)
|
47
|
+
end
|
48
|
+
|
49
|
+
def add_n(inputs: nil)
|
50
|
+
Utils.execute("AddN", [inputs])
|
51
|
+
end
|
52
|
+
|
53
|
+
def add_sparse_to_tensors_map(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, container: nil, shared_name: nil)
|
54
|
+
Utils.execute("AddSparseToTensorsMap", [sparse_indices, sparse_values, sparse_shape], container: container, shared_name: shared_name)
|
55
|
+
end
|
56
|
+
|
57
|
+
def add_v2(x: nil, y: nil)
|
58
|
+
Utils.execute("AddV2", [x, y])
|
59
|
+
end
|
60
|
+
|
61
|
+
def adjust_contrast(images: nil, contrast_factor: nil, min_value: nil, max_value: nil)
|
62
|
+
Utils.execute("AdjustContrast", [images, contrast_factor, min_value, max_value])
|
63
|
+
end
|
64
|
+
|
65
|
+
def adjust_contrastv2(images: nil, contrast_factor: nil)
|
66
|
+
Utils.execute("AdjustContrastv2", [images, contrast_factor])
|
67
|
+
end
|
68
|
+
|
69
|
+
def adjust_hue(images: nil, delta: nil)
|
70
|
+
Utils.execute("AdjustHue", [images, delta])
|
71
|
+
end
|
72
|
+
|
73
|
+
def adjust_saturation(images: nil, scale: nil)
|
74
|
+
Utils.execute("AdjustSaturation", [images, scale])
|
75
|
+
end
|
76
|
+
|
77
|
+
def all(input: nil, reduction_indices: nil, keep_dims: nil)
|
78
|
+
Utils.execute("All", [input, reduction_indices], keep_dims: keep_dims)
|
79
|
+
end
|
80
|
+
|
81
|
+
def all_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, seed: nil, seed2: nil)
|
82
|
+
Utils.execute("AllCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, seed: seed, seed2: seed2)
|
83
|
+
end
|
84
|
+
|
85
|
+
def all_to_all(input: nil, group_assignment: nil, concat_dimension: nil, split_dimension: nil, split_count: nil)
|
86
|
+
Utils.execute("AllToAll", [input, group_assignment], concat_dimension: concat_dimension, split_dimension: split_dimension, split_count: split_count)
|
87
|
+
end
|
88
|
+
|
89
|
+
def angle(input: nil)
|
90
|
+
Utils.execute("Angle", [input])
|
91
|
+
end
|
92
|
+
|
93
|
+
def anonymous_iterator(output_types: nil, output_shapes: nil)
|
94
|
+
Utils.execute("AnonymousIterator", [], output_types: output_types, output_shapes: output_shapes)
|
95
|
+
end
|
96
|
+
|
97
|
+
def anonymous_iterator_v2(output_types: nil, output_shapes: nil)
|
98
|
+
Utils.execute("AnonymousIteratorV2", [], output_types: output_types, output_shapes: output_shapes)
|
99
|
+
end
|
100
|
+
|
101
|
+
def any(input: nil, reduction_indices: nil, keep_dims: nil)
|
102
|
+
Utils.execute("Any", [input, reduction_indices], keep_dims: keep_dims)
|
103
|
+
end
|
104
|
+
|
105
|
+
def apply_ada_max(var: nil, m: nil, v: nil, beta1_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
|
106
|
+
Utils.execute("ApplyAdaMax", [var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
|
107
|
+
end
|
108
|
+
|
109
|
+
def apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, use_locking: nil)
|
110
|
+
Utils.execute("ApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad], use_locking: use_locking)
|
111
|
+
end
|
112
|
+
|
113
|
+
def apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, use_locking: nil, update_slots: nil)
|
114
|
+
Utils.execute("ApplyAdagrad", [var, accum, lr, grad], use_locking: use_locking, update_slots: update_slots)
|
115
|
+
end
|
116
|
+
|
117
|
+
def apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
118
|
+
Utils.execute("ApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step], use_locking: use_locking)
|
119
|
+
end
|
120
|
+
|
121
|
+
def apply_adam(var: nil, m: nil, v: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil, use_nesterov: nil)
|
122
|
+
Utils.execute("ApplyAdam", [var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking, use_nesterov: use_nesterov)
|
123
|
+
end
|
124
|
+
|
125
|
+
def apply_add_sign(var: nil, m: nil, lr: nil, alpha: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
126
|
+
Utils.execute("ApplyAddSign", [var, m, lr, alpha, sign_decay, beta, grad], use_locking: use_locking)
|
127
|
+
end
|
128
|
+
|
129
|
+
def apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
130
|
+
Utils.execute("ApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
131
|
+
end
|
132
|
+
|
133
|
+
def apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
134
|
+
Utils.execute("ApplyFtrl", [var, accum, linear, grad, lr, l1, l2, lr_power], use_locking: use_locking)
|
135
|
+
end
|
136
|
+
|
137
|
+
def apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
138
|
+
Utils.execute("ApplyFtrlV2", [var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
139
|
+
end
|
140
|
+
|
141
|
+
def apply_gradient_descent(var: nil, alpha: nil, delta: nil, use_locking: nil)
|
142
|
+
Utils.execute("ApplyGradientDescent", [var, alpha, delta], use_locking: use_locking)
|
143
|
+
end
|
144
|
+
|
145
|
+
def apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
146
|
+
Utils.execute("ApplyMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
147
|
+
end
|
148
|
+
|
149
|
+
def apply_power_sign(var: nil, m: nil, lr: nil, logbase: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
150
|
+
Utils.execute("ApplyPowerSign", [var, m, lr, logbase, sign_decay, beta, grad], use_locking: use_locking)
|
151
|
+
end
|
152
|
+
|
153
|
+
def apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, use_locking: nil)
|
154
|
+
Utils.execute("ApplyProximalAdagrad", [var, accum, lr, l1, l2, grad], use_locking: use_locking)
|
155
|
+
end
|
156
|
+
|
157
|
+
def apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, delta: nil, use_locking: nil)
|
158
|
+
Utils.execute("ApplyProximalGradientDescent", [var, alpha, l1, l2, delta], use_locking: use_locking)
|
159
|
+
end
|
160
|
+
|
161
|
+
def apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
162
|
+
Utils.execute("ApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
163
|
+
end
|
164
|
+
|
165
|
+
def approximate_equal(x: nil, y: nil, tolerance: nil)
|
166
|
+
Utils.execute("ApproximateEqual", [x, y], tolerance: tolerance)
|
167
|
+
end
|
168
|
+
|
169
|
+
def arg_max(input: nil, dimension: nil, output_type: nil)
|
170
|
+
Utils.execute("ArgMax", [input, dimension], output_type: output_type)
|
171
|
+
end
|
172
|
+
|
173
|
+
def arg_min(input: nil, dimension: nil, output_type: nil)
|
174
|
+
Utils.execute("ArgMin", [input, dimension], output_type: output_type)
|
175
|
+
end
|
176
|
+
|
177
|
+
def as_string(input: nil, precision: nil, scientific: nil, shortest: nil, width: nil, fill: nil)
|
178
|
+
Utils.execute("AsString", [input], precision: precision, scientific: scientific, shortest: shortest, width: width, fill: fill)
|
179
|
+
end
|
180
|
+
|
181
|
+
def asin(x: nil)
|
182
|
+
Utils.execute("Asin", [x])
|
183
|
+
end
|
184
|
+
|
185
|
+
def asinh(x: nil)
|
186
|
+
Utils.execute("Asinh", [x])
|
187
|
+
end
|
188
|
+
|
189
|
+
def assert(condition: nil, data: nil, summarize: nil)
|
190
|
+
Utils.execute("Assert", [condition, data], summarize: summarize)
|
191
|
+
end
|
192
|
+
|
193
|
+
def assign(ref: nil, value: nil, validate_shape: nil, use_locking: nil)
|
194
|
+
Utils.execute("Assign", [ref, value], validate_shape: validate_shape, use_locking: use_locking)
|
195
|
+
end
|
196
|
+
|
197
|
+
def assign_add(ref: nil, value: nil, use_locking: nil)
|
198
|
+
Utils.execute("AssignAdd", [ref, value], use_locking: use_locking)
|
199
|
+
end
|
200
|
+
|
201
|
+
def assign_add_variable_op(resource: nil, value: nil, dtype: nil)
|
202
|
+
Utils.execute("AssignAddVariableOp", [resource, value], dtype: dtype)
|
203
|
+
end
|
204
|
+
|
205
|
+
def assign_sub(ref: nil, value: nil, use_locking: nil)
|
206
|
+
Utils.execute("AssignSub", [ref, value], use_locking: use_locking)
|
207
|
+
end
|
208
|
+
|
209
|
+
def assign_sub_variable_op(resource: nil, value: nil, dtype: nil)
|
210
|
+
Utils.execute("AssignSubVariableOp", [resource, value], dtype: dtype)
|
211
|
+
end
|
212
|
+
|
213
|
+
def assign_variable_op(resource: nil, value: nil, dtype: nil)
|
214
|
+
Utils.execute("AssignVariableOp", [resource, value], dtype: dtype)
|
215
|
+
end
|
216
|
+
|
217
|
+
def atan(x: nil)
|
218
|
+
Utils.execute("Atan", [x])
|
219
|
+
end
|
220
|
+
|
221
|
+
def atan2(y: nil, x: nil)
|
222
|
+
Utils.execute("Atan2", [y, x])
|
223
|
+
end
|
224
|
+
|
225
|
+
def atanh(x: nil)
|
226
|
+
Utils.execute("Atanh", [x])
|
227
|
+
end
|
228
|
+
|
229
|
+
def audio_spectrogram(input: nil, window_size: nil, stride: nil, magnitude_squared: nil)
|
230
|
+
Utils.execute("AudioSpectrogram", [input], window_size: window_size, stride: stride, magnitude_squared: magnitude_squared)
|
231
|
+
end
|
232
|
+
|
233
|
+
def audio_summary(tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
|
234
|
+
Utils.execute("AudioSummary", [tag, tensor], sample_rate: sample_rate, max_outputs: max_outputs)
|
235
|
+
end
|
236
|
+
|
237
|
+
def audio_summary_v2(tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
|
238
|
+
Utils.execute("AudioSummaryV2", [tag, tensor, sample_rate], max_outputs: max_outputs)
|
239
|
+
end
|
240
|
+
|
241
|
+
def avg_pool(value: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
242
|
+
Utils.execute("AvgPool", [value], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
243
|
+
end
|
244
|
+
|
245
|
+
def avg_pool3d(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
246
|
+
Utils.execute("AvgPool3D", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
247
|
+
end
|
248
|
+
|
249
|
+
def avg_pool3d_grad(orig_input_shape: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
250
|
+
Utils.execute("AvgPool3DGrad", [orig_input_shape, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
251
|
+
end
|
252
|
+
|
253
|
+
def avg_pool_grad(orig_input_shape: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
254
|
+
Utils.execute("AvgPoolGrad", [orig_input_shape, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
255
|
+
end
|
256
|
+
|
257
|
+
def barrier(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
258
|
+
Utils.execute("Barrier", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
259
|
+
end
|
260
|
+
|
261
|
+
def barrier_close(handle: nil, cancel_pending_enqueues: nil)
|
262
|
+
Utils.execute("BarrierClose", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
|
263
|
+
end
|
264
|
+
|
265
|
+
def barrier_incomplete_size(handle: nil)
|
266
|
+
Utils.execute("BarrierIncompleteSize", [handle])
|
267
|
+
end
|
268
|
+
|
269
|
+
def barrier_insert_many(handle: nil, keys: nil, values: nil, component_index: nil)
|
270
|
+
Utils.execute("BarrierInsertMany", [handle, keys, values], component_index: component_index)
|
271
|
+
end
|
272
|
+
|
273
|
+
def barrier_ready_size(handle: nil)
|
274
|
+
Utils.execute("BarrierReadySize", [handle])
|
275
|
+
end
|
276
|
+
|
277
|
+
def barrier_take_many(handle: nil, num_elements: nil, component_types: nil, allow_small_batch: nil, wait_for_incomplete: nil, timeout_ms: nil)
|
278
|
+
Utils.execute("BarrierTakeMany", [handle, num_elements], component_types: component_types, allow_small_batch: allow_small_batch, wait_for_incomplete: wait_for_incomplete, timeout_ms: timeout_ms)
|
279
|
+
end
|
280
|
+
|
281
|
+
def batch(in_tensors: nil, num_batch_threads: nil, max_batch_size: nil, max_enqueued_batches: nil, batch_timeout_micros: nil, allowed_batch_sizes: nil, grad_timeout_micros: nil, container: nil, shared_name: nil, batching_queue: nil)
|
282
|
+
Utils.execute("Batch", [in_tensors], num_batch_threads: num_batch_threads, max_batch_size: max_batch_size, max_enqueued_batches: max_enqueued_batches, batch_timeout_micros: batch_timeout_micros, allowed_batch_sizes: allowed_batch_sizes, grad_timeout_micros: grad_timeout_micros, container: container, shared_name: shared_name, batching_queue: batching_queue)
|
283
|
+
end
|
284
|
+
|
285
|
+
def batch_cholesky(input: nil)
|
286
|
+
Utils.execute("BatchCholesky", [input])
|
287
|
+
end
|
288
|
+
|
289
|
+
def batch_cholesky_grad(l: nil, grad: nil)
|
290
|
+
Utils.execute("BatchCholeskyGrad", [l, grad])
|
291
|
+
end
|
292
|
+
|
293
|
+
def batch_dataset(input_dataset: nil, batch_size: nil, output_types: nil, output_shapes: nil)
|
294
|
+
Utils.execute("BatchDataset", [input_dataset, batch_size], output_types: output_types, output_shapes: output_shapes)
|
295
|
+
end
|
296
|
+
|
297
|
+
def batch_dataset_v2(input_dataset: nil, batch_size: nil, drop_remainder: nil, parallel_copy: nil, output_types: nil, output_shapes: nil)
|
298
|
+
Utils.execute("BatchDatasetV2", [input_dataset, batch_size, drop_remainder], parallel_copy: parallel_copy, output_types: output_types, output_shapes: output_shapes)
|
299
|
+
end
|
300
|
+
|
301
|
+
def batch_fft(input: nil)
|
302
|
+
Utils.execute("BatchFFT", [input])
|
303
|
+
end
|
304
|
+
|
305
|
+
def batch_fft2d(input: nil)
|
306
|
+
Utils.execute("BatchFFT2D", [input])
|
307
|
+
end
|
308
|
+
|
309
|
+
def batch_fft3d(input: nil)
|
310
|
+
Utils.execute("BatchFFT3D", [input])
|
311
|
+
end
|
312
|
+
|
313
|
+
def batch_function(in_tensors: nil, captured_tensors: nil, f: nil, num_batch_threads: nil, max_batch_size: nil, batch_timeout_micros: nil, max_enqueued_batches: nil, allowed_batch_sizes: nil, container: nil, shared_name: nil, batching_queue: nil)
|
314
|
+
Utils.execute("BatchFunction", [in_tensors, captured_tensors], f: f, num_batch_threads: num_batch_threads, max_batch_size: max_batch_size, batch_timeout_micros: batch_timeout_micros, max_enqueued_batches: max_enqueued_batches, allowed_batch_sizes: allowed_batch_sizes, container: container, shared_name: shared_name, batching_queue: batching_queue)
|
315
|
+
end
|
316
|
+
|
317
|
+
def batch_ifft(input: nil)
|
318
|
+
Utils.execute("BatchIFFT", [input])
|
319
|
+
end
|
320
|
+
|
321
|
+
def batch_ifft2d(input: nil)
|
322
|
+
Utils.execute("BatchIFFT2D", [input])
|
323
|
+
end
|
324
|
+
|
325
|
+
def batch_ifft3d(input: nil)
|
326
|
+
Utils.execute("BatchIFFT3D", [input])
|
327
|
+
end
|
328
|
+
|
329
|
+
def batch_mat_mul(x: nil, y: nil, adj_x: nil, adj_y: nil)
|
330
|
+
Utils.execute("BatchMatMul", [x, y], adj_x: adj_x, adj_y: adj_y)
|
331
|
+
end
|
332
|
+
|
333
|
+
def batch_mat_mul_v2(x: nil, y: nil, adj_x: nil, adj_y: nil)
|
334
|
+
Utils.execute("BatchMatMulV2", [x, y], adj_x: adj_x, adj_y: adj_y)
|
335
|
+
end
|
336
|
+
|
337
|
+
def batch_matrix_band_part(input: nil, num_lower: nil, num_upper: nil)
|
338
|
+
Utils.execute("BatchMatrixBandPart", [input, num_lower, num_upper])
|
339
|
+
end
|
340
|
+
|
341
|
+
def batch_matrix_determinant(input: nil)
|
342
|
+
Utils.execute("BatchMatrixDeterminant", [input])
|
343
|
+
end
|
344
|
+
|
345
|
+
def batch_matrix_diag(diagonal: nil)
|
346
|
+
Utils.execute("BatchMatrixDiag", [diagonal])
|
347
|
+
end
|
348
|
+
|
349
|
+
def batch_matrix_diag_part(input: nil)
|
350
|
+
Utils.execute("BatchMatrixDiagPart", [input])
|
351
|
+
end
|
352
|
+
|
353
|
+
def batch_matrix_inverse(input: nil, adjoint: nil)
|
354
|
+
Utils.execute("BatchMatrixInverse", [input], adjoint: adjoint)
|
355
|
+
end
|
356
|
+
|
357
|
+
def batch_matrix_set_diag(input: nil, diagonal: nil)
|
358
|
+
Utils.execute("BatchMatrixSetDiag", [input, diagonal])
|
359
|
+
end
|
360
|
+
|
361
|
+
def batch_matrix_solve(matrix: nil, rhs: nil, adjoint: nil)
|
362
|
+
Utils.execute("BatchMatrixSolve", [matrix, rhs], adjoint: adjoint)
|
363
|
+
end
|
364
|
+
|
365
|
+
def batch_matrix_solve_ls(matrix: nil, rhs: nil, l2_regularizer: nil, fast: nil)
|
366
|
+
Utils.execute("BatchMatrixSolveLs", [matrix, rhs, l2_regularizer], fast: fast)
|
367
|
+
end
|
368
|
+
|
369
|
+
def batch_matrix_triangular_solve(matrix: nil, rhs: nil, lower: nil, adjoint: nil)
|
370
|
+
Utils.execute("BatchMatrixTriangularSolve", [matrix, rhs], lower: lower, adjoint: adjoint)
|
371
|
+
end
|
372
|
+
|
373
|
+
def batch_norm_with_global_normalization(t: nil, m: nil, v: nil, beta: nil, gamma: nil, variance_epsilon: nil, scale_after_normalization: nil)
|
374
|
+
Utils.execute("BatchNormWithGlobalNormalization", [t, m, v, beta, gamma], variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
|
375
|
+
end
|
376
|
+
|
377
|
+
def batch_norm_with_global_normalization_grad(t: nil, m: nil, v: nil, gamma: nil, backprop: nil, variance_epsilon: nil, scale_after_normalization: nil)
|
378
|
+
Utils.execute("BatchNormWithGlobalNormalizationGrad", [t, m, v, gamma, backprop], variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
|
379
|
+
end
|
380
|
+
|
381
|
+
def batch_self_adjoint_eig(input: nil)
|
382
|
+
Utils.execute("BatchSelfAdjointEig", [input])
|
383
|
+
end
|
384
|
+
|
385
|
+
def batch_self_adjoint_eig_v2(input: nil, compute_v: nil)
|
386
|
+
Utils.execute("BatchSelfAdjointEigV2", [input], compute_v: compute_v)
|
387
|
+
end
|
388
|
+
|
389
|
+
def batch_svd(input: nil, compute_uv: nil, full_matrices: nil)
|
390
|
+
Utils.execute("BatchSvd", [input], compute_uv: compute_uv, full_matrices: full_matrices)
|
391
|
+
end
|
392
|
+
|
393
|
+
def batch_to_space(input: nil, crops: nil, block_size: nil)
|
394
|
+
Utils.execute("BatchToSpace", [input, crops], block_size: block_size)
|
395
|
+
end
|
396
|
+
|
397
|
+
def batch_to_space_nd(input: nil, block_shape: nil, crops: nil)
|
398
|
+
Utils.execute("BatchToSpaceND", [input, block_shape, crops])
|
399
|
+
end
|
400
|
+
|
401
|
+
def bessel_i0e(x: nil)
|
402
|
+
Utils.execute("BesselI0e", [x])
|
403
|
+
end
|
404
|
+
|
405
|
+
def bessel_i1e(x: nil)
|
406
|
+
Utils.execute("BesselI1e", [x])
|
407
|
+
end
|
408
|
+
|
409
|
+
def betainc(a: nil, b: nil, x: nil)
|
410
|
+
Utils.execute("Betainc", [a, b, x])
|
411
|
+
end
|
412
|
+
|
413
|
+
def bias_add(value: nil, bias: nil, data_format: nil)
|
414
|
+
Utils.execute("BiasAdd", [value, bias], data_format: data_format)
|
415
|
+
end
|
416
|
+
|
417
|
+
def bias_add_grad(out_backprop: nil, data_format: nil)
|
418
|
+
Utils.execute("BiasAddGrad", [out_backprop], data_format: data_format)
|
419
|
+
end
|
420
|
+
|
421
|
+
def bias_add_v1(value: nil, bias: nil)
|
422
|
+
Utils.execute("BiasAddV1", [value, bias])
|
423
|
+
end
|
424
|
+
|
425
|
+
def big_query_reader(container: nil, shared_name: nil, project_id: nil, dataset_id: nil, table_id: nil, columns: nil, timestamp_millis: nil, test_end_point: nil)
|
426
|
+
Utils.execute("BigQueryReader", [], container: container, shared_name: shared_name, project_id: project_id, dataset_id: dataset_id, table_id: table_id, columns: columns, timestamp_millis: timestamp_millis, test_end_point: test_end_point)
|
427
|
+
end
|
428
|
+
|
429
|
+
def bincount(arr: nil, size: nil, weights: nil)
|
430
|
+
Utils.execute("Bincount", [arr, size, weights])
|
431
|
+
end
|
432
|
+
|
433
|
+
def bitcast(input: nil, type: nil)
|
434
|
+
Utils.execute("Bitcast", [input], type: type)
|
435
|
+
end
|
436
|
+
|
437
|
+
def bitwise_and(x: nil, y: nil)
|
438
|
+
Utils.execute("BitwiseAnd", [x, y])
|
439
|
+
end
|
440
|
+
|
441
|
+
def bitwise_or(x: nil, y: nil)
|
442
|
+
Utils.execute("BitwiseOr", [x, y])
|
443
|
+
end
|
444
|
+
|
445
|
+
def bitwise_xor(x: nil, y: nil)
|
446
|
+
Utils.execute("BitwiseXor", [x, y])
|
447
|
+
end
|
448
|
+
|
449
|
+
def boosted_trees_aggregate_stats(node_ids: nil, gradients: nil, hessians: nil, feature: nil, max_splits: nil, num_buckets: nil)
|
450
|
+
Utils.execute("BoostedTreesAggregateStats", [node_ids, gradients, hessians, feature], max_splits: max_splits, num_buckets: num_buckets)
|
451
|
+
end
|
452
|
+
|
453
|
+
def boosted_trees_bucketize(float_values: nil, bucket_boundaries: nil, num_features: nil)
|
454
|
+
Utils.execute("BoostedTreesBucketize", [float_values, bucket_boundaries], num_features: num_features)
|
455
|
+
end
|
456
|
+
|
457
|
+
def boosted_trees_calculate_best_feature_split(node_id_range: nil, stats_summary: nil, l1: nil, l2: nil, tree_complexity: nil, min_node_weight: nil, logits_dimension: nil, split_type: nil)
|
458
|
+
Utils.execute("BoostedTreesCalculateBestFeatureSplit", [node_id_range, stats_summary, l1, l2, tree_complexity, min_node_weight], logits_dimension: logits_dimension, split_type: split_type)
|
459
|
+
end
|
460
|
+
|
461
|
+
def boosted_trees_calculate_best_gains_per_feature(node_id_range: nil, stats_summary_list: nil, l1: nil, l2: nil, tree_complexity: nil, min_node_weight: nil, max_splits: nil, num_features: nil)
|
462
|
+
Utils.execute("BoostedTreesCalculateBestGainsPerFeature", [node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight], max_splits: max_splits, num_features: num_features)
|
463
|
+
end
|
464
|
+
|
465
|
+
def boosted_trees_center_bias(tree_ensemble_handle: nil, mean_gradients: nil, mean_hessians: nil, l1: nil, l2: nil)
|
466
|
+
Utils.execute("BoostedTreesCenterBias", [tree_ensemble_handle, mean_gradients, mean_hessians, l1, l2])
|
467
|
+
end
|
468
|
+
|
469
|
+
def boosted_trees_create_ensemble(tree_ensemble_handle: nil, stamp_token: nil, tree_ensemble_serialized: nil)
|
470
|
+
Utils.execute("BoostedTreesCreateEnsemble", [tree_ensemble_handle, stamp_token, tree_ensemble_serialized])
|
471
|
+
end
|
472
|
+
|
473
|
+
def boosted_trees_create_quantile_stream_resource(quantile_stream_resource_handle: nil, epsilon: nil, num_streams: nil, max_elements: nil)
|
474
|
+
Utils.execute("BoostedTreesCreateQuantileStreamResource", [quantile_stream_resource_handle, epsilon, num_streams], max_elements: max_elements)
|
475
|
+
end
|
476
|
+
|
477
|
+
def boosted_trees_deserialize_ensemble(tree_ensemble_handle: nil, stamp_token: nil, tree_ensemble_serialized: nil)
|
478
|
+
Utils.execute("BoostedTreesDeserializeEnsemble", [tree_ensemble_handle, stamp_token, tree_ensemble_serialized])
|
479
|
+
end
|
480
|
+
|
481
|
+
def boosted_trees_ensemble_resource_handle_op(container: nil, shared_name: nil)
|
482
|
+
Utils.execute("BoostedTreesEnsembleResourceHandleOp", [], container: container, shared_name: shared_name)
|
483
|
+
end
|
484
|
+
|
485
|
+
def boosted_trees_example_debug_outputs(tree_ensemble_handle: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
|
486
|
+
Utils.execute("BoostedTreesExampleDebugOutputs", [tree_ensemble_handle, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
|
487
|
+
end
|
488
|
+
|
489
|
+
def boosted_trees_get_ensemble_states(tree_ensemble_handle: nil)
|
490
|
+
Utils.execute("BoostedTreesGetEnsembleStates", [tree_ensemble_handle])
|
491
|
+
end
|
492
|
+
|
493
|
+
def boosted_trees_make_quantile_summaries(float_values: nil, example_weights: nil, epsilon: nil, num_features: nil)
|
494
|
+
Utils.execute("BoostedTreesMakeQuantileSummaries", [float_values, example_weights, epsilon], num_features: num_features)
|
495
|
+
end
|
496
|
+
|
497
|
+
def boosted_trees_make_stats_summary(node_ids: nil, gradients: nil, hessians: nil, bucketized_features_list: nil, max_splits: nil, num_buckets: nil, num_features: nil)
|
498
|
+
Utils.execute("BoostedTreesMakeStatsSummary", [node_ids, gradients, hessians, bucketized_features_list], max_splits: max_splits, num_buckets: num_buckets, num_features: num_features)
|
499
|
+
end
|
500
|
+
|
501
|
+
def boosted_trees_predict(tree_ensemble_handle: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
|
502
|
+
Utils.execute("BoostedTreesPredict", [tree_ensemble_handle, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
|
503
|
+
end
|
504
|
+
|
505
|
+
def boosted_trees_quantile_stream_resource_add_summaries(quantile_stream_resource_handle: nil, summaries: nil, num_features: nil)
|
506
|
+
Utils.execute("BoostedTreesQuantileStreamResourceAddSummaries", [quantile_stream_resource_handle, summaries], num_features: num_features)
|
507
|
+
end
|
508
|
+
|
509
|
+
def boosted_trees_quantile_stream_resource_deserialize(quantile_stream_resource_handle: nil, bucket_boundaries: nil, num_streams: nil)
|
510
|
+
Utils.execute("BoostedTreesQuantileStreamResourceDeserialize", [quantile_stream_resource_handle, bucket_boundaries], num_streams: num_streams)
|
511
|
+
end
|
512
|
+
|
513
|
+
def boosted_trees_quantile_stream_resource_flush(quantile_stream_resource_handle: nil, num_buckets: nil, generate_quantiles: nil)
|
514
|
+
Utils.execute("BoostedTreesQuantileStreamResourceFlush", [quantile_stream_resource_handle, num_buckets], generate_quantiles: generate_quantiles)
|
515
|
+
end
|
516
|
+
|
517
|
+
def boosted_trees_quantile_stream_resource_get_bucket_boundaries(quantile_stream_resource_handle: nil, num_features: nil)
|
518
|
+
Utils.execute("BoostedTreesQuantileStreamResourceGetBucketBoundaries", [quantile_stream_resource_handle], num_features: num_features)
|
519
|
+
end
|
520
|
+
|
521
|
+
def boosted_trees_quantile_stream_resource_handle_op(container: nil, shared_name: nil)
|
522
|
+
Utils.execute("BoostedTreesQuantileStreamResourceHandleOp", [], container: container, shared_name: shared_name)
|
523
|
+
end
|
524
|
+
|
525
|
+
def boosted_trees_serialize_ensemble(tree_ensemble_handle: nil)
|
526
|
+
Utils.execute("BoostedTreesSerializeEnsemble", [tree_ensemble_handle])
|
527
|
+
end
|
528
|
+
|
529
|
+
def boosted_trees_training_predict(tree_ensemble_handle: nil, cached_tree_ids: nil, cached_node_ids: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
|
530
|
+
Utils.execute("BoostedTreesTrainingPredict", [tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
|
531
|
+
end
|
532
|
+
|
533
|
+
def boosted_trees_update_ensemble(tree_ensemble_handle: nil, feature_ids: nil, node_ids: nil, gains: nil, thresholds: nil, left_node_contribs: nil, right_node_contribs: nil, max_depth: nil, learning_rate: nil, pruning_mode: nil, num_features: nil)
|
534
|
+
Utils.execute("BoostedTreesUpdateEnsemble", [tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate], pruning_mode: pruning_mode, num_features: num_features)
|
535
|
+
end
|
536
|
+
|
537
|
+
def broadcast_args(s0: nil, s1: nil)
|
538
|
+
Utils.execute("BroadcastArgs", [s0, s1])
|
539
|
+
end
|
540
|
+
|
541
|
+
def broadcast_gradient_args(s0: nil, s1: nil)
|
542
|
+
Utils.execute("BroadcastGradientArgs", [s0, s1])
|
543
|
+
end
|
544
|
+
|
545
|
+
def broadcast_to(input: nil, shape: nil)
|
546
|
+
Utils.execute("BroadcastTo", [input, shape])
|
547
|
+
end
|
548
|
+
|
549
|
+
def bucketize(input: nil, boundaries: nil)
|
550
|
+
Utils.execute("Bucketize", [input], boundaries: boundaries)
|
551
|
+
end
|
552
|
+
|
553
|
+
def ctc_beam_search_decoder(inputs: nil, sequence_length: nil, beam_width: nil, top_paths: nil, merge_repeated: nil)
|
554
|
+
Utils.execute("CTCBeamSearchDecoder", [inputs, sequence_length], beam_width: beam_width, top_paths: top_paths, merge_repeated: merge_repeated)
|
555
|
+
end
|
556
|
+
|
557
|
+
def ctc_greedy_decoder(inputs: nil, sequence_length: nil, merge_repeated: nil)
|
558
|
+
Utils.execute("CTCGreedyDecoder", [inputs, sequence_length], merge_repeated: merge_repeated)
|
559
|
+
end
|
560
|
+
|
561
|
+
def ctc_loss(inputs: nil, labels_indices: nil, labels_values: nil, sequence_length: nil, preprocess_collapse_repeated: nil, ctc_merge_repeated: nil, ignore_longer_outputs_than_inputs: nil)
|
562
|
+
Utils.execute("CTCLoss", [inputs, labels_indices, labels_values, sequence_length], preprocess_collapse_repeated: preprocess_collapse_repeated, ctc_merge_repeated: ctc_merge_repeated, ignore_longer_outputs_than_inputs: ignore_longer_outputs_than_inputs)
|
563
|
+
end
|
564
|
+
|
565
|
+
def cache_dataset(input_dataset: nil, filename: nil, output_types: nil, output_shapes: nil)
|
566
|
+
Utils.execute("CacheDataset", [input_dataset, filename], output_types: output_types, output_shapes: output_shapes)
|
567
|
+
end
|
568
|
+
|
569
|
+
def case(branch_index: nil, input: nil, branches: nil, output_shapes: nil)
|
570
|
+
Utils.execute("Case", [branch_index, input], branches: branches, output_shapes: output_shapes)
|
571
|
+
end
|
572
|
+
|
573
|
+
def cast(x: nil)
|
574
|
+
Utils.execute("Cast", [x])
|
575
|
+
end
|
576
|
+
|
577
|
+
def ceil(x: nil)
|
578
|
+
Utils.execute("Ceil", [x])
|
579
|
+
end
|
580
|
+
|
581
|
+
def check_numerics(tensor: nil, message: nil)
|
582
|
+
Utils.execute("CheckNumerics", [tensor], message: message)
|
583
|
+
end
|
584
|
+
|
585
|
+
def cholesky(input: nil)
|
586
|
+
Utils.execute("Cholesky", [input])
|
587
|
+
end
|
588
|
+
|
589
|
+
def cholesky_grad(l: nil, grad: nil)
|
590
|
+
Utils.execute("CholeskyGrad", [l, grad])
|
591
|
+
end
|
592
|
+
|
593
|
+
def choose_fastest_branch_dataset(input_dataset: nil, ratio_numerator: nil, ratio_denominator: nil, other_arguments: nil, num_elements_per_branch: nil, branches: nil, other_arguments_lengths: nil, output_types: nil, output_shapes: nil)
|
594
|
+
Utils.execute("ChooseFastestBranchDataset", [input_dataset, ratio_numerator, ratio_denominator, other_arguments], num_elements_per_branch: num_elements_per_branch, branches: branches, other_arguments_lengths: other_arguments_lengths, output_types: output_types, output_shapes: output_shapes)
|
595
|
+
end
|
596
|
+
|
597
|
+
def clip_by_value(t: nil, clip_value_min: nil, clip_value_max: nil)
|
598
|
+
Utils.execute("ClipByValue", [t, clip_value_min, clip_value_max])
|
599
|
+
end
|
600
|
+
|
601
|
+
def close_summary_writer(writer: nil)
|
602
|
+
Utils.execute("CloseSummaryWriter", [writer])
|
603
|
+
end
|
604
|
+
|
605
|
+
def collective_bcast_recv(group_size: nil, group_key: nil, instance_key: nil, shape: nil)
|
606
|
+
Utils.execute("CollectiveBcastRecv", [], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
|
607
|
+
end
|
608
|
+
|
609
|
+
def collective_bcast_send(input: nil, group_size: nil, group_key: nil, instance_key: nil, shape: nil)
|
610
|
+
Utils.execute("CollectiveBcastSend", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
|
611
|
+
end
|
612
|
+
|
613
|
+
def collective_gather(input: nil, group_size: nil, group_key: nil, instance_key: nil, shape: nil)
|
614
|
+
Utils.execute("CollectiveGather", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
|
615
|
+
end
|
616
|
+
|
617
|
+
def collective_permute(input: nil, source_target_pairs: nil)
|
618
|
+
Utils.execute("CollectivePermute", [input, source_target_pairs])
|
619
|
+
end
|
620
|
+
|
621
|
+
def collective_reduce(input: nil, group_size: nil, group_key: nil, instance_key: nil, merge_op: nil, final_op: nil, subdiv_offsets: nil, wait_for: nil)
|
622
|
+
Utils.execute("CollectiveReduce", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, merge_op: merge_op, final_op: final_op, subdiv_offsets: subdiv_offsets, wait_for: wait_for)
|
623
|
+
end
|
624
|
+
|
625
|
+
def combined_non_max_suppression(boxes: nil, scores: nil, max_output_size_per_class: nil, max_total_size: nil, iou_threshold: nil, score_threshold: nil, pad_per_class: nil, clip_boxes: nil)
|
626
|
+
Utils.execute("CombinedNonMaxSuppression", [boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold], pad_per_class: pad_per_class, clip_boxes: clip_boxes)
|
627
|
+
end
|
628
|
+
|
629
|
+
def compare_and_bitpack(input: nil, threshold: nil)
|
630
|
+
Utils.execute("CompareAndBitpack", [input, threshold])
|
631
|
+
end
|
632
|
+
|
633
|
+
def complex(real: nil, imag: nil)
|
634
|
+
Utils.execute("Complex", [real, imag])
|
635
|
+
end
|
636
|
+
|
637
|
+
def complex_abs(x: nil)
|
638
|
+
Utils.execute("ComplexAbs", [x])
|
639
|
+
end
|
640
|
+
|
641
|
+
def compute_accidental_hits(true_classes: nil, sampled_candidates: nil, num_true: nil, seed: nil, seed2: nil)
|
642
|
+
Utils.execute("ComputeAccidentalHits", [true_classes, sampled_candidates], num_true: num_true, seed: seed, seed2: seed2)
|
643
|
+
end
|
644
|
+
|
645
|
+
def concat(concat_dim: nil, values: nil)
|
646
|
+
Utils.execute("Concat", [concat_dim, values])
|
647
|
+
end
|
648
|
+
|
649
|
+
def concat_offset(concat_dim: nil, shape: nil)
|
650
|
+
Utils.execute("ConcatOffset", [concat_dim, shape])
|
651
|
+
end
|
652
|
+
|
653
|
+
def concat_v2(values: nil, axis: nil)
|
654
|
+
Utils.execute("ConcatV2", [values, axis])
|
655
|
+
end
|
656
|
+
|
657
|
+
def concatenate_dataset(input_dataset: nil, another_dataset: nil, output_types: nil, output_shapes: nil)
|
658
|
+
Utils.execute("ConcatenateDataset", [input_dataset, another_dataset], output_types: output_types, output_shapes: output_shapes)
|
659
|
+
end
|
660
|
+
|
661
|
+
def conditional_accumulator(dtype: nil, shape: nil, container: nil, shared_name: nil, reduction_type: nil)
|
662
|
+
Utils.execute("ConditionalAccumulator", [], dtype: dtype, shape: shape, container: container, shared_name: shared_name, reduction_type: reduction_type)
|
663
|
+
end
|
664
|
+
|
665
|
+
def configure_distributed_tpu(embedding_config: nil, tpu_embedding_config: nil, is_global_init: nil)
|
666
|
+
Utils.execute("ConfigureDistributedTPU", [], embedding_config: embedding_config, tpu_embedding_config: tpu_embedding_config, is_global_init: is_global_init)
|
667
|
+
end
|
668
|
+
|
669
|
+
def conj(input: nil)
|
670
|
+
Utils.execute("Conj", [input])
|
671
|
+
end
|
672
|
+
|
673
|
+
def conjugate_transpose(x: nil, perm: nil)
|
674
|
+
Utils.execute("ConjugateTranspose", [x, perm])
|
675
|
+
end
|
676
|
+
|
677
|
+
def const(value: nil, dtype: nil)
|
678
|
+
Utils.execute("Const", [], value: value, dtype: dtype)
|
679
|
+
end
|
680
|
+
|
681
|
+
def consume_mutex_lock(mutex_lock: nil)
|
682
|
+
Utils.execute("ConsumeMutexLock", [mutex_lock])
|
683
|
+
end
|
684
|
+
|
685
|
+
def control_trigger
|
686
|
+
Utils.execute("ControlTrigger", [])
|
687
|
+
end
|
688
|
+
|
689
|
+
def conv2d(input: nil, filter: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
|
690
|
+
Utils.execute("Conv2D", [input, filter], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
|
691
|
+
end
|
692
|
+
|
693
|
+
def conv2d_backprop_filter(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
|
694
|
+
Utils.execute("Conv2DBackpropFilter", [input, filter_sizes, out_backprop], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
|
695
|
+
end
|
696
|
+
|
697
|
+
def conv2d_backprop_input(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
|
698
|
+
Utils.execute("Conv2DBackpropInput", [input_sizes, filter, out_backprop], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
|
699
|
+
end
|
700
|
+
|
701
|
+
def conv3d(input: nil, filter: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
702
|
+
Utils.execute("Conv3D", [input, filter], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
703
|
+
end
|
704
|
+
|
705
|
+
def conv3d_backprop_filter(input: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, dilations: nil)
|
706
|
+
Utils.execute("Conv3DBackpropFilter", [input, filter, out_backprop], strides: strides, padding: padding, dilations: dilations)
|
707
|
+
end
|
708
|
+
|
709
|
+
def conv3d_backprop_filter_v2(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
710
|
+
Utils.execute("Conv3DBackpropFilterV2", [input, filter_sizes, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
711
|
+
end
|
712
|
+
|
713
|
+
def conv3d_backprop_input(input: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, dilations: nil)
|
714
|
+
Utils.execute("Conv3DBackpropInput", [input, filter, out_backprop], strides: strides, padding: padding, dilations: dilations)
|
715
|
+
end
|
716
|
+
|
717
|
+
def conv3d_backprop_input_v2(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
718
|
+
Utils.execute("Conv3DBackpropInputV2", [input_sizes, filter, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
719
|
+
end
|
720
|
+
|
721
|
+
def copy(input: nil, tensor_name: nil, debug_ops_spec: nil)
|
722
|
+
Utils.execute("Copy", [input], tensor_name: tensor_name, debug_ops_spec: debug_ops_spec)
|
723
|
+
end
|
724
|
+
|
725
|
+
def copy_host(input: nil, tensor_name: nil, debug_ops_spec: nil)
|
726
|
+
Utils.execute("CopyHost", [input], tensor_name: tensor_name, debug_ops_spec: debug_ops_spec)
|
727
|
+
end
|
728
|
+
|
729
|
+
def cos(x: nil)
|
730
|
+
Utils.execute("Cos", [x])
|
731
|
+
end
|
732
|
+
|
733
|
+
def cosh(x: nil)
|
734
|
+
Utils.execute("Cosh", [x])
|
735
|
+
end
|
736
|
+
|
737
|
+
def count_up_to(ref: nil, limit: nil)
|
738
|
+
Utils.execute("CountUpTo", [ref], limit: limit)
|
739
|
+
end
|
740
|
+
|
741
|
+
def create_summary_db_writer(writer: nil, db_uri: nil, experiment_name: nil, run_name: nil, user_name: nil)
|
742
|
+
Utils.execute("CreateSummaryDbWriter", [writer, db_uri, experiment_name, run_name, user_name])
|
743
|
+
end
|
744
|
+
|
745
|
+
def create_summary_file_writer(writer: nil, logdir: nil, max_queue: nil, flush_millis: nil, filename_suffix: nil)
|
746
|
+
Utils.execute("CreateSummaryFileWriter", [writer, logdir, max_queue, flush_millis, filename_suffix])
|
747
|
+
end
|
748
|
+
|
749
|
+
def crop_and_resize(image: nil, boxes: nil, box_ind: nil, crop_size: nil, method: nil, extrapolation_value: nil)
|
750
|
+
Utils.execute("CropAndResize", [image, boxes, box_ind, crop_size], method: method, extrapolation_value: extrapolation_value)
|
751
|
+
end
|
752
|
+
|
753
|
+
def crop_and_resize_grad_boxes(grads: nil, image: nil, boxes: nil, box_ind: nil, method: nil)
|
754
|
+
Utils.execute("CropAndResizeGradBoxes", [grads, image, boxes, box_ind], method: method)
|
755
|
+
end
|
756
|
+
|
757
|
+
def crop_and_resize_grad_image(grads: nil, boxes: nil, box_ind: nil, image_size: nil, method: nil)
|
758
|
+
Utils.execute("CropAndResizeGradImage", [grads, boxes, box_ind, image_size], method: method)
|
759
|
+
end
|
760
|
+
|
761
|
+
def cross(a: nil, b: nil)
|
762
|
+
Utils.execute("Cross", [a, b])
|
763
|
+
end
|
764
|
+
|
765
|
+
def cross_replica_sum(input: nil, group_assignment: nil)
|
766
|
+
Utils.execute("CrossReplicaSum", [input, group_assignment])
|
767
|
+
end
|
768
|
+
|
769
|
+
def cudnn_rnn(input: nil, input_h: nil, input_c: nil, params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil)
|
770
|
+
Utils.execute("CudnnRNN", [input, input_h, input_c, params], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training)
|
771
|
+
end
|
772
|
+
|
773
|
+
def cudnn_rnn_backprop(input: nil, input_h: nil, input_c: nil, params: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
774
|
+
Utils.execute("CudnnRNNBackprop", [input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
775
|
+
end
|
776
|
+
|
777
|
+
def cudnn_rnn_backprop_v2(input: nil, input_h: nil, input_c: nil, params: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, host_reserved: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
778
|
+
Utils.execute("CudnnRNNBackpropV2", [input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
779
|
+
end
|
780
|
+
|
781
|
+
def cudnn_rnn_backprop_v3(input: nil, input_h: nil, input_c: nil, params: nil, sequence_lengths: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, host_reserved: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, time_major: nil)
|
782
|
+
Utils.execute("CudnnRNNBackpropV3", [input, input_h, input_c, params, sequence_lengths, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, time_major: time_major)
|
783
|
+
end
|
784
|
+
|
785
|
+
def cudnn_rnn_canonical_to_params(num_layers: nil, num_units: nil, input_size: nil, weights: nil, biases: nil, num_params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
786
|
+
Utils.execute("CudnnRNNCanonicalToParams", [num_layers, num_units, input_size, weights, biases], num_params: num_params, rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
787
|
+
end
|
788
|
+
|
789
|
+
def cudnn_rnn_params_size(num_layers: nil, num_units: nil, input_size: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
790
|
+
Utils.execute("CudnnRNNParamsSize", [num_layers, num_units, input_size], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
791
|
+
end
|
792
|
+
|
793
|
+
def cudnn_rnn_params_to_canonical(num_layers: nil, num_units: nil, input_size: nil, params: nil, num_params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
|
794
|
+
Utils.execute("CudnnRNNParamsToCanonical", [num_layers, num_units, input_size, params], num_params: num_params, rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
|
795
|
+
end
|
796
|
+
|
797
|
+
def cudnn_rnnv2(input: nil, input_h: nil, input_c: nil, params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil)
|
798
|
+
Utils.execute("CudnnRNNV2", [input, input_h, input_c, params], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training)
|
799
|
+
end
|
800
|
+
|
801
|
+
def cudnn_rnnv3(input: nil, input_h: nil, input_c: nil, params: nil, sequence_lengths: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil, time_major: nil)
|
802
|
+
Utils.execute("CudnnRNNV3", [input, input_h, input_c, params, sequence_lengths], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training, time_major: time_major)
|
803
|
+
end
|
804
|
+
|
805
|
+
def cumprod(x: nil, axis: nil, exclusive: nil, reverse: nil)
|
806
|
+
Utils.execute("Cumprod", [x, axis], exclusive: exclusive, reverse: reverse)
|
807
|
+
end
|
808
|
+
|
809
|
+
def cumsum(x: nil, axis: nil, exclusive: nil, reverse: nil)
|
810
|
+
Utils.execute("Cumsum", [x, axis], exclusive: exclusive, reverse: reverse)
|
811
|
+
end
|
812
|
+
|
813
|
+
def data_format_dim_map(x: nil, src_format: nil, dst_format: nil)
|
814
|
+
Utils.execute("DataFormatDimMap", [x], src_format: src_format, dst_format: dst_format)
|
815
|
+
end
|
816
|
+
|
817
|
+
def data_format_vec_permute(x: nil, src_format: nil, dst_format: nil)
|
818
|
+
Utils.execute("DataFormatVecPermute", [x], src_format: src_format, dst_format: dst_format)
|
819
|
+
end
|
820
|
+
|
821
|
+
def dataset_to_graph(input_dataset: nil)
|
822
|
+
Utils.execute("DatasetToGraph", [input_dataset])
|
823
|
+
end
|
824
|
+
|
825
|
+
def dataset_to_single_element(dataset: nil, output_types: nil, output_shapes: nil)
|
826
|
+
Utils.execute("DatasetToSingleElement", [dataset], output_types: output_types, output_shapes: output_shapes)
|
827
|
+
end
|
828
|
+
|
829
|
+
def debug_gradient_identity(input: nil)
|
830
|
+
Utils.execute("DebugGradientIdentity", [input])
|
831
|
+
end
|
832
|
+
|
833
|
+
def debug_gradient_ref_identity(input: nil)
|
834
|
+
Utils.execute("DebugGradientRefIdentity", [input])
|
835
|
+
end
|
836
|
+
|
837
|
+
def debug_identity(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, gated_grpc: nil)
|
838
|
+
Utils.execute("DebugIdentity", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, gated_grpc: gated_grpc)
|
839
|
+
end
|
840
|
+
|
841
|
+
def debug_nan_count(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, gated_grpc: nil)
|
842
|
+
Utils.execute("DebugNanCount", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, gated_grpc: gated_grpc)
|
843
|
+
end
|
844
|
+
|
845
|
+
def debug_numeric_summary(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, lower_bound: nil, upper_bound: nil, mute_if_healthy: nil, gated_grpc: nil)
|
846
|
+
Utils.execute("DebugNumericSummary", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, lower_bound: lower_bound, upper_bound: upper_bound, mute_if_healthy: mute_if_healthy, gated_grpc: gated_grpc)
|
847
|
+
end
|
848
|
+
|
849
|
+
def decode_and_crop_jpeg(contents: nil, crop_window: nil, channels: nil, ratio: nil, fancy_upscaling: nil, try_recover_truncated: nil, acceptable_fraction: nil, dct_method: nil)
|
850
|
+
Utils.execute("DecodeAndCropJpeg", [contents, crop_window], channels: channels, ratio: ratio, fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, acceptable_fraction: acceptable_fraction, dct_method: dct_method)
|
851
|
+
end
|
852
|
+
|
853
|
+
def decode_base64(input: nil)
|
854
|
+
Utils.execute("DecodeBase64", [input])
|
855
|
+
end
|
856
|
+
|
857
|
+
def decode_bmp(contents: nil, channels: nil)
|
858
|
+
Utils.execute("DecodeBmp", [contents], channels: channels)
|
859
|
+
end
|
860
|
+
|
861
|
+
def decode_csv(records: nil, record_defaults: nil, field_delim: nil, use_quote_delim: nil, na_value: nil, select_cols: nil)
|
862
|
+
Utils.execute("DecodeCSV", [records, record_defaults], field_delim: field_delim, use_quote_delim: use_quote_delim, na_value: na_value, select_cols: select_cols)
|
863
|
+
end
|
864
|
+
|
865
|
+
def decode_compressed(bytes: nil, compression_type: nil)
|
866
|
+
Utils.execute("DecodeCompressed", [bytes], compression_type: compression_type)
|
867
|
+
end
|
868
|
+
|
869
|
+
def decode_gif(contents: nil)
|
870
|
+
Utils.execute("DecodeGif", [contents])
|
871
|
+
end
|
872
|
+
|
873
|
+
def decode_json_example(json_examples: nil)
|
874
|
+
Utils.execute("DecodeJSONExample", [json_examples])
|
875
|
+
end
|
876
|
+
|
877
|
+
def decode_jpeg(contents: nil, channels: nil, ratio: nil, fancy_upscaling: nil, try_recover_truncated: nil, acceptable_fraction: nil, dct_method: nil)
|
878
|
+
Utils.execute("DecodeJpeg", [contents], channels: channels, ratio: ratio, fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, acceptable_fraction: acceptable_fraction, dct_method: dct_method)
|
879
|
+
end
|
880
|
+
|
881
|
+
def decode_padded_raw(input_bytes: nil, fixed_length: nil, out_type: nil, little_endian: nil)
|
882
|
+
Utils.execute("DecodePaddedRaw", [input_bytes, fixed_length], out_type: out_type, little_endian: little_endian)
|
883
|
+
end
|
884
|
+
|
885
|
+
def decode_png(contents: nil, channels: nil, dtype: nil)
|
886
|
+
Utils.execute("DecodePng", [contents], channels: channels, dtype: dtype)
|
887
|
+
end
|
888
|
+
|
889
|
+
def decode_proto_v2(bytes: nil, message_type: nil, field_names: nil, output_types: nil, descriptor_source: nil, message_format: nil, sanitize: nil)
|
890
|
+
Utils.execute("DecodeProtoV2", [bytes], message_type: message_type, field_names: field_names, output_types: output_types, descriptor_source: descriptor_source, message_format: message_format, sanitize: sanitize)
|
891
|
+
end
|
892
|
+
|
893
|
+
def decode_raw(bytes: nil, out_type: nil, little_endian: nil)
|
894
|
+
Utils.execute("DecodeRaw", [bytes], out_type: out_type, little_endian: little_endian)
|
895
|
+
end
|
896
|
+
|
897
|
+
def decode_wav(contents: nil, desired_channels: nil, desired_samples: nil)
|
898
|
+
Utils.execute("DecodeWav", [contents], desired_channels: desired_channels, desired_samples: desired_samples)
|
899
|
+
end
|
900
|
+
|
901
|
+
def deep_copy(x: nil)
|
902
|
+
Utils.execute("DeepCopy", [x])
|
903
|
+
end
|
904
|
+
|
905
|
+
def delete_iterator(handle: nil, deleter: nil)
|
906
|
+
Utils.execute("DeleteIterator", [handle, deleter])
|
907
|
+
end
|
908
|
+
|
909
|
+
def delete_session_tensor(handle: nil)
|
910
|
+
Utils.execute("DeleteSessionTensor", [handle])
|
911
|
+
end
|
912
|
+
|
913
|
+
def dense_to_dense_set_operation(set1: nil, set2: nil, set_operation: nil, validate_indices: nil)
|
914
|
+
Utils.execute("DenseToDenseSetOperation", [set1, set2], set_operation: set_operation, validate_indices: validate_indices)
|
915
|
+
end
|
916
|
+
|
917
|
+
def dense_to_sparse_set_operation(set1: nil, set2_indices: nil, set2_values: nil, set2_shape: nil, set_operation: nil, validate_indices: nil)
|
918
|
+
Utils.execute("DenseToSparseSetOperation", [set1, set2_indices, set2_values, set2_shape], set_operation: set_operation, validate_indices: validate_indices)
|
919
|
+
end
|
920
|
+
|
921
|
+
def depth_to_space(input: nil, block_size: nil, data_format: nil)
|
922
|
+
Utils.execute("DepthToSpace", [input], block_size: block_size, data_format: data_format)
|
923
|
+
end
|
924
|
+
|
925
|
+
def depthwise_conv2d_native(input: nil, filter: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
926
|
+
Utils.execute("DepthwiseConv2dNative", [input, filter], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
927
|
+
end
|
928
|
+
|
929
|
+
def depthwise_conv2d_native_backprop_filter(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
930
|
+
Utils.execute("DepthwiseConv2dNativeBackpropFilter", [input, filter_sizes, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
931
|
+
end
|
932
|
+
|
933
|
+
def depthwise_conv2d_native_backprop_input(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
|
934
|
+
Utils.execute("DepthwiseConv2dNativeBackpropInput", [input_sizes, filter, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
|
935
|
+
end
|
936
|
+
|
937
|
+
def dequantize(input: nil, min_range: nil, max_range: nil, mode: nil)
|
938
|
+
Utils.execute("Dequantize", [input, min_range, max_range], mode: mode)
|
939
|
+
end
|
940
|
+
|
941
|
+
def deserialize_iterator(resource_handle: nil, serialized: nil)
|
942
|
+
Utils.execute("DeserializeIterator", [resource_handle, serialized])
|
943
|
+
end
|
944
|
+
|
945
|
+
def deserialize_many_sparse(serialized_sparse: nil, dtype: nil)
|
946
|
+
Utils.execute("DeserializeManySparse", [serialized_sparse], dtype: dtype)
|
947
|
+
end
|
948
|
+
|
949
|
+
def deserialize_sparse(serialized_sparse: nil, dtype: nil)
|
950
|
+
Utils.execute("DeserializeSparse", [serialized_sparse], dtype: dtype)
|
951
|
+
end
|
952
|
+
|
953
|
+
def destroy_resource_op(resource: nil, ignore_lookup_error: nil)
|
954
|
+
Utils.execute("DestroyResourceOp", [resource], ignore_lookup_error: ignore_lookup_error)
|
955
|
+
end
|
956
|
+
|
957
|
+
def destroy_temporary_variable(ref: nil, var_name: nil)
|
958
|
+
Utils.execute("DestroyTemporaryVariable", [ref], var_name: var_name)
|
959
|
+
end
|
960
|
+
|
961
|
+
def diag(diagonal: nil)
|
962
|
+
Utils.execute("Diag", [diagonal])
|
963
|
+
end
|
964
|
+
|
965
|
+
def diag_part(input: nil)
|
966
|
+
Utils.execute("DiagPart", [input])
|
967
|
+
end
|
968
|
+
|
969
|
+
def digamma(x: nil)
|
970
|
+
Utils.execute("Digamma", [x])
|
971
|
+
end
|
972
|
+
|
973
|
+
def dilation2d(input: nil, filter: nil, strides: nil, rates: nil, padding: nil)
|
974
|
+
Utils.execute("Dilation2D", [input, filter], strides: strides, rates: rates, padding: padding)
|
975
|
+
end
|
976
|
+
|
977
|
+
def dilation2d_backprop_filter(input: nil, filter: nil, out_backprop: nil, strides: nil, rates: nil, padding: nil)
|
978
|
+
Utils.execute("Dilation2DBackpropFilter", [input, filter, out_backprop], strides: strides, rates: rates, padding: padding)
|
979
|
+
end
|
980
|
+
|
981
|
+
def dilation2d_backprop_input(input: nil, filter: nil, out_backprop: nil, strides: nil, rates: nil, padding: nil)
|
982
|
+
Utils.execute("Dilation2DBackpropInput", [input, filter, out_backprop], strides: strides, rates: rates, padding: padding)
|
983
|
+
end
|
984
|
+
|
985
|
+
def div(x: nil, y: nil)
|
986
|
+
Utils.execute("Div", [x, y])
|
987
|
+
end
|
988
|
+
|
989
|
+
def div_no_nan(x: nil, y: nil)
|
990
|
+
Utils.execute("DivNoNan", [x, y])
|
991
|
+
end
|
992
|
+
|
993
|
+
def draw_bounding_boxes(images: nil, boxes: nil)
|
994
|
+
Utils.execute("DrawBoundingBoxes", [images, boxes])
|
995
|
+
end
|
996
|
+
|
997
|
+
def draw_bounding_boxes_v2(images: nil, boxes: nil, colors: nil)
|
998
|
+
Utils.execute("DrawBoundingBoxesV2", [images, boxes, colors])
|
999
|
+
end
|
1000
|
+
|
1001
|
+
def dynamic_partition(data: nil, partitions: nil, num_partitions: nil)
|
1002
|
+
Utils.execute("DynamicPartition", [data, partitions], num_partitions: num_partitions)
|
1003
|
+
end
|
1004
|
+
|
1005
|
+
def dynamic_stitch(indices: nil, data: nil)
|
1006
|
+
Utils.execute("DynamicStitch", [indices, data])
|
1007
|
+
end
|
1008
|
+
|
1009
|
+
def eager_py_func(input: nil, token: nil)
|
1010
|
+
Utils.execute("EagerPyFunc", [input], token: token)
|
1011
|
+
end
|
1012
|
+
|
1013
|
+
def edit_distance(hypothesis_indices: nil, hypothesis_values: nil, hypothesis_shape: nil, truth_indices: nil, truth_values: nil, truth_shape: nil, normalize: nil)
|
1014
|
+
Utils.execute("EditDistance", [hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape], normalize: normalize)
|
1015
|
+
end
|
1016
|
+
|
1017
|
+
def elu(features: nil)
|
1018
|
+
Utils.execute("Elu", [features])
|
1019
|
+
end
|
1020
|
+
|
1021
|
+
def elu_grad(gradients: nil, outputs: nil)
|
1022
|
+
Utils.execute("EluGrad", [gradients, outputs])
|
1023
|
+
end
|
1024
|
+
|
1025
|
+
def empty(shape: nil, dtype: nil, init: nil)
|
1026
|
+
Utils.execute("Empty", [shape], dtype: dtype, init: init)
|
1027
|
+
end
|
1028
|
+
|
1029
|
+
def empty_tensor_list(element_shape: nil, max_num_elements: nil, element_dtype: nil, shape_type: nil)
|
1030
|
+
Utils.execute("EmptyTensorList", [element_shape, max_num_elements], element_dtype: element_dtype, shape_type: shape_type)
|
1031
|
+
end
|
1032
|
+
|
1033
|
+
def encode_base64(input: nil, pad: nil)
|
1034
|
+
Utils.execute("EncodeBase64", [input], pad: pad)
|
1035
|
+
end
|
1036
|
+
|
1037
|
+
def encode_jpeg(image: nil, format: nil, quality: nil, progressive: nil, optimize_size: nil, chroma_downsampling: nil, density_unit: nil, x_density: nil, y_density: nil, xmp_metadata: nil)
|
1038
|
+
Utils.execute("EncodeJpeg", [image], format: format, quality: quality, progressive: progressive, optimize_size: optimize_size, chroma_downsampling: chroma_downsampling, density_unit: density_unit, x_density: x_density, y_density: y_density, xmp_metadata: xmp_metadata)
|
1039
|
+
end
|
1040
|
+
|
1041
|
+
def encode_jpeg_variable_quality(images: nil, quality: nil)
|
1042
|
+
Utils.execute("EncodeJpegVariableQuality", [images, quality])
|
1043
|
+
end
|
1044
|
+
|
1045
|
+
def encode_png(image: nil, compression: nil)
|
1046
|
+
Utils.execute("EncodePng", [image], compression: compression)
|
1047
|
+
end
|
1048
|
+
|
1049
|
+
def encode_proto(sizes: nil, values: nil, field_names: nil, message_type: nil, descriptor_source: nil)
|
1050
|
+
Utils.execute("EncodeProto", [sizes, values], field_names: field_names, message_type: message_type, descriptor_source: descriptor_source)
|
1051
|
+
end
|
1052
|
+
|
1053
|
+
def encode_wav(audio: nil, sample_rate: nil)
|
1054
|
+
Utils.execute("EncodeWav", [audio, sample_rate])
|
1055
|
+
end
|
1056
|
+
|
1057
|
+
def enqueue_tpu_embedding_integer_batch(batch: nil, mode_override: nil, device_ordinal: nil)
|
1058
|
+
Utils.execute("EnqueueTPUEmbeddingIntegerBatch", [batch, mode_override], device_ordinal: device_ordinal)
|
1059
|
+
end
|
1060
|
+
|
1061
|
+
def enqueue_tpu_embedding_sparse_batch(sample_indices: nil, embedding_indices: nil, aggregation_weights: nil, mode_override: nil, device_ordinal: nil, combiners: nil)
|
1062
|
+
Utils.execute("EnqueueTPUEmbeddingSparseBatch", [sample_indices, embedding_indices, aggregation_weights, mode_override], device_ordinal: device_ordinal, combiners: combiners)
|
1063
|
+
end
|
1064
|
+
|
1065
|
+
def enqueue_tpu_embedding_sparse_tensor_batch(sample_indices: nil, embedding_indices: nil, aggregation_weights: nil, mode_override: nil, device_ordinal: nil, combiners: nil, table_ids: nil, max_sequence_lengths: nil)
|
1066
|
+
Utils.execute("EnqueueTPUEmbeddingSparseTensorBatch", [sample_indices, embedding_indices, aggregation_weights, mode_override], device_ordinal: device_ordinal, combiners: combiners, table_ids: table_ids, max_sequence_lengths: max_sequence_lengths)
|
1067
|
+
end
|
1068
|
+
|
1069
|
+
def ensure_shape(input: nil, shape: nil)
|
1070
|
+
Utils.execute("EnsureShape", [input], shape: shape)
|
1071
|
+
end
|
1072
|
+
|
1073
|
+
def enter(data: nil, frame_name: nil, is_constant: nil, parallel_iterations: nil)
|
1074
|
+
Utils.execute("Enter", [data], frame_name: frame_name, is_constant: is_constant, parallel_iterations: parallel_iterations)
|
1075
|
+
end
|
1076
|
+
|
1077
|
+
def equal(x: nil, y: nil)
|
1078
|
+
Utils.execute("Equal", [x, y])
|
1079
|
+
end
|
1080
|
+
|
1081
|
+
def erf(x: nil)
|
1082
|
+
Utils.execute("Erf", [x])
|
1083
|
+
end
|
1084
|
+
|
1085
|
+
def erfc(x: nil)
|
1086
|
+
Utils.execute("Erfc", [x])
|
1087
|
+
end
|
1088
|
+
|
1089
|
+
def euclidean_norm(input: nil, reduction_indices: nil, keep_dims: nil)
|
1090
|
+
Utils.execute("EuclideanNorm", [input, reduction_indices], keep_dims: keep_dims)
|
1091
|
+
end
|
1092
|
+
|
1093
|
+
def exit(data: nil)
|
1094
|
+
Utils.execute("Exit", [data])
|
1095
|
+
end
|
1096
|
+
|
1097
|
+
def exp(x: nil)
|
1098
|
+
Utils.execute("Exp", [x])
|
1099
|
+
end
|
1100
|
+
|
1101
|
+
def expand_dims(input: nil, dim: nil)
|
1102
|
+
Utils.execute("ExpandDims", [input, dim])
|
1103
|
+
end
|
1104
|
+
|
1105
|
+
def experimental_assert_next_dataset(input_dataset: nil, transformations: nil, output_types: nil, output_shapes: nil)
|
1106
|
+
Utils.execute("ExperimentalAssertNextDataset", [input_dataset, transformations], output_types: output_types, output_shapes: output_shapes)
|
1107
|
+
end
|
1108
|
+
|
1109
|
+
def experimental_auto_shard_dataset(input_dataset: nil, num_workers: nil, index: nil, output_types: nil, output_shapes: nil)
|
1110
|
+
Utils.execute("ExperimentalAutoShardDataset", [input_dataset, num_workers, index], output_types: output_types, output_shapes: output_shapes)
|
1111
|
+
end
|
1112
|
+
|
1113
|
+
def experimental_bytes_produced_stats_dataset(input_dataset: nil, tag: nil, output_types: nil, output_shapes: nil)
|
1114
|
+
Utils.execute("ExperimentalBytesProducedStatsDataset", [input_dataset, tag], output_types: output_types, output_shapes: output_shapes)
|
1115
|
+
end
|
1116
|
+
|
1117
|
+
def experimental_csv_dataset(filenames: nil, compression_type: nil, buffer_size: nil, header: nil, field_delim: nil, use_quote_delim: nil, na_value: nil, select_cols: nil, record_defaults: nil, output_types: nil, output_shapes: nil)
|
1118
|
+
Utils.execute("ExperimentalCSVDataset", [filenames, compression_type, buffer_size, header, field_delim, use_quote_delim, na_value, select_cols, record_defaults], output_types: output_types, output_shapes: output_shapes)
|
1119
|
+
end
|
1120
|
+
|
1121
|
+
def experimental_choose_fastest_dataset(input_datasets: nil, num_experiments: nil, output_types: nil, output_shapes: nil)
|
1122
|
+
Utils.execute("ExperimentalChooseFastestDataset", [input_datasets], num_experiments: num_experiments, output_types: output_types, output_shapes: output_shapes)
|
1123
|
+
end
|
1124
|
+
|
1125
|
+
def experimental_dataset_cardinality(input_dataset: nil)
|
1126
|
+
Utils.execute("ExperimentalDatasetCardinality", [input_dataset])
|
1127
|
+
end
|
1128
|
+
|
1129
|
+
def experimental_dataset_to_tf_record(input_dataset: nil, filename: nil, compression_type: nil)
|
1130
|
+
Utils.execute("ExperimentalDatasetToTFRecord", [input_dataset, filename, compression_type])
|
1131
|
+
end
|
1132
|
+
|
1133
|
+
def experimental_dense_to_sparse_batch_dataset(input_dataset: nil, batch_size: nil, row_shape: nil, output_types: nil, output_shapes: nil)
|
1134
|
+
Utils.execute("ExperimentalDenseToSparseBatchDataset", [input_dataset, batch_size, row_shape], output_types: output_types, output_shapes: output_shapes)
|
1135
|
+
end
|
1136
|
+
|
1137
|
+
def experimental_directed_interleave_dataset(selector_input_dataset: nil, data_input_datasets: nil, output_types: nil, output_shapes: nil)
|
1138
|
+
Utils.execute("ExperimentalDirectedInterleaveDataset", [selector_input_dataset, data_input_datasets], output_types: output_types, output_shapes: output_shapes)
|
1139
|
+
end
|
1140
|
+
|
1141
|
+
def experimental_group_by_reducer_dataset(input_dataset: nil, key_func_other_arguments: nil, init_func_other_arguments: nil, reduce_func_other_arguments: nil, finalize_func_other_arguments: nil, key_func: nil, init_func: nil, reduce_func: nil, finalize_func: nil, output_types: nil, output_shapes: nil)
|
1142
|
+
Utils.execute("ExperimentalGroupByReducerDataset", [input_dataset, key_func_other_arguments, init_func_other_arguments, reduce_func_other_arguments, finalize_func_other_arguments], key_func: key_func, init_func: init_func, reduce_func: reduce_func, finalize_func: finalize_func, output_types: output_types, output_shapes: output_shapes)
|
1143
|
+
end
|
1144
|
+
|
1145
|
+
def experimental_group_by_window_dataset(input_dataset: nil, key_func_other_arguments: nil, reduce_func_other_arguments: nil, window_size_func_other_arguments: nil, key_func: nil, reduce_func: nil, window_size_func: nil, output_types: nil, output_shapes: nil)
|
1146
|
+
Utils.execute("ExperimentalGroupByWindowDataset", [input_dataset, key_func_other_arguments, reduce_func_other_arguments, window_size_func_other_arguments], key_func: key_func, reduce_func: reduce_func, window_size_func: window_size_func, output_types: output_types, output_shapes: output_shapes)
|
1147
|
+
end
|
1148
|
+
|
1149
|
+
def experimental_identity_indexed_dataset(size: nil)
|
1150
|
+
Utils.execute("ExperimentalIdentityIndexedDataset", [size])
|
1151
|
+
end
|
1152
|
+
|
1153
|
+
def experimental_ignore_errors_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
1154
|
+
Utils.execute("ExperimentalIgnoreErrorsDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
1155
|
+
end
|
1156
|
+
|
1157
|
+
def experimental_indexed_dataset_get(materialized: nil, index: nil, output_types: nil, output_shapes: nil)
|
1158
|
+
Utils.execute("ExperimentalIndexedDatasetGet", [materialized, index], output_types: output_types, output_shapes: output_shapes)
|
1159
|
+
end
|
1160
|
+
|
1161
|
+
def experimental_indexed_dataset_materialize(dataset: nil, materialized: nil)
|
1162
|
+
Utils.execute("ExperimentalIndexedDatasetMaterialize", [dataset, materialized])
|
1163
|
+
end
|
1164
|
+
|
1165
|
+
def experimental_iterator_get_device(resource: nil)
|
1166
|
+
Utils.execute("ExperimentalIteratorGetDevice", [resource])
|
1167
|
+
end
|
1168
|
+
|
1169
|
+
def experimental_lmdb_dataset(filenames: nil, output_types: nil, output_shapes: nil)
|
1170
|
+
Utils.execute("ExperimentalLMDBDataset", [filenames], output_types: output_types, output_shapes: output_shapes)
|
1171
|
+
end
|
1172
|
+
|
1173
|
+
def experimental_latency_stats_dataset(input_dataset: nil, tag: nil, output_types: nil, output_shapes: nil)
|
1174
|
+
Utils.execute("ExperimentalLatencyStatsDataset", [input_dataset, tag], output_types: output_types, output_shapes: output_shapes)
|
1175
|
+
end
|
1176
|
+
|
1177
|
+
def experimental_map_and_batch_dataset(input_dataset: nil, other_arguments: nil, batch_size: nil, num_parallel_calls: nil, drop_remainder: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
|
1178
|
+
Utils.execute("ExperimentalMapAndBatchDataset", [input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
|
1179
|
+
end
|
1180
|
+
|
1181
|
+
def experimental_map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, preserve_cardinality: nil)
|
1182
|
+
Utils.execute("ExperimentalMapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, preserve_cardinality: preserve_cardinality)
|
1183
|
+
end
|
1184
|
+
|
1185
|
+
def experimental_matching_files_dataset(patterns: nil)
|
1186
|
+
Utils.execute("ExperimentalMatchingFilesDataset", [patterns])
|
1187
|
+
end
|
1188
|
+
|
1189
|
+
def experimental_materialized_index_dataset_handle(container: nil, shared_name: nil, output_types: nil, output_shapes: nil)
|
1190
|
+
Utils.execute("ExperimentalMaterializedIndexDatasetHandle", [], container: container, shared_name: shared_name, output_types: output_types, output_shapes: output_shapes)
|
1191
|
+
end
|
1192
|
+
|
1193
|
+
def experimental_max_intra_op_parallelism_dataset(input_dataset: nil, max_intra_op_parallelism: nil, output_types: nil, output_shapes: nil)
|
1194
|
+
Utils.execute("ExperimentalMaxIntraOpParallelismDataset", [input_dataset, max_intra_op_parallelism], output_types: output_types, output_shapes: output_shapes)
|
1195
|
+
end
|
1196
|
+
|
1197
|
+
def experimental_non_serializable_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
1198
|
+
Utils.execute("ExperimentalNonSerializableDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
1199
|
+
end
|
1200
|
+
|
1201
|
+
def experimental_numa_map_and_batch_dataset(input_dataset: nil, other_arguments: nil, batch_size: nil, num_parallel_calls: nil, drop_remainder: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
|
1202
|
+
Utils.execute("ExperimentalNumaMapAndBatchDataset", [input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
|
1203
|
+
end
|
1204
|
+
|
1205
|
+
def experimental_parallel_interleave_dataset(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, sloppy: nil, buffer_output_elements: nil, prefetch_input_elements: nil, f: nil, output_types: nil, output_shapes: nil)
|
1206
|
+
Utils.execute("ExperimentalParallelInterleaveDataset", [input_dataset, other_arguments, cycle_length, block_length, sloppy, buffer_output_elements, prefetch_input_elements], f: f, output_types: output_types, output_shapes: output_shapes)
|
1207
|
+
end
|
1208
|
+
|
1209
|
+
def experimental_parse_example_dataset(input_dataset: nil, num_parallel_calls: nil, dense_defaults: nil, sparse_keys: nil, dense_keys: nil, sparse_types: nil, dense_shapes: nil, output_types: nil, output_shapes: nil, sloppy: nil)
|
1210
|
+
Utils.execute("ExperimentalParseExampleDataset", [input_dataset, num_parallel_calls, dense_defaults], sparse_keys: sparse_keys, dense_keys: dense_keys, sparse_types: sparse_types, dense_shapes: dense_shapes, output_types: output_types, output_shapes: output_shapes, sloppy: sloppy)
|
1211
|
+
end
|
1212
|
+
|
1213
|
+
def experimental_private_thread_pool_dataset(input_dataset: nil, num_threads: nil, output_types: nil, output_shapes: nil)
|
1214
|
+
Utils.execute("ExperimentalPrivateThreadPoolDataset", [input_dataset, num_threads], output_types: output_types, output_shapes: output_shapes)
|
1215
|
+
end
|
1216
|
+
|
1217
|
+
def experimental_random_dataset(seed: nil, seed2: nil, output_types: nil, output_shapes: nil)
|
1218
|
+
Utils.execute("ExperimentalRandomDataset", [seed, seed2], output_types: output_types, output_shapes: output_shapes)
|
1219
|
+
end
|
1220
|
+
|
1221
|
+
def experimental_rebatch_dataset(input_dataset: nil, num_workers: nil, output_types: nil, output_shapes: nil)
|
1222
|
+
Utils.execute("ExperimentalRebatchDataset", [input_dataset, num_workers], output_types: output_types, output_shapes: output_shapes)
|
1223
|
+
end
|
1224
|
+
|
1225
|
+
def experimental_scan_dataset(input_dataset: nil, initial_state: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
|
1226
|
+
Utils.execute("ExperimentalScanDataset", [input_dataset, initial_state, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
|
1227
|
+
end
|
1228
|
+
|
1229
|
+
def experimental_set_stats_aggregator_dataset(input_dataset: nil, stats_aggregator: nil, tag: nil, counter_prefix: nil, output_types: nil, output_shapes: nil)
|
1230
|
+
Utils.execute("ExperimentalSetStatsAggregatorDataset", [input_dataset, stats_aggregator, tag, counter_prefix], output_types: output_types, output_shapes: output_shapes)
|
1231
|
+
end
|
1232
|
+
|
1233
|
+
def experimental_sleep_dataset(input_dataset: nil, sleep_microseconds: nil, output_types: nil, output_shapes: nil)
|
1234
|
+
Utils.execute("ExperimentalSleepDataset", [input_dataset, sleep_microseconds], output_types: output_types, output_shapes: output_shapes)
|
1235
|
+
end
|
1236
|
+
|
1237
|
+
def experimental_sliding_window_dataset(input_dataset: nil, window_size: nil, window_shift: nil, window_stride: nil, output_types: nil, output_shapes: nil)
|
1238
|
+
Utils.execute("ExperimentalSlidingWindowDataset", [input_dataset, window_size, window_shift, window_stride], output_types: output_types, output_shapes: output_shapes)
|
1239
|
+
end
|
1240
|
+
|
1241
|
+
def experimental_sql_dataset(driver_name: nil, data_source_name: nil, query: nil, output_types: nil, output_shapes: nil)
|
1242
|
+
Utils.execute("ExperimentalSqlDataset", [driver_name, data_source_name, query], output_types: output_types, output_shapes: output_shapes)
|
1243
|
+
end
|
1244
|
+
|
1245
|
+
def experimental_stats_aggregator_handle(container: nil, shared_name: nil)
|
1246
|
+
Utils.execute("ExperimentalStatsAggregatorHandle", [], container: container, shared_name: shared_name)
|
1247
|
+
end
|
1248
|
+
|
1249
|
+
def experimental_stats_aggregator_summary(iterator: nil)
|
1250
|
+
Utils.execute("ExperimentalStatsAggregatorSummary", [iterator])
|
1251
|
+
end
|
1252
|
+
|
1253
|
+
def experimental_take_while_dataset(input_dataset: nil, other_arguments: nil, predicate: nil, output_types: nil, output_shapes: nil)
|
1254
|
+
Utils.execute("ExperimentalTakeWhileDataset", [input_dataset, other_arguments], predicate: predicate, output_types: output_types, output_shapes: output_shapes)
|
1255
|
+
end
|
1256
|
+
|
1257
|
+
def experimental_thread_pool_dataset(input_dataset: nil, thread_pool: nil, output_types: nil, output_shapes: nil)
|
1258
|
+
Utils.execute("ExperimentalThreadPoolDataset", [input_dataset, thread_pool], output_types: output_types, output_shapes: output_shapes)
|
1259
|
+
end
|
1260
|
+
|
1261
|
+
def experimental_thread_pool_handle(num_threads: nil, max_intra_op_parallelism: nil, display_name: nil, container: nil, shared_name: nil)
|
1262
|
+
Utils.execute("ExperimentalThreadPoolHandle", [], num_threads: num_threads, max_intra_op_parallelism: max_intra_op_parallelism, display_name: display_name, container: container, shared_name: shared_name)
|
1263
|
+
end
|
1264
|
+
|
1265
|
+
def experimental_unbatch_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
1266
|
+
Utils.execute("ExperimentalUnbatchDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
1267
|
+
end
|
1268
|
+
|
1269
|
+
def experimental_unique_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
1270
|
+
Utils.execute("ExperimentalUniqueDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
1271
|
+
end
|
1272
|
+
|
1273
|
+
def expm1(x: nil)
|
1274
|
+
Utils.execute("Expm1", [x])
|
1275
|
+
end
|
1276
|
+
|
1277
|
+
def extract_glimpse(input: nil, size: nil, offsets: nil, centered: nil, normalized: nil, uniform_noise: nil, noise: nil)
|
1278
|
+
Utils.execute("ExtractGlimpse", [input, size, offsets], centered: centered, normalized: normalized, uniform_noise: uniform_noise, noise: noise)
|
1279
|
+
end
|
1280
|
+
|
1281
|
+
def extract_image_patches(images: nil, ksizes: nil, strides: nil, rates: nil, padding: nil)
|
1282
|
+
Utils.execute("ExtractImagePatches", [images], ksizes: ksizes, strides: strides, rates: rates, padding: padding)
|
1283
|
+
end
|
1284
|
+
|
1285
|
+
def extract_jpeg_shape(contents: nil, output_type: nil)
|
1286
|
+
Utils.execute("ExtractJpegShape", [contents], output_type: output_type)
|
1287
|
+
end
|
1288
|
+
|
1289
|
+
def extract_volume_patches(input: nil, ksizes: nil, strides: nil, padding: nil)
|
1290
|
+
Utils.execute("ExtractVolumePatches", [input], ksizes: ksizes, strides: strides, padding: padding)
|
1291
|
+
end
|
1292
|
+
|
1293
|
+
def fft(input: nil)
|
1294
|
+
Utils.execute("FFT", [input])
|
1295
|
+
end
|
1296
|
+
|
1297
|
+
def fft2d(input: nil)
|
1298
|
+
Utils.execute("FFT2D", [input])
|
1299
|
+
end
|
1300
|
+
|
1301
|
+
def fft3d(input: nil)
|
1302
|
+
Utils.execute("FFT3D", [input])
|
1303
|
+
end
|
1304
|
+
|
1305
|
+
def fifo_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
1306
|
+
Utils.execute("FIFOQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
1307
|
+
end
|
1308
|
+
|
1309
|
+
def fifo_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
1310
|
+
Utils.execute("FIFOQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
1311
|
+
end
|
1312
|
+
|
1313
|
+
def fact
|
1314
|
+
Utils.execute("Fact", [])
|
1315
|
+
end
|
1316
|
+
|
1317
|
+
def fake_param(dtype: nil, shape: nil)
|
1318
|
+
Utils.execute("FakeParam", [], dtype: dtype, shape: shape)
|
1319
|
+
end
|
1320
|
+
|
1321
|
+
def fake_quant_with_min_max_args(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
1322
|
+
Utils.execute("FakeQuantWithMinMaxArgs", [inputs], min: min, max: max, num_bits: num_bits, narrow_range: narrow_range)
|
1323
|
+
end
|
1324
|
+
|
1325
|
+
def fake_quant_with_min_max_args_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
1326
|
+
Utils.execute("FakeQuantWithMinMaxArgsGradient", [gradients, inputs], min: min, max: max, num_bits: num_bits, narrow_range: narrow_range)
|
1327
|
+
end
|
1328
|
+
|
1329
|
+
def fake_quant_with_min_max_vars(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
1330
|
+
Utils.execute("FakeQuantWithMinMaxVars", [inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
1331
|
+
end
|
1332
|
+
|
1333
|
+
def fake_quant_with_min_max_vars_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
1334
|
+
Utils.execute("FakeQuantWithMinMaxVarsGradient", [gradients, inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
1335
|
+
end
|
1336
|
+
|
1337
|
+
def fake_quant_with_min_max_vars_per_channel(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
1338
|
+
Utils.execute("FakeQuantWithMinMaxVarsPerChannel", [inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
1339
|
+
end
|
1340
|
+
|
1341
|
+
def fake_quant_with_min_max_vars_per_channel_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
|
1342
|
+
Utils.execute("FakeQuantWithMinMaxVarsPerChannelGradient", [gradients, inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
|
1343
|
+
end
|
1344
|
+
|
1345
|
+
def fake_queue(resource: nil)
|
1346
|
+
Utils.execute("FakeQueue", [resource])
|
1347
|
+
end
|
1348
|
+
|
1349
|
+
def fill(dims: nil, value: nil, index_type: nil)
|
1350
|
+
Utils.execute("Fill", [dims, value], index_type: index_type)
|
1351
|
+
end
|
1352
|
+
|
1353
|
+
def filter_by_last_component_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
|
1354
|
+
Utils.execute("FilterByLastComponentDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
|
1355
|
+
end
|
1356
|
+
|
1357
|
+
def filter_dataset(input_dataset: nil, other_arguments: nil, predicate: nil, output_types: nil, output_shapes: nil)
|
1358
|
+
Utils.execute("FilterDataset", [input_dataset, other_arguments], predicate: predicate, output_types: output_types, output_shapes: output_shapes)
|
1359
|
+
end
|
1360
|
+
|
1361
|
+
def fingerprint(data: nil, method: nil)
|
1362
|
+
Utils.execute("Fingerprint", [data, method])
|
1363
|
+
end
|
1364
|
+
|
1365
|
+
def fixed_length_record_dataset(filenames: nil, header_bytes: nil, record_bytes: nil, footer_bytes: nil, buffer_size: nil)
|
1366
|
+
Utils.execute("FixedLengthRecordDataset", [filenames, header_bytes, record_bytes, footer_bytes, buffer_size])
|
1367
|
+
end
|
1368
|
+
|
1369
|
+
def fixed_length_record_dataset_v2(filenames: nil, header_bytes: nil, record_bytes: nil, footer_bytes: nil, buffer_size: nil, compression_type: nil)
|
1370
|
+
Utils.execute("FixedLengthRecordDatasetV2", [filenames, header_bytes, record_bytes, footer_bytes, buffer_size, compression_type])
|
1371
|
+
end
|
1372
|
+
|
1373
|
+
def fixed_length_record_reader(header_bytes: nil, record_bytes: nil, footer_bytes: nil, hop_bytes: nil, container: nil, shared_name: nil)
|
1374
|
+
Utils.execute("FixedLengthRecordReader", [], header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name)
|
1375
|
+
end
|
1376
|
+
|
1377
|
+
def fixed_length_record_reader_v2(header_bytes: nil, record_bytes: nil, footer_bytes: nil, hop_bytes: nil, container: nil, shared_name: nil, encoding: nil)
|
1378
|
+
Utils.execute("FixedLengthRecordReaderV2", [], header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name, encoding: encoding)
|
1379
|
+
end
|
1380
|
+
|
1381
|
+
def fixed_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, vocab_file: nil, distortion: nil, num_reserved_ids: nil, num_shards: nil, shard: nil, unigrams: nil, seed: nil, seed2: nil)
|
1382
|
+
Utils.execute("FixedUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, vocab_file: vocab_file, distortion: distortion, num_reserved_ids: num_reserved_ids, num_shards: num_shards, shard: shard, unigrams: unigrams, seed: seed, seed2: seed2)
|
1383
|
+
end
|
1384
|
+
|
1385
|
+
def flat_map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil)
|
1386
|
+
Utils.execute("FlatMapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes)
|
1387
|
+
end
|
1388
|
+
|
1389
|
+
def floor(x: nil)
|
1390
|
+
Utils.execute("Floor", [x])
|
1391
|
+
end
|
1392
|
+
|
1393
|
+
def floor_div(x: nil, y: nil)
|
1394
|
+
Utils.execute("FloorDiv", [x, y])
|
1395
|
+
end
|
1396
|
+
|
1397
|
+
def floor_mod(x: nil, y: nil)
|
1398
|
+
Utils.execute("FloorMod", [x, y])
|
1399
|
+
end
|
1400
|
+
|
1401
|
+
def flush_summary_writer(writer: nil)
|
1402
|
+
Utils.execute("FlushSummaryWriter", [writer])
|
1403
|
+
end
|
1404
|
+
|
1405
|
+
def for(start: nil, limit: nil, delta: nil, input: nil, body: nil)
|
1406
|
+
Utils.execute("For", [start, limit, delta, input], body: body)
|
1407
|
+
end
|
1408
|
+
|
1409
|
+
def fractional_avg_pool(value: nil, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil)
|
1410
|
+
Utils.execute("FractionalAvgPool", [value], pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2)
|
1411
|
+
end
|
1412
|
+
|
1413
|
+
def fractional_avg_pool_grad(orig_input_tensor_shape: nil, out_backprop: nil, row_pooling_sequence: nil, col_pooling_sequence: nil, overlapping: nil)
|
1414
|
+
Utils.execute("FractionalAvgPoolGrad", [orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence], overlapping: overlapping)
|
1415
|
+
end
|
1416
|
+
|
1417
|
+
def fractional_max_pool(value: nil, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil)
|
1418
|
+
Utils.execute("FractionalMaxPool", [value], pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2)
|
1419
|
+
end
|
1420
|
+
|
1421
|
+
def fractional_max_pool_grad(orig_input: nil, orig_output: nil, out_backprop: nil, row_pooling_sequence: nil, col_pooling_sequence: nil, overlapping: nil)
|
1422
|
+
Utils.execute("FractionalMaxPoolGrad", [orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence], overlapping: overlapping)
|
1423
|
+
end
|
1424
|
+
|
1425
|
+
def fused_batch_norm(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
|
1426
|
+
Utils.execute("FusedBatchNorm", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
1427
|
+
end
|
1428
|
+
|
1429
|
+
def fused_batch_norm_grad(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, epsilon: nil, data_format: nil, is_training: nil)
|
1430
|
+
Utils.execute("FusedBatchNormGrad", [y_backprop, x, scale, reserve_space_1, reserve_space_2], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
1431
|
+
end
|
1432
|
+
|
1433
|
+
def fused_batch_norm_grad_v2(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, epsilon: nil, data_format: nil, is_training: nil)
|
1434
|
+
Utils.execute("FusedBatchNormGradV2", [y_backprop, x, scale, reserve_space_1, reserve_space_2], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
1435
|
+
end
|
1436
|
+
|
1437
|
+
def fused_batch_norm_grad_v3(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, reserve_space_3: nil, epsilon: nil, data_format: nil, is_training: nil)
|
1438
|
+
Utils.execute("FusedBatchNormGradV3", [y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
1439
|
+
end
|
1440
|
+
|
1441
|
+
def fused_batch_norm_v2(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
|
1442
|
+
Utils.execute("FusedBatchNormV2", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
1443
|
+
end
|
1444
|
+
|
1445
|
+
def fused_batch_norm_v3(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
|
1446
|
+
Utils.execute("FusedBatchNormV3", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
|
1447
|
+
end
|
1448
|
+
|
1449
|
+
def fused_pad_conv2d(input: nil, paddings: nil, filter: nil, mode: nil, strides: nil, padding: nil)
|
1450
|
+
Utils.execute("FusedPadConv2D", [input, paddings, filter], mode: mode, strides: strides, padding: padding)
|
1451
|
+
end
|
1452
|
+
|
1453
|
+
def fused_resize_and_pad_conv2d(input: nil, size: nil, paddings: nil, filter: nil, resize_align_corners: nil, mode: nil, strides: nil, padding: nil)
|
1454
|
+
Utils.execute("FusedResizeAndPadConv2D", [input, size, paddings, filter], resize_align_corners: resize_align_corners, mode: mode, strides: strides, padding: padding)
|
1455
|
+
end
|
1456
|
+
|
1457
|
+
def gather(params: nil, indices: nil, validate_indices: nil)
|
1458
|
+
Utils.execute("Gather", [params, indices], validate_indices: validate_indices)
|
1459
|
+
end
|
1460
|
+
|
1461
|
+
def gather_nd(params: nil, indices: nil)
|
1462
|
+
Utils.execute("GatherNd", [params, indices])
|
1463
|
+
end
|
1464
|
+
|
1465
|
+
def gather_v2(params: nil, indices: nil, axis: nil, batch_dims: nil)
|
1466
|
+
Utils.execute("GatherV2", [params, indices, axis], batch_dims: batch_dims)
|
1467
|
+
end
|
1468
|
+
|
1469
|
+
def gcs_configure_block_cache(max_cache_size: nil, block_size: nil, max_staleness: nil)
|
1470
|
+
Utils.execute("GcsConfigureBlockCache", [max_cache_size, block_size, max_staleness])
|
1471
|
+
end
|
1472
|
+
|
1473
|
+
def gcs_configure_credentials(json: nil)
|
1474
|
+
Utils.execute("GcsConfigureCredentials", [json])
|
1475
|
+
end
|
1476
|
+
|
1477
|
+
def generate_big_query_reader_partitions(project_id: nil, dataset_id: nil, table_id: nil, columns: nil, timestamp_millis: nil, num_partitions: nil, test_end_point: nil)
|
1478
|
+
Utils.execute("GenerateBigQueryReaderPartitions", [], project_id: project_id, dataset_id: dataset_id, table_id: table_id, columns: columns, timestamp_millis: timestamp_millis, num_partitions: num_partitions, test_end_point: test_end_point)
|
1479
|
+
end
|
1480
|
+
|
1481
|
+
def generate_vocab_remapping(new_vocab_file: nil, old_vocab_file: nil, new_vocab_offset: nil, num_new_vocab: nil, old_vocab_size: nil)
|
1482
|
+
Utils.execute("GenerateVocabRemapping", [new_vocab_file, old_vocab_file], new_vocab_offset: new_vocab_offset, num_new_vocab: num_new_vocab, old_vocab_size: old_vocab_size)
|
1483
|
+
end
|
1484
|
+
|
1485
|
+
def generator_dataset(init_func_other_args: nil, next_func_other_args: nil, finalize_func_other_args: nil, init_func: nil, next_func: nil, finalize_func: nil, output_types: nil, output_shapes: nil)
|
1486
|
+
Utils.execute("GeneratorDataset", [init_func_other_args, next_func_other_args, finalize_func_other_args], init_func: init_func, next_func: next_func, finalize_func: finalize_func, output_types: output_types, output_shapes: output_shapes)
|
1487
|
+
end
|
1488
|
+
|
1489
|
+
def get_session_handle(value: nil)
|
1490
|
+
Utils.execute("GetSessionHandle", [value])
|
1491
|
+
end
|
1492
|
+
|
1493
|
+
def get_session_handle_v2(value: nil)
|
1494
|
+
Utils.execute("GetSessionHandleV2", [value])
|
1495
|
+
end
|
1496
|
+
|
1497
|
+
def get_session_tensor(handle: nil, dtype: nil)
|
1498
|
+
Utils.execute("GetSessionTensor", [handle], dtype: dtype)
|
1499
|
+
end
|
1500
|
+
|
1501
|
+
def greater(x: nil, y: nil)
|
1502
|
+
Utils.execute("Greater", [x, y])
|
1503
|
+
end
|
1504
|
+
|
1505
|
+
def greater_equal(x: nil, y: nil)
|
1506
|
+
Utils.execute("GreaterEqual", [x, y])
|
1507
|
+
end
|
1508
|
+
|
1509
|
+
def guarantee_const(input: nil)
|
1510
|
+
Utils.execute("GuaranteeConst", [input])
|
1511
|
+
end
|
1512
|
+
|
1513
|
+
def hsv_to_rgb(images: nil)
|
1514
|
+
Utils.execute("HSVToRGB", [images])
|
1515
|
+
end
|
1516
|
+
|
1517
|
+
def hash_table(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
1518
|
+
Utils.execute("HashTable", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
1519
|
+
end
|
1520
|
+
|
1521
|
+
def hash_table_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
1522
|
+
Utils.execute("HashTableV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
1523
|
+
end
|
1524
|
+
|
1525
|
+
def histogram_fixed_width(values: nil, value_range: nil, nbins: nil, dtype: nil)
|
1526
|
+
Utils.execute("HistogramFixedWidth", [values, value_range, nbins], dtype: dtype)
|
1527
|
+
end
|
1528
|
+
|
1529
|
+
def histogram_summary(tag: nil, values: nil)
|
1530
|
+
Utils.execute("HistogramSummary", [tag, values])
|
1531
|
+
end
|
1532
|
+
|
1533
|
+
def host_const(value: nil, dtype: nil)
|
1534
|
+
Utils.execute("HostConst", [], value: value, dtype: dtype)
|
1535
|
+
end
|
1536
|
+
|
1537
|
+
def ifft(input: nil)
|
1538
|
+
Utils.execute("IFFT", [input])
|
1539
|
+
end
|
1540
|
+
|
1541
|
+
def ifft2d(input: nil)
|
1542
|
+
Utils.execute("IFFT2D", [input])
|
1543
|
+
end
|
1544
|
+
|
1545
|
+
def ifft3d(input: nil)
|
1546
|
+
Utils.execute("IFFT3D", [input])
|
1547
|
+
end
|
1548
|
+
|
1549
|
+
def irfft(input: nil, fft_length: nil)
|
1550
|
+
Utils.execute("IRFFT", [input, fft_length])
|
1551
|
+
end
|
1552
|
+
|
1553
|
+
def irfft2d(input: nil, fft_length: nil)
|
1554
|
+
Utils.execute("IRFFT2D", [input, fft_length])
|
1555
|
+
end
|
1556
|
+
|
1557
|
+
def irfft3d(input: nil, fft_length: nil)
|
1558
|
+
Utils.execute("IRFFT3D", [input, fft_length])
|
1559
|
+
end
|
1560
|
+
|
1561
|
+
def identity(input: nil)
|
1562
|
+
Utils.execute("Identity", [input])
|
1563
|
+
end
|
1564
|
+
|
1565
|
+
def identity_n(input: nil)
|
1566
|
+
Utils.execute("IdentityN", [input])
|
1567
|
+
end
|
1568
|
+
|
1569
|
+
def identity_reader(container: nil, shared_name: nil)
|
1570
|
+
Utils.execute("IdentityReader", [], container: container, shared_name: shared_name)
|
1571
|
+
end
|
1572
|
+
|
1573
|
+
def identity_reader_v2(container: nil, shared_name: nil)
|
1574
|
+
Utils.execute("IdentityReaderV2", [], container: container, shared_name: shared_name)
|
1575
|
+
end
|
1576
|
+
|
1577
|
+
def if(cond: nil, input: nil, then_branch: nil, else_branch: nil, output_shapes: nil)
|
1578
|
+
Utils.execute("If", [cond, input], then_branch: then_branch, else_branch: else_branch, output_shapes: output_shapes)
|
1579
|
+
end
|
1580
|
+
|
1581
|
+
def igamma(a: nil, x: nil)
|
1582
|
+
Utils.execute("Igamma", [a, x])
|
1583
|
+
end
|
1584
|
+
|
1585
|
+
def igamma_grad_a(a: nil, x: nil)
|
1586
|
+
Utils.execute("IgammaGradA", [a, x])
|
1587
|
+
end
|
1588
|
+
|
1589
|
+
def igammac(a: nil, x: nil)
|
1590
|
+
Utils.execute("Igammac", [a, x])
|
1591
|
+
end
|
1592
|
+
|
1593
|
+
def imag(input: nil)
|
1594
|
+
Utils.execute("Imag", [input])
|
1595
|
+
end
|
1596
|
+
|
1597
|
+
def image_summary(tag: nil, tensor: nil, max_images: nil, bad_color: nil)
|
1598
|
+
Utils.execute("ImageSummary", [tag, tensor], max_images: max_images, bad_color: bad_color)
|
1599
|
+
end
|
1600
|
+
|
1601
|
+
def immutable_const(dtype: nil, shape: nil, memory_region_name: nil)
|
1602
|
+
Utils.execute("ImmutableConst", [], dtype: dtype, shape: shape, memory_region_name: memory_region_name)
|
1603
|
+
end
|
1604
|
+
|
1605
|
+
def import_event(writer: nil, event: nil)
|
1606
|
+
Utils.execute("ImportEvent", [writer, event])
|
1607
|
+
end
|
1608
|
+
|
1609
|
+
def in_top_k(predictions: nil, targets: nil, k: nil)
|
1610
|
+
Utils.execute("InTopK", [predictions, targets], k: k)
|
1611
|
+
end
|
1612
|
+
|
1613
|
+
def in_top_kv2(predictions: nil, targets: nil, k: nil)
|
1614
|
+
Utils.execute("InTopKV2", [predictions, targets, k])
|
1615
|
+
end
|
1616
|
+
|
1617
|
+
def infeed_dequeue(dtype: nil, shape: nil)
|
1618
|
+
Utils.execute("InfeedDequeue", [], dtype: dtype, shape: shape)
|
1619
|
+
end
|
1620
|
+
|
1621
|
+
def infeed_dequeue_tuple(dtypes: nil, shapes: nil)
|
1622
|
+
Utils.execute("InfeedDequeueTuple", [], dtypes: dtypes, shapes: shapes)
|
1623
|
+
end
|
1624
|
+
|
1625
|
+
def infeed_enqueue(input: nil, dtype: nil, shape: nil, layout: nil, device_ordinal: nil)
|
1626
|
+
Utils.execute("InfeedEnqueue", [input], dtype: dtype, shape: shape, layout: layout, device_ordinal: device_ordinal)
|
1627
|
+
end
|
1628
|
+
|
1629
|
+
def infeed_enqueue_prelinearized_buffer(input: nil, device_ordinal: nil)
|
1630
|
+
Utils.execute("InfeedEnqueuePrelinearizedBuffer", [input], device_ordinal: device_ordinal)
|
1631
|
+
end
|
1632
|
+
|
1633
|
+
def infeed_enqueue_tuple(inputs: nil, dtypes: nil, shapes: nil, layouts: nil, device_ordinal: nil)
|
1634
|
+
Utils.execute("InfeedEnqueueTuple", [inputs], dtypes: dtypes, shapes: shapes, layouts: layouts, device_ordinal: device_ordinal)
|
1635
|
+
end
|
1636
|
+
|
1637
|
+
def initialize_table(table_handle: nil, keys: nil, values: nil)
|
1638
|
+
Utils.execute("InitializeTable", [table_handle, keys, values])
|
1639
|
+
end
|
1640
|
+
|
1641
|
+
def initialize_table_from_text_file(table_handle: nil, filename: nil, key_index: nil, value_index: nil, vocab_size: nil, delimiter: nil)
|
1642
|
+
Utils.execute("InitializeTableFromTextFile", [table_handle, filename], key_index: key_index, value_index: value_index, vocab_size: vocab_size, delimiter: delimiter)
|
1643
|
+
end
|
1644
|
+
|
1645
|
+
def initialize_table_from_text_file_v2(table_handle: nil, filename: nil, key_index: nil, value_index: nil, vocab_size: nil, delimiter: nil)
|
1646
|
+
Utils.execute("InitializeTableFromTextFileV2", [table_handle, filename], key_index: key_index, value_index: value_index, vocab_size: vocab_size, delimiter: delimiter)
|
1647
|
+
end
|
1648
|
+
|
1649
|
+
def initialize_table_v2(table_handle: nil, keys: nil, values: nil)
|
1650
|
+
Utils.execute("InitializeTableV2", [table_handle, keys, values])
|
1651
|
+
end
|
1652
|
+
|
1653
|
+
def inplace_add(x: nil, i: nil, v: nil)
|
1654
|
+
Utils.execute("InplaceAdd", [x, i, v])
|
1655
|
+
end
|
1656
|
+
|
1657
|
+
def inplace_sub(x: nil, i: nil, v: nil)
|
1658
|
+
Utils.execute("InplaceSub", [x, i, v])
|
1659
|
+
end
|
1660
|
+
|
1661
|
+
def inplace_update(x: nil, i: nil, v: nil)
|
1662
|
+
Utils.execute("InplaceUpdate", [x, i, v])
|
1663
|
+
end
|
1664
|
+
|
1665
|
+
def interleave_dataset(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, f: nil, output_types: nil, output_shapes: nil)
|
1666
|
+
Utils.execute("InterleaveDataset", [input_dataset, other_arguments, cycle_length, block_length], f: f, output_types: output_types, output_shapes: output_shapes)
|
1667
|
+
end
|
1668
|
+
|
1669
|
+
def inv(x: nil)
|
1670
|
+
Utils.execute("Inv", [x])
|
1671
|
+
end
|
1672
|
+
|
1673
|
+
def inv_grad(y: nil, dy: nil)
|
1674
|
+
Utils.execute("InvGrad", [y, dy])
|
1675
|
+
end
|
1676
|
+
|
1677
|
+
def invert(x: nil)
|
1678
|
+
Utils.execute("Invert", [x])
|
1679
|
+
end
|
1680
|
+
|
1681
|
+
def invert_permutation(x: nil)
|
1682
|
+
Utils.execute("InvertPermutation", [x])
|
1683
|
+
end
|
1684
|
+
|
1685
|
+
def is_boosted_trees_ensemble_initialized(tree_ensemble_handle: nil)
|
1686
|
+
Utils.execute("IsBoostedTreesEnsembleInitialized", [tree_ensemble_handle])
|
1687
|
+
end
|
1688
|
+
|
1689
|
+
def is_boosted_trees_quantile_stream_resource_initialized(quantile_stream_resource_handle: nil)
|
1690
|
+
Utils.execute("IsBoostedTreesQuantileStreamResourceInitialized", [quantile_stream_resource_handle])
|
1691
|
+
end
|
1692
|
+
|
1693
|
+
def is_finite(x: nil)
|
1694
|
+
Utils.execute("IsFinite", [x])
|
1695
|
+
end
|
1696
|
+
|
1697
|
+
def is_inf(x: nil)
|
1698
|
+
Utils.execute("IsInf", [x])
|
1699
|
+
end
|
1700
|
+
|
1701
|
+
def is_nan(x: nil)
|
1702
|
+
Utils.execute("IsNan", [x])
|
1703
|
+
end
|
1704
|
+
|
1705
|
+
def is_variable_initialized(ref: nil, dtype: nil)
|
1706
|
+
Utils.execute("IsVariableInitialized", [ref], dtype: dtype)
|
1707
|
+
end
|
1708
|
+
|
1709
|
+
def iterator(shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
|
1710
|
+
Utils.execute("Iterator", [], shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
|
1711
|
+
end
|
1712
|
+
|
1713
|
+
def iterator_from_string_handle(string_handle: nil, output_types: nil, output_shapes: nil)
|
1714
|
+
Utils.execute("IteratorFromStringHandle", [string_handle], output_types: output_types, output_shapes: output_shapes)
|
1715
|
+
end
|
1716
|
+
|
1717
|
+
def iterator_from_string_handle_v2(string_handle: nil, output_types: nil, output_shapes: nil)
|
1718
|
+
Utils.execute("IteratorFromStringHandleV2", [string_handle], output_types: output_types, output_shapes: output_shapes)
|
1719
|
+
end
|
1720
|
+
|
1721
|
+
def iterator_get_next(iterator: nil, output_types: nil, output_shapes: nil)
|
1722
|
+
Utils.execute("IteratorGetNext", [iterator], output_types: output_types, output_shapes: output_shapes)
|
1723
|
+
end
|
1724
|
+
|
1725
|
+
def iterator_get_next_as_optional(iterator: nil, output_types: nil, output_shapes: nil)
|
1726
|
+
Utils.execute("IteratorGetNextAsOptional", [iterator], output_types: output_types, output_shapes: output_shapes)
|
1727
|
+
end
|
1728
|
+
|
1729
|
+
def iterator_get_next_sync(iterator: nil, output_types: nil, output_shapes: nil)
|
1730
|
+
Utils.execute("IteratorGetNextSync", [iterator], output_types: output_types, output_shapes: output_shapes)
|
1731
|
+
end
|
1732
|
+
|
1733
|
+
def iterator_to_string_handle(resource_handle: nil)
|
1734
|
+
Utils.execute("IteratorToStringHandle", [resource_handle])
|
1735
|
+
end
|
1736
|
+
|
1737
|
+
def iterator_v2(shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
|
1738
|
+
Utils.execute("IteratorV2", [], shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
|
1739
|
+
end
|
1740
|
+
|
1741
|
+
def kmc2_chain_initialization(distances: nil, seed: nil)
|
1742
|
+
Utils.execute("KMC2ChainInitialization", [distances, seed])
|
1743
|
+
end
|
1744
|
+
|
1745
|
+
def kmeans_plus_plus_initialization(points: nil, num_to_sample: nil, seed: nil, num_retries_per_sample: nil)
|
1746
|
+
Utils.execute("KmeansPlusPlusInitialization", [points, num_to_sample, seed, num_retries_per_sample])
|
1747
|
+
end
|
1748
|
+
|
1749
|
+
def l2_loss(t: nil)
|
1750
|
+
Utils.execute("L2Loss", [t])
|
1751
|
+
end
|
1752
|
+
|
1753
|
+
def lmdb_reader(container: nil, shared_name: nil)
|
1754
|
+
Utils.execute("LMDBReader", [], container: container, shared_name: shared_name)
|
1755
|
+
end
|
1756
|
+
|
1757
|
+
def lrn(input: nil, depth_radius: nil, bias: nil, alpha: nil, beta: nil)
|
1758
|
+
Utils.execute("LRN", [input], depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta)
|
1759
|
+
end
|
1760
|
+
|
1761
|
+
def lrn_grad(input_grads: nil, input_image: nil, output_image: nil, depth_radius: nil, bias: nil, alpha: nil, beta: nil)
|
1762
|
+
Utils.execute("LRNGrad", [input_grads, input_image, output_image], depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta)
|
1763
|
+
end
|
1764
|
+
|
1765
|
+
def leaky_relu(features: nil, alpha: nil)
|
1766
|
+
Utils.execute("LeakyRelu", [features], alpha: alpha)
|
1767
|
+
end
|
1768
|
+
|
1769
|
+
def leaky_relu_grad(gradients: nil, features: nil, alpha: nil)
|
1770
|
+
Utils.execute("LeakyReluGrad", [gradients, features], alpha: alpha)
|
1771
|
+
end
|
1772
|
+
|
1773
|
+
def learned_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
1774
|
+
Utils.execute("LearnedUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
1775
|
+
end
|
1776
|
+
|
1777
|
+
def left_shift(x: nil, y: nil)
|
1778
|
+
Utils.execute("LeftShift", [x, y])
|
1779
|
+
end
|
1780
|
+
|
1781
|
+
def less(x: nil, y: nil)
|
1782
|
+
Utils.execute("Less", [x, y])
|
1783
|
+
end
|
1784
|
+
|
1785
|
+
def less_equal(x: nil, y: nil)
|
1786
|
+
Utils.execute("LessEqual", [x, y])
|
1787
|
+
end
|
1788
|
+
|
1789
|
+
def lgamma(x: nil)
|
1790
|
+
Utils.execute("Lgamma", [x])
|
1791
|
+
end
|
1792
|
+
|
1793
|
+
def lin_space(start: nil, stop: nil, num: nil)
|
1794
|
+
Utils.execute("LinSpace", [start, stop, num])
|
1795
|
+
end
|
1796
|
+
|
1797
|
+
def list_diff(x: nil, y: nil, out_idx: nil)
|
1798
|
+
Utils.execute("ListDiff", [x, y], out_idx: out_idx)
|
1799
|
+
end
|
1800
|
+
|
1801
|
+
def load_and_remap_matrix(ckpt_path: nil, old_tensor_name: nil, row_remapping: nil, col_remapping: nil, initializing_values: nil, num_rows: nil, num_cols: nil, max_rows_in_memory: nil)
|
1802
|
+
Utils.execute("LoadAndRemapMatrix", [ckpt_path, old_tensor_name, row_remapping, col_remapping, initializing_values], num_rows: num_rows, num_cols: num_cols, max_rows_in_memory: max_rows_in_memory)
|
1803
|
+
end
|
1804
|
+
|
1805
|
+
def load_tpu_embedding_adam_parameters(parameters: nil, momenta: nil, velocities: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1806
|
+
Utils.execute("LoadTPUEmbeddingADAMParameters", [parameters, momenta, velocities], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1807
|
+
end
|
1808
|
+
|
1809
|
+
def load_tpu_embedding_adam_parameters_grad_accum_debug(parameters: nil, momenta: nil, velocities: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1810
|
+
Utils.execute("LoadTPUEmbeddingADAMParametersGradAccumDebug", [parameters, momenta, velocities, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1811
|
+
end
|
1812
|
+
|
1813
|
+
def load_tpu_embedding_adadelta_parameters(parameters: nil, accumulators: nil, updates: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1814
|
+
Utils.execute("LoadTPUEmbeddingAdadeltaParameters", [parameters, accumulators, updates], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1815
|
+
end
|
1816
|
+
|
1817
|
+
def load_tpu_embedding_adadelta_parameters_grad_accum_debug(parameters: nil, accumulators: nil, updates: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1818
|
+
Utils.execute("LoadTPUEmbeddingAdadeltaParametersGradAccumDebug", [parameters, accumulators, updates, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1819
|
+
end
|
1820
|
+
|
1821
|
+
def load_tpu_embedding_adagrad_parameters(parameters: nil, accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1822
|
+
Utils.execute("LoadTPUEmbeddingAdagradParameters", [parameters, accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1823
|
+
end
|
1824
|
+
|
1825
|
+
def load_tpu_embedding_adagrad_parameters_grad_accum_debug(parameters: nil, accumulators: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1826
|
+
Utils.execute("LoadTPUEmbeddingAdagradParametersGradAccumDebug", [parameters, accumulators, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1827
|
+
end
|
1828
|
+
|
1829
|
+
def load_tpu_embedding_centered_rms_prop_parameters(parameters: nil, ms: nil, mom: nil, mg: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1830
|
+
Utils.execute("LoadTPUEmbeddingCenteredRMSPropParameters", [parameters, ms, mom, mg], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1831
|
+
end
|
1832
|
+
|
1833
|
+
def load_tpu_embedding_ftrl_parameters(parameters: nil, accumulators: nil, linears: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1834
|
+
Utils.execute("LoadTPUEmbeddingFTRLParameters", [parameters, accumulators, linears], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1835
|
+
end
|
1836
|
+
|
1837
|
+
def load_tpu_embedding_ftrl_parameters_grad_accum_debug(parameters: nil, accumulators: nil, linears: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1838
|
+
Utils.execute("LoadTPUEmbeddingFTRLParametersGradAccumDebug", [parameters, accumulators, linears, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1839
|
+
end
|
1840
|
+
|
1841
|
+
def load_tpu_embedding_mdl_adagrad_light_parameters(parameters: nil, accumulators: nil, weights: nil, benefits: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1842
|
+
Utils.execute("LoadTPUEmbeddingMDLAdagradLightParameters", [parameters, accumulators, weights, benefits], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1843
|
+
end
|
1844
|
+
|
1845
|
+
def load_tpu_embedding_momentum_parameters(parameters: nil, momenta: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1846
|
+
Utils.execute("LoadTPUEmbeddingMomentumParameters", [parameters, momenta], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1847
|
+
end
|
1848
|
+
|
1849
|
+
def load_tpu_embedding_momentum_parameters_grad_accum_debug(parameters: nil, momenta: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1850
|
+
Utils.execute("LoadTPUEmbeddingMomentumParametersGradAccumDebug", [parameters, momenta, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1851
|
+
end
|
1852
|
+
|
1853
|
+
def load_tpu_embedding_proximal_adagrad_parameters(parameters: nil, accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1854
|
+
Utils.execute("LoadTPUEmbeddingProximalAdagradParameters", [parameters, accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1855
|
+
end
|
1856
|
+
|
1857
|
+
def load_tpu_embedding_proximal_adagrad_parameters_grad_accum_debug(parameters: nil, accumulators: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1858
|
+
Utils.execute("LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug", [parameters, accumulators, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1859
|
+
end
|
1860
|
+
|
1861
|
+
def load_tpu_embedding_rms_prop_parameters(parameters: nil, ms: nil, mom: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1862
|
+
Utils.execute("LoadTPUEmbeddingRMSPropParameters", [parameters, ms, mom], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1863
|
+
end
|
1864
|
+
|
1865
|
+
def load_tpu_embedding_rms_prop_parameters_grad_accum_debug(parameters: nil, ms: nil, mom: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1866
|
+
Utils.execute("LoadTPUEmbeddingRMSPropParametersGradAccumDebug", [parameters, ms, mom, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1867
|
+
end
|
1868
|
+
|
1869
|
+
def load_tpu_embedding_stochastic_gradient_descent_parameters(parameters: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
1870
|
+
Utils.execute("LoadTPUEmbeddingStochasticGradientDescentParameters", [parameters], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
1871
|
+
end
|
1872
|
+
|
1873
|
+
def log(x: nil)
|
1874
|
+
Utils.execute("Log", [x])
|
1875
|
+
end
|
1876
|
+
|
1877
|
+
def log1p(x: nil)
|
1878
|
+
Utils.execute("Log1p", [x])
|
1879
|
+
end
|
1880
|
+
|
1881
|
+
def log_matrix_determinant(input: nil)
|
1882
|
+
Utils.execute("LogMatrixDeterminant", [input])
|
1883
|
+
end
|
1884
|
+
|
1885
|
+
def log_softmax(logits: nil)
|
1886
|
+
Utils.execute("LogSoftmax", [logits])
|
1887
|
+
end
|
1888
|
+
|
1889
|
+
def log_uniform_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
1890
|
+
Utils.execute("LogUniformCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
1891
|
+
end
|
1892
|
+
|
1893
|
+
def logical_and(x: nil, y: nil)
|
1894
|
+
Utils.execute("LogicalAnd", [x, y])
|
1895
|
+
end
|
1896
|
+
|
1897
|
+
def logical_not(x: nil)
|
1898
|
+
Utils.execute("LogicalNot", [x])
|
1899
|
+
end
|
1900
|
+
|
1901
|
+
def logical_or(x: nil, y: nil)
|
1902
|
+
Utils.execute("LogicalOr", [x, y])
|
1903
|
+
end
|
1904
|
+
|
1905
|
+
def lookup_table_export(table_handle: nil)
|
1906
|
+
Utils.execute("LookupTableExport", [table_handle])
|
1907
|
+
end
|
1908
|
+
|
1909
|
+
def lookup_table_export_v2(table_handle: nil)
|
1910
|
+
Utils.execute("LookupTableExportV2", [table_handle])
|
1911
|
+
end
|
1912
|
+
|
1913
|
+
def lookup_table_find(table_handle: nil, keys: nil, default_value: nil)
|
1914
|
+
Utils.execute("LookupTableFind", [table_handle, keys, default_value])
|
1915
|
+
end
|
1916
|
+
|
1917
|
+
def lookup_table_find_v2(table_handle: nil, keys: nil, default_value: nil)
|
1918
|
+
Utils.execute("LookupTableFindV2", [table_handle, keys, default_value])
|
1919
|
+
end
|
1920
|
+
|
1921
|
+
def lookup_table_import(table_handle: nil, keys: nil, values: nil)
|
1922
|
+
Utils.execute("LookupTableImport", [table_handle, keys, values])
|
1923
|
+
end
|
1924
|
+
|
1925
|
+
def lookup_table_import_v2(table_handle: nil, keys: nil, values: nil)
|
1926
|
+
Utils.execute("LookupTableImportV2", [table_handle, keys, values])
|
1927
|
+
end
|
1928
|
+
|
1929
|
+
def lookup_table_insert(table_handle: nil, keys: nil, values: nil)
|
1930
|
+
Utils.execute("LookupTableInsert", [table_handle, keys, values])
|
1931
|
+
end
|
1932
|
+
|
1933
|
+
def lookup_table_insert_v2(table_handle: nil, keys: nil, values: nil)
|
1934
|
+
Utils.execute("LookupTableInsertV2", [table_handle, keys, values])
|
1935
|
+
end
|
1936
|
+
|
1937
|
+
def lookup_table_remove_v2(table_handle: nil, keys: nil)
|
1938
|
+
Utils.execute("LookupTableRemoveV2", [table_handle, keys])
|
1939
|
+
end
|
1940
|
+
|
1941
|
+
def lookup_table_size(table_handle: nil)
|
1942
|
+
Utils.execute("LookupTableSize", [table_handle])
|
1943
|
+
end
|
1944
|
+
|
1945
|
+
def lookup_table_size_v2(table_handle: nil)
|
1946
|
+
Utils.execute("LookupTableSizeV2", [table_handle])
|
1947
|
+
end
|
1948
|
+
|
1949
|
+
def loop_cond(input: nil)
|
1950
|
+
Utils.execute("LoopCond", [input])
|
1951
|
+
end
|
1952
|
+
|
1953
|
+
def lower_bound(sorted_inputs: nil, values: nil, out_type: nil)
|
1954
|
+
Utils.execute("LowerBound", [sorted_inputs, values], out_type: out_type)
|
1955
|
+
end
|
1956
|
+
|
1957
|
+
def lu(input: nil, output_idx_type: nil)
|
1958
|
+
Utils.execute("Lu", [input], output_idx_type: output_idx_type)
|
1959
|
+
end
|
1960
|
+
|
1961
|
+
def make_iterator(dataset: nil, iterator: nil)
|
1962
|
+
Utils.execute("MakeIterator", [dataset, iterator])
|
1963
|
+
end
|
1964
|
+
|
1965
|
+
def map_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
1966
|
+
Utils.execute("MapClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
1967
|
+
end
|
1968
|
+
|
1969
|
+
def map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, preserve_cardinality: nil)
|
1970
|
+
Utils.execute("MapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, preserve_cardinality: preserve_cardinality)
|
1971
|
+
end
|
1972
|
+
|
1973
|
+
def map_defun(arguments: nil, captured_inputs: nil, output_types: nil, output_shapes: nil, f: nil, max_intra_op_parallelism: nil)
|
1974
|
+
Utils.execute("MapDefun", [arguments, captured_inputs], output_types: output_types, output_shapes: output_shapes, f: f, max_intra_op_parallelism: max_intra_op_parallelism)
|
1975
|
+
end
|
1976
|
+
|
1977
|
+
def map_incomplete_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
1978
|
+
Utils.execute("MapIncompleteSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
1979
|
+
end
|
1980
|
+
|
1981
|
+
def map_peek(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
1982
|
+
Utils.execute("MapPeek", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
1983
|
+
end
|
1984
|
+
|
1985
|
+
def map_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
1986
|
+
Utils.execute("MapSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
1987
|
+
end
|
1988
|
+
|
1989
|
+
def map_stage(key: nil, indices: nil, values: nil, capacity: nil, memory_limit: nil, dtypes: nil, fake_dtypes: nil, container: nil, shared_name: nil)
|
1990
|
+
Utils.execute("MapStage", [key, indices, values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, fake_dtypes: fake_dtypes, container: container, shared_name: shared_name)
|
1991
|
+
end
|
1992
|
+
|
1993
|
+
def map_unstage(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
1994
|
+
Utils.execute("MapUnstage", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
1995
|
+
end
|
1996
|
+
|
1997
|
+
def map_unstage_no_key(indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
1998
|
+
Utils.execute("MapUnstageNoKey", [indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
1999
|
+
end
|
2000
|
+
|
2001
|
+
def mat_mul(a: nil, b: nil, transpose_a: nil, transpose_b: nil)
|
2002
|
+
Utils.execute("MatMul", [a, b], transpose_a: transpose_a, transpose_b: transpose_b)
|
2003
|
+
end
|
2004
|
+
|
2005
|
+
def matching_files(pattern: nil)
|
2006
|
+
Utils.execute("MatchingFiles", [pattern])
|
2007
|
+
end
|
2008
|
+
|
2009
|
+
def matrix_band_part(input: nil, num_lower: nil, num_upper: nil)
|
2010
|
+
Utils.execute("MatrixBandPart", [input, num_lower, num_upper])
|
2011
|
+
end
|
2012
|
+
|
2013
|
+
def matrix_determinant(input: nil)
|
2014
|
+
Utils.execute("MatrixDeterminant", [input])
|
2015
|
+
end
|
2016
|
+
|
2017
|
+
def matrix_diag(diagonal: nil)
|
2018
|
+
Utils.execute("MatrixDiag", [diagonal])
|
2019
|
+
end
|
2020
|
+
|
2021
|
+
def matrix_diag_part(input: nil)
|
2022
|
+
Utils.execute("MatrixDiagPart", [input])
|
2023
|
+
end
|
2024
|
+
|
2025
|
+
def matrix_exponential(input: nil)
|
2026
|
+
Utils.execute("MatrixExponential", [input])
|
2027
|
+
end
|
2028
|
+
|
2029
|
+
def matrix_inverse(input: nil, adjoint: nil)
|
2030
|
+
Utils.execute("MatrixInverse", [input], adjoint: adjoint)
|
2031
|
+
end
|
2032
|
+
|
2033
|
+
def matrix_logarithm(input: nil)
|
2034
|
+
Utils.execute("MatrixLogarithm", [input])
|
2035
|
+
end
|
2036
|
+
|
2037
|
+
def matrix_set_diag(input: nil, diagonal: nil)
|
2038
|
+
Utils.execute("MatrixSetDiag", [input, diagonal])
|
2039
|
+
end
|
2040
|
+
|
2041
|
+
def matrix_solve(matrix: nil, rhs: nil, adjoint: nil)
|
2042
|
+
Utils.execute("MatrixSolve", [matrix, rhs], adjoint: adjoint)
|
2043
|
+
end
|
2044
|
+
|
2045
|
+
def matrix_solve_ls(matrix: nil, rhs: nil, l2_regularizer: nil, fast: nil)
|
2046
|
+
Utils.execute("MatrixSolveLs", [matrix, rhs, l2_regularizer], fast: fast)
|
2047
|
+
end
|
2048
|
+
|
2049
|
+
def matrix_square_root(input: nil)
|
2050
|
+
Utils.execute("MatrixSquareRoot", [input])
|
2051
|
+
end
|
2052
|
+
|
2053
|
+
def matrix_triangular_solve(matrix: nil, rhs: nil, lower: nil, adjoint: nil)
|
2054
|
+
Utils.execute("MatrixTriangularSolve", [matrix, rhs], lower: lower, adjoint: adjoint)
|
2055
|
+
end
|
2056
|
+
|
2057
|
+
def max(input: nil, reduction_indices: nil, keep_dims: nil)
|
2058
|
+
Utils.execute("Max", [input, reduction_indices], keep_dims: keep_dims)
|
2059
|
+
end
|
2060
|
+
|
2061
|
+
def max_pool(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2062
|
+
Utils.execute("MaxPool", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
2063
|
+
end
|
2064
|
+
|
2065
|
+
def max_pool3d(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2066
|
+
Utils.execute("MaxPool3D", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
2067
|
+
end
|
2068
|
+
|
2069
|
+
def max_pool3d_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2070
|
+
Utils.execute("MaxPool3DGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
2071
|
+
end
|
2072
|
+
|
2073
|
+
def max_pool3d_grad_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2074
|
+
Utils.execute("MaxPool3DGradGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
2075
|
+
end
|
2076
|
+
|
2077
|
+
def max_pool_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2078
|
+
Utils.execute("MaxPoolGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
2079
|
+
end
|
2080
|
+
|
2081
|
+
def max_pool_grad_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2082
|
+
Utils.execute("MaxPoolGradGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
|
2083
|
+
end
|
2084
|
+
|
2085
|
+
def max_pool_grad_grad_v2(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2086
|
+
Utils.execute("MaxPoolGradGradV2", [orig_input, orig_output, grad, ksize, strides], padding: padding, data_format: data_format)
|
2087
|
+
end
|
2088
|
+
|
2089
|
+
def max_pool_grad_grad_with_argmax(input: nil, grad: nil, argmax: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
|
2090
|
+
Utils.execute("MaxPoolGradGradWithArgmax", [input, grad, argmax], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
|
2091
|
+
end
|
2092
|
+
|
2093
|
+
def max_pool_grad_v2(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2094
|
+
Utils.execute("MaxPoolGradV2", [orig_input, orig_output, grad, ksize, strides], padding: padding, data_format: data_format)
|
2095
|
+
end
|
2096
|
+
|
2097
|
+
def max_pool_grad_with_argmax(input: nil, grad: nil, argmax: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
|
2098
|
+
Utils.execute("MaxPoolGradWithArgmax", [input, grad, argmax], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
|
2099
|
+
end
|
2100
|
+
|
2101
|
+
def max_pool_v2(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
|
2102
|
+
Utils.execute("MaxPoolV2", [input, ksize, strides], padding: padding, data_format: data_format)
|
2103
|
+
end
|
2104
|
+
|
2105
|
+
def max_pool_with_argmax(input: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
|
2106
|
+
Utils.execute("MaxPoolWithArgmax", [input], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
|
2107
|
+
end
|
2108
|
+
|
2109
|
+
def maximum(x: nil, y: nil)
|
2110
|
+
Utils.execute("Maximum", [x, y])
|
2111
|
+
end
|
2112
|
+
|
2113
|
+
def mean(input: nil, reduction_indices: nil, keep_dims: nil)
|
2114
|
+
Utils.execute("Mean", [input, reduction_indices], keep_dims: keep_dims)
|
2115
|
+
end
|
2116
|
+
|
2117
|
+
def merge(inputs: nil)
|
2118
|
+
Utils.execute("Merge", [inputs])
|
2119
|
+
end
|
2120
|
+
|
2121
|
+
def merge_summary(inputs: nil)
|
2122
|
+
Utils.execute("MergeSummary", [inputs])
|
2123
|
+
end
|
2124
|
+
|
2125
|
+
def merge_v2_checkpoints(checkpoint_prefixes: nil, destination_prefix: nil, delete_old_dirs: nil)
|
2126
|
+
Utils.execute("MergeV2Checkpoints", [checkpoint_prefixes, destination_prefix], delete_old_dirs: delete_old_dirs)
|
2127
|
+
end
|
2128
|
+
|
2129
|
+
def mfcc(spectrogram: nil, sample_rate: nil, upper_frequency_limit: nil, lower_frequency_limit: nil, filterbank_channel_count: nil, dct_coefficient_count: nil)
|
2130
|
+
Utils.execute("Mfcc", [spectrogram, sample_rate], upper_frequency_limit: upper_frequency_limit, lower_frequency_limit: lower_frequency_limit, filterbank_channel_count: filterbank_channel_count, dct_coefficient_count: dct_coefficient_count)
|
2131
|
+
end
|
2132
|
+
|
2133
|
+
def min(input: nil, reduction_indices: nil, keep_dims: nil)
|
2134
|
+
Utils.execute("Min", [input, reduction_indices], keep_dims: keep_dims)
|
2135
|
+
end
|
2136
|
+
|
2137
|
+
def minimum(x: nil, y: nil)
|
2138
|
+
Utils.execute("Minimum", [x, y])
|
2139
|
+
end
|
2140
|
+
|
2141
|
+
def mirror_pad(input: nil, paddings: nil, mode: nil)
|
2142
|
+
Utils.execute("MirrorPad", [input, paddings], mode: mode)
|
2143
|
+
end
|
2144
|
+
|
2145
|
+
def mirror_pad_grad(input: nil, paddings: nil, mode: nil)
|
2146
|
+
Utils.execute("MirrorPadGrad", [input, paddings], mode: mode)
|
2147
|
+
end
|
2148
|
+
|
2149
|
+
def mod(x: nil, y: nil)
|
2150
|
+
Utils.execute("Mod", [x, y])
|
2151
|
+
end
|
2152
|
+
|
2153
|
+
def model_dataset(input_dataset: nil, cpu_budget: nil, output_types: nil, output_shapes: nil)
|
2154
|
+
Utils.execute("ModelDataset", [input_dataset], cpu_budget: cpu_budget, output_types: output_types, output_shapes: output_shapes)
|
2155
|
+
end
|
2156
|
+
|
2157
|
+
def mul(x: nil, y: nil)
|
2158
|
+
Utils.execute("Mul", [x, y])
|
2159
|
+
end
|
2160
|
+
|
2161
|
+
def mul_no_nan(x: nil, y: nil)
|
2162
|
+
Utils.execute("MulNoNan", [x, y])
|
2163
|
+
end
|
2164
|
+
|
2165
|
+
def multi_device_iterator(devices: nil, shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
|
2166
|
+
Utils.execute("MultiDeviceIterator", [], devices: devices, shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
|
2167
|
+
end
|
2168
|
+
|
2169
|
+
def multi_device_iterator_from_string_handle(string_handle: nil, output_types: nil, output_shapes: nil)
|
2170
|
+
Utils.execute("MultiDeviceIteratorFromStringHandle", [string_handle], output_types: output_types, output_shapes: output_shapes)
|
2171
|
+
end
|
2172
|
+
|
2173
|
+
def multi_device_iterator_get_next_from_shard(multi_device_iterator: nil, shard_num: nil, incarnation_id: nil, output_types: nil, output_shapes: nil)
|
2174
|
+
Utils.execute("MultiDeviceIteratorGetNextFromShard", [multi_device_iterator, shard_num, incarnation_id], output_types: output_types, output_shapes: output_shapes)
|
2175
|
+
end
|
2176
|
+
|
2177
|
+
def multi_device_iterator_init(dataset: nil, multi_device_iterator: nil, max_buffer_size: nil)
|
2178
|
+
Utils.execute("MultiDeviceIteratorInit", [dataset, multi_device_iterator, max_buffer_size])
|
2179
|
+
end
|
2180
|
+
|
2181
|
+
def multi_device_iterator_to_string_handle(multi_device_iterator: nil)
|
2182
|
+
Utils.execute("MultiDeviceIteratorToStringHandle", [multi_device_iterator])
|
2183
|
+
end
|
2184
|
+
|
2185
|
+
def multinomial(logits: nil, num_samples: nil, seed: nil, seed2: nil, output_dtype: nil)
|
2186
|
+
Utils.execute("Multinomial", [logits, num_samples], seed: seed, seed2: seed2, output_dtype: output_dtype)
|
2187
|
+
end
|
2188
|
+
|
2189
|
+
def mutable_dense_hash_table(empty_key: nil, container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil, initial_num_buckets: nil, max_load_factor: nil)
|
2190
|
+
Utils.execute("MutableDenseHashTable", [empty_key], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape, initial_num_buckets: initial_num_buckets, max_load_factor: max_load_factor)
|
2191
|
+
end
|
2192
|
+
|
2193
|
+
def mutable_dense_hash_table_v2(empty_key: nil, deleted_key: nil, container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil, initial_num_buckets: nil, max_load_factor: nil)
|
2194
|
+
Utils.execute("MutableDenseHashTableV2", [empty_key, deleted_key], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape, initial_num_buckets: initial_num_buckets, max_load_factor: max_load_factor)
|
2195
|
+
end
|
2196
|
+
|
2197
|
+
def mutable_hash_table(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
2198
|
+
Utils.execute("MutableHashTable", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
2199
|
+
end
|
2200
|
+
|
2201
|
+
def mutable_hash_table_of_tensors(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil)
|
2202
|
+
Utils.execute("MutableHashTableOfTensors", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape)
|
2203
|
+
end
|
2204
|
+
|
2205
|
+
def mutable_hash_table_of_tensors_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil)
|
2206
|
+
Utils.execute("MutableHashTableOfTensorsV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape)
|
2207
|
+
end
|
2208
|
+
|
2209
|
+
def mutable_hash_table_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
|
2210
|
+
Utils.execute("MutableHashTableV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
|
2211
|
+
end
|
2212
|
+
|
2213
|
+
def mutex_lock(mutex: nil)
|
2214
|
+
Utils.execute("MutexLock", [mutex])
|
2215
|
+
end
|
2216
|
+
|
2217
|
+
def mutex_v2(container: nil, shared_name: nil)
|
2218
|
+
Utils.execute("MutexV2", [], container: container, shared_name: shared_name)
|
2219
|
+
end
|
2220
|
+
|
2221
|
+
def nccl_all_reduce(input: nil, reduction: nil, num_devices: nil, shared_name: nil)
|
2222
|
+
Utils.execute("NcclAllReduce", [input], reduction: reduction, num_devices: num_devices, shared_name: shared_name)
|
2223
|
+
end
|
2224
|
+
|
2225
|
+
def nccl_broadcast(input: nil, shape: nil)
|
2226
|
+
Utils.execute("NcclBroadcast", [input], shape: shape)
|
2227
|
+
end
|
2228
|
+
|
2229
|
+
def nccl_reduce(input: nil, reduction: nil, num_devices: nil)
|
2230
|
+
Utils.execute("NcclReduce", [input], reduction: reduction, num_devices: num_devices)
|
2231
|
+
end
|
2232
|
+
|
2233
|
+
def nearest_neighbors(points: nil, centers: nil, k: nil)
|
2234
|
+
Utils.execute("NearestNeighbors", [points, centers, k])
|
2235
|
+
end
|
2236
|
+
|
2237
|
+
def neg(x: nil)
|
2238
|
+
Utils.execute("Neg", [x])
|
2239
|
+
end
|
2240
|
+
|
2241
|
+
def neg_train(w_in: nil, w_out: nil, examples: nil, labels: nil, lr: nil, vocab_count: nil, num_negative_samples: nil)
|
2242
|
+
Utils.execute("NegTrain", [w_in, w_out, examples, labels, lr], vocab_count: vocab_count, num_negative_samples: num_negative_samples)
|
2243
|
+
end
|
2244
|
+
|
2245
|
+
def next_after(x1: nil, x2: nil)
|
2246
|
+
Utils.execute("NextAfter", [x1, x2])
|
2247
|
+
end
|
2248
|
+
|
2249
|
+
def next_iteration(data: nil)
|
2250
|
+
Utils.execute("NextIteration", [data])
|
2251
|
+
end
|
2252
|
+
|
2253
|
+
def no_op
|
2254
|
+
Utils.execute("NoOp", [])
|
2255
|
+
end
|
2256
|
+
|
2257
|
+
def non_deterministic_ints(shape: nil, dtype: nil, shape_dtype: nil)
|
2258
|
+
Utils.execute("NonDeterministicInts", [shape], dtype: dtype, shape_dtype: shape_dtype)
|
2259
|
+
end
|
2260
|
+
|
2261
|
+
def non_max_suppression(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil)
|
2262
|
+
Utils.execute("NonMaxSuppression", [boxes, scores, max_output_size], iou_threshold: iou_threshold)
|
2263
|
+
end
|
2264
|
+
|
2265
|
+
def non_max_suppression_v2(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil)
|
2266
|
+
Utils.execute("NonMaxSuppressionV2", [boxes, scores, max_output_size, iou_threshold])
|
2267
|
+
end
|
2268
|
+
|
2269
|
+
def non_max_suppression_v3(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil, score_threshold: nil)
|
2270
|
+
Utils.execute("NonMaxSuppressionV3", [boxes, scores, max_output_size, iou_threshold, score_threshold])
|
2271
|
+
end
|
2272
|
+
|
2273
|
+
def non_max_suppression_v4(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil, score_threshold: nil, pad_to_max_output_size: nil)
|
2274
|
+
Utils.execute("NonMaxSuppressionV4", [boxes, scores, max_output_size, iou_threshold, score_threshold], pad_to_max_output_size: pad_to_max_output_size)
|
2275
|
+
end
|
2276
|
+
|
2277
|
+
def non_max_suppression_with_overlaps(overlaps: nil, scores: nil, max_output_size: nil, overlap_threshold: nil, score_threshold: nil)
|
2278
|
+
Utils.execute("NonMaxSuppressionWithOverlaps", [overlaps, scores, max_output_size, overlap_threshold, score_threshold])
|
2279
|
+
end
|
2280
|
+
|
2281
|
+
def not_equal(x: nil, y: nil)
|
2282
|
+
Utils.execute("NotEqual", [x, y])
|
2283
|
+
end
|
2284
|
+
|
2285
|
+
def nth_element(input: nil, n: nil, reverse: nil)
|
2286
|
+
Utils.execute("NthElement", [input, n], reverse: reverse)
|
2287
|
+
end
|
2288
|
+
|
2289
|
+
def one_hot(indices: nil, depth: nil, on_value: nil, off_value: nil, axis: nil)
|
2290
|
+
Utils.execute("OneHot", [indices, depth, on_value, off_value], axis: axis)
|
2291
|
+
end
|
2292
|
+
|
2293
|
+
def one_shot_iterator(dataset_factory: nil, output_types: nil, output_shapes: nil, container: nil, shared_name: nil)
|
2294
|
+
Utils.execute("OneShotIterator", [], dataset_factory: dataset_factory, output_types: output_types, output_shapes: output_shapes, container: container, shared_name: shared_name)
|
2295
|
+
end
|
2296
|
+
|
2297
|
+
def ones_like(x: nil)
|
2298
|
+
Utils.execute("OnesLike", [x])
|
2299
|
+
end
|
2300
|
+
|
2301
|
+
def optimize_dataset(input_dataset: nil, optimizations: nil, output_types: nil, output_shapes: nil, optimization_configs: nil)
|
2302
|
+
Utils.execute("OptimizeDataset", [input_dataset, optimizations], output_types: output_types, output_shapes: output_shapes, optimization_configs: optimization_configs)
|
2303
|
+
end
|
2304
|
+
|
2305
|
+
def optional_from_value(components: nil)
|
2306
|
+
Utils.execute("OptionalFromValue", [components])
|
2307
|
+
end
|
2308
|
+
|
2309
|
+
def optional_get_value(optional: nil, output_types: nil, output_shapes: nil)
|
2310
|
+
Utils.execute("OptionalGetValue", [optional], output_types: output_types, output_shapes: output_shapes)
|
2311
|
+
end
|
2312
|
+
|
2313
|
+
def optional_has_value(optional: nil)
|
2314
|
+
Utils.execute("OptionalHasValue", [optional])
|
2315
|
+
end
|
2316
|
+
|
2317
|
+
def optional_none
|
2318
|
+
Utils.execute("OptionalNone", [])
|
2319
|
+
end
|
2320
|
+
|
2321
|
+
def ordered_map_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
2322
|
+
Utils.execute("OrderedMapClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
2323
|
+
end
|
2324
|
+
|
2325
|
+
def ordered_map_incomplete_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
2326
|
+
Utils.execute("OrderedMapIncompleteSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
2327
|
+
end
|
2328
|
+
|
2329
|
+
def ordered_map_peek(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
2330
|
+
Utils.execute("OrderedMapPeek", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
2331
|
+
end
|
2332
|
+
|
2333
|
+
def ordered_map_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
2334
|
+
Utils.execute("OrderedMapSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
2335
|
+
end
|
2336
|
+
|
2337
|
+
def ordered_map_stage(key: nil, indices: nil, values: nil, capacity: nil, memory_limit: nil, dtypes: nil, fake_dtypes: nil, container: nil, shared_name: nil)
|
2338
|
+
Utils.execute("OrderedMapStage", [key, indices, values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, fake_dtypes: fake_dtypes, container: container, shared_name: shared_name)
|
2339
|
+
end
|
2340
|
+
|
2341
|
+
def ordered_map_unstage(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
2342
|
+
Utils.execute("OrderedMapUnstage", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
2343
|
+
end
|
2344
|
+
|
2345
|
+
def ordered_map_unstage_no_key(indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
2346
|
+
Utils.execute("OrderedMapUnstageNoKey", [indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
2347
|
+
end
|
2348
|
+
|
2349
|
+
def outfeed_dequeue(dtype: nil, shape: nil, device_ordinal: nil)
|
2350
|
+
Utils.execute("OutfeedDequeue", [], dtype: dtype, shape: shape, device_ordinal: device_ordinal)
|
2351
|
+
end
|
2352
|
+
|
2353
|
+
def outfeed_dequeue_tuple(dtypes: nil, shapes: nil, device_ordinal: nil)
|
2354
|
+
Utils.execute("OutfeedDequeueTuple", [], dtypes: dtypes, shapes: shapes, device_ordinal: device_ordinal)
|
2355
|
+
end
|
2356
|
+
|
2357
|
+
def outfeed_enqueue(input: nil, dtype: nil)
|
2358
|
+
Utils.execute("OutfeedEnqueue", [input], dtype: dtype)
|
2359
|
+
end
|
2360
|
+
|
2361
|
+
def outfeed_enqueue_tuple(inputs: nil, dtypes: nil)
|
2362
|
+
Utils.execute("OutfeedEnqueueTuple", [inputs], dtypes: dtypes)
|
2363
|
+
end
|
2364
|
+
|
2365
|
+
def pack(values: nil, axis: nil)
|
2366
|
+
Utils.execute("Pack", [values], axis: axis)
|
2367
|
+
end
|
2368
|
+
|
2369
|
+
def pad(input: nil, paddings: nil)
|
2370
|
+
Utils.execute("Pad", [input, paddings])
|
2371
|
+
end
|
2372
|
+
|
2373
|
+
def pad_v2(input: nil, paddings: nil, constant_values: nil)
|
2374
|
+
Utils.execute("PadV2", [input, paddings, constant_values])
|
2375
|
+
end
|
2376
|
+
|
2377
|
+
def padded_batch_dataset(input_dataset: nil, batch_size: nil, padded_shapes: nil, padding_values: nil, output_shapes: nil)
|
2378
|
+
Utils.execute("PaddedBatchDataset", [input_dataset, batch_size, padded_shapes, padding_values], output_shapes: output_shapes)
|
2379
|
+
end
|
2380
|
+
|
2381
|
+
def padded_batch_dataset_v2(input_dataset: nil, batch_size: nil, padded_shapes: nil, padding_values: nil, drop_remainder: nil, parallel_copy: nil, output_shapes: nil)
|
2382
|
+
Utils.execute("PaddedBatchDatasetV2", [input_dataset, batch_size, padded_shapes, padding_values, drop_remainder], parallel_copy: parallel_copy, output_shapes: output_shapes)
|
2383
|
+
end
|
2384
|
+
|
2385
|
+
def padding_fifo_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
2386
|
+
Utils.execute("PaddingFIFOQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
2387
|
+
end
|
2388
|
+
|
2389
|
+
def padding_fifo_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
2390
|
+
Utils.execute("PaddingFIFOQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
2391
|
+
end
|
2392
|
+
|
2393
|
+
def parallel_concat(values: nil, shape: nil)
|
2394
|
+
Utils.execute("ParallelConcat", [values], shape: shape)
|
2395
|
+
end
|
2396
|
+
|
2397
|
+
def parallel_dynamic_stitch(indices: nil, data: nil)
|
2398
|
+
Utils.execute("ParallelDynamicStitch", [indices, data])
|
2399
|
+
end
|
2400
|
+
|
2401
|
+
def parallel_interleave_dataset_v2(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, num_parallel_calls: nil, f: nil, output_types: nil, output_shapes: nil, sloppy: nil)
|
2402
|
+
Utils.execute("ParallelInterleaveDatasetV2", [input_dataset, other_arguments, cycle_length, block_length, num_parallel_calls], f: f, output_types: output_types, output_shapes: output_shapes, sloppy: sloppy)
|
2403
|
+
end
|
2404
|
+
|
2405
|
+
def parallel_map_dataset(input_dataset: nil, other_arguments: nil, num_parallel_calls: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, sloppy: nil, preserve_cardinality: nil)
|
2406
|
+
Utils.execute("ParallelMapDataset", [input_dataset, other_arguments, num_parallel_calls], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, sloppy: sloppy, preserve_cardinality: preserve_cardinality)
|
2407
|
+
end
|
2408
|
+
|
2409
|
+
def parameterized_truncated_normal(shape: nil, means: nil, stdevs: nil, minvals: nil, maxvals: nil, seed: nil, seed2: nil, dtype: nil)
|
2410
|
+
Utils.execute("ParameterizedTruncatedNormal", [shape, means, stdevs, minvals, maxvals], seed: seed, seed2: seed2, dtype: dtype)
|
2411
|
+
end
|
2412
|
+
|
2413
|
+
def parse_example(serialized: nil, names: nil, sparse_keys: nil, dense_keys: nil, dense_defaults: nil, sparse_types: nil, dense_shapes: nil)
|
2414
|
+
Utils.execute("ParseExample", [serialized, names, sparse_keys, dense_keys, dense_defaults], sparse_types: sparse_types, dense_shapes: dense_shapes)
|
2415
|
+
end
|
2416
|
+
|
2417
|
+
def parse_sequence_example(serialized: nil, debug_name: nil, context_dense_defaults: nil, feature_list_dense_missing_assumed_empty: nil, context_sparse_keys: nil, context_dense_keys: nil, feature_list_sparse_keys: nil, feature_list_dense_keys: nil, context_sparse_types: nil, feature_list_dense_types: nil, context_dense_shapes: nil, feature_list_sparse_types: nil, feature_list_dense_shapes: nil)
|
2418
|
+
Utils.execute("ParseSequenceExample", [serialized, debug_name, context_dense_defaults], feature_list_dense_missing_assumed_empty: feature_list_dense_missing_assumed_empty, context_sparse_keys: context_sparse_keys, context_dense_keys: context_dense_keys, feature_list_sparse_keys: feature_list_sparse_keys, feature_list_dense_keys: feature_list_dense_keys, context_sparse_types: context_sparse_types, feature_list_dense_types: feature_list_dense_types, context_dense_shapes: context_dense_shapes, feature_list_sparse_types: feature_list_sparse_types, feature_list_dense_shapes: feature_list_dense_shapes)
|
2419
|
+
end
|
2420
|
+
|
2421
|
+
def parse_single_example(serialized: nil, dense_defaults: nil, num_sparse: nil, sparse_keys: nil, dense_keys: nil, sparse_types: nil, dense_shapes: nil)
|
2422
|
+
Utils.execute("ParseSingleExample", [serialized, dense_defaults], num_sparse: num_sparse, sparse_keys: sparse_keys, dense_keys: dense_keys, sparse_types: sparse_types, dense_shapes: dense_shapes)
|
2423
|
+
end
|
2424
|
+
|
2425
|
+
def parse_single_sequence_example(serialized: nil, feature_list_dense_missing_assumed_empty: nil, context_sparse_keys: nil, context_dense_keys: nil, feature_list_sparse_keys: nil, feature_list_dense_keys: nil, context_dense_defaults: nil, debug_name: nil, context_sparse_types: nil, feature_list_dense_types: nil, context_dense_shapes: nil, feature_list_sparse_types: nil, feature_list_dense_shapes: nil)
|
2426
|
+
Utils.execute("ParseSingleSequenceExample", [serialized, feature_list_dense_missing_assumed_empty, context_sparse_keys, context_dense_keys, feature_list_sparse_keys, feature_list_dense_keys, context_dense_defaults, debug_name], context_sparse_types: context_sparse_types, feature_list_dense_types: feature_list_dense_types, context_dense_shapes: context_dense_shapes, feature_list_sparse_types: feature_list_sparse_types, feature_list_dense_shapes: feature_list_dense_shapes)
|
2427
|
+
end
|
2428
|
+
|
2429
|
+
def parse_tensor(serialized: nil, out_type: nil)
|
2430
|
+
Utils.execute("ParseTensor", [serialized], out_type: out_type)
|
2431
|
+
end
|
2432
|
+
|
2433
|
+
def partitioned_call(args: nil, f: nil, config: nil, config_proto: nil, executor_type: nil)
|
2434
|
+
Utils.execute("PartitionedCall", [args], f: f, config: config, config_proto: config_proto, executor_type: executor_type)
|
2435
|
+
end
|
2436
|
+
|
2437
|
+
def placeholder(dtype: nil, shape: nil)
|
2438
|
+
Utils.execute("Placeholder", [], dtype: dtype, shape: shape)
|
2439
|
+
end
|
2440
|
+
|
2441
|
+
def placeholder_v2(dtype: nil, shape: nil)
|
2442
|
+
Utils.execute("PlaceholderV2", [], dtype: dtype, shape: shape)
|
2443
|
+
end
|
2444
|
+
|
2445
|
+
def placeholder_with_default(input: nil, dtype: nil, shape: nil)
|
2446
|
+
Utils.execute("PlaceholderWithDefault", [input], dtype: dtype, shape: shape)
|
2447
|
+
end
|
2448
|
+
|
2449
|
+
def polygamma(a: nil, x: nil)
|
2450
|
+
Utils.execute("Polygamma", [a, x])
|
2451
|
+
end
|
2452
|
+
|
2453
|
+
def population_count(x: nil)
|
2454
|
+
Utils.execute("PopulationCount", [x])
|
2455
|
+
end
|
2456
|
+
|
2457
|
+
def pow(x: nil, y: nil)
|
2458
|
+
Utils.execute("Pow", [x, y])
|
2459
|
+
end
|
2460
|
+
|
2461
|
+
def prefetch_dataset(input_dataset: nil, buffer_size: nil, output_types: nil, output_shapes: nil, slack_period: nil)
|
2462
|
+
Utils.execute("PrefetchDataset", [input_dataset, buffer_size], output_types: output_types, output_shapes: output_shapes, slack_period: slack_period)
|
2463
|
+
end
|
2464
|
+
|
2465
|
+
def prelinearize(input: nil, dtype: nil, shape: nil, layout: nil)
|
2466
|
+
Utils.execute("Prelinearize", [input], dtype: dtype, shape: shape, layout: layout)
|
2467
|
+
end
|
2468
|
+
|
2469
|
+
def prelinearize_tuple(inputs: nil, dtypes: nil, shapes: nil, layouts: nil)
|
2470
|
+
Utils.execute("PrelinearizeTuple", [inputs], dtypes: dtypes, shapes: shapes, layouts: layouts)
|
2471
|
+
end
|
2472
|
+
|
2473
|
+
def prevent_gradient(input: nil, message: nil)
|
2474
|
+
Utils.execute("PreventGradient", [input], message: message)
|
2475
|
+
end
|
2476
|
+
|
2477
|
+
def print(input: nil, data: nil, message: nil, first_n: nil, summarize: nil)
|
2478
|
+
Utils.execute("Print", [input, data], message: message, first_n: first_n, summarize: summarize)
|
2479
|
+
end
|
2480
|
+
|
2481
|
+
def print_v2(input: nil, output_stream: nil, stop: nil)
|
2482
|
+
Utils.execute("PrintV2", [input], output_stream: output_stream, stop: stop)
|
2483
|
+
end
|
2484
|
+
|
2485
|
+
def priority_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
2486
|
+
Utils.execute("PriorityQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
2487
|
+
end
|
2488
|
+
|
2489
|
+
def priority_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
|
2490
|
+
Utils.execute("PriorityQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
|
2491
|
+
end
|
2492
|
+
|
2493
|
+
def prod(input: nil, reduction_indices: nil, keep_dims: nil)
|
2494
|
+
Utils.execute("Prod", [input, reduction_indices], keep_dims: keep_dims)
|
2495
|
+
end
|
2496
|
+
|
2497
|
+
def py_func(input: nil, token: nil)
|
2498
|
+
Utils.execute("PyFunc", [input], token: token)
|
2499
|
+
end
|
2500
|
+
|
2501
|
+
def py_func_stateless(input: nil, token: nil)
|
2502
|
+
Utils.execute("PyFuncStateless", [input], token: token)
|
2503
|
+
end
|
2504
|
+
|
2505
|
+
def qr(input: nil, full_matrices: nil)
|
2506
|
+
Utils.execute("Qr", [input], full_matrices: full_matrices)
|
2507
|
+
end
|
2508
|
+
|
2509
|
+
def quantize_and_dequantize(input: nil, signed_input: nil, num_bits: nil, range_given: nil, input_min: nil, input_max: nil)
|
2510
|
+
Utils.execute("QuantizeAndDequantize", [input], signed_input: signed_input, num_bits: num_bits, range_given: range_given, input_min: input_min, input_max: input_max)
|
2511
|
+
end
|
2512
|
+
|
2513
|
+
def quantize_and_dequantize_v2(input: nil, input_min: nil, input_max: nil, signed_input: nil, num_bits: nil, range_given: nil, round_mode: nil)
|
2514
|
+
Utils.execute("QuantizeAndDequantizeV2", [input, input_min, input_max], signed_input: signed_input, num_bits: num_bits, range_given: range_given, round_mode: round_mode)
|
2515
|
+
end
|
2516
|
+
|
2517
|
+
def quantize_and_dequantize_v3(input: nil, input_min: nil, input_max: nil, num_bits: nil, signed_input: nil, range_given: nil)
|
2518
|
+
Utils.execute("QuantizeAndDequantizeV3", [input, input_min, input_max, num_bits], signed_input: signed_input, range_given: range_given)
|
2519
|
+
end
|
2520
|
+
|
2521
|
+
def quantize_down_and_shrink_range(input: nil, input_min: nil, input_max: nil, out_type: nil)
|
2522
|
+
Utils.execute("QuantizeDownAndShrinkRange", [input, input_min, input_max], out_type: out_type)
|
2523
|
+
end
|
2524
|
+
|
2525
|
+
def quantize_v2(input: nil, min_range: nil, max_range: nil, mode: nil, round_mode: nil)
|
2526
|
+
Utils.execute("QuantizeV2", [input, min_range, max_range], mode: mode, round_mode: round_mode)
|
2527
|
+
end
|
2528
|
+
|
2529
|
+
def quantized_add(x: nil, y: nil, min_x: nil, max_x: nil, min_y: nil, max_y: nil)
|
2530
|
+
Utils.execute("QuantizedAdd", [x, y, min_x, max_x, min_y, max_y])
|
2531
|
+
end
|
2532
|
+
|
2533
|
+
def quantized_avg_pool(input: nil, min_input: nil, max_input: nil, ksize: nil, strides: nil, padding: nil)
|
2534
|
+
Utils.execute("QuantizedAvgPool", [input, min_input, max_input], ksize: ksize, strides: strides, padding: padding)
|
2535
|
+
end
|
2536
|
+
|
2537
|
+
def quantized_batch_norm_with_global_normalization(t: nil, t_min: nil, t_max: nil, m: nil, m_min: nil, m_max: nil, v: nil, v_min: nil, v_max: nil, beta: nil, beta_min: nil, beta_max: nil, gamma: nil, gamma_min: nil, gamma_max: nil, out_type: nil, variance_epsilon: nil, scale_after_normalization: nil)
|
2538
|
+
Utils.execute("QuantizedBatchNormWithGlobalNormalization", [t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max], out_type: out_type, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
|
2539
|
+
end
|
2540
|
+
|
2541
|
+
def quantized_bias_add(input: nil, bias: nil, min_input: nil, max_input: nil, min_bias: nil, max_bias: nil, out_type: nil)
|
2542
|
+
Utils.execute("QuantizedBiasAdd", [input, bias, min_input, max_input, min_bias, max_bias], out_type: out_type)
|
2543
|
+
end
|
2544
|
+
|
2545
|
+
def quantized_concat(concat_dim: nil, values: nil, input_mins: nil, input_maxes: nil)
|
2546
|
+
Utils.execute("QuantizedConcat", [concat_dim, values, input_mins, input_maxes])
|
2547
|
+
end
|
2548
|
+
|
2549
|
+
def quantized_conv2d(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
2550
|
+
Utils.execute("QuantizedConv2D", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
2551
|
+
end
|
2552
|
+
|
2553
|
+
def quantized_conv2d_and_relu(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2554
|
+
Utils.execute("QuantizedConv2DAndRelu", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2555
|
+
end
|
2556
|
+
|
2557
|
+
def quantized_conv2d_and_relu_and_requantize(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2558
|
+
Utils.execute("QuantizedConv2DAndReluAndRequantize", [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2559
|
+
end
|
2560
|
+
|
2561
|
+
def quantized_conv2d_and_requantize(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2562
|
+
Utils.execute("QuantizedConv2DAndRequantize", [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2563
|
+
end
|
2564
|
+
|
2565
|
+
def quantized_conv2d_per_channel(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
2566
|
+
Utils.execute("QuantizedConv2DPerChannel", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
2567
|
+
end
|
2568
|
+
|
2569
|
+
def quantized_conv2d_with_bias(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2570
|
+
Utils.execute("QuantizedConv2DWithBias", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2571
|
+
end
|
2572
|
+
|
2573
|
+
def quantized_conv2d_with_bias_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2574
|
+
Utils.execute("QuantizedConv2DWithBiasAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2575
|
+
end
|
2576
|
+
|
2577
|
+
def quantized_conv2d_with_bias_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2578
|
+
Utils.execute("QuantizedConv2DWithBiasAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2579
|
+
end
|
2580
|
+
|
2581
|
+
def quantized_conv2d_with_bias_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2582
|
+
Utils.execute("QuantizedConv2DWithBiasAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2583
|
+
end
|
2584
|
+
|
2585
|
+
def quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, summand: nil, min_summand: nil, max_summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2586
|
+
Utils.execute("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2587
|
+
end
|
2588
|
+
|
2589
|
+
def quantized_conv2d_with_bias_sum_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2590
|
+
Utils.execute("QuantizedConv2DWithBiasSumAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter, summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2591
|
+
end
|
2592
|
+
|
2593
|
+
def quantized_conv2d_with_bias_sum_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, summand: nil, min_summand: nil, max_summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
|
2594
|
+
Utils.execute("QuantizedConv2DWithBiasSumAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
|
2595
|
+
end
|
2596
|
+
|
2597
|
+
def quantized_depthwise_conv2d(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
2598
|
+
Utils.execute("QuantizedDepthwiseConv2D", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
2599
|
+
end
|
2600
|
+
|
2601
|
+
def quantized_depthwise_conv2d_with_bias(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
2602
|
+
Utils.execute("QuantizedDepthwiseConv2DWithBias", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
2603
|
+
end
|
2604
|
+
|
2605
|
+
def quantized_depthwise_conv2d_with_bias_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
2606
|
+
Utils.execute("QuantizedDepthwiseConv2DWithBiasAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
2607
|
+
end
|
2608
|
+
|
2609
|
+
def quantized_depthwise_conv2d_with_bias_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
|
2610
|
+
Utils.execute("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
|
2611
|
+
end
|
2612
|
+
|
2613
|
+
def quantized_instance_norm(x: nil, x_min: nil, x_max: nil, output_range_given: nil, given_y_min: nil, given_y_max: nil, variance_epsilon: nil, min_separation: nil)
|
2614
|
+
Utils.execute("QuantizedInstanceNorm", [x, x_min, x_max], output_range_given: output_range_given, given_y_min: given_y_min, given_y_max: given_y_max, variance_epsilon: variance_epsilon, min_separation: min_separation)
|
2615
|
+
end
|
2616
|
+
|
2617
|
+
def quantized_mat_mul(a: nil, b: nil, min_a: nil, max_a: nil, min_b: nil, max_b: nil, transpose_a: nil, transpose_b: nil)
|
2618
|
+
Utils.execute("QuantizedMatMul", [a, b, min_a, max_a, min_b, max_b], transpose_a: transpose_a, transpose_b: transpose_b)
|
2619
|
+
end
|
2620
|
+
|
2621
|
+
def quantized_max_pool(input: nil, min_input: nil, max_input: nil, ksize: nil, strides: nil, padding: nil)
|
2622
|
+
Utils.execute("QuantizedMaxPool", [input, min_input, max_input], ksize: ksize, strides: strides, padding: padding)
|
2623
|
+
end
|
2624
|
+
|
2625
|
+
def quantized_mul(x: nil, y: nil, min_x: nil, max_x: nil, min_y: nil, max_y: nil)
|
2626
|
+
Utils.execute("QuantizedMul", [x, y, min_x, max_x, min_y, max_y])
|
2627
|
+
end
|
2628
|
+
|
2629
|
+
def quantized_relu(features: nil, min_features: nil, max_features: nil, out_type: nil)
|
2630
|
+
Utils.execute("QuantizedRelu", [features, min_features, max_features], out_type: out_type)
|
2631
|
+
end
|
2632
|
+
|
2633
|
+
def quantized_relu6(features: nil, min_features: nil, max_features: nil, out_type: nil)
|
2634
|
+
Utils.execute("QuantizedRelu6", [features, min_features, max_features], out_type: out_type)
|
2635
|
+
end
|
2636
|
+
|
2637
|
+
def quantized_relu_x(features: nil, max_value: nil, min_features: nil, max_features: nil, out_type: nil)
|
2638
|
+
Utils.execute("QuantizedReluX", [features, max_value, min_features, max_features], out_type: out_type)
|
2639
|
+
end
|
2640
|
+
|
2641
|
+
def quantized_reshape(tensor: nil, shape: nil, input_min: nil, input_max: nil)
|
2642
|
+
Utils.execute("QuantizedReshape", [tensor, shape, input_min, input_max])
|
2643
|
+
end
|
2644
|
+
|
2645
|
+
def quantized_resize_bilinear(images: nil, size: nil, min: nil, max: nil, align_corners: nil, half_pixel_centers: nil)
|
2646
|
+
Utils.execute("QuantizedResizeBilinear", [images, size, min, max], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
2647
|
+
end
|
2648
|
+
|
2649
|
+
def queue_close(handle: nil, cancel_pending_enqueues: nil)
|
2650
|
+
Utils.execute("QueueClose", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
|
2651
|
+
end
|
2652
|
+
|
2653
|
+
def queue_close_v2(handle: nil, cancel_pending_enqueues: nil)
|
2654
|
+
Utils.execute("QueueCloseV2", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
|
2655
|
+
end
|
2656
|
+
|
2657
|
+
def queue_dequeue(handle: nil, component_types: nil, timeout_ms: nil)
|
2658
|
+
Utils.execute("QueueDequeue", [handle], component_types: component_types, timeout_ms: timeout_ms)
|
2659
|
+
end
|
2660
|
+
|
2661
|
+
def queue_dequeue_many(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
2662
|
+
Utils.execute("QueueDequeueMany", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
2663
|
+
end
|
2664
|
+
|
2665
|
+
def queue_dequeue_many_v2(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
2666
|
+
Utils.execute("QueueDequeueManyV2", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
2667
|
+
end
|
2668
|
+
|
2669
|
+
def queue_dequeue_up_to(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
2670
|
+
Utils.execute("QueueDequeueUpTo", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
2671
|
+
end
|
2672
|
+
|
2673
|
+
def queue_dequeue_up_to_v2(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
|
2674
|
+
Utils.execute("QueueDequeueUpToV2", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
|
2675
|
+
end
|
2676
|
+
|
2677
|
+
def queue_dequeue_v2(handle: nil, component_types: nil, timeout_ms: nil)
|
2678
|
+
Utils.execute("QueueDequeueV2", [handle], component_types: component_types, timeout_ms: timeout_ms)
|
2679
|
+
end
|
2680
|
+
|
2681
|
+
def queue_enqueue(handle: nil, components: nil, timeout_ms: nil)
|
2682
|
+
Utils.execute("QueueEnqueue", [handle, components], timeout_ms: timeout_ms)
|
2683
|
+
end
|
2684
|
+
|
2685
|
+
def queue_enqueue_many(handle: nil, components: nil, timeout_ms: nil)
|
2686
|
+
Utils.execute("QueueEnqueueMany", [handle, components], timeout_ms: timeout_ms)
|
2687
|
+
end
|
2688
|
+
|
2689
|
+
def queue_enqueue_many_v2(handle: nil, components: nil, timeout_ms: nil)
|
2690
|
+
Utils.execute("QueueEnqueueManyV2", [handle, components], timeout_ms: timeout_ms)
|
2691
|
+
end
|
2692
|
+
|
2693
|
+
def queue_enqueue_v2(handle: nil, components: nil, timeout_ms: nil)
|
2694
|
+
Utils.execute("QueueEnqueueV2", [handle, components], timeout_ms: timeout_ms)
|
2695
|
+
end
|
2696
|
+
|
2697
|
+
def queue_is_closed(handle: nil)
|
2698
|
+
Utils.execute("QueueIsClosed", [handle])
|
2699
|
+
end
|
2700
|
+
|
2701
|
+
def queue_is_closed_v2(handle: nil)
|
2702
|
+
Utils.execute("QueueIsClosedV2", [handle])
|
2703
|
+
end
|
2704
|
+
|
2705
|
+
def queue_size(handle: nil)
|
2706
|
+
Utils.execute("QueueSize", [handle])
|
2707
|
+
end
|
2708
|
+
|
2709
|
+
def queue_size_v2(handle: nil)
|
2710
|
+
Utils.execute("QueueSizeV2", [handle])
|
2711
|
+
end
|
2712
|
+
|
2713
|
+
def rfft(input: nil, fft_length: nil)
|
2714
|
+
Utils.execute("RFFT", [input, fft_length])
|
2715
|
+
end
|
2716
|
+
|
2717
|
+
def rfft2d(input: nil, fft_length: nil)
|
2718
|
+
Utils.execute("RFFT2D", [input, fft_length])
|
2719
|
+
end
|
2720
|
+
|
2721
|
+
def rfft3d(input: nil, fft_length: nil)
|
2722
|
+
Utils.execute("RFFT3D", [input, fft_length])
|
2723
|
+
end
|
2724
|
+
|
2725
|
+
def rgb_to_hsv(images: nil)
|
2726
|
+
Utils.execute("RGBToHSV", [images])
|
2727
|
+
end
|
2728
|
+
|
2729
|
+
def ragged_gather(params_nested_splits: nil, params_dense_values: nil, indices: nil)
|
2730
|
+
Utils.execute("RaggedGather", [params_nested_splits, params_dense_values, indices])
|
2731
|
+
end
|
2732
|
+
|
2733
|
+
def ragged_range(starts: nil, limits: nil, deltas: nil)
|
2734
|
+
Utils.execute("RaggedRange", [starts, limits, deltas])
|
2735
|
+
end
|
2736
|
+
|
2737
|
+
def ragged_tensor_from_variant(encoded_ragged: nil, input_ragged_rank: nil, output_ragged_rank: nil)
|
2738
|
+
Utils.execute("RaggedTensorFromVariant", [encoded_ragged], input_ragged_rank: input_ragged_rank, output_ragged_rank: output_ragged_rank)
|
2739
|
+
end
|
2740
|
+
|
2741
|
+
def ragged_tensor_to_sparse(rt_nested_splits: nil, rt_dense_values: nil)
|
2742
|
+
Utils.execute("RaggedTensorToSparse", [rt_nested_splits, rt_dense_values])
|
2743
|
+
end
|
2744
|
+
|
2745
|
+
def ragged_tensor_to_variant(rt_nested_splits: nil, rt_dense_values: nil, batched_input: nil)
|
2746
|
+
Utils.execute("RaggedTensorToVariant", [rt_nested_splits, rt_dense_values], batched_input: batched_input)
|
2747
|
+
end
|
2748
|
+
|
2749
|
+
def random_crop(image: nil, size: nil, seed: nil, seed2: nil)
|
2750
|
+
Utils.execute("RandomCrop", [image, size], seed: seed, seed2: seed2)
|
2751
|
+
end
|
2752
|
+
|
2753
|
+
def random_gamma(shape: nil, alpha: nil, seed: nil, seed2: nil)
|
2754
|
+
Utils.execute("RandomGamma", [shape, alpha], seed: seed, seed2: seed2)
|
2755
|
+
end
|
2756
|
+
|
2757
|
+
def random_gamma_grad(alpha: nil, sample: nil)
|
2758
|
+
Utils.execute("RandomGammaGrad", [alpha, sample])
|
2759
|
+
end
|
2760
|
+
|
2761
|
+
def random_poisson(shape: nil, rate: nil, seed: nil, seed2: nil, dtype: nil)
|
2762
|
+
Utils.execute("RandomPoisson", [shape, rate], seed: seed, seed2: seed2, dtype: dtype)
|
2763
|
+
end
|
2764
|
+
|
2765
|
+
def random_poisson_v2(shape: nil, rate: nil, seed: nil, seed2: nil, dtype: nil)
|
2766
|
+
Utils.execute("RandomPoissonV2", [shape, rate], seed: seed, seed2: seed2, dtype: dtype)
|
2767
|
+
end
|
2768
|
+
|
2769
|
+
def random_shuffle(value: nil, seed: nil, seed2: nil)
|
2770
|
+
Utils.execute("RandomShuffle", [value], seed: seed, seed2: seed2)
|
2771
|
+
end
|
2772
|
+
|
2773
|
+
def random_shuffle_queue(component_types: nil, shapes: nil, capacity: nil, min_after_dequeue: nil, seed: nil, seed2: nil, container: nil, shared_name: nil)
|
2774
|
+
Utils.execute("RandomShuffleQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, min_after_dequeue: min_after_dequeue, seed: seed, seed2: seed2, container: container, shared_name: shared_name)
|
2775
|
+
end
|
2776
|
+
|
2777
|
+
def random_shuffle_queue_v2(component_types: nil, shapes: nil, capacity: nil, min_after_dequeue: nil, seed: nil, seed2: nil, container: nil, shared_name: nil)
|
2778
|
+
Utils.execute("RandomShuffleQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, min_after_dequeue: min_after_dequeue, seed: seed, seed2: seed2, container: container, shared_name: shared_name)
|
2779
|
+
end
|
2780
|
+
|
2781
|
+
def random_standard_normal(shape: nil, seed: nil, seed2: nil, dtype: nil)
|
2782
|
+
Utils.execute("RandomStandardNormal", [shape], seed: seed, seed2: seed2, dtype: dtype)
|
2783
|
+
end
|
2784
|
+
|
2785
|
+
def random_uniform(shape: nil, seed: nil, seed2: nil, dtype: nil)
|
2786
|
+
Utils.execute("RandomUniform", [shape], seed: seed, seed2: seed2, dtype: dtype)
|
2787
|
+
end
|
2788
|
+
|
2789
|
+
def random_uniform_int(shape: nil, minval: nil, maxval: nil, seed: nil, seed2: nil)
|
2790
|
+
Utils.execute("RandomUniformInt", [shape, minval, maxval], seed: seed, seed2: seed2)
|
2791
|
+
end
|
2792
|
+
|
2793
|
+
def range(start: nil, limit: nil, delta: nil)
|
2794
|
+
Utils.execute("Range", [start, limit, delta])
|
2795
|
+
end
|
2796
|
+
|
2797
|
+
def range_dataset(start: nil, stop: nil, step: nil, output_types: nil, output_shapes: nil)
|
2798
|
+
Utils.execute("RangeDataset", [start, stop, step], output_types: output_types, output_shapes: output_shapes)
|
2799
|
+
end
|
2800
|
+
|
2801
|
+
def rank(input: nil)
|
2802
|
+
Utils.execute("Rank", [input])
|
2803
|
+
end
|
2804
|
+
|
2805
|
+
def read_file(filename: nil)
|
2806
|
+
Utils.execute("ReadFile", [filename])
|
2807
|
+
end
|
2808
|
+
|
2809
|
+
def read_variable_op(resource: nil, dtype: nil)
|
2810
|
+
Utils.execute("ReadVariableOp", [resource], dtype: dtype)
|
2811
|
+
end
|
2812
|
+
|
2813
|
+
def reader_num_records_produced(reader_handle: nil)
|
2814
|
+
Utils.execute("ReaderNumRecordsProduced", [reader_handle])
|
2815
|
+
end
|
2816
|
+
|
2817
|
+
def reader_num_records_produced_v2(reader_handle: nil)
|
2818
|
+
Utils.execute("ReaderNumRecordsProducedV2", [reader_handle])
|
2819
|
+
end
|
2820
|
+
|
2821
|
+
def reader_num_work_units_completed(reader_handle: nil)
|
2822
|
+
Utils.execute("ReaderNumWorkUnitsCompleted", [reader_handle])
|
2823
|
+
end
|
2824
|
+
|
2825
|
+
def reader_num_work_units_completed_v2(reader_handle: nil)
|
2826
|
+
Utils.execute("ReaderNumWorkUnitsCompletedV2", [reader_handle])
|
2827
|
+
end
|
2828
|
+
|
2829
|
+
def reader_read(reader_handle: nil, queue_handle: nil)
|
2830
|
+
Utils.execute("ReaderRead", [reader_handle, queue_handle])
|
2831
|
+
end
|
2832
|
+
|
2833
|
+
def reader_read_up_to(reader_handle: nil, queue_handle: nil, num_records: nil)
|
2834
|
+
Utils.execute("ReaderReadUpTo", [reader_handle, queue_handle, num_records])
|
2835
|
+
end
|
2836
|
+
|
2837
|
+
def reader_read_up_to_v2(reader_handle: nil, queue_handle: nil, num_records: nil)
|
2838
|
+
Utils.execute("ReaderReadUpToV2", [reader_handle, queue_handle, num_records])
|
2839
|
+
end
|
2840
|
+
|
2841
|
+
def reader_read_v2(reader_handle: nil, queue_handle: nil)
|
2842
|
+
Utils.execute("ReaderReadV2", [reader_handle, queue_handle])
|
2843
|
+
end
|
2844
|
+
|
2845
|
+
def reader_reset(reader_handle: nil)
|
2846
|
+
Utils.execute("ReaderReset", [reader_handle])
|
2847
|
+
end
|
2848
|
+
|
2849
|
+
def reader_reset_v2(reader_handle: nil)
|
2850
|
+
Utils.execute("ReaderResetV2", [reader_handle])
|
2851
|
+
end
|
2852
|
+
|
2853
|
+
def reader_restore_state(reader_handle: nil, state: nil)
|
2854
|
+
Utils.execute("ReaderRestoreState", [reader_handle, state])
|
2855
|
+
end
|
2856
|
+
|
2857
|
+
def reader_restore_state_v2(reader_handle: nil, state: nil)
|
2858
|
+
Utils.execute("ReaderRestoreStateV2", [reader_handle, state])
|
2859
|
+
end
|
2860
|
+
|
2861
|
+
def reader_serialize_state(reader_handle: nil)
|
2862
|
+
Utils.execute("ReaderSerializeState", [reader_handle])
|
2863
|
+
end
|
2864
|
+
|
2865
|
+
def reader_serialize_state_v2(reader_handle: nil)
|
2866
|
+
Utils.execute("ReaderSerializeStateV2", [reader_handle])
|
2867
|
+
end
|
2868
|
+
|
2869
|
+
def real(input: nil)
|
2870
|
+
Utils.execute("Real", [input])
|
2871
|
+
end
|
2872
|
+
|
2873
|
+
def real_div(x: nil, y: nil)
|
2874
|
+
Utils.execute("RealDiv", [x, y])
|
2875
|
+
end
|
2876
|
+
|
2877
|
+
def reciprocal(x: nil)
|
2878
|
+
Utils.execute("Reciprocal", [x])
|
2879
|
+
end
|
2880
|
+
|
2881
|
+
def reciprocal_grad(y: nil, dy: nil)
|
2882
|
+
Utils.execute("ReciprocalGrad", [y, dy])
|
2883
|
+
end
|
2884
|
+
|
2885
|
+
def record_input(file_pattern: nil, file_random_seed: nil, file_shuffle_shift_ratio: nil, file_buffer_size: nil, file_parallelism: nil, batch_size: nil, compression_type: nil)
|
2886
|
+
Utils.execute("RecordInput", [], file_pattern: file_pattern, file_random_seed: file_random_seed, file_shuffle_shift_ratio: file_shuffle_shift_ratio, file_buffer_size: file_buffer_size, file_parallelism: file_parallelism, batch_size: batch_size, compression_type: compression_type)
|
2887
|
+
end
|
2888
|
+
|
2889
|
+
def recv_tpu_embedding_activations(num_outputs: nil, config: nil)
|
2890
|
+
Utils.execute("RecvTPUEmbeddingActivations", [], num_outputs: num_outputs, config: config)
|
2891
|
+
end
|
2892
|
+
|
2893
|
+
def reduce_dataset(input_dataset: nil, initial_state: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil)
|
2894
|
+
Utils.execute("ReduceDataset", [input_dataset, initial_state, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism)
|
2895
|
+
end
|
2896
|
+
|
2897
|
+
def reduce_join(inputs: nil, reduction_indices: nil, keep_dims: nil, separator: nil)
|
2898
|
+
Utils.execute("ReduceJoin", [inputs, reduction_indices], keep_dims: keep_dims, separator: separator)
|
2899
|
+
end
|
2900
|
+
|
2901
|
+
def ref_enter(data: nil, frame_name: nil, is_constant: nil, parallel_iterations: nil)
|
2902
|
+
Utils.execute("RefEnter", [data], frame_name: frame_name, is_constant: is_constant, parallel_iterations: parallel_iterations)
|
2903
|
+
end
|
2904
|
+
|
2905
|
+
def ref_exit(data: nil)
|
2906
|
+
Utils.execute("RefExit", [data])
|
2907
|
+
end
|
2908
|
+
|
2909
|
+
def ref_identity(input: nil)
|
2910
|
+
Utils.execute("RefIdentity", [input])
|
2911
|
+
end
|
2912
|
+
|
2913
|
+
def ref_merge(inputs: nil)
|
2914
|
+
Utils.execute("RefMerge", [inputs])
|
2915
|
+
end
|
2916
|
+
|
2917
|
+
def ref_next_iteration(data: nil)
|
2918
|
+
Utils.execute("RefNextIteration", [data])
|
2919
|
+
end
|
2920
|
+
|
2921
|
+
def ref_select(index: nil, inputs: nil)
|
2922
|
+
Utils.execute("RefSelect", [index, inputs])
|
2923
|
+
end
|
2924
|
+
|
2925
|
+
def ref_switch(data: nil, pred: nil)
|
2926
|
+
Utils.execute("RefSwitch", [data, pred])
|
2927
|
+
end
|
2928
|
+
|
2929
|
+
def regex_full_match(input: nil, pattern: nil)
|
2930
|
+
Utils.execute("RegexFullMatch", [input, pattern])
|
2931
|
+
end
|
2932
|
+
|
2933
|
+
def regex_replace(input: nil, pattern: nil, rewrite: nil, replace_global: nil)
|
2934
|
+
Utils.execute("RegexReplace", [input, pattern, rewrite], replace_global: replace_global)
|
2935
|
+
end
|
2936
|
+
|
2937
|
+
def relu(features: nil)
|
2938
|
+
Utils.execute("Relu", [features])
|
2939
|
+
end
|
2940
|
+
|
2941
|
+
def relu6(features: nil)
|
2942
|
+
Utils.execute("Relu6", [features])
|
2943
|
+
end
|
2944
|
+
|
2945
|
+
def relu6_grad(gradients: nil, features: nil)
|
2946
|
+
Utils.execute("Relu6Grad", [gradients, features])
|
2947
|
+
end
|
2948
|
+
|
2949
|
+
def relu_grad(gradients: nil, features: nil)
|
2950
|
+
Utils.execute("ReluGrad", [gradients, features])
|
2951
|
+
end
|
2952
|
+
|
2953
|
+
def remote_call(target: nil, args: nil, f: nil)
|
2954
|
+
Utils.execute("RemoteCall", [target, args], f: f)
|
2955
|
+
end
|
2956
|
+
|
2957
|
+
def remote_fused_graph_execute(inputs: nil, serialized_remote_fused_graph_execute_info: nil)
|
2958
|
+
Utils.execute("RemoteFusedGraphExecute", [inputs], serialized_remote_fused_graph_execute_info: serialized_remote_fused_graph_execute_info)
|
2959
|
+
end
|
2960
|
+
|
2961
|
+
def repeat_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
|
2962
|
+
Utils.execute("RepeatDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
|
2963
|
+
end
|
2964
|
+
|
2965
|
+
def requantization_range(input: nil, input_min: nil, input_max: nil)
|
2966
|
+
Utils.execute("RequantizationRange", [input, input_min, input_max])
|
2967
|
+
end
|
2968
|
+
|
2969
|
+
def requantization_range_per_channel(input: nil, input_min: nil, input_max: nil, clip_value_max: nil)
|
2970
|
+
Utils.execute("RequantizationRangePerChannel", [input, input_min, input_max], clip_value_max: clip_value_max)
|
2971
|
+
end
|
2972
|
+
|
2973
|
+
def requantize(input: nil, input_min: nil, input_max: nil, requested_output_min: nil, requested_output_max: nil, out_type: nil)
|
2974
|
+
Utils.execute("Requantize", [input, input_min, input_max, requested_output_min, requested_output_max], out_type: out_type)
|
2975
|
+
end
|
2976
|
+
|
2977
|
+
def requantize_per_channel(input: nil, input_min: nil, input_max: nil, requested_output_min: nil, requested_output_max: nil, out_type: nil)
|
2978
|
+
Utils.execute("RequantizePerChannel", [input, input_min, input_max, requested_output_min, requested_output_max], out_type: out_type)
|
2979
|
+
end
|
2980
|
+
|
2981
|
+
def reshape(tensor: nil, shape: nil)
|
2982
|
+
Utils.execute("Reshape", [tensor, shape])
|
2983
|
+
end
|
2984
|
+
|
2985
|
+
def resize_area(images: nil, size: nil, align_corners: nil)
|
2986
|
+
Utils.execute("ResizeArea", [images, size], align_corners: align_corners)
|
2987
|
+
end
|
2988
|
+
|
2989
|
+
def resize_bicubic(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
2990
|
+
Utils.execute("ResizeBicubic", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
2991
|
+
end
|
2992
|
+
|
2993
|
+
def resize_bicubic_grad(grads: nil, original_image: nil, align_corners: nil, half_pixel_centers: nil)
|
2994
|
+
Utils.execute("ResizeBicubicGrad", [grads, original_image], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
2995
|
+
end
|
2996
|
+
|
2997
|
+
def resize_bilinear(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
2998
|
+
Utils.execute("ResizeBilinear", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
2999
|
+
end
|
3000
|
+
|
3001
|
+
def resize_bilinear_grad(grads: nil, original_image: nil, align_corners: nil, half_pixel_centers: nil)
|
3002
|
+
Utils.execute("ResizeBilinearGrad", [grads, original_image], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
3003
|
+
end
|
3004
|
+
|
3005
|
+
def resize_nearest_neighbor(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
3006
|
+
Utils.execute("ResizeNearestNeighbor", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
3007
|
+
end
|
3008
|
+
|
3009
|
+
def resize_nearest_neighbor_grad(grads: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
|
3010
|
+
Utils.execute("ResizeNearestNeighborGrad", [grads, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
|
3011
|
+
end
|
3012
|
+
|
3013
|
+
def resource_apply_ada_max(var: nil, m: nil, v: nil, beta1_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
|
3014
|
+
Utils.execute("ResourceApplyAdaMax", [var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
|
3015
|
+
end
|
3016
|
+
|
3017
|
+
def resource_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, use_locking: nil)
|
3018
|
+
Utils.execute("ResourceApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad], use_locking: use_locking)
|
3019
|
+
end
|
3020
|
+
|
3021
|
+
def resource_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, use_locking: nil, update_slots: nil)
|
3022
|
+
Utils.execute("ResourceApplyAdagrad", [var, accum, lr, grad], use_locking: use_locking, update_slots: update_slots)
|
3023
|
+
end
|
3024
|
+
|
3025
|
+
def resource_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
3026
|
+
Utils.execute("ResourceApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step], use_locking: use_locking)
|
3027
|
+
end
|
3028
|
+
|
3029
|
+
def resource_apply_adam(var: nil, m: nil, v: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil, use_nesterov: nil)
|
3030
|
+
Utils.execute("ResourceApplyAdam", [var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking, use_nesterov: use_nesterov)
|
3031
|
+
end
|
3032
|
+
|
3033
|
+
def resource_apply_adam_with_amsgrad(var: nil, m: nil, v: nil, vhat: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
|
3034
|
+
Utils.execute("ResourceApplyAdamWithAmsgrad", [var, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
|
3035
|
+
end
|
3036
|
+
|
3037
|
+
def resource_apply_add_sign(var: nil, m: nil, lr: nil, alpha: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
3038
|
+
Utils.execute("ResourceApplyAddSign", [var, m, lr, alpha, sign_decay, beta, grad], use_locking: use_locking)
|
3039
|
+
end
|
3040
|
+
|
3041
|
+
def resource_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
3042
|
+
Utils.execute("ResourceApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
3043
|
+
end
|
3044
|
+
|
3045
|
+
def resource_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
3046
|
+
Utils.execute("ResourceApplyFtrl", [var, accum, linear, grad, lr, l1, l2, lr_power], use_locking: use_locking)
|
3047
|
+
end
|
3048
|
+
|
3049
|
+
def resource_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
3050
|
+
Utils.execute("ResourceApplyFtrlV2", [var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
3051
|
+
end
|
3052
|
+
|
3053
|
+
def resource_apply_gradient_descent(var: nil, alpha: nil, delta: nil, use_locking: nil)
|
3054
|
+
Utils.execute("ResourceApplyGradientDescent", [var, alpha, delta], use_locking: use_locking)
|
3055
|
+
end
|
3056
|
+
|
3057
|
+
def resource_apply_keras_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
3058
|
+
Utils.execute("ResourceApplyKerasMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
3059
|
+
end
|
3060
|
+
|
3061
|
+
def resource_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
3062
|
+
Utils.execute("ResourceApplyMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
3063
|
+
end
|
3064
|
+
|
3065
|
+
def resource_apply_power_sign(var: nil, m: nil, lr: nil, logbase: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
|
3066
|
+
Utils.execute("ResourceApplyPowerSign", [var, m, lr, logbase, sign_decay, beta, grad], use_locking: use_locking)
|
3067
|
+
end
|
3068
|
+
|
3069
|
+
def resource_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, use_locking: nil)
|
3070
|
+
Utils.execute("ResourceApplyProximalAdagrad", [var, accum, lr, l1, l2, grad], use_locking: use_locking)
|
3071
|
+
end
|
3072
|
+
|
3073
|
+
def resource_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, delta: nil, use_locking: nil)
|
3074
|
+
Utils.execute("ResourceApplyProximalGradientDescent", [var, alpha, l1, l2, delta], use_locking: use_locking)
|
3075
|
+
end
|
3076
|
+
|
3077
|
+
def resource_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
|
3078
|
+
Utils.execute("ResourceApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
|
3079
|
+
end
|
3080
|
+
|
3081
|
+
def resource_count_up_to(resource: nil, limit: nil)
|
3082
|
+
Utils.execute("ResourceCountUpTo", [resource], limit: limit)
|
3083
|
+
end
|
3084
|
+
|
3085
|
+
def resource_gather(resource: nil, indices: nil, batch_dims: nil, validate_indices: nil, dtype: nil)
|
3086
|
+
Utils.execute("ResourceGather", [resource, indices], batch_dims: batch_dims, validate_indices: validate_indices, dtype: dtype)
|
3087
|
+
end
|
3088
|
+
|
3089
|
+
def resource_gather_nd(resource: nil, indices: nil, dtype: nil)
|
3090
|
+
Utils.execute("ResourceGatherNd", [resource, indices], dtype: dtype)
|
3091
|
+
end
|
3092
|
+
|
3093
|
+
def resource_scatter_add(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3094
|
+
Utils.execute("ResourceScatterAdd", [resource, indices, updates], dtype: dtype)
|
3095
|
+
end
|
3096
|
+
|
3097
|
+
def resource_scatter_div(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3098
|
+
Utils.execute("ResourceScatterDiv", [resource, indices, updates], dtype: dtype)
|
3099
|
+
end
|
3100
|
+
|
3101
|
+
def resource_scatter_max(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3102
|
+
Utils.execute("ResourceScatterMax", [resource, indices, updates], dtype: dtype)
|
3103
|
+
end
|
3104
|
+
|
3105
|
+
def resource_scatter_min(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3106
|
+
Utils.execute("ResourceScatterMin", [resource, indices, updates], dtype: dtype)
|
3107
|
+
end
|
3108
|
+
|
3109
|
+
def resource_scatter_mul(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3110
|
+
Utils.execute("ResourceScatterMul", [resource, indices, updates], dtype: dtype)
|
3111
|
+
end
|
3112
|
+
|
3113
|
+
def resource_scatter_nd_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3114
|
+
Utils.execute("ResourceScatterNdAdd", [ref, indices, updates], use_locking: use_locking)
|
3115
|
+
end
|
3116
|
+
|
3117
|
+
def resource_scatter_nd_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3118
|
+
Utils.execute("ResourceScatterNdSub", [ref, indices, updates], use_locking: use_locking)
|
3119
|
+
end
|
3120
|
+
|
3121
|
+
def resource_scatter_nd_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3122
|
+
Utils.execute("ResourceScatterNdUpdate", [ref, indices, updates], use_locking: use_locking)
|
3123
|
+
end
|
3124
|
+
|
3125
|
+
def resource_scatter_sub(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3126
|
+
Utils.execute("ResourceScatterSub", [resource, indices, updates], dtype: dtype)
|
3127
|
+
end
|
3128
|
+
|
3129
|
+
def resource_scatter_update(resource: nil, indices: nil, updates: nil, dtype: nil)
|
3130
|
+
Utils.execute("ResourceScatterUpdate", [resource, indices, updates], dtype: dtype)
|
3131
|
+
end
|
3132
|
+
|
3133
|
+
def resource_sparse_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
3134
|
+
Utils.execute("ResourceSparseApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad, indices], use_locking: use_locking)
|
3135
|
+
end
|
3136
|
+
|
3137
|
+
def resource_sparse_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, use_locking: nil, update_slots: nil)
|
3138
|
+
Utils.execute("ResourceSparseApplyAdagrad", [var, accum, lr, grad, indices], use_locking: use_locking, update_slots: update_slots)
|
3139
|
+
end
|
3140
|
+
|
3141
|
+
def resource_sparse_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
3142
|
+
Utils.execute("ResourceSparseApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step], use_locking: use_locking)
|
3143
|
+
end
|
3144
|
+
|
3145
|
+
def resource_sparse_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
3146
|
+
Utils.execute("ResourceSparseApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
3147
|
+
end
|
3148
|
+
|
3149
|
+
def resource_sparse_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
3150
|
+
Utils.execute("ResourceSparseApplyFtrl", [var, accum, linear, grad, indices, lr, l1, l2, lr_power], use_locking: use_locking)
|
3151
|
+
end
|
3152
|
+
|
3153
|
+
def resource_sparse_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
3154
|
+
Utils.execute("ResourceSparseApplyFtrlV2", [var, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
3155
|
+
end
|
3156
|
+
|
3157
|
+
def resource_sparse_apply_keras_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
3158
|
+
Utils.execute("ResourceSparseApplyKerasMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
3159
|
+
end
|
3160
|
+
|
3161
|
+
def resource_sparse_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
3162
|
+
Utils.execute("ResourceSparseApplyMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
3163
|
+
end
|
3164
|
+
|
3165
|
+
def resource_sparse_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
3166
|
+
Utils.execute("ResourceSparseApplyProximalAdagrad", [var, accum, lr, l1, l2, grad, indices], use_locking: use_locking)
|
3167
|
+
end
|
3168
|
+
|
3169
|
+
def resource_sparse_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
3170
|
+
Utils.execute("ResourceSparseApplyProximalGradientDescent", [var, alpha, l1, l2, grad, indices], use_locking: use_locking)
|
3171
|
+
end
|
3172
|
+
|
3173
|
+
def resource_sparse_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
3174
|
+
Utils.execute("ResourceSparseApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
3175
|
+
end
|
3176
|
+
|
3177
|
+
def resource_strided_slice_assign(ref: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
3178
|
+
Utils.execute("ResourceStridedSliceAssign", [ref, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
3179
|
+
end
|
3180
|
+
|
3181
|
+
def restore(file_pattern: nil, tensor_name: nil, dt: nil, preferred_shard: nil)
|
3182
|
+
Utils.execute("Restore", [file_pattern, tensor_name], dt: dt, preferred_shard: preferred_shard)
|
3183
|
+
end
|
3184
|
+
|
3185
|
+
def restore_slice(file_pattern: nil, tensor_name: nil, shape_and_slice: nil, dt: nil, preferred_shard: nil)
|
3186
|
+
Utils.execute("RestoreSlice", [file_pattern, tensor_name, shape_and_slice], dt: dt, preferred_shard: preferred_shard)
|
3187
|
+
end
|
3188
|
+
|
3189
|
+
def restore_v2(prefix: nil, tensor_names: nil, shape_and_slices: nil, dtypes: nil)
|
3190
|
+
Utils.execute("RestoreV2", [prefix, tensor_names, shape_and_slices], dtypes: dtypes)
|
3191
|
+
end
|
3192
|
+
|
3193
|
+
def retrieve_tpu_embedding_adam_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3194
|
+
Utils.execute("RetrieveTPUEmbeddingADAMParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3195
|
+
end
|
3196
|
+
|
3197
|
+
def retrieve_tpu_embedding_adam_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3198
|
+
Utils.execute("RetrieveTPUEmbeddingADAMParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3199
|
+
end
|
3200
|
+
|
3201
|
+
def retrieve_tpu_embedding_adadelta_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3202
|
+
Utils.execute("RetrieveTPUEmbeddingAdadeltaParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3203
|
+
end
|
3204
|
+
|
3205
|
+
def retrieve_tpu_embedding_adadelta_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3206
|
+
Utils.execute("RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3207
|
+
end
|
3208
|
+
|
3209
|
+
def retrieve_tpu_embedding_adagrad_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3210
|
+
Utils.execute("RetrieveTPUEmbeddingAdagradParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3211
|
+
end
|
3212
|
+
|
3213
|
+
def retrieve_tpu_embedding_adagrad_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3214
|
+
Utils.execute("RetrieveTPUEmbeddingAdagradParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3215
|
+
end
|
3216
|
+
|
3217
|
+
def retrieve_tpu_embedding_centered_rms_prop_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3218
|
+
Utils.execute("RetrieveTPUEmbeddingCenteredRMSPropParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3219
|
+
end
|
3220
|
+
|
3221
|
+
def retrieve_tpu_embedding_ftrl_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3222
|
+
Utils.execute("RetrieveTPUEmbeddingFTRLParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3223
|
+
end
|
3224
|
+
|
3225
|
+
def retrieve_tpu_embedding_ftrl_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3226
|
+
Utils.execute("RetrieveTPUEmbeddingFTRLParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3227
|
+
end
|
3228
|
+
|
3229
|
+
def retrieve_tpu_embedding_mdl_adagrad_light_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3230
|
+
Utils.execute("RetrieveTPUEmbeddingMDLAdagradLightParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3231
|
+
end
|
3232
|
+
|
3233
|
+
def retrieve_tpu_embedding_momentum_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3234
|
+
Utils.execute("RetrieveTPUEmbeddingMomentumParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3235
|
+
end
|
3236
|
+
|
3237
|
+
def retrieve_tpu_embedding_momentum_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3238
|
+
Utils.execute("RetrieveTPUEmbeddingMomentumParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3239
|
+
end
|
3240
|
+
|
3241
|
+
def retrieve_tpu_embedding_proximal_adagrad_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3242
|
+
Utils.execute("RetrieveTPUEmbeddingProximalAdagradParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3243
|
+
end
|
3244
|
+
|
3245
|
+
def retrieve_tpu_embedding_proximal_adagrad_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3246
|
+
Utils.execute("RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3247
|
+
end
|
3248
|
+
|
3249
|
+
def retrieve_tpu_embedding_rms_prop_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3250
|
+
Utils.execute("RetrieveTPUEmbeddingRMSPropParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3251
|
+
end
|
3252
|
+
|
3253
|
+
def retrieve_tpu_embedding_rms_prop_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3254
|
+
Utils.execute("RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3255
|
+
end
|
3256
|
+
|
3257
|
+
def retrieve_tpu_embedding_stochastic_gradient_descent_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
|
3258
|
+
Utils.execute("RetrieveTPUEmbeddingStochasticGradientDescentParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
|
3259
|
+
end
|
3260
|
+
|
3261
|
+
def reverse(tensor: nil, dims: nil)
|
3262
|
+
Utils.execute("Reverse", [tensor, dims])
|
3263
|
+
end
|
3264
|
+
|
3265
|
+
def reverse_sequence(input: nil, seq_lengths: nil, seq_dim: nil, batch_dim: nil)
|
3266
|
+
Utils.execute("ReverseSequence", [input, seq_lengths], seq_dim: seq_dim, batch_dim: batch_dim)
|
3267
|
+
end
|
3268
|
+
|
3269
|
+
def reverse_v2(tensor: nil, axis: nil)
|
3270
|
+
Utils.execute("ReverseV2", [tensor, axis])
|
3271
|
+
end
|
3272
|
+
|
3273
|
+
def right_shift(x: nil, y: nil)
|
3274
|
+
Utils.execute("RightShift", [x, y])
|
3275
|
+
end
|
3276
|
+
|
3277
|
+
def rint(x: nil)
|
3278
|
+
Utils.execute("Rint", [x])
|
3279
|
+
end
|
3280
|
+
|
3281
|
+
def rng_skip(resource: nil, algorithm: nil, delta: nil)
|
3282
|
+
Utils.execute("RngSkip", [resource, algorithm, delta])
|
3283
|
+
end
|
3284
|
+
|
3285
|
+
def roll(input: nil, shift: nil, axis: nil)
|
3286
|
+
Utils.execute("Roll", [input, shift, axis])
|
3287
|
+
end
|
3288
|
+
|
3289
|
+
def round(x: nil)
|
3290
|
+
Utils.execute("Round", [x])
|
3291
|
+
end
|
3292
|
+
|
3293
|
+
def rpc(address: nil, method: nil, request: nil, protocol: nil, fail_fast: nil, timeout_in_ms: nil)
|
3294
|
+
Utils.execute("Rpc", [address, method, request], protocol: protocol, fail_fast: fail_fast, timeout_in_ms: timeout_in_ms)
|
3295
|
+
end
|
3296
|
+
|
3297
|
+
def rsqrt(x: nil)
|
3298
|
+
Utils.execute("Rsqrt", [x])
|
3299
|
+
end
|
3300
|
+
|
3301
|
+
def rsqrt_grad(y: nil, dy: nil)
|
3302
|
+
Utils.execute("RsqrtGrad", [y, dy])
|
3303
|
+
end
|
3304
|
+
|
3305
|
+
def sample_distorted_bounding_box(image_size: nil, bounding_boxes: nil, seed: nil, seed2: nil, min_object_covered: nil, aspect_ratio_range: nil, area_range: nil, max_attempts: nil, use_image_if_no_bounding_boxes: nil)
|
3306
|
+
Utils.execute("SampleDistortedBoundingBox", [image_size, bounding_boxes], seed: seed, seed2: seed2, min_object_covered: min_object_covered, aspect_ratio_range: aspect_ratio_range, area_range: area_range, max_attempts: max_attempts, use_image_if_no_bounding_boxes: use_image_if_no_bounding_boxes)
|
3307
|
+
end
|
3308
|
+
|
3309
|
+
def sample_distorted_bounding_box_v2(image_size: nil, bounding_boxes: nil, min_object_covered: nil, seed: nil, seed2: nil, aspect_ratio_range: nil, area_range: nil, max_attempts: nil, use_image_if_no_bounding_boxes: nil)
|
3310
|
+
Utils.execute("SampleDistortedBoundingBoxV2", [image_size, bounding_boxes, min_object_covered], seed: seed, seed2: seed2, aspect_ratio_range: aspect_ratio_range, area_range: area_range, max_attempts: max_attempts, use_image_if_no_bounding_boxes: use_image_if_no_bounding_boxes)
|
3311
|
+
end
|
3312
|
+
|
3313
|
+
def sampling_dataset(input_dataset: nil, rate: nil, seed: nil, seed2: nil, output_types: nil, output_shapes: nil)
|
3314
|
+
Utils.execute("SamplingDataset", [input_dataset, rate, seed, seed2], output_types: output_types, output_shapes: output_shapes)
|
3315
|
+
end
|
3316
|
+
|
3317
|
+
def save(filename: nil, tensor_names: nil, data: nil)
|
3318
|
+
Utils.execute("Save", [filename, tensor_names, data])
|
3319
|
+
end
|
3320
|
+
|
3321
|
+
def save_slices(filename: nil, tensor_names: nil, shapes_and_slices: nil, data: nil)
|
3322
|
+
Utils.execute("SaveSlices", [filename, tensor_names, shapes_and_slices, data])
|
3323
|
+
end
|
3324
|
+
|
3325
|
+
def save_v2(prefix: nil, tensor_names: nil, shape_and_slices: nil, tensors: nil, dtypes: nil)
|
3326
|
+
Utils.execute("SaveV2", [prefix, tensor_names, shape_and_slices, tensors], dtypes: dtypes)
|
3327
|
+
end
|
3328
|
+
|
3329
|
+
def scalar_summary(tags: nil, values: nil)
|
3330
|
+
Utils.execute("ScalarSummary", [tags, values])
|
3331
|
+
end
|
3332
|
+
|
3333
|
+
def scale_and_translate(images: nil, size: nil, scale: nil, translation: nil, kernel_type: nil, antialias: nil)
|
3334
|
+
Utils.execute("ScaleAndTranslate", [images, size, scale, translation], kernel_type: kernel_type, antialias: antialias)
|
3335
|
+
end
|
3336
|
+
|
3337
|
+
def scale_and_translate_grad(grads: nil, original_image: nil, scale: nil, translation: nil, kernel_type: nil, antialias: nil)
|
3338
|
+
Utils.execute("ScaleAndTranslateGrad", [grads, original_image, scale, translation], kernel_type: kernel_type, antialias: antialias)
|
3339
|
+
end
|
3340
|
+
|
3341
|
+
def scatter_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3342
|
+
Utils.execute("ScatterAdd", [ref, indices, updates], use_locking: use_locking)
|
3343
|
+
end
|
3344
|
+
|
3345
|
+
def scatter_div(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3346
|
+
Utils.execute("ScatterDiv", [ref, indices, updates], use_locking: use_locking)
|
3347
|
+
end
|
3348
|
+
|
3349
|
+
def scatter_max(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3350
|
+
Utils.execute("ScatterMax", [ref, indices, updates], use_locking: use_locking)
|
3351
|
+
end
|
3352
|
+
|
3353
|
+
def scatter_min(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3354
|
+
Utils.execute("ScatterMin", [ref, indices, updates], use_locking: use_locking)
|
3355
|
+
end
|
3356
|
+
|
3357
|
+
def scatter_mul(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3358
|
+
Utils.execute("ScatterMul", [ref, indices, updates], use_locking: use_locking)
|
3359
|
+
end
|
3360
|
+
|
3361
|
+
def scatter_nd(indices: nil, updates: nil, shape: nil)
|
3362
|
+
Utils.execute("ScatterNd", [indices, updates, shape])
|
3363
|
+
end
|
3364
|
+
|
3365
|
+
def scatter_nd_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3366
|
+
Utils.execute("ScatterNdAdd", [ref, indices, updates], use_locking: use_locking)
|
3367
|
+
end
|
3368
|
+
|
3369
|
+
def scatter_nd_non_aliasing_add(input: nil, indices: nil, updates: nil)
|
3370
|
+
Utils.execute("ScatterNdNonAliasingAdd", [input, indices, updates])
|
3371
|
+
end
|
3372
|
+
|
3373
|
+
def scatter_nd_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3374
|
+
Utils.execute("ScatterNdSub", [ref, indices, updates], use_locking: use_locking)
|
3375
|
+
end
|
3376
|
+
|
3377
|
+
def scatter_nd_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3378
|
+
Utils.execute("ScatterNdUpdate", [ref, indices, updates], use_locking: use_locking)
|
3379
|
+
end
|
3380
|
+
|
3381
|
+
def scatter_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3382
|
+
Utils.execute("ScatterSub", [ref, indices, updates], use_locking: use_locking)
|
3383
|
+
end
|
3384
|
+
|
3385
|
+
def scatter_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
|
3386
|
+
Utils.execute("ScatterUpdate", [ref, indices, updates], use_locking: use_locking)
|
3387
|
+
end
|
3388
|
+
|
3389
|
+
def sdca_fprint(input: nil)
|
3390
|
+
Utils.execute("SdcaFprint", [input])
|
3391
|
+
end
|
3392
|
+
|
3393
|
+
def sdca_optimizer(sparse_example_indices: nil, sparse_feature_indices: nil, sparse_feature_values: nil, dense_features: nil, example_weights: nil, example_labels: nil, sparse_indices: nil, sparse_weights: nil, dense_weights: nil, example_state_data: nil, loss_type: nil, adaptative: nil, num_sparse_features: nil, num_sparse_features_with_values: nil, num_dense_features: nil, l1: nil, l2: nil, num_loss_partitions: nil, num_inner_iterations: nil)
|
3394
|
+
Utils.execute("SdcaOptimizer", [sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data], loss_type: loss_type, adaptative: adaptative, num_sparse_features: num_sparse_features, num_sparse_features_with_values: num_sparse_features_with_values, num_dense_features: num_dense_features, l1: l1, l2: l2, num_loss_partitions: num_loss_partitions, num_inner_iterations: num_inner_iterations)
|
3395
|
+
end
|
3396
|
+
|
3397
|
+
def sdca_optimizer_v2(sparse_example_indices: nil, sparse_feature_indices: nil, sparse_feature_values: nil, dense_features: nil, example_weights: nil, example_labels: nil, sparse_indices: nil, sparse_weights: nil, dense_weights: nil, example_state_data: nil, loss_type: nil, adaptive: nil, num_sparse_features: nil, num_sparse_features_with_values: nil, num_dense_features: nil, l1: nil, l2: nil, num_loss_partitions: nil, num_inner_iterations: nil)
|
3398
|
+
Utils.execute("SdcaOptimizerV2", [sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data], loss_type: loss_type, adaptive: adaptive, num_sparse_features: num_sparse_features, num_sparse_features_with_values: num_sparse_features_with_values, num_dense_features: num_dense_features, l1: l1, l2: l2, num_loss_partitions: num_loss_partitions, num_inner_iterations: num_inner_iterations)
|
3399
|
+
end
|
3400
|
+
|
3401
|
+
def sdca_shrink_l1(weights: nil, num_features: nil, l1: nil, l2: nil)
|
3402
|
+
Utils.execute("SdcaShrinkL1", [weights], num_features: num_features, l1: l1, l2: l2)
|
3403
|
+
end
|
3404
|
+
|
3405
|
+
def segment_max(data: nil, segment_ids: nil)
|
3406
|
+
Utils.execute("SegmentMax", [data, segment_ids])
|
3407
|
+
end
|
3408
|
+
|
3409
|
+
def segment_mean(data: nil, segment_ids: nil)
|
3410
|
+
Utils.execute("SegmentMean", [data, segment_ids])
|
3411
|
+
end
|
3412
|
+
|
3413
|
+
def segment_min(data: nil, segment_ids: nil)
|
3414
|
+
Utils.execute("SegmentMin", [data, segment_ids])
|
3415
|
+
end
|
3416
|
+
|
3417
|
+
def segment_prod(data: nil, segment_ids: nil)
|
3418
|
+
Utils.execute("SegmentProd", [data, segment_ids])
|
3419
|
+
end
|
3420
|
+
|
3421
|
+
def segment_sum(data: nil, segment_ids: nil)
|
3422
|
+
Utils.execute("SegmentSum", [data, segment_ids])
|
3423
|
+
end
|
3424
|
+
|
3425
|
+
def select(condition: nil, t: nil, e: nil)
|
3426
|
+
Utils.execute("Select", [condition, t, e])
|
3427
|
+
end
|
3428
|
+
|
3429
|
+
def select_v2(condition: nil, t: nil, e: nil)
|
3430
|
+
Utils.execute("SelectV2", [condition, t, e])
|
3431
|
+
end
|
3432
|
+
|
3433
|
+
def self_adjoint_eig(input: nil)
|
3434
|
+
Utils.execute("SelfAdjointEig", [input])
|
3435
|
+
end
|
3436
|
+
|
3437
|
+
def self_adjoint_eig_v2(input: nil, compute_v: nil)
|
3438
|
+
Utils.execute("SelfAdjointEigV2", [input], compute_v: compute_v)
|
3439
|
+
end
|
3440
|
+
|
3441
|
+
def selu(features: nil)
|
3442
|
+
Utils.execute("Selu", [features])
|
3443
|
+
end
|
3444
|
+
|
3445
|
+
def selu_grad(gradients: nil, outputs: nil)
|
3446
|
+
Utils.execute("SeluGrad", [gradients, outputs])
|
3447
|
+
end
|
3448
|
+
|
3449
|
+
def send_tpu_embedding_gradients(inputs: nil, learning_rates: nil, config: nil)
|
3450
|
+
Utils.execute("SendTPUEmbeddingGradients", [inputs, learning_rates], config: config)
|
3451
|
+
end
|
3452
|
+
|
3453
|
+
def serialize_iterator(resource_handle: nil)
|
3454
|
+
Utils.execute("SerializeIterator", [resource_handle])
|
3455
|
+
end
|
3456
|
+
|
3457
|
+
def serialize_many_sparse(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, out_type: nil)
|
3458
|
+
Utils.execute("SerializeManySparse", [sparse_indices, sparse_values, sparse_shape], out_type: out_type)
|
3459
|
+
end
|
3460
|
+
|
3461
|
+
def serialize_sparse(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, out_type: nil)
|
3462
|
+
Utils.execute("SerializeSparse", [sparse_indices, sparse_values, sparse_shape], out_type: out_type)
|
3463
|
+
end
|
3464
|
+
|
3465
|
+
def serialize_tensor(tensor: nil)
|
3466
|
+
Utils.execute("SerializeTensor", [tensor])
|
3467
|
+
end
|
3468
|
+
|
3469
|
+
def set_size(set_indices: nil, set_values: nil, set_shape: nil, validate_indices: nil)
|
3470
|
+
Utils.execute("SetSize", [set_indices, set_values, set_shape], validate_indices: validate_indices)
|
3471
|
+
end
|
3472
|
+
|
3473
|
+
def shape(input: nil, out_type: nil)
|
3474
|
+
Utils.execute("Shape", [input], out_type: out_type)
|
3475
|
+
end
|
3476
|
+
|
3477
|
+
def shape_n(input: nil, out_type: nil)
|
3478
|
+
Utils.execute("ShapeN", [input], out_type: out_type)
|
3479
|
+
end
|
3480
|
+
|
3481
|
+
def shard_dataset(input_dataset: nil, num_shards: nil, index: nil, require_non_empty: nil, output_types: nil, output_shapes: nil)
|
3482
|
+
Utils.execute("ShardDataset", [input_dataset, num_shards, index], require_non_empty: require_non_empty, output_types: output_types, output_shapes: output_shapes)
|
3483
|
+
end
|
3484
|
+
|
3485
|
+
def sharded_filename(basename: nil, shard: nil, num_shards: nil)
|
3486
|
+
Utils.execute("ShardedFilename", [basename, shard, num_shards])
|
3487
|
+
end
|
3488
|
+
|
3489
|
+
def sharded_filespec(basename: nil, num_shards: nil)
|
3490
|
+
Utils.execute("ShardedFilespec", [basename, num_shards])
|
3491
|
+
end
|
3492
|
+
|
3493
|
+
def shuffle_and_repeat_dataset(input_dataset: nil, buffer_size: nil, seed: nil, seed2: nil, count: nil, output_types: nil, output_shapes: nil)
|
3494
|
+
Utils.execute("ShuffleAndRepeatDataset", [input_dataset, buffer_size, seed, seed2, count], output_types: output_types, output_shapes: output_shapes)
|
3495
|
+
end
|
3496
|
+
|
3497
|
+
def shuffle_dataset(input_dataset: nil, buffer_size: nil, seed: nil, seed2: nil, reshuffle_each_iteration: nil, output_types: nil, output_shapes: nil)
|
3498
|
+
Utils.execute("ShuffleDataset", [input_dataset, buffer_size, seed, seed2], reshuffle_each_iteration: reshuffle_each_iteration, output_types: output_types, output_shapes: output_shapes)
|
3499
|
+
end
|
3500
|
+
|
3501
|
+
def shutdown_distributed_tpu
|
3502
|
+
Utils.execute("ShutdownDistributedTPU", [])
|
3503
|
+
end
|
3504
|
+
|
3505
|
+
def sigmoid(x: nil)
|
3506
|
+
Utils.execute("Sigmoid", [x])
|
3507
|
+
end
|
3508
|
+
|
3509
|
+
def sigmoid_grad(y: nil, dy: nil)
|
3510
|
+
Utils.execute("SigmoidGrad", [y, dy])
|
3511
|
+
end
|
3512
|
+
|
3513
|
+
def sign(x: nil)
|
3514
|
+
Utils.execute("Sign", [x])
|
3515
|
+
end
|
3516
|
+
|
3517
|
+
def sin(x: nil)
|
3518
|
+
Utils.execute("Sin", [x])
|
3519
|
+
end
|
3520
|
+
|
3521
|
+
def sinh(x: nil)
|
3522
|
+
Utils.execute("Sinh", [x])
|
3523
|
+
end
|
3524
|
+
|
3525
|
+
def size(input: nil, out_type: nil)
|
3526
|
+
Utils.execute("Size", [input], out_type: out_type)
|
3527
|
+
end
|
3528
|
+
|
3529
|
+
def skip_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
|
3530
|
+
Utils.execute("SkipDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
|
3531
|
+
end
|
3532
|
+
|
3533
|
+
def skipgram(filename: nil, batch_size: nil, window_size: nil, min_count: nil, subsample: nil)
|
3534
|
+
Utils.execute("Skipgram", [], filename: filename, batch_size: batch_size, window_size: window_size, min_count: min_count, subsample: subsample)
|
3535
|
+
end
|
3536
|
+
|
3537
|
+
def slice(input: nil, start: nil, size: nil)
|
3538
|
+
Utils.execute("Slice", [input, start, size])
|
3539
|
+
end
|
3540
|
+
|
3541
|
+
def snapshot(input: nil)
|
3542
|
+
Utils.execute("Snapshot", [input])
|
3543
|
+
end
|
3544
|
+
|
3545
|
+
def snapshot_dataset(input_dataset: nil, path: nil, output_types: nil, output_shapes: nil)
|
3546
|
+
Utils.execute("SnapshotDataset", [input_dataset, path], output_types: output_types, output_shapes: output_shapes)
|
3547
|
+
end
|
3548
|
+
|
3549
|
+
def softmax(logits: nil)
|
3550
|
+
Utils.execute("Softmax", [logits])
|
3551
|
+
end
|
3552
|
+
|
3553
|
+
def softmax_cross_entropy_with_logits(features: nil, labels: nil)
|
3554
|
+
Utils.execute("SoftmaxCrossEntropyWithLogits", [features, labels])
|
3555
|
+
end
|
3556
|
+
|
3557
|
+
def softplus(features: nil)
|
3558
|
+
Utils.execute("Softplus", [features])
|
3559
|
+
end
|
3560
|
+
|
3561
|
+
def softplus_grad(gradients: nil, features: nil)
|
3562
|
+
Utils.execute("SoftplusGrad", [gradients, features])
|
3563
|
+
end
|
3564
|
+
|
3565
|
+
def softsign(features: nil)
|
3566
|
+
Utils.execute("Softsign", [features])
|
3567
|
+
end
|
3568
|
+
|
3569
|
+
def softsign_grad(gradients: nil, features: nil)
|
3570
|
+
Utils.execute("SoftsignGrad", [gradients, features])
|
3571
|
+
end
|
3572
|
+
|
3573
|
+
def space_to_batch(input: nil, paddings: nil, block_size: nil)
|
3574
|
+
Utils.execute("SpaceToBatch", [input, paddings], block_size: block_size)
|
3575
|
+
end
|
3576
|
+
|
3577
|
+
def space_to_batch_nd(input: nil, block_shape: nil, paddings: nil)
|
3578
|
+
Utils.execute("SpaceToBatchND", [input, block_shape, paddings])
|
3579
|
+
end
|
3580
|
+
|
3581
|
+
def space_to_depth(input: nil, block_size: nil, data_format: nil)
|
3582
|
+
Utils.execute("SpaceToDepth", [input], block_size: block_size, data_format: data_format)
|
3583
|
+
end
|
3584
|
+
|
3585
|
+
def sparse_accumulator_apply_gradient(handle: nil, local_step: nil, gradient_indices: nil, gradient_values: nil, gradient_shape: nil, dtype: nil, has_known_shape: nil)
|
3586
|
+
Utils.execute("SparseAccumulatorApplyGradient", [handle, local_step, gradient_indices, gradient_values, gradient_shape], dtype: dtype, has_known_shape: has_known_shape)
|
3587
|
+
end
|
3588
|
+
|
3589
|
+
def sparse_accumulator_take_gradient(handle: nil, num_required: nil, dtype: nil)
|
3590
|
+
Utils.execute("SparseAccumulatorTakeGradient", [handle, num_required], dtype: dtype)
|
3591
|
+
end
|
3592
|
+
|
3593
|
+
def sparse_add(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil, thresh: nil)
|
3594
|
+
Utils.execute("SparseAdd", [a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh])
|
3595
|
+
end
|
3596
|
+
|
3597
|
+
def sparse_add_grad(backprop_val_grad: nil, a_indices: nil, b_indices: nil, sum_indices: nil)
|
3598
|
+
Utils.execute("SparseAddGrad", [backprop_val_grad, a_indices, b_indices, sum_indices])
|
3599
|
+
end
|
3600
|
+
|
3601
|
+
def sparse_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
3602
|
+
Utils.execute("SparseApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad, indices], use_locking: use_locking)
|
3603
|
+
end
|
3604
|
+
|
3605
|
+
def sparse_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, use_locking: nil, update_slots: nil)
|
3606
|
+
Utils.execute("SparseApplyAdagrad", [var, accum, lr, grad, indices], use_locking: use_locking, update_slots: update_slots)
|
3607
|
+
end
|
3608
|
+
|
3609
|
+
def sparse_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
|
3610
|
+
Utils.execute("SparseApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step], use_locking: use_locking)
|
3611
|
+
end
|
3612
|
+
|
3613
|
+
def sparse_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
3614
|
+
Utils.execute("SparseApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
3615
|
+
end
|
3616
|
+
|
3617
|
+
def sparse_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
|
3618
|
+
Utils.execute("SparseApplyFtrl", [var, accum, linear, grad, indices, lr, l1, l2, lr_power], use_locking: use_locking)
|
3619
|
+
end
|
3620
|
+
|
3621
|
+
def sparse_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
|
3622
|
+
Utils.execute("SparseApplyFtrlV2", [var, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
|
3623
|
+
end
|
3624
|
+
|
3625
|
+
def sparse_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
|
3626
|
+
Utils.execute("SparseApplyMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
|
3627
|
+
end
|
3628
|
+
|
3629
|
+
def sparse_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
3630
|
+
Utils.execute("SparseApplyProximalAdagrad", [var, accum, lr, l1, l2, grad, indices], use_locking: use_locking)
|
3631
|
+
end
|
3632
|
+
|
3633
|
+
def sparse_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
|
3634
|
+
Utils.execute("SparseApplyProximalGradientDescent", [var, alpha, l1, l2, grad, indices], use_locking: use_locking)
|
3635
|
+
end
|
3636
|
+
|
3637
|
+
def sparse_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
|
3638
|
+
Utils.execute("SparseApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
|
3639
|
+
end
|
3640
|
+
|
3641
|
+
def sparse_concat(indices: nil, values: nil, shapes: nil, concat_dim: nil)
|
3642
|
+
Utils.execute("SparseConcat", [indices, values, shapes], concat_dim: concat_dim)
|
3643
|
+
end
|
3644
|
+
|
3645
|
+
def sparse_conditional_accumulator(dtype: nil, shape: nil, container: nil, shared_name: nil, reduction_type: nil)
|
3646
|
+
Utils.execute("SparseConditionalAccumulator", [], dtype: dtype, shape: shape, container: container, shared_name: shared_name, reduction_type: reduction_type)
|
3647
|
+
end
|
3648
|
+
|
3649
|
+
def sparse_cross(indices: nil, values: nil, shapes: nil, dense_inputs: nil, hashed_output: nil, num_buckets: nil, hash_key: nil, sparse_types: nil, dense_types: nil, out_type: nil, internal_type: nil)
|
3650
|
+
Utils.execute("SparseCross", [indices, values, shapes, dense_inputs], hashed_output: hashed_output, num_buckets: num_buckets, hash_key: hash_key, sparse_types: sparse_types, dense_types: dense_types, out_type: out_type, internal_type: internal_type)
|
3651
|
+
end
|
3652
|
+
|
3653
|
+
def sparse_dense_cwise_add(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
|
3654
|
+
Utils.execute("SparseDenseCwiseAdd", [sp_indices, sp_values, sp_shape, dense])
|
3655
|
+
end
|
3656
|
+
|
3657
|
+
def sparse_dense_cwise_div(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
|
3658
|
+
Utils.execute("SparseDenseCwiseDiv", [sp_indices, sp_values, sp_shape, dense])
|
3659
|
+
end
|
3660
|
+
|
3661
|
+
def sparse_dense_cwise_mul(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
|
3662
|
+
Utils.execute("SparseDenseCwiseMul", [sp_indices, sp_values, sp_shape, dense])
|
3663
|
+
end
|
3664
|
+
|
3665
|
+
def sparse_fill_empty_rows(indices: nil, values: nil, dense_shape: nil, default_value: nil)
|
3666
|
+
Utils.execute("SparseFillEmptyRows", [indices, values, dense_shape, default_value])
|
3667
|
+
end
|
3668
|
+
|
3669
|
+
def sparse_fill_empty_rows_grad(reverse_index_map: nil, grad_values: nil)
|
3670
|
+
Utils.execute("SparseFillEmptyRowsGrad", [reverse_index_map, grad_values])
|
3671
|
+
end
|
3672
|
+
|
3673
|
+
def sparse_mat_mul(a: nil, b: nil, transpose_a: nil, transpose_b: nil, a_is_sparse: nil, b_is_sparse: nil)
|
3674
|
+
Utils.execute("SparseMatMul", [a, b], transpose_a: transpose_a, transpose_b: transpose_b, a_is_sparse: a_is_sparse, b_is_sparse: b_is_sparse)
|
3675
|
+
end
|
3676
|
+
|
3677
|
+
def sparse_reduce_max(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
3678
|
+
Utils.execute("SparseReduceMax", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
3679
|
+
end
|
3680
|
+
|
3681
|
+
def sparse_reduce_max_sparse(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
3682
|
+
Utils.execute("SparseReduceMaxSparse", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
3683
|
+
end
|
3684
|
+
|
3685
|
+
def sparse_reduce_sum(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
3686
|
+
Utils.execute("SparseReduceSum", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
3687
|
+
end
|
3688
|
+
|
3689
|
+
def sparse_reduce_sum_sparse(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
|
3690
|
+
Utils.execute("SparseReduceSumSparse", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
|
3691
|
+
end
|
3692
|
+
|
3693
|
+
def sparse_reorder(input_indices: nil, input_values: nil, input_shape: nil)
|
3694
|
+
Utils.execute("SparseReorder", [input_indices, input_values, input_shape])
|
3695
|
+
end
|
3696
|
+
|
3697
|
+
def sparse_reshape(input_indices: nil, input_shape: nil, new_shape: nil)
|
3698
|
+
Utils.execute("SparseReshape", [input_indices, input_shape, new_shape])
|
3699
|
+
end
|
3700
|
+
|
3701
|
+
def sparse_segment_mean(data: nil, indices: nil, segment_ids: nil)
|
3702
|
+
Utils.execute("SparseSegmentMean", [data, indices, segment_ids])
|
3703
|
+
end
|
3704
|
+
|
3705
|
+
def sparse_segment_mean_grad(grad: nil, indices: nil, segment_ids: nil, output_dim0: nil)
|
3706
|
+
Utils.execute("SparseSegmentMeanGrad", [grad, indices, segment_ids, output_dim0])
|
3707
|
+
end
|
3708
|
+
|
3709
|
+
def sparse_segment_mean_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
|
3710
|
+
Utils.execute("SparseSegmentMeanWithNumSegments", [data, indices, segment_ids, num_segments])
|
3711
|
+
end
|
3712
|
+
|
3713
|
+
def sparse_segment_sqrt_n(data: nil, indices: nil, segment_ids: nil)
|
3714
|
+
Utils.execute("SparseSegmentSqrtN", [data, indices, segment_ids])
|
3715
|
+
end
|
3716
|
+
|
3717
|
+
def sparse_segment_sqrt_n_grad(grad: nil, indices: nil, segment_ids: nil, output_dim0: nil)
|
3718
|
+
Utils.execute("SparseSegmentSqrtNGrad", [grad, indices, segment_ids, output_dim0])
|
3719
|
+
end
|
3720
|
+
|
3721
|
+
def sparse_segment_sqrt_n_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
|
3722
|
+
Utils.execute("SparseSegmentSqrtNWithNumSegments", [data, indices, segment_ids, num_segments])
|
3723
|
+
end
|
3724
|
+
|
3725
|
+
def sparse_segment_sum(data: nil, indices: nil, segment_ids: nil)
|
3726
|
+
Utils.execute("SparseSegmentSum", [data, indices, segment_ids])
|
3727
|
+
end
|
3728
|
+
|
3729
|
+
def sparse_segment_sum_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
|
3730
|
+
Utils.execute("SparseSegmentSumWithNumSegments", [data, indices, segment_ids, num_segments])
|
3731
|
+
end
|
3732
|
+
|
3733
|
+
def sparse_slice(indices: nil, values: nil, shape: nil, start: nil, size: nil)
|
3734
|
+
Utils.execute("SparseSlice", [indices, values, shape, start, size])
|
3735
|
+
end
|
3736
|
+
|
3737
|
+
def sparse_slice_grad(backprop_val_grad: nil, input_indices: nil, input_start: nil, output_indices: nil)
|
3738
|
+
Utils.execute("SparseSliceGrad", [backprop_val_grad, input_indices, input_start, output_indices])
|
3739
|
+
end
|
3740
|
+
|
3741
|
+
def sparse_softmax(sp_indices: nil, sp_values: nil, sp_shape: nil)
|
3742
|
+
Utils.execute("SparseSoftmax", [sp_indices, sp_values, sp_shape])
|
3743
|
+
end
|
3744
|
+
|
3745
|
+
def sparse_softmax_cross_entropy_with_logits(features: nil, labels: nil)
|
3746
|
+
Utils.execute("SparseSoftmaxCrossEntropyWithLogits", [features, labels])
|
3747
|
+
end
|
3748
|
+
|
3749
|
+
def sparse_sparse_maximum(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil)
|
3750
|
+
Utils.execute("SparseSparseMaximum", [a_indices, a_values, a_shape, b_indices, b_values, b_shape])
|
3751
|
+
end
|
3752
|
+
|
3753
|
+
def sparse_sparse_minimum(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil)
|
3754
|
+
Utils.execute("SparseSparseMinimum", [a_indices, a_values, a_shape, b_indices, b_values, b_shape])
|
3755
|
+
end
|
3756
|
+
|
3757
|
+
def sparse_split(split_dim: nil, indices: nil, values: nil, shape: nil, num_split: nil)
|
3758
|
+
Utils.execute("SparseSplit", [split_dim, indices, values, shape], num_split: num_split)
|
3759
|
+
end
|
3760
|
+
|
3761
|
+
def sparse_tensor_dense_add(a_indices: nil, a_values: nil, a_shape: nil, b: nil)
|
3762
|
+
Utils.execute("SparseTensorDenseAdd", [a_indices, a_values, a_shape, b])
|
3763
|
+
end
|
3764
|
+
|
3765
|
+
def sparse_tensor_dense_mat_mul(a_indices: nil, a_values: nil, a_shape: nil, b: nil, adjoint_a: nil, adjoint_b: nil)
|
3766
|
+
Utils.execute("SparseTensorDenseMatMul", [a_indices, a_values, a_shape, b], adjoint_a: adjoint_a, adjoint_b: adjoint_b)
|
3767
|
+
end
|
3768
|
+
|
3769
|
+
def sparse_tensor_slice_dataset(indices: nil, values: nil, dense_shape: nil)
|
3770
|
+
Utils.execute("SparseTensorSliceDataset", [indices, values, dense_shape])
|
3771
|
+
end
|
3772
|
+
|
3773
|
+
def sparse_to_dense(sparse_indices: nil, output_shape: nil, sparse_values: nil, default_value: nil, validate_indices: nil)
|
3774
|
+
Utils.execute("SparseToDense", [sparse_indices, output_shape, sparse_values, default_value], validate_indices: validate_indices)
|
3775
|
+
end
|
3776
|
+
|
3777
|
+
def sparse_to_sparse_set_operation(set1_indices: nil, set1_values: nil, set1_shape: nil, set2_indices: nil, set2_values: nil, set2_shape: nil, set_operation: nil, validate_indices: nil)
|
3778
|
+
Utils.execute("SparseToSparseSetOperation", [set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape], set_operation: set_operation, validate_indices: validate_indices)
|
3779
|
+
end
|
3780
|
+
|
3781
|
+
def split(split_dim: nil, value: nil, num_split: nil)
|
3782
|
+
Utils.execute("Split", [split_dim, value], num_split: num_split)
|
3783
|
+
end
|
3784
|
+
|
3785
|
+
def split_v(value: nil, size_splits: nil, split_dim: nil, num_split: nil)
|
3786
|
+
Utils.execute("SplitV", [value, size_splits, split_dim], num_split: num_split)
|
3787
|
+
end
|
3788
|
+
|
3789
|
+
def sqrt(x: nil)
|
3790
|
+
Utils.execute("Sqrt", [x])
|
3791
|
+
end
|
3792
|
+
|
3793
|
+
def sqrt_grad(y: nil, dy: nil)
|
3794
|
+
Utils.execute("SqrtGrad", [y, dy])
|
3795
|
+
end
|
3796
|
+
|
3797
|
+
def square(x: nil)
|
3798
|
+
Utils.execute("Square", [x])
|
3799
|
+
end
|
3800
|
+
|
3801
|
+
def squared_difference(x: nil, y: nil)
|
3802
|
+
Utils.execute("SquaredDifference", [x, y])
|
3803
|
+
end
|
3804
|
+
|
3805
|
+
def squeeze(input: nil, squeeze_dims: nil)
|
3806
|
+
Utils.execute("Squeeze", [input], squeeze_dims: squeeze_dims)
|
3807
|
+
end
|
3808
|
+
|
3809
|
+
def stack(elem_type: nil, stack_name: nil)
|
3810
|
+
Utils.execute("Stack", [], elem_type: elem_type, stack_name: stack_name)
|
3811
|
+
end
|
3812
|
+
|
3813
|
+
def stack_close(handle: nil)
|
3814
|
+
Utils.execute("StackClose", [handle])
|
3815
|
+
end
|
3816
|
+
|
3817
|
+
def stack_close_v2(handle: nil)
|
3818
|
+
Utils.execute("StackCloseV2", [handle])
|
3819
|
+
end
|
3820
|
+
|
3821
|
+
def stack_pop(handle: nil, elem_type: nil)
|
3822
|
+
Utils.execute("StackPop", [handle], elem_type: elem_type)
|
3823
|
+
end
|
3824
|
+
|
3825
|
+
def stack_pop_v2(handle: nil, elem_type: nil)
|
3826
|
+
Utils.execute("StackPopV2", [handle], elem_type: elem_type)
|
3827
|
+
end
|
3828
|
+
|
3829
|
+
def stack_push(handle: nil, elem: nil, swap_memory: nil)
|
3830
|
+
Utils.execute("StackPush", [handle, elem], swap_memory: swap_memory)
|
3831
|
+
end
|
3832
|
+
|
3833
|
+
def stack_push_v2(handle: nil, elem: nil, swap_memory: nil)
|
3834
|
+
Utils.execute("StackPushV2", [handle, elem], swap_memory: swap_memory)
|
3835
|
+
end
|
3836
|
+
|
3837
|
+
def stack_v2(max_size: nil, elem_type: nil, stack_name: nil)
|
3838
|
+
Utils.execute("StackV2", [max_size], elem_type: elem_type, stack_name: stack_name)
|
3839
|
+
end
|
3840
|
+
|
3841
|
+
def stage(values: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
3842
|
+
Utils.execute("Stage", [values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
3843
|
+
end
|
3844
|
+
|
3845
|
+
def stage_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
3846
|
+
Utils.execute("StageClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
3847
|
+
end
|
3848
|
+
|
3849
|
+
def stage_peek(index: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
3850
|
+
Utils.execute("StagePeek", [index], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
3851
|
+
end
|
3852
|
+
|
3853
|
+
def stage_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
3854
|
+
Utils.execute("StageSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
3855
|
+
end
|
3856
|
+
|
3857
|
+
def stateful_partitioned_call(args: nil, f: nil, config: nil, config_proto: nil, executor_type: nil)
|
3858
|
+
Utils.execute("StatefulPartitionedCall", [args], f: f, config: config, config_proto: config_proto, executor_type: executor_type)
|
3859
|
+
end
|
3860
|
+
|
3861
|
+
def stateful_random_binomial(resource: nil, algorithm: nil, shape: nil, counts: nil, probs: nil, dtype: nil)
|
3862
|
+
Utils.execute("StatefulRandomBinomial", [resource, algorithm, shape, counts, probs], dtype: dtype)
|
3863
|
+
end
|
3864
|
+
|
3865
|
+
def stateful_standard_normal(resource: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
3866
|
+
Utils.execute("StatefulStandardNormal", [resource, shape], dtype: dtype, shape_dtype: shape_dtype)
|
3867
|
+
end
|
3868
|
+
|
3869
|
+
def stateful_standard_normal_v2(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
3870
|
+
Utils.execute("StatefulStandardNormalV2", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
3871
|
+
end
|
3872
|
+
|
3873
|
+
def stateful_truncated_normal(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
3874
|
+
Utils.execute("StatefulTruncatedNormal", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
3875
|
+
end
|
3876
|
+
|
3877
|
+
def stateful_uniform(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
3878
|
+
Utils.execute("StatefulUniform", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
3879
|
+
end
|
3880
|
+
|
3881
|
+
def stateful_uniform_full_int(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
|
3882
|
+
Utils.execute("StatefulUniformFullInt", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
|
3883
|
+
end
|
3884
|
+
|
3885
|
+
def stateful_uniform_int(resource: nil, algorithm: nil, shape: nil, minval: nil, maxval: nil, dtype: nil, shape_dtype: nil)
|
3886
|
+
Utils.execute("StatefulUniformInt", [resource, algorithm, shape, minval, maxval], dtype: dtype, shape_dtype: shape_dtype)
|
3887
|
+
end
|
3888
|
+
|
3889
|
+
def stateless_if(cond: nil, input: nil, then_branch: nil, else_branch: nil)
|
3890
|
+
Utils.execute("StatelessIf", [cond, input], then_branch: then_branch, else_branch: else_branch)
|
3891
|
+
end
|
3892
|
+
|
3893
|
+
def stateless_multinomial(logits: nil, num_samples: nil, seed: nil, output_dtype: nil)
|
3894
|
+
Utils.execute("StatelessMultinomial", [logits, num_samples, seed], output_dtype: output_dtype)
|
3895
|
+
end
|
3896
|
+
|
3897
|
+
def stateless_random_normal(shape: nil, seed: nil, dtype: nil)
|
3898
|
+
Utils.execute("StatelessRandomNormal", [shape, seed], dtype: dtype)
|
3899
|
+
end
|
3900
|
+
|
3901
|
+
def stateless_random_uniform(shape: nil, seed: nil, dtype: nil)
|
3902
|
+
Utils.execute("StatelessRandomUniform", [shape, seed], dtype: dtype)
|
3903
|
+
end
|
3904
|
+
|
3905
|
+
def stateless_random_uniform_int(shape: nil, seed: nil, minval: nil, maxval: nil, dtype: nil)
|
3906
|
+
Utils.execute("StatelessRandomUniformInt", [shape, seed, minval, maxval], dtype: dtype)
|
3907
|
+
end
|
3908
|
+
|
3909
|
+
def stateless_truncated_normal(shape: nil, seed: nil, dtype: nil)
|
3910
|
+
Utils.execute("StatelessTruncatedNormal", [shape, seed], dtype: dtype)
|
3911
|
+
end
|
3912
|
+
|
3913
|
+
def stateless_while(input: nil, cond: nil, body: nil)
|
3914
|
+
Utils.execute("StatelessWhile", [input], cond: cond, body: body)
|
3915
|
+
end
|
3916
|
+
|
3917
|
+
def static_regex_full_match(input: nil, pattern: nil)
|
3918
|
+
Utils.execute("StaticRegexFullMatch", [input], pattern: pattern)
|
3919
|
+
end
|
3920
|
+
|
3921
|
+
def static_regex_replace(input: nil, pattern: nil, rewrite: nil, replace_global: nil)
|
3922
|
+
Utils.execute("StaticRegexReplace", [input], pattern: pattern, rewrite: rewrite, replace_global: replace_global)
|
3923
|
+
end
|
3924
|
+
|
3925
|
+
def stats_aggregator_handle_v2(container: nil, shared_name: nil)
|
3926
|
+
Utils.execute("StatsAggregatorHandleV2", [], container: container, shared_name: shared_name)
|
3927
|
+
end
|
3928
|
+
|
3929
|
+
def stats_aggregator_set_summary_writer(stats_aggregator: nil, summary: nil)
|
3930
|
+
Utils.execute("StatsAggregatorSetSummaryWriter", [stats_aggregator, summary])
|
3931
|
+
end
|
3932
|
+
|
3933
|
+
def stop_gradient(input: nil)
|
3934
|
+
Utils.execute("StopGradient", [input])
|
3935
|
+
end
|
3936
|
+
|
3937
|
+
def strided_slice(input: nil, start: nil, stop: nil, strides: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
3938
|
+
Utils.execute("StridedSlice", [input, start, stop, strides], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
3939
|
+
end
|
3940
|
+
|
3941
|
+
def strided_slice_assign(ref: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
3942
|
+
Utils.execute("StridedSliceAssign", [ref, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
3943
|
+
end
|
3944
|
+
|
3945
|
+
def strided_slice_grad(shape: nil, start: nil, stop: nil, strides: nil, dy: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
3946
|
+
Utils.execute("StridedSliceGrad", [shape, start, stop, strides, dy], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
3947
|
+
end
|
3948
|
+
|
3949
|
+
def string_format(inputs: nil, template: nil, placeholder: nil, summarize: nil)
|
3950
|
+
Utils.execute("StringFormat", [inputs], template: template, placeholder: placeholder, summarize: summarize)
|
3951
|
+
end
|
3952
|
+
|
3953
|
+
def string_join(inputs: nil, separator: nil)
|
3954
|
+
Utils.execute("StringJoin", [inputs], separator: separator)
|
3955
|
+
end
|
3956
|
+
|
3957
|
+
def string_length(input: nil, unit: nil)
|
3958
|
+
Utils.execute("StringLength", [input], unit: unit)
|
3959
|
+
end
|
3960
|
+
|
3961
|
+
def string_lower(input: nil, encoding: nil)
|
3962
|
+
Utils.execute("StringLower", [input], encoding: encoding)
|
3963
|
+
end
|
3964
|
+
|
3965
|
+
def string_split(input: nil, delimiter: nil, skip_empty: nil)
|
3966
|
+
Utils.execute("StringSplit", [input, delimiter], skip_empty: skip_empty)
|
3967
|
+
end
|
3968
|
+
|
3969
|
+
def string_split_v2(input: nil, sep: nil, maxsplit: nil)
|
3970
|
+
Utils.execute("StringSplitV2", [input, sep], maxsplit: maxsplit)
|
3971
|
+
end
|
3972
|
+
|
3973
|
+
def string_strip(input: nil)
|
3974
|
+
Utils.execute("StringStrip", [input])
|
3975
|
+
end
|
3976
|
+
|
3977
|
+
def string_to_hash_bucket(string_tensor: nil, num_buckets: nil)
|
3978
|
+
Utils.execute("StringToHashBucket", [string_tensor], num_buckets: num_buckets)
|
3979
|
+
end
|
3980
|
+
|
3981
|
+
def string_to_hash_bucket_fast(input: nil, num_buckets: nil)
|
3982
|
+
Utils.execute("StringToHashBucketFast", [input], num_buckets: num_buckets)
|
3983
|
+
end
|
3984
|
+
|
3985
|
+
def string_to_hash_bucket_strong(input: nil, num_buckets: nil, key: nil)
|
3986
|
+
Utils.execute("StringToHashBucketStrong", [input], num_buckets: num_buckets, key: key)
|
3987
|
+
end
|
3988
|
+
|
3989
|
+
def string_to_number(string_tensor: nil, out_type: nil)
|
3990
|
+
Utils.execute("StringToNumber", [string_tensor], out_type: out_type)
|
3991
|
+
end
|
3992
|
+
|
3993
|
+
def string_upper(input: nil, encoding: nil)
|
3994
|
+
Utils.execute("StringUpper", [input], encoding: encoding)
|
3995
|
+
end
|
3996
|
+
|
3997
|
+
def sub(x: nil, y: nil)
|
3998
|
+
Utils.execute("Sub", [x, y])
|
3999
|
+
end
|
4000
|
+
|
4001
|
+
def substr(input: nil, pos: nil, len: nil, unit: nil)
|
4002
|
+
Utils.execute("Substr", [input, pos, len], unit: unit)
|
4003
|
+
end
|
4004
|
+
|
4005
|
+
def sum(input: nil, reduction_indices: nil, keep_dims: nil)
|
4006
|
+
Utils.execute("Sum", [input, reduction_indices], keep_dims: keep_dims)
|
4007
|
+
end
|
4008
|
+
|
4009
|
+
def summary_writer(shared_name: nil, container: nil)
|
4010
|
+
Utils.execute("SummaryWriter", [], shared_name: shared_name, container: container)
|
4011
|
+
end
|
4012
|
+
|
4013
|
+
def svd(input: nil, compute_uv: nil, full_matrices: nil)
|
4014
|
+
Utils.execute("Svd", [input], compute_uv: compute_uv, full_matrices: full_matrices)
|
4015
|
+
end
|
4016
|
+
|
4017
|
+
def switch(data: nil, pred: nil)
|
4018
|
+
Utils.execute("Switch", [data, pred])
|
4019
|
+
end
|
4020
|
+
|
4021
|
+
def symbolic_gradient(input: nil, f: nil)
|
4022
|
+
Utils.execute("SymbolicGradient", [input], f: f)
|
4023
|
+
end
|
4024
|
+
|
4025
|
+
def tf_record_dataset(filenames: nil, compression_type: nil, buffer_size: nil)
|
4026
|
+
Utils.execute("TFRecordDataset", [filenames, compression_type, buffer_size])
|
4027
|
+
end
|
4028
|
+
|
4029
|
+
def tf_record_reader(container: nil, shared_name: nil, compression_type: nil)
|
4030
|
+
Utils.execute("TFRecordReader", [], container: container, shared_name: shared_name, compression_type: compression_type)
|
4031
|
+
end
|
4032
|
+
|
4033
|
+
def tf_record_reader_v2(container: nil, shared_name: nil, compression_type: nil)
|
4034
|
+
Utils.execute("TFRecordReaderV2", [], container: container, shared_name: shared_name, compression_type: compression_type)
|
4035
|
+
end
|
4036
|
+
|
4037
|
+
def tpu_compilation_result
|
4038
|
+
Utils.execute("TPUCompilationResult", [])
|
4039
|
+
end
|
4040
|
+
|
4041
|
+
def tpu_embedding_activations(embedding_variable: nil, sliced_activations: nil, table_id: nil, lookup_id: nil)
|
4042
|
+
Utils.execute("TPUEmbeddingActivations", [embedding_variable, sliced_activations], table_id: table_id, lookup_id: lookup_id)
|
4043
|
+
end
|
4044
|
+
|
4045
|
+
def tpu_ordinal_selector
|
4046
|
+
Utils.execute("TPUOrdinalSelector", [])
|
4047
|
+
end
|
4048
|
+
|
4049
|
+
def tpu_partitioned_call(args: nil, device_ordinal: nil, f: nil)
|
4050
|
+
Utils.execute("TPUPartitionedCall", [args, device_ordinal], f: f)
|
4051
|
+
end
|
4052
|
+
|
4053
|
+
def tpu_replicate_metadata(num_replicas: nil, num_cores_per_replica: nil, topology: nil, use_tpu: nil, device_assignment: nil, computation_shape: nil, host_compute_core: nil, padding_map: nil, step_marker_location: nil)
|
4054
|
+
Utils.execute("TPUReplicateMetadata", [], num_replicas: num_replicas, num_cores_per_replica: num_cores_per_replica, topology: topology, use_tpu: use_tpu, device_assignment: device_assignment, computation_shape: computation_shape, host_compute_core: host_compute_core, padding_map: padding_map, step_marker_location: step_marker_location)
|
4055
|
+
end
|
4056
|
+
|
4057
|
+
def tpu_replicated_input(inputs: nil)
|
4058
|
+
Utils.execute("TPUReplicatedInput", [inputs])
|
4059
|
+
end
|
4060
|
+
|
4061
|
+
def tpu_replicated_output(input: nil, num_replicas: nil)
|
4062
|
+
Utils.execute("TPUReplicatedOutput", [input], num_replicas: num_replicas)
|
4063
|
+
end
|
4064
|
+
|
4065
|
+
def take_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
|
4066
|
+
Utils.execute("TakeDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
|
4067
|
+
end
|
4068
|
+
|
4069
|
+
def take_many_sparse_from_tensors_map(sparse_handles: nil, dtype: nil, container: nil, shared_name: nil)
|
4070
|
+
Utils.execute("TakeManySparseFromTensorsMap", [sparse_handles], dtype: dtype, container: container, shared_name: shared_name)
|
4071
|
+
end
|
4072
|
+
|
4073
|
+
def tan(x: nil)
|
4074
|
+
Utils.execute("Tan", [x])
|
4075
|
+
end
|
4076
|
+
|
4077
|
+
def tanh(x: nil)
|
4078
|
+
Utils.execute("Tanh", [x])
|
4079
|
+
end
|
4080
|
+
|
4081
|
+
def tanh_grad(y: nil, dy: nil)
|
4082
|
+
Utils.execute("TanhGrad", [y, dy])
|
4083
|
+
end
|
4084
|
+
|
4085
|
+
def temporary_variable(shape: nil, dtype: nil, var_name: nil)
|
4086
|
+
Utils.execute("TemporaryVariable", [], shape: shape, dtype: dtype, var_name: var_name)
|
4087
|
+
end
|
4088
|
+
|
4089
|
+
def tensor_array(size: nil, dtype: nil, dynamic_size: nil, clear_after_read: nil, tensor_array_name: nil, element_shape: nil)
|
4090
|
+
Utils.execute("TensorArray", [size], dtype: dtype, dynamic_size: dynamic_size, clear_after_read: clear_after_read, tensor_array_name: tensor_array_name, element_shape: element_shape)
|
4091
|
+
end
|
4092
|
+
|
4093
|
+
def tensor_array_close(handle: nil)
|
4094
|
+
Utils.execute("TensorArrayClose", [handle])
|
4095
|
+
end
|
4096
|
+
|
4097
|
+
def tensor_array_close_v2(handle: nil)
|
4098
|
+
Utils.execute("TensorArrayCloseV2", [handle])
|
4099
|
+
end
|
4100
|
+
|
4101
|
+
def tensor_array_close_v3(handle: nil)
|
4102
|
+
Utils.execute("TensorArrayCloseV3", [handle])
|
4103
|
+
end
|
4104
|
+
|
4105
|
+
def tensor_array_concat(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
|
4106
|
+
Utils.execute("TensorArrayConcat", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
|
4107
|
+
end
|
4108
|
+
|
4109
|
+
def tensor_array_concat_v2(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
|
4110
|
+
Utils.execute("TensorArrayConcatV2", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
|
4111
|
+
end
|
4112
|
+
|
4113
|
+
def tensor_array_concat_v3(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
|
4114
|
+
Utils.execute("TensorArrayConcatV3", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
|
4115
|
+
end
|
4116
|
+
|
4117
|
+
def tensor_array_gather(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
4118
|
+
Utils.execute("TensorArrayGather", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
|
4119
|
+
end
|
4120
|
+
|
4121
|
+
def tensor_array_gather_v2(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
4122
|
+
Utils.execute("TensorArrayGatherV2", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
|
4123
|
+
end
|
4124
|
+
|
4125
|
+
def tensor_array_gather_v3(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
4126
|
+
Utils.execute("TensorArrayGatherV3", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
|
4127
|
+
end
|
4128
|
+
|
4129
|
+
def tensor_array_grad(handle: nil, flow_in: nil, source: nil)
|
4130
|
+
Utils.execute("TensorArrayGrad", [handle, flow_in], source: source)
|
4131
|
+
end
|
4132
|
+
|
4133
|
+
def tensor_array_grad_v2(handle: nil, flow_in: nil, source: nil)
|
4134
|
+
Utils.execute("TensorArrayGradV2", [handle, flow_in], source: source)
|
4135
|
+
end
|
4136
|
+
|
4137
|
+
def tensor_array_grad_v3(handle: nil, flow_in: nil, source: nil)
|
4138
|
+
Utils.execute("TensorArrayGradV3", [handle, flow_in], source: source)
|
4139
|
+
end
|
4140
|
+
|
4141
|
+
def tensor_array_grad_with_shape(handle: nil, flow_in: nil, shape_to_prepend: nil, source: nil)
|
4142
|
+
Utils.execute("TensorArrayGradWithShape", [handle, flow_in, shape_to_prepend], source: source)
|
4143
|
+
end
|
4144
|
+
|
4145
|
+
def tensor_array_pack(handle: nil, flow_in: nil, dtype: nil, element_shape: nil)
|
4146
|
+
Utils.execute("TensorArrayPack", [handle, flow_in], dtype: dtype, element_shape: element_shape)
|
4147
|
+
end
|
4148
|
+
|
4149
|
+
def tensor_array_read(handle: nil, index: nil, flow_in: nil, dtype: nil)
|
4150
|
+
Utils.execute("TensorArrayRead", [handle, index, flow_in], dtype: dtype)
|
4151
|
+
end
|
4152
|
+
|
4153
|
+
def tensor_array_read_v2(handle: nil, index: nil, flow_in: nil, dtype: nil)
|
4154
|
+
Utils.execute("TensorArrayReadV2", [handle, index, flow_in], dtype: dtype)
|
4155
|
+
end
|
4156
|
+
|
4157
|
+
def tensor_array_read_v3(handle: nil, index: nil, flow_in: nil, dtype: nil)
|
4158
|
+
Utils.execute("TensorArrayReadV3", [handle, index, flow_in], dtype: dtype)
|
4159
|
+
end
|
4160
|
+
|
4161
|
+
def tensor_array_scatter(handle: nil, indices: nil, value: nil, flow_in: nil)
|
4162
|
+
Utils.execute("TensorArrayScatter", [handle, indices, value, flow_in])
|
4163
|
+
end
|
4164
|
+
|
4165
|
+
def tensor_array_scatter_v2(handle: nil, indices: nil, value: nil, flow_in: nil)
|
4166
|
+
Utils.execute("TensorArrayScatterV2", [handle, indices, value, flow_in])
|
4167
|
+
end
|
4168
|
+
|
4169
|
+
def tensor_array_scatter_v3(handle: nil, indices: nil, value: nil, flow_in: nil)
|
4170
|
+
Utils.execute("TensorArrayScatterV3", [handle, indices, value, flow_in])
|
4171
|
+
end
|
4172
|
+
|
4173
|
+
def tensor_array_size(handle: nil, flow_in: nil)
|
4174
|
+
Utils.execute("TensorArraySize", [handle, flow_in])
|
4175
|
+
end
|
4176
|
+
|
4177
|
+
def tensor_array_size_v2(handle: nil, flow_in: nil)
|
4178
|
+
Utils.execute("TensorArraySizeV2", [handle, flow_in])
|
4179
|
+
end
|
4180
|
+
|
4181
|
+
def tensor_array_size_v3(handle: nil, flow_in: nil)
|
4182
|
+
Utils.execute("TensorArraySizeV3", [handle, flow_in])
|
4183
|
+
end
|
4184
|
+
|
4185
|
+
def tensor_array_split(handle: nil, value: nil, lengths: nil, flow_in: nil)
|
4186
|
+
Utils.execute("TensorArraySplit", [handle, value, lengths, flow_in])
|
4187
|
+
end
|
4188
|
+
|
4189
|
+
def tensor_array_split_v2(handle: nil, value: nil, lengths: nil, flow_in: nil)
|
4190
|
+
Utils.execute("TensorArraySplitV2", [handle, value, lengths, flow_in])
|
4191
|
+
end
|
4192
|
+
|
4193
|
+
def tensor_array_split_v3(handle: nil, value: nil, lengths: nil, flow_in: nil)
|
4194
|
+
Utils.execute("TensorArraySplitV3", [handle, value, lengths, flow_in])
|
4195
|
+
end
|
4196
|
+
|
4197
|
+
def tensor_array_unpack(handle: nil, value: nil, flow_in: nil)
|
4198
|
+
Utils.execute("TensorArrayUnpack", [handle, value, flow_in])
|
4199
|
+
end
|
4200
|
+
|
4201
|
+
def tensor_array_v2(size: nil, dtype: nil, element_shape: nil, dynamic_size: nil, clear_after_read: nil, tensor_array_name: nil)
|
4202
|
+
Utils.execute("TensorArrayV2", [size], dtype: dtype, element_shape: element_shape, dynamic_size: dynamic_size, clear_after_read: clear_after_read, tensor_array_name: tensor_array_name)
|
4203
|
+
end
|
4204
|
+
|
4205
|
+
def tensor_array_v3(size: nil, dtype: nil, element_shape: nil, dynamic_size: nil, clear_after_read: nil, identical_element_shapes: nil, tensor_array_name: nil)
|
4206
|
+
Utils.execute("TensorArrayV3", [size], dtype: dtype, element_shape: element_shape, dynamic_size: dynamic_size, clear_after_read: clear_after_read, identical_element_shapes: identical_element_shapes, tensor_array_name: tensor_array_name)
|
4207
|
+
end
|
4208
|
+
|
4209
|
+
def tensor_array_write(handle: nil, index: nil, value: nil, flow_in: nil)
|
4210
|
+
Utils.execute("TensorArrayWrite", [handle, index, value, flow_in])
|
4211
|
+
end
|
4212
|
+
|
4213
|
+
def tensor_array_write_v2(handle: nil, index: nil, value: nil, flow_in: nil)
|
4214
|
+
Utils.execute("TensorArrayWriteV2", [handle, index, value, flow_in])
|
4215
|
+
end
|
4216
|
+
|
4217
|
+
def tensor_array_write_v3(handle: nil, index: nil, value: nil, flow_in: nil)
|
4218
|
+
Utils.execute("TensorArrayWriteV3", [handle, index, value, flow_in])
|
4219
|
+
end
|
4220
|
+
|
4221
|
+
def tensor_dataset(components: nil, output_shapes: nil)
|
4222
|
+
Utils.execute("TensorDataset", [components], output_shapes: output_shapes)
|
4223
|
+
end
|
4224
|
+
|
4225
|
+
def tensor_forest_create_tree_variable(tree_handle: nil, tree_config: nil)
|
4226
|
+
Utils.execute("TensorForestCreateTreeVariable", [tree_handle, tree_config])
|
4227
|
+
end
|
4228
|
+
|
4229
|
+
def tensor_forest_tree_deserialize(tree_handle: nil, tree_config: nil)
|
4230
|
+
Utils.execute("TensorForestTreeDeserialize", [tree_handle, tree_config])
|
4231
|
+
end
|
4232
|
+
|
4233
|
+
def tensor_forest_tree_is_initialized_op(tree_handle: nil)
|
4234
|
+
Utils.execute("TensorForestTreeIsInitializedOp", [tree_handle])
|
4235
|
+
end
|
4236
|
+
|
4237
|
+
def tensor_forest_tree_predict(tree_handle: nil, dense_features: nil, logits_dimension: nil)
|
4238
|
+
Utils.execute("TensorForestTreePredict", [tree_handle, dense_features], logits_dimension: logits_dimension)
|
4239
|
+
end
|
4240
|
+
|
4241
|
+
def tensor_forest_tree_resource_handle_op(container: nil, shared_name: nil)
|
4242
|
+
Utils.execute("TensorForestTreeResourceHandleOp", [], container: container, shared_name: shared_name)
|
4243
|
+
end
|
4244
|
+
|
4245
|
+
def tensor_forest_tree_serialize(tree_handle: nil)
|
4246
|
+
Utils.execute("TensorForestTreeSerialize", [tree_handle])
|
4247
|
+
end
|
4248
|
+
|
4249
|
+
def tensor_forest_tree_size(tree_handle: nil)
|
4250
|
+
Utils.execute("TensorForestTreeSize", [tree_handle])
|
4251
|
+
end
|
4252
|
+
|
4253
|
+
def tensor_list_concat(input_handle: nil, element_dtype: nil, element_shape: nil)
|
4254
|
+
Utils.execute("TensorListConcat", [input_handle], element_dtype: element_dtype, element_shape: element_shape)
|
4255
|
+
end
|
4256
|
+
|
4257
|
+
def tensor_list_concat_lists(input_a: nil, input_b: nil, element_dtype: nil)
|
4258
|
+
Utils.execute("TensorListConcatLists", [input_a, input_b], element_dtype: element_dtype)
|
4259
|
+
end
|
4260
|
+
|
4261
|
+
def tensor_list_concat_v2(input_handle: nil, element_shape: nil, leading_dims: nil, element_dtype: nil, shape_type: nil)
|
4262
|
+
Utils.execute("TensorListConcatV2", [input_handle, element_shape, leading_dims], element_dtype: element_dtype, shape_type: shape_type)
|
4263
|
+
end
|
4264
|
+
|
4265
|
+
def tensor_list_element_shape(input_handle: nil, shape_type: nil)
|
4266
|
+
Utils.execute("TensorListElementShape", [input_handle], shape_type: shape_type)
|
4267
|
+
end
|
4268
|
+
|
4269
|
+
def tensor_list_from_tensor(tensor: nil, element_shape: nil, element_dtype: nil, shape_type: nil)
|
4270
|
+
Utils.execute("TensorListFromTensor", [tensor, element_shape], element_dtype: element_dtype, shape_type: shape_type)
|
4271
|
+
end
|
4272
|
+
|
4273
|
+
def tensor_list_gather(input_handle: nil, indices: nil, element_shape: nil, element_dtype: nil)
|
4274
|
+
Utils.execute("TensorListGather", [input_handle, indices, element_shape], element_dtype: element_dtype)
|
4275
|
+
end
|
4276
|
+
|
4277
|
+
def tensor_list_get_item(input_handle: nil, index: nil, element_shape: nil, element_dtype: nil)
|
4278
|
+
Utils.execute("TensorListGetItem", [input_handle, index, element_shape], element_dtype: element_dtype)
|
4279
|
+
end
|
4280
|
+
|
4281
|
+
def tensor_list_length(input_handle: nil)
|
4282
|
+
Utils.execute("TensorListLength", [input_handle])
|
4283
|
+
end
|
4284
|
+
|
4285
|
+
def tensor_list_pop_back(input_handle: nil, element_shape: nil, element_dtype: nil)
|
4286
|
+
Utils.execute("TensorListPopBack", [input_handle, element_shape], element_dtype: element_dtype)
|
4287
|
+
end
|
4288
|
+
|
4289
|
+
def tensor_list_push_back(input_handle: nil, tensor: nil, element_dtype: nil)
|
4290
|
+
Utils.execute("TensorListPushBack", [input_handle, tensor], element_dtype: element_dtype)
|
4291
|
+
end
|
4292
|
+
|
4293
|
+
def tensor_list_push_back_batch(input_handles: nil, tensor: nil, element_dtype: nil)
|
4294
|
+
Utils.execute("TensorListPushBackBatch", [input_handles, tensor], element_dtype: element_dtype)
|
4295
|
+
end
|
4296
|
+
|
4297
|
+
def tensor_list_reserve(element_shape: nil, num_elements: nil, element_dtype: nil, shape_type: nil)
|
4298
|
+
Utils.execute("TensorListReserve", [element_shape, num_elements], element_dtype: element_dtype, shape_type: shape_type)
|
4299
|
+
end
|
4300
|
+
|
4301
|
+
def tensor_list_resize(input_handle: nil, size: nil)
|
4302
|
+
Utils.execute("TensorListResize", [input_handle, size])
|
4303
|
+
end
|
4304
|
+
|
4305
|
+
def tensor_list_scatter(tensor: nil, indices: nil, element_shape: nil, element_dtype: nil, shape_type: nil)
|
4306
|
+
Utils.execute("TensorListScatter", [tensor, indices, element_shape], element_dtype: element_dtype, shape_type: shape_type)
|
4307
|
+
end
|
4308
|
+
|
4309
|
+
def tensor_list_scatter_into_existing_list(input_handle: nil, tensor: nil, indices: nil, element_dtype: nil)
|
4310
|
+
Utils.execute("TensorListScatterIntoExistingList", [input_handle, tensor, indices], element_dtype: element_dtype)
|
4311
|
+
end
|
4312
|
+
|
4313
|
+
def tensor_list_scatter_v2(tensor: nil, indices: nil, element_shape: nil, num_elements: nil, element_dtype: nil, shape_type: nil)
|
4314
|
+
Utils.execute("TensorListScatterV2", [tensor, indices, element_shape, num_elements], element_dtype: element_dtype, shape_type: shape_type)
|
4315
|
+
end
|
4316
|
+
|
4317
|
+
def tensor_list_set_item(input_handle: nil, index: nil, item: nil, element_dtype: nil)
|
4318
|
+
Utils.execute("TensorListSetItem", [input_handle, index, item], element_dtype: element_dtype)
|
4319
|
+
end
|
4320
|
+
|
4321
|
+
def tensor_list_split(tensor: nil, element_shape: nil, lengths: nil, element_dtype: nil, shape_type: nil)
|
4322
|
+
Utils.execute("TensorListSplit", [tensor, element_shape, lengths], element_dtype: element_dtype, shape_type: shape_type)
|
4323
|
+
end
|
4324
|
+
|
4325
|
+
def tensor_list_stack(input_handle: nil, element_shape: nil, element_dtype: nil, num_elements: nil)
|
4326
|
+
Utils.execute("TensorListStack", [input_handle, element_shape], element_dtype: element_dtype, num_elements: num_elements)
|
4327
|
+
end
|
4328
|
+
|
4329
|
+
def tensor_scatter_add(tensor: nil, indices: nil, updates: nil)
|
4330
|
+
Utils.execute("TensorScatterAdd", [tensor, indices, updates])
|
4331
|
+
end
|
4332
|
+
|
4333
|
+
def tensor_scatter_sub(tensor: nil, indices: nil, updates: nil)
|
4334
|
+
Utils.execute("TensorScatterSub", [tensor, indices, updates])
|
4335
|
+
end
|
4336
|
+
|
4337
|
+
def tensor_scatter_update(tensor: nil, indices: nil, updates: nil)
|
4338
|
+
Utils.execute("TensorScatterUpdate", [tensor, indices, updates])
|
4339
|
+
end
|
4340
|
+
|
4341
|
+
def tensor_slice_dataset(components: nil, output_shapes: nil)
|
4342
|
+
Utils.execute("TensorSliceDataset", [components], output_shapes: output_shapes)
|
4343
|
+
end
|
4344
|
+
|
4345
|
+
def tensor_strided_slice_update(input: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
|
4346
|
+
Utils.execute("TensorStridedSliceUpdate", [input, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
|
4347
|
+
end
|
4348
|
+
|
4349
|
+
def tensor_summary(tensor: nil, description: nil, labels: nil, display_name: nil)
|
4350
|
+
Utils.execute("TensorSummary", [tensor], description: description, labels: labels, display_name: display_name)
|
4351
|
+
end
|
4352
|
+
|
4353
|
+
def tensor_summary_v2(tag: nil, tensor: nil, serialized_summary_metadata: nil)
|
4354
|
+
Utils.execute("TensorSummaryV2", [tag, tensor, serialized_summary_metadata])
|
4355
|
+
end
|
4356
|
+
|
4357
|
+
def text_line_dataset(filenames: nil, compression_type: nil, buffer_size: nil)
|
4358
|
+
Utils.execute("TextLineDataset", [filenames, compression_type, buffer_size])
|
4359
|
+
end
|
4360
|
+
|
4361
|
+
def text_line_reader(skip_header_lines: nil, container: nil, shared_name: nil)
|
4362
|
+
Utils.execute("TextLineReader", [], skip_header_lines: skip_header_lines, container: container, shared_name: shared_name)
|
4363
|
+
end
|
4364
|
+
|
4365
|
+
def text_line_reader_v2(skip_header_lines: nil, container: nil, shared_name: nil)
|
4366
|
+
Utils.execute("TextLineReaderV2", [], skip_header_lines: skip_header_lines, container: container, shared_name: shared_name)
|
4367
|
+
end
|
4368
|
+
|
4369
|
+
def thread_unsafe_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
4370
|
+
Utils.execute("ThreadUnsafeUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
4371
|
+
end
|
4372
|
+
|
4373
|
+
def tile(input: nil, multiples: nil)
|
4374
|
+
Utils.execute("Tile", [input, multiples])
|
4375
|
+
end
|
4376
|
+
|
4377
|
+
def tile_grad(input: nil, multiples: nil)
|
4378
|
+
Utils.execute("TileGrad", [input, multiples])
|
4379
|
+
end
|
4380
|
+
|
4381
|
+
def timestamp
|
4382
|
+
Utils.execute("Timestamp", [])
|
4383
|
+
end
|
4384
|
+
|
4385
|
+
def top_k(input: nil, k: nil, sorted: nil)
|
4386
|
+
Utils.execute("TopK", [input], k: k, sorted: sorted)
|
4387
|
+
end
|
4388
|
+
|
4389
|
+
def top_kv2(input: nil, k: nil, sorted: nil)
|
4390
|
+
Utils.execute("TopKV2", [input, k], sorted: sorted)
|
4391
|
+
end
|
4392
|
+
|
4393
|
+
def transpose(x: nil, perm: nil)
|
4394
|
+
Utils.execute("Transpose", [x, perm])
|
4395
|
+
end
|
4396
|
+
|
4397
|
+
def tridiagonal_mat_mul(superdiag: nil, maindiag: nil, subdiag: nil, rhs: nil)
|
4398
|
+
Utils.execute("TridiagonalMatMul", [superdiag, maindiag, subdiag, rhs])
|
4399
|
+
end
|
4400
|
+
|
4401
|
+
def tridiagonal_solve(diagonals: nil, rhs: nil, partial_pivoting: nil)
|
4402
|
+
Utils.execute("TridiagonalSolve", [diagonals, rhs], partial_pivoting: partial_pivoting)
|
4403
|
+
end
|
4404
|
+
|
4405
|
+
def truncate_div(x: nil, y: nil)
|
4406
|
+
Utils.execute("TruncateDiv", [x, y])
|
4407
|
+
end
|
4408
|
+
|
4409
|
+
def truncate_mod(x: nil, y: nil)
|
4410
|
+
Utils.execute("TruncateMod", [x, y])
|
4411
|
+
end
|
4412
|
+
|
4413
|
+
def truncated_normal(shape: nil, seed: nil, seed2: nil, dtype: nil)
|
4414
|
+
Utils.execute("TruncatedNormal", [shape], seed: seed, seed2: seed2, dtype: dtype)
|
4415
|
+
end
|
4416
|
+
|
4417
|
+
def try_rpc(address: nil, method: nil, request: nil, protocol: nil, fail_fast: nil, timeout_in_ms: nil)
|
4418
|
+
Utils.execute("TryRpc", [address, method, request], protocol: protocol, fail_fast: fail_fast, timeout_in_ms: timeout_in_ms)
|
4419
|
+
end
|
4420
|
+
|
4421
|
+
def unbatch(batched_tensor: nil, batch_index: nil, id: nil, timeout_micros: nil, container: nil, shared_name: nil)
|
4422
|
+
Utils.execute("Unbatch", [batched_tensor, batch_index, id], timeout_micros: timeout_micros, container: container, shared_name: shared_name)
|
4423
|
+
end
|
4424
|
+
|
4425
|
+
def unbatch_grad(original_input: nil, batch_index: nil, grad: nil, id: nil, container: nil, shared_name: nil)
|
4426
|
+
Utils.execute("UnbatchGrad", [original_input, batch_index, grad, id], container: container, shared_name: shared_name)
|
4427
|
+
end
|
4428
|
+
|
4429
|
+
def unicode_decode(input: nil, input_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
|
4430
|
+
Utils.execute("UnicodeDecode", [input], input_encoding: input_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
|
4431
|
+
end
|
4432
|
+
|
4433
|
+
def unicode_decode_with_offsets(input: nil, input_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
|
4434
|
+
Utils.execute("UnicodeDecodeWithOffsets", [input], input_encoding: input_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
|
4435
|
+
end
|
4436
|
+
|
4437
|
+
def unicode_encode(input_values: nil, input_splits: nil, errors: nil, output_encoding: nil, replacement_char: nil)
|
4438
|
+
Utils.execute("UnicodeEncode", [input_values, input_splits], errors: errors, output_encoding: output_encoding, replacement_char: replacement_char)
|
4439
|
+
end
|
4440
|
+
|
4441
|
+
def unicode_script(input: nil)
|
4442
|
+
Utils.execute("UnicodeScript", [input])
|
4443
|
+
end
|
4444
|
+
|
4445
|
+
def unicode_transcode(input: nil, input_encoding: nil, output_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
|
4446
|
+
Utils.execute("UnicodeTranscode", [input], input_encoding: input_encoding, output_encoding: output_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
|
4447
|
+
end
|
4448
|
+
|
4449
|
+
def uniform_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
|
4450
|
+
Utils.execute("UniformCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
|
4451
|
+
end
|
4452
|
+
|
4453
|
+
def unique(x: nil, out_idx: nil)
|
4454
|
+
Utils.execute("Unique", [x], out_idx: out_idx)
|
4455
|
+
end
|
4456
|
+
|
4457
|
+
def unique_v2(x: nil, axis: nil, out_idx: nil)
|
4458
|
+
Utils.execute("UniqueV2", [x, axis], out_idx: out_idx)
|
4459
|
+
end
|
4460
|
+
|
4461
|
+
def unique_with_counts(x: nil, out_idx: nil)
|
4462
|
+
Utils.execute("UniqueWithCounts", [x], out_idx: out_idx)
|
4463
|
+
end
|
4464
|
+
|
4465
|
+
def unique_with_counts_v2(x: nil, axis: nil, out_idx: nil)
|
4466
|
+
Utils.execute("UniqueWithCountsV2", [x, axis], out_idx: out_idx)
|
4467
|
+
end
|
4468
|
+
|
4469
|
+
def unpack(value: nil, num: nil, axis: nil)
|
4470
|
+
Utils.execute("Unpack", [value], num: num, axis: axis)
|
4471
|
+
end
|
4472
|
+
|
4473
|
+
def unravel_index(indices: nil, dims: nil)
|
4474
|
+
Utils.execute("UnravelIndex", [indices, dims])
|
4475
|
+
end
|
4476
|
+
|
4477
|
+
def unsorted_segment_max(data: nil, segment_ids: nil, num_segments: nil)
|
4478
|
+
Utils.execute("UnsortedSegmentMax", [data, segment_ids, num_segments])
|
4479
|
+
end
|
4480
|
+
|
4481
|
+
def unsorted_segment_min(data: nil, segment_ids: nil, num_segments: nil)
|
4482
|
+
Utils.execute("UnsortedSegmentMin", [data, segment_ids, num_segments])
|
4483
|
+
end
|
4484
|
+
|
4485
|
+
def unsorted_segment_prod(data: nil, segment_ids: nil, num_segments: nil)
|
4486
|
+
Utils.execute("UnsortedSegmentProd", [data, segment_ids, num_segments])
|
4487
|
+
end
|
4488
|
+
|
4489
|
+
def unsorted_segment_sum(data: nil, segment_ids: nil, num_segments: nil)
|
4490
|
+
Utils.execute("UnsortedSegmentSum", [data, segment_ids, num_segments])
|
4491
|
+
end
|
4492
|
+
|
4493
|
+
def unstage(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
|
4494
|
+
Utils.execute("Unstage", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
|
4495
|
+
end
|
4496
|
+
|
4497
|
+
def unwrap_dataset_variant(input_handle: nil)
|
4498
|
+
Utils.execute("UnwrapDatasetVariant", [input_handle])
|
4499
|
+
end
|
4500
|
+
|
4501
|
+
def upper_bound(sorted_inputs: nil, values: nil, out_type: nil)
|
4502
|
+
Utils.execute("UpperBound", [sorted_inputs, values], out_type: out_type)
|
4503
|
+
end
|
4504
|
+
|
4505
|
+
def var_handle_op(container: nil, shared_name: nil, dtype: nil, shape: nil)
|
4506
|
+
Utils.execute("VarHandleOp", [], container: container, shared_name: shared_name, dtype: dtype, shape: shape)
|
4507
|
+
end
|
4508
|
+
|
4509
|
+
def var_is_initialized_op(resource: nil)
|
4510
|
+
Utils.execute("VarIsInitializedOp", [resource])
|
4511
|
+
end
|
4512
|
+
|
4513
|
+
def variable(shape: nil, dtype: nil, container: nil, shared_name: nil)
|
4514
|
+
Utils.execute("Variable", [], shape: shape, dtype: dtype, container: container, shared_name: shared_name)
|
4515
|
+
end
|
4516
|
+
|
4517
|
+
def variable_shape(input: nil, out_type: nil)
|
4518
|
+
Utils.execute("VariableShape", [input], out_type: out_type)
|
4519
|
+
end
|
4520
|
+
|
4521
|
+
def variable_v2(shape: nil, dtype: nil, container: nil, shared_name: nil)
|
4522
|
+
Utils.execute("VariableV2", [], shape: shape, dtype: dtype, container: container, shared_name: shared_name)
|
4523
|
+
end
|
4524
|
+
|
4525
|
+
def where(input: nil)
|
4526
|
+
Utils.execute("Where", [input])
|
4527
|
+
end
|
4528
|
+
|
4529
|
+
def while(input: nil, cond: nil, body: nil, output_shapes: nil, parallel_iterations: nil)
|
4530
|
+
Utils.execute("While", [input], cond: cond, body: body, output_shapes: output_shapes, parallel_iterations: parallel_iterations)
|
4531
|
+
end
|
4532
|
+
|
4533
|
+
def whole_file_reader(container: nil, shared_name: nil)
|
4534
|
+
Utils.execute("WholeFileReader", [], container: container, shared_name: shared_name)
|
4535
|
+
end
|
4536
|
+
|
4537
|
+
def whole_file_reader_v2(container: nil, shared_name: nil)
|
4538
|
+
Utils.execute("WholeFileReaderV2", [], container: container, shared_name: shared_name)
|
4539
|
+
end
|
4540
|
+
|
4541
|
+
def window_dataset(input_dataset: nil, size: nil, shift: nil, stride: nil, drop_remainder: nil, output_types: nil, output_shapes: nil)
|
4542
|
+
Utils.execute("WindowDataset", [input_dataset, size, shift, stride, drop_remainder], output_types: output_types, output_shapes: output_shapes)
|
4543
|
+
end
|
4544
|
+
|
4545
|
+
def worker_heartbeat(request: nil)
|
4546
|
+
Utils.execute("WorkerHeartbeat", [request])
|
4547
|
+
end
|
4548
|
+
|
4549
|
+
def wrap_dataset_variant(input_handle: nil)
|
4550
|
+
Utils.execute("WrapDatasetVariant", [input_handle])
|
4551
|
+
end
|
4552
|
+
|
4553
|
+
def write_audio_summary(writer: nil, step: nil, tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
|
4554
|
+
Utils.execute("WriteAudioSummary", [writer, step, tag, tensor, sample_rate], max_outputs: max_outputs)
|
4555
|
+
end
|
4556
|
+
|
4557
|
+
def write_file(filename: nil, contents: nil)
|
4558
|
+
Utils.execute("WriteFile", [filename, contents])
|
4559
|
+
end
|
4560
|
+
|
4561
|
+
def write_graph_summary(writer: nil, step: nil, tensor: nil)
|
4562
|
+
Utils.execute("WriteGraphSummary", [writer, step, tensor])
|
4563
|
+
end
|
4564
|
+
|
4565
|
+
def write_histogram_summary(writer: nil, step: nil, tag: nil, values: nil)
|
4566
|
+
Utils.execute("WriteHistogramSummary", [writer, step, tag, values])
|
4567
|
+
end
|
4568
|
+
|
4569
|
+
def write_image_summary(writer: nil, step: nil, tag: nil, tensor: nil, bad_color: nil, max_images: nil)
|
4570
|
+
Utils.execute("WriteImageSummary", [writer, step, tag, tensor, bad_color], max_images: max_images)
|
4571
|
+
end
|
4572
|
+
|
4573
|
+
def write_raw_proto_summary(writer: nil, step: nil, tensor: nil)
|
4574
|
+
Utils.execute("WriteRawProtoSummary", [writer, step, tensor])
|
4575
|
+
end
|
4576
|
+
|
4577
|
+
def write_scalar_summary(writer: nil, step: nil, tag: nil, value: nil)
|
4578
|
+
Utils.execute("WriteScalarSummary", [writer, step, tag, value])
|
4579
|
+
end
|
4580
|
+
|
4581
|
+
def write_summary(writer: nil, step: nil, tensor: nil, tag: nil, summary_metadata: nil)
|
4582
|
+
Utils.execute("WriteSummary", [writer, step, tensor, tag, summary_metadata])
|
4583
|
+
end
|
4584
|
+
|
4585
|
+
def xdivy(x: nil, y: nil)
|
4586
|
+
Utils.execute("Xdivy", [x, y])
|
4587
|
+
end
|
4588
|
+
|
4589
|
+
def xlogy(x: nil, y: nil)
|
4590
|
+
Utils.execute("Xlogy", [x, y])
|
4591
|
+
end
|
4592
|
+
|
4593
|
+
def zeros_like(x: nil)
|
4594
|
+
Utils.execute("ZerosLike", [x])
|
4595
|
+
end
|
4596
|
+
|
4597
|
+
def zeta(x: nil, q: nil)
|
4598
|
+
Utils.execute("Zeta", [x, q])
|
4599
|
+
end
|
4600
|
+
|
4601
|
+
def zip_dataset(input_datasets: nil, output_types: nil, output_shapes: nil)
|
4602
|
+
Utils.execute("ZipDataset", [input_datasets], output_types: output_types, output_shapes: output_shapes)
|
4603
|
+
end
|
4604
|
+
end
|
4605
|
+
end
|
4606
|
+
end
|