tensorflow 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,4606 @@
1
+ # Generated by `rake generate_ops`
2
+ module TensorFlow
3
+ module RawOps
4
+ class << self
5
+ def abort(error_msg: nil, exit_without_error: nil)
6
+ Utils.execute("Abort", [], error_msg: error_msg, exit_without_error: exit_without_error)
7
+ end
8
+
9
+ def abs(x: nil)
10
+ Utils.execute("Abs", [x])
11
+ end
12
+
13
+ def accumulate_nv2(inputs: nil, shape: nil)
14
+ Utils.execute("AccumulateNV2", [inputs], shape: shape)
15
+ end
16
+
17
+ def accumulator_apply_gradient(handle: nil, local_step: nil, gradient: nil, dtype: nil)
18
+ Utils.execute("AccumulatorApplyGradient", [handle, local_step, gradient], dtype: dtype)
19
+ end
20
+
21
+ def accumulator_num_accumulated(handle: nil)
22
+ Utils.execute("AccumulatorNumAccumulated", [handle])
23
+ end
24
+
25
+ def accumulator_set_global_step(handle: nil, new_global_step: nil)
26
+ Utils.execute("AccumulatorSetGlobalStep", [handle, new_global_step])
27
+ end
28
+
29
+ def accumulator_take_gradient(handle: nil, num_required: nil, dtype: nil)
30
+ Utils.execute("AccumulatorTakeGradient", [handle, num_required], dtype: dtype)
31
+ end
32
+
33
+ def acos(x: nil)
34
+ Utils.execute("Acos", [x])
35
+ end
36
+
37
+ def acosh(x: nil)
38
+ Utils.execute("Acosh", [x])
39
+ end
40
+
41
+ def add(x: nil, y: nil)
42
+ Utils.execute("Add", [x, y])
43
+ end
44
+
45
+ def add_many_sparse_to_tensors_map(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, container: nil, shared_name: nil)
46
+ Utils.execute("AddManySparseToTensorsMap", [sparse_indices, sparse_values, sparse_shape], container: container, shared_name: shared_name)
47
+ end
48
+
49
+ def add_n(inputs: nil)
50
+ Utils.execute("AddN", [inputs])
51
+ end
52
+
53
+ def add_sparse_to_tensors_map(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, container: nil, shared_name: nil)
54
+ Utils.execute("AddSparseToTensorsMap", [sparse_indices, sparse_values, sparse_shape], container: container, shared_name: shared_name)
55
+ end
56
+
57
+ def add_v2(x: nil, y: nil)
58
+ Utils.execute("AddV2", [x, y])
59
+ end
60
+
61
+ def adjust_contrast(images: nil, contrast_factor: nil, min_value: nil, max_value: nil)
62
+ Utils.execute("AdjustContrast", [images, contrast_factor, min_value, max_value])
63
+ end
64
+
65
+ def adjust_contrastv2(images: nil, contrast_factor: nil)
66
+ Utils.execute("AdjustContrastv2", [images, contrast_factor])
67
+ end
68
+
69
+ def adjust_hue(images: nil, delta: nil)
70
+ Utils.execute("AdjustHue", [images, delta])
71
+ end
72
+
73
+ def adjust_saturation(images: nil, scale: nil)
74
+ Utils.execute("AdjustSaturation", [images, scale])
75
+ end
76
+
77
+ def all(input: nil, reduction_indices: nil, keep_dims: nil)
78
+ Utils.execute("All", [input, reduction_indices], keep_dims: keep_dims)
79
+ end
80
+
81
+ def all_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, seed: nil, seed2: nil)
82
+ Utils.execute("AllCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, seed: seed, seed2: seed2)
83
+ end
84
+
85
+ def all_to_all(input: nil, group_assignment: nil, concat_dimension: nil, split_dimension: nil, split_count: nil)
86
+ Utils.execute("AllToAll", [input, group_assignment], concat_dimension: concat_dimension, split_dimension: split_dimension, split_count: split_count)
87
+ end
88
+
89
+ def angle(input: nil)
90
+ Utils.execute("Angle", [input])
91
+ end
92
+
93
+ def anonymous_iterator(output_types: nil, output_shapes: nil)
94
+ Utils.execute("AnonymousIterator", [], output_types: output_types, output_shapes: output_shapes)
95
+ end
96
+
97
+ def anonymous_iterator_v2(output_types: nil, output_shapes: nil)
98
+ Utils.execute("AnonymousIteratorV2", [], output_types: output_types, output_shapes: output_shapes)
99
+ end
100
+
101
+ def any(input: nil, reduction_indices: nil, keep_dims: nil)
102
+ Utils.execute("Any", [input, reduction_indices], keep_dims: keep_dims)
103
+ end
104
+
105
+ def apply_ada_max(var: nil, m: nil, v: nil, beta1_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
106
+ Utils.execute("ApplyAdaMax", [var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
107
+ end
108
+
109
+ def apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, use_locking: nil)
110
+ Utils.execute("ApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad], use_locking: use_locking)
111
+ end
112
+
113
+ def apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, use_locking: nil, update_slots: nil)
114
+ Utils.execute("ApplyAdagrad", [var, accum, lr, grad], use_locking: use_locking, update_slots: update_slots)
115
+ end
116
+
117
+ def apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
118
+ Utils.execute("ApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step], use_locking: use_locking)
119
+ end
120
+
121
+ def apply_adam(var: nil, m: nil, v: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil, use_nesterov: nil)
122
+ Utils.execute("ApplyAdam", [var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking, use_nesterov: use_nesterov)
123
+ end
124
+
125
+ def apply_add_sign(var: nil, m: nil, lr: nil, alpha: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
126
+ Utils.execute("ApplyAddSign", [var, m, lr, alpha, sign_decay, beta, grad], use_locking: use_locking)
127
+ end
128
+
129
+ def apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
130
+ Utils.execute("ApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
131
+ end
132
+
133
+ def apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
134
+ Utils.execute("ApplyFtrl", [var, accum, linear, grad, lr, l1, l2, lr_power], use_locking: use_locking)
135
+ end
136
+
137
+ def apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
138
+ Utils.execute("ApplyFtrlV2", [var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
139
+ end
140
+
141
+ def apply_gradient_descent(var: nil, alpha: nil, delta: nil, use_locking: nil)
142
+ Utils.execute("ApplyGradientDescent", [var, alpha, delta], use_locking: use_locking)
143
+ end
144
+
145
+ def apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
146
+ Utils.execute("ApplyMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
147
+ end
148
+
149
+ def apply_power_sign(var: nil, m: nil, lr: nil, logbase: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
150
+ Utils.execute("ApplyPowerSign", [var, m, lr, logbase, sign_decay, beta, grad], use_locking: use_locking)
151
+ end
152
+
153
+ def apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, use_locking: nil)
154
+ Utils.execute("ApplyProximalAdagrad", [var, accum, lr, l1, l2, grad], use_locking: use_locking)
155
+ end
156
+
157
+ def apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, delta: nil, use_locking: nil)
158
+ Utils.execute("ApplyProximalGradientDescent", [var, alpha, l1, l2, delta], use_locking: use_locking)
159
+ end
160
+
161
+ def apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
162
+ Utils.execute("ApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
163
+ end
164
+
165
+ def approximate_equal(x: nil, y: nil, tolerance: nil)
166
+ Utils.execute("ApproximateEqual", [x, y], tolerance: tolerance)
167
+ end
168
+
169
+ def arg_max(input: nil, dimension: nil, output_type: nil)
170
+ Utils.execute("ArgMax", [input, dimension], output_type: output_type)
171
+ end
172
+
173
+ def arg_min(input: nil, dimension: nil, output_type: nil)
174
+ Utils.execute("ArgMin", [input, dimension], output_type: output_type)
175
+ end
176
+
177
+ def as_string(input: nil, precision: nil, scientific: nil, shortest: nil, width: nil, fill: nil)
178
+ Utils.execute("AsString", [input], precision: precision, scientific: scientific, shortest: shortest, width: width, fill: fill)
179
+ end
180
+
181
+ def asin(x: nil)
182
+ Utils.execute("Asin", [x])
183
+ end
184
+
185
+ def asinh(x: nil)
186
+ Utils.execute("Asinh", [x])
187
+ end
188
+
189
+ def assert(condition: nil, data: nil, summarize: nil)
190
+ Utils.execute("Assert", [condition, data], summarize: summarize)
191
+ end
192
+
193
+ def assign(ref: nil, value: nil, validate_shape: nil, use_locking: nil)
194
+ Utils.execute("Assign", [ref, value], validate_shape: validate_shape, use_locking: use_locking)
195
+ end
196
+
197
+ def assign_add(ref: nil, value: nil, use_locking: nil)
198
+ Utils.execute("AssignAdd", [ref, value], use_locking: use_locking)
199
+ end
200
+
201
+ def assign_add_variable_op(resource: nil, value: nil, dtype: nil)
202
+ Utils.execute("AssignAddVariableOp", [resource, value], dtype: dtype)
203
+ end
204
+
205
+ def assign_sub(ref: nil, value: nil, use_locking: nil)
206
+ Utils.execute("AssignSub", [ref, value], use_locking: use_locking)
207
+ end
208
+
209
+ def assign_sub_variable_op(resource: nil, value: nil, dtype: nil)
210
+ Utils.execute("AssignSubVariableOp", [resource, value], dtype: dtype)
211
+ end
212
+
213
+ def assign_variable_op(resource: nil, value: nil, dtype: nil)
214
+ Utils.execute("AssignVariableOp", [resource, value], dtype: dtype)
215
+ end
216
+
217
+ def atan(x: nil)
218
+ Utils.execute("Atan", [x])
219
+ end
220
+
221
+ def atan2(y: nil, x: nil)
222
+ Utils.execute("Atan2", [y, x])
223
+ end
224
+
225
+ def atanh(x: nil)
226
+ Utils.execute("Atanh", [x])
227
+ end
228
+
229
+ def audio_spectrogram(input: nil, window_size: nil, stride: nil, magnitude_squared: nil)
230
+ Utils.execute("AudioSpectrogram", [input], window_size: window_size, stride: stride, magnitude_squared: magnitude_squared)
231
+ end
232
+
233
+ def audio_summary(tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
234
+ Utils.execute("AudioSummary", [tag, tensor], sample_rate: sample_rate, max_outputs: max_outputs)
235
+ end
236
+
237
+ def audio_summary_v2(tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
238
+ Utils.execute("AudioSummaryV2", [tag, tensor, sample_rate], max_outputs: max_outputs)
239
+ end
240
+
241
+ def avg_pool(value: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
242
+ Utils.execute("AvgPool", [value], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
243
+ end
244
+
245
+ def avg_pool3d(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
246
+ Utils.execute("AvgPool3D", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
247
+ end
248
+
249
+ def avg_pool3d_grad(orig_input_shape: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
250
+ Utils.execute("AvgPool3DGrad", [orig_input_shape, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
251
+ end
252
+
253
+ def avg_pool_grad(orig_input_shape: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
254
+ Utils.execute("AvgPoolGrad", [orig_input_shape, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
255
+ end
256
+
257
+ def barrier(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
258
+ Utils.execute("Barrier", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
259
+ end
260
+
261
+ def barrier_close(handle: nil, cancel_pending_enqueues: nil)
262
+ Utils.execute("BarrierClose", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
263
+ end
264
+
265
+ def barrier_incomplete_size(handle: nil)
266
+ Utils.execute("BarrierIncompleteSize", [handle])
267
+ end
268
+
269
+ def barrier_insert_many(handle: nil, keys: nil, values: nil, component_index: nil)
270
+ Utils.execute("BarrierInsertMany", [handle, keys, values], component_index: component_index)
271
+ end
272
+
273
+ def barrier_ready_size(handle: nil)
274
+ Utils.execute("BarrierReadySize", [handle])
275
+ end
276
+
277
+ def barrier_take_many(handle: nil, num_elements: nil, component_types: nil, allow_small_batch: nil, wait_for_incomplete: nil, timeout_ms: nil)
278
+ Utils.execute("BarrierTakeMany", [handle, num_elements], component_types: component_types, allow_small_batch: allow_small_batch, wait_for_incomplete: wait_for_incomplete, timeout_ms: timeout_ms)
279
+ end
280
+
281
+ def batch(in_tensors: nil, num_batch_threads: nil, max_batch_size: nil, max_enqueued_batches: nil, batch_timeout_micros: nil, allowed_batch_sizes: nil, grad_timeout_micros: nil, container: nil, shared_name: nil, batching_queue: nil)
282
+ Utils.execute("Batch", [in_tensors], num_batch_threads: num_batch_threads, max_batch_size: max_batch_size, max_enqueued_batches: max_enqueued_batches, batch_timeout_micros: batch_timeout_micros, allowed_batch_sizes: allowed_batch_sizes, grad_timeout_micros: grad_timeout_micros, container: container, shared_name: shared_name, batching_queue: batching_queue)
283
+ end
284
+
285
+ def batch_cholesky(input: nil)
286
+ Utils.execute("BatchCholesky", [input])
287
+ end
288
+
289
+ def batch_cholesky_grad(l: nil, grad: nil)
290
+ Utils.execute("BatchCholeskyGrad", [l, grad])
291
+ end
292
+
293
+ def batch_dataset(input_dataset: nil, batch_size: nil, output_types: nil, output_shapes: nil)
294
+ Utils.execute("BatchDataset", [input_dataset, batch_size], output_types: output_types, output_shapes: output_shapes)
295
+ end
296
+
297
+ def batch_dataset_v2(input_dataset: nil, batch_size: nil, drop_remainder: nil, parallel_copy: nil, output_types: nil, output_shapes: nil)
298
+ Utils.execute("BatchDatasetV2", [input_dataset, batch_size, drop_remainder], parallel_copy: parallel_copy, output_types: output_types, output_shapes: output_shapes)
299
+ end
300
+
301
+ def batch_fft(input: nil)
302
+ Utils.execute("BatchFFT", [input])
303
+ end
304
+
305
+ def batch_fft2d(input: nil)
306
+ Utils.execute("BatchFFT2D", [input])
307
+ end
308
+
309
+ def batch_fft3d(input: nil)
310
+ Utils.execute("BatchFFT3D", [input])
311
+ end
312
+
313
+ def batch_function(in_tensors: nil, captured_tensors: nil, f: nil, num_batch_threads: nil, max_batch_size: nil, batch_timeout_micros: nil, max_enqueued_batches: nil, allowed_batch_sizes: nil, container: nil, shared_name: nil, batching_queue: nil)
314
+ Utils.execute("BatchFunction", [in_tensors, captured_tensors], f: f, num_batch_threads: num_batch_threads, max_batch_size: max_batch_size, batch_timeout_micros: batch_timeout_micros, max_enqueued_batches: max_enqueued_batches, allowed_batch_sizes: allowed_batch_sizes, container: container, shared_name: shared_name, batching_queue: batching_queue)
315
+ end
316
+
317
+ def batch_ifft(input: nil)
318
+ Utils.execute("BatchIFFT", [input])
319
+ end
320
+
321
+ def batch_ifft2d(input: nil)
322
+ Utils.execute("BatchIFFT2D", [input])
323
+ end
324
+
325
+ def batch_ifft3d(input: nil)
326
+ Utils.execute("BatchIFFT3D", [input])
327
+ end
328
+
329
+ def batch_mat_mul(x: nil, y: nil, adj_x: nil, adj_y: nil)
330
+ Utils.execute("BatchMatMul", [x, y], adj_x: adj_x, adj_y: adj_y)
331
+ end
332
+
333
+ def batch_mat_mul_v2(x: nil, y: nil, adj_x: nil, adj_y: nil)
334
+ Utils.execute("BatchMatMulV2", [x, y], adj_x: adj_x, adj_y: adj_y)
335
+ end
336
+
337
+ def batch_matrix_band_part(input: nil, num_lower: nil, num_upper: nil)
338
+ Utils.execute("BatchMatrixBandPart", [input, num_lower, num_upper])
339
+ end
340
+
341
+ def batch_matrix_determinant(input: nil)
342
+ Utils.execute("BatchMatrixDeterminant", [input])
343
+ end
344
+
345
+ def batch_matrix_diag(diagonal: nil)
346
+ Utils.execute("BatchMatrixDiag", [diagonal])
347
+ end
348
+
349
+ def batch_matrix_diag_part(input: nil)
350
+ Utils.execute("BatchMatrixDiagPart", [input])
351
+ end
352
+
353
+ def batch_matrix_inverse(input: nil, adjoint: nil)
354
+ Utils.execute("BatchMatrixInverse", [input], adjoint: adjoint)
355
+ end
356
+
357
+ def batch_matrix_set_diag(input: nil, diagonal: nil)
358
+ Utils.execute("BatchMatrixSetDiag", [input, diagonal])
359
+ end
360
+
361
+ def batch_matrix_solve(matrix: nil, rhs: nil, adjoint: nil)
362
+ Utils.execute("BatchMatrixSolve", [matrix, rhs], adjoint: adjoint)
363
+ end
364
+
365
+ def batch_matrix_solve_ls(matrix: nil, rhs: nil, l2_regularizer: nil, fast: nil)
366
+ Utils.execute("BatchMatrixSolveLs", [matrix, rhs, l2_regularizer], fast: fast)
367
+ end
368
+
369
+ def batch_matrix_triangular_solve(matrix: nil, rhs: nil, lower: nil, adjoint: nil)
370
+ Utils.execute("BatchMatrixTriangularSolve", [matrix, rhs], lower: lower, adjoint: adjoint)
371
+ end
372
+
373
+ def batch_norm_with_global_normalization(t: nil, m: nil, v: nil, beta: nil, gamma: nil, variance_epsilon: nil, scale_after_normalization: nil)
374
+ Utils.execute("BatchNormWithGlobalNormalization", [t, m, v, beta, gamma], variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
375
+ end
376
+
377
+ def batch_norm_with_global_normalization_grad(t: nil, m: nil, v: nil, gamma: nil, backprop: nil, variance_epsilon: nil, scale_after_normalization: nil)
378
+ Utils.execute("BatchNormWithGlobalNormalizationGrad", [t, m, v, gamma, backprop], variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
379
+ end
380
+
381
+ def batch_self_adjoint_eig(input: nil)
382
+ Utils.execute("BatchSelfAdjointEig", [input])
383
+ end
384
+
385
+ def batch_self_adjoint_eig_v2(input: nil, compute_v: nil)
386
+ Utils.execute("BatchSelfAdjointEigV2", [input], compute_v: compute_v)
387
+ end
388
+
389
+ def batch_svd(input: nil, compute_uv: nil, full_matrices: nil)
390
+ Utils.execute("BatchSvd", [input], compute_uv: compute_uv, full_matrices: full_matrices)
391
+ end
392
+
393
+ def batch_to_space(input: nil, crops: nil, block_size: nil)
394
+ Utils.execute("BatchToSpace", [input, crops], block_size: block_size)
395
+ end
396
+
397
+ def batch_to_space_nd(input: nil, block_shape: nil, crops: nil)
398
+ Utils.execute("BatchToSpaceND", [input, block_shape, crops])
399
+ end
400
+
401
+ def bessel_i0e(x: nil)
402
+ Utils.execute("BesselI0e", [x])
403
+ end
404
+
405
+ def bessel_i1e(x: nil)
406
+ Utils.execute("BesselI1e", [x])
407
+ end
408
+
409
+ def betainc(a: nil, b: nil, x: nil)
410
+ Utils.execute("Betainc", [a, b, x])
411
+ end
412
+
413
+ def bias_add(value: nil, bias: nil, data_format: nil)
414
+ Utils.execute("BiasAdd", [value, bias], data_format: data_format)
415
+ end
416
+
417
+ def bias_add_grad(out_backprop: nil, data_format: nil)
418
+ Utils.execute("BiasAddGrad", [out_backprop], data_format: data_format)
419
+ end
420
+
421
+ def bias_add_v1(value: nil, bias: nil)
422
+ Utils.execute("BiasAddV1", [value, bias])
423
+ end
424
+
425
+ def big_query_reader(container: nil, shared_name: nil, project_id: nil, dataset_id: nil, table_id: nil, columns: nil, timestamp_millis: nil, test_end_point: nil)
426
+ Utils.execute("BigQueryReader", [], container: container, shared_name: shared_name, project_id: project_id, dataset_id: dataset_id, table_id: table_id, columns: columns, timestamp_millis: timestamp_millis, test_end_point: test_end_point)
427
+ end
428
+
429
+ def bincount(arr: nil, size: nil, weights: nil)
430
+ Utils.execute("Bincount", [arr, size, weights])
431
+ end
432
+
433
+ def bitcast(input: nil, type: nil)
434
+ Utils.execute("Bitcast", [input], type: type)
435
+ end
436
+
437
+ def bitwise_and(x: nil, y: nil)
438
+ Utils.execute("BitwiseAnd", [x, y])
439
+ end
440
+
441
+ def bitwise_or(x: nil, y: nil)
442
+ Utils.execute("BitwiseOr", [x, y])
443
+ end
444
+
445
+ def bitwise_xor(x: nil, y: nil)
446
+ Utils.execute("BitwiseXor", [x, y])
447
+ end
448
+
449
+ def boosted_trees_aggregate_stats(node_ids: nil, gradients: nil, hessians: nil, feature: nil, max_splits: nil, num_buckets: nil)
450
+ Utils.execute("BoostedTreesAggregateStats", [node_ids, gradients, hessians, feature], max_splits: max_splits, num_buckets: num_buckets)
451
+ end
452
+
453
+ def boosted_trees_bucketize(float_values: nil, bucket_boundaries: nil, num_features: nil)
454
+ Utils.execute("BoostedTreesBucketize", [float_values, bucket_boundaries], num_features: num_features)
455
+ end
456
+
457
+ def boosted_trees_calculate_best_feature_split(node_id_range: nil, stats_summary: nil, l1: nil, l2: nil, tree_complexity: nil, min_node_weight: nil, logits_dimension: nil, split_type: nil)
458
+ Utils.execute("BoostedTreesCalculateBestFeatureSplit", [node_id_range, stats_summary, l1, l2, tree_complexity, min_node_weight], logits_dimension: logits_dimension, split_type: split_type)
459
+ end
460
+
461
+ def boosted_trees_calculate_best_gains_per_feature(node_id_range: nil, stats_summary_list: nil, l1: nil, l2: nil, tree_complexity: nil, min_node_weight: nil, max_splits: nil, num_features: nil)
462
+ Utils.execute("BoostedTreesCalculateBestGainsPerFeature", [node_id_range, stats_summary_list, l1, l2, tree_complexity, min_node_weight], max_splits: max_splits, num_features: num_features)
463
+ end
464
+
465
+ def boosted_trees_center_bias(tree_ensemble_handle: nil, mean_gradients: nil, mean_hessians: nil, l1: nil, l2: nil)
466
+ Utils.execute("BoostedTreesCenterBias", [tree_ensemble_handle, mean_gradients, mean_hessians, l1, l2])
467
+ end
468
+
469
+ def boosted_trees_create_ensemble(tree_ensemble_handle: nil, stamp_token: nil, tree_ensemble_serialized: nil)
470
+ Utils.execute("BoostedTreesCreateEnsemble", [tree_ensemble_handle, stamp_token, tree_ensemble_serialized])
471
+ end
472
+
473
+ def boosted_trees_create_quantile_stream_resource(quantile_stream_resource_handle: nil, epsilon: nil, num_streams: nil, max_elements: nil)
474
+ Utils.execute("BoostedTreesCreateQuantileStreamResource", [quantile_stream_resource_handle, epsilon, num_streams], max_elements: max_elements)
475
+ end
476
+
477
+ def boosted_trees_deserialize_ensemble(tree_ensemble_handle: nil, stamp_token: nil, tree_ensemble_serialized: nil)
478
+ Utils.execute("BoostedTreesDeserializeEnsemble", [tree_ensemble_handle, stamp_token, tree_ensemble_serialized])
479
+ end
480
+
481
+ def boosted_trees_ensemble_resource_handle_op(container: nil, shared_name: nil)
482
+ Utils.execute("BoostedTreesEnsembleResourceHandleOp", [], container: container, shared_name: shared_name)
483
+ end
484
+
485
+ def boosted_trees_example_debug_outputs(tree_ensemble_handle: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
486
+ Utils.execute("BoostedTreesExampleDebugOutputs", [tree_ensemble_handle, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
487
+ end
488
+
489
+ def boosted_trees_get_ensemble_states(tree_ensemble_handle: nil)
490
+ Utils.execute("BoostedTreesGetEnsembleStates", [tree_ensemble_handle])
491
+ end
492
+
493
+ def boosted_trees_make_quantile_summaries(float_values: nil, example_weights: nil, epsilon: nil, num_features: nil)
494
+ Utils.execute("BoostedTreesMakeQuantileSummaries", [float_values, example_weights, epsilon], num_features: num_features)
495
+ end
496
+
497
+ def boosted_trees_make_stats_summary(node_ids: nil, gradients: nil, hessians: nil, bucketized_features_list: nil, max_splits: nil, num_buckets: nil, num_features: nil)
498
+ Utils.execute("BoostedTreesMakeStatsSummary", [node_ids, gradients, hessians, bucketized_features_list], max_splits: max_splits, num_buckets: num_buckets, num_features: num_features)
499
+ end
500
+
501
+ def boosted_trees_predict(tree_ensemble_handle: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
502
+ Utils.execute("BoostedTreesPredict", [tree_ensemble_handle, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
503
+ end
504
+
505
+ def boosted_trees_quantile_stream_resource_add_summaries(quantile_stream_resource_handle: nil, summaries: nil, num_features: nil)
506
+ Utils.execute("BoostedTreesQuantileStreamResourceAddSummaries", [quantile_stream_resource_handle, summaries], num_features: num_features)
507
+ end
508
+
509
+ def boosted_trees_quantile_stream_resource_deserialize(quantile_stream_resource_handle: nil, bucket_boundaries: nil, num_streams: nil)
510
+ Utils.execute("BoostedTreesQuantileStreamResourceDeserialize", [quantile_stream_resource_handle, bucket_boundaries], num_streams: num_streams)
511
+ end
512
+
513
+ def boosted_trees_quantile_stream_resource_flush(quantile_stream_resource_handle: nil, num_buckets: nil, generate_quantiles: nil)
514
+ Utils.execute("BoostedTreesQuantileStreamResourceFlush", [quantile_stream_resource_handle, num_buckets], generate_quantiles: generate_quantiles)
515
+ end
516
+
517
+ def boosted_trees_quantile_stream_resource_get_bucket_boundaries(quantile_stream_resource_handle: nil, num_features: nil)
518
+ Utils.execute("BoostedTreesQuantileStreamResourceGetBucketBoundaries", [quantile_stream_resource_handle], num_features: num_features)
519
+ end
520
+
521
+ def boosted_trees_quantile_stream_resource_handle_op(container: nil, shared_name: nil)
522
+ Utils.execute("BoostedTreesQuantileStreamResourceHandleOp", [], container: container, shared_name: shared_name)
523
+ end
524
+
525
+ def boosted_trees_serialize_ensemble(tree_ensemble_handle: nil)
526
+ Utils.execute("BoostedTreesSerializeEnsemble", [tree_ensemble_handle])
527
+ end
528
+
529
+ def boosted_trees_training_predict(tree_ensemble_handle: nil, cached_tree_ids: nil, cached_node_ids: nil, bucketized_features: nil, num_bucketized_features: nil, logits_dimension: nil)
530
+ Utils.execute("BoostedTreesTrainingPredict", [tree_ensemble_handle, cached_tree_ids, cached_node_ids, bucketized_features], num_bucketized_features: num_bucketized_features, logits_dimension: logits_dimension)
531
+ end
532
+
533
+ def boosted_trees_update_ensemble(tree_ensemble_handle: nil, feature_ids: nil, node_ids: nil, gains: nil, thresholds: nil, left_node_contribs: nil, right_node_contribs: nil, max_depth: nil, learning_rate: nil, pruning_mode: nil, num_features: nil)
534
+ Utils.execute("BoostedTreesUpdateEnsemble", [tree_ensemble_handle, feature_ids, node_ids, gains, thresholds, left_node_contribs, right_node_contribs, max_depth, learning_rate], pruning_mode: pruning_mode, num_features: num_features)
535
+ end
536
+
537
+ def broadcast_args(s0: nil, s1: nil)
538
+ Utils.execute("BroadcastArgs", [s0, s1])
539
+ end
540
+
541
+ def broadcast_gradient_args(s0: nil, s1: nil)
542
+ Utils.execute("BroadcastGradientArgs", [s0, s1])
543
+ end
544
+
545
+ def broadcast_to(input: nil, shape: nil)
546
+ Utils.execute("BroadcastTo", [input, shape])
547
+ end
548
+
549
+ def bucketize(input: nil, boundaries: nil)
550
+ Utils.execute("Bucketize", [input], boundaries: boundaries)
551
+ end
552
+
553
+ def ctc_beam_search_decoder(inputs: nil, sequence_length: nil, beam_width: nil, top_paths: nil, merge_repeated: nil)
554
+ Utils.execute("CTCBeamSearchDecoder", [inputs, sequence_length], beam_width: beam_width, top_paths: top_paths, merge_repeated: merge_repeated)
555
+ end
556
+
557
+ def ctc_greedy_decoder(inputs: nil, sequence_length: nil, merge_repeated: nil)
558
+ Utils.execute("CTCGreedyDecoder", [inputs, sequence_length], merge_repeated: merge_repeated)
559
+ end
560
+
561
+ def ctc_loss(inputs: nil, labels_indices: nil, labels_values: nil, sequence_length: nil, preprocess_collapse_repeated: nil, ctc_merge_repeated: nil, ignore_longer_outputs_than_inputs: nil)
562
+ Utils.execute("CTCLoss", [inputs, labels_indices, labels_values, sequence_length], preprocess_collapse_repeated: preprocess_collapse_repeated, ctc_merge_repeated: ctc_merge_repeated, ignore_longer_outputs_than_inputs: ignore_longer_outputs_than_inputs)
563
+ end
564
+
565
+ def cache_dataset(input_dataset: nil, filename: nil, output_types: nil, output_shapes: nil)
566
+ Utils.execute("CacheDataset", [input_dataset, filename], output_types: output_types, output_shapes: output_shapes)
567
+ end
568
+
569
+ def case(branch_index: nil, input: nil, branches: nil, output_shapes: nil)
570
+ Utils.execute("Case", [branch_index, input], branches: branches, output_shapes: output_shapes)
571
+ end
572
+
573
+ def cast(x: nil)
574
+ Utils.execute("Cast", [x])
575
+ end
576
+
577
+ def ceil(x: nil)
578
+ Utils.execute("Ceil", [x])
579
+ end
580
+
581
+ def check_numerics(tensor: nil, message: nil)
582
+ Utils.execute("CheckNumerics", [tensor], message: message)
583
+ end
584
+
585
+ def cholesky(input: nil)
586
+ Utils.execute("Cholesky", [input])
587
+ end
588
+
589
+ def cholesky_grad(l: nil, grad: nil)
590
+ Utils.execute("CholeskyGrad", [l, grad])
591
+ end
592
+
593
+ def choose_fastest_branch_dataset(input_dataset: nil, ratio_numerator: nil, ratio_denominator: nil, other_arguments: nil, num_elements_per_branch: nil, branches: nil, other_arguments_lengths: nil, output_types: nil, output_shapes: nil)
594
+ Utils.execute("ChooseFastestBranchDataset", [input_dataset, ratio_numerator, ratio_denominator, other_arguments], num_elements_per_branch: num_elements_per_branch, branches: branches, other_arguments_lengths: other_arguments_lengths, output_types: output_types, output_shapes: output_shapes)
595
+ end
596
+
597
+ def clip_by_value(t: nil, clip_value_min: nil, clip_value_max: nil)
598
+ Utils.execute("ClipByValue", [t, clip_value_min, clip_value_max])
599
+ end
600
+
601
+ def close_summary_writer(writer: nil)
602
+ Utils.execute("CloseSummaryWriter", [writer])
603
+ end
604
+
605
+ def collective_bcast_recv(group_size: nil, group_key: nil, instance_key: nil, shape: nil)
606
+ Utils.execute("CollectiveBcastRecv", [], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
607
+ end
608
+
609
+ def collective_bcast_send(input: nil, group_size: nil, group_key: nil, instance_key: nil, shape: nil)
610
+ Utils.execute("CollectiveBcastSend", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
611
+ end
612
+
613
+ def collective_gather(input: nil, group_size: nil, group_key: nil, instance_key: nil, shape: nil)
614
+ Utils.execute("CollectiveGather", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, shape: shape)
615
+ end
616
+
617
+ def collective_permute(input: nil, source_target_pairs: nil)
618
+ Utils.execute("CollectivePermute", [input, source_target_pairs])
619
+ end
620
+
621
+ def collective_reduce(input: nil, group_size: nil, group_key: nil, instance_key: nil, merge_op: nil, final_op: nil, subdiv_offsets: nil, wait_for: nil)
622
+ Utils.execute("CollectiveReduce", [input], group_size: group_size, group_key: group_key, instance_key: instance_key, merge_op: merge_op, final_op: final_op, subdiv_offsets: subdiv_offsets, wait_for: wait_for)
623
+ end
624
+
625
+ def combined_non_max_suppression(boxes: nil, scores: nil, max_output_size_per_class: nil, max_total_size: nil, iou_threshold: nil, score_threshold: nil, pad_per_class: nil, clip_boxes: nil)
626
+ Utils.execute("CombinedNonMaxSuppression", [boxes, scores, max_output_size_per_class, max_total_size, iou_threshold, score_threshold], pad_per_class: pad_per_class, clip_boxes: clip_boxes)
627
+ end
628
+
629
+ def compare_and_bitpack(input: nil, threshold: nil)
630
+ Utils.execute("CompareAndBitpack", [input, threshold])
631
+ end
632
+
633
+ def complex(real: nil, imag: nil)
634
+ Utils.execute("Complex", [real, imag])
635
+ end
636
+
637
+ def complex_abs(x: nil)
638
+ Utils.execute("ComplexAbs", [x])
639
+ end
640
+
641
+ def compute_accidental_hits(true_classes: nil, sampled_candidates: nil, num_true: nil, seed: nil, seed2: nil)
642
+ Utils.execute("ComputeAccidentalHits", [true_classes, sampled_candidates], num_true: num_true, seed: seed, seed2: seed2)
643
+ end
644
+
645
+ def concat(concat_dim: nil, values: nil)
646
+ Utils.execute("Concat", [concat_dim, values])
647
+ end
648
+
649
+ def concat_offset(concat_dim: nil, shape: nil)
650
+ Utils.execute("ConcatOffset", [concat_dim, shape])
651
+ end
652
+
653
+ def concat_v2(values: nil, axis: nil)
654
+ Utils.execute("ConcatV2", [values, axis])
655
+ end
656
+
657
+ def concatenate_dataset(input_dataset: nil, another_dataset: nil, output_types: nil, output_shapes: nil)
658
+ Utils.execute("ConcatenateDataset", [input_dataset, another_dataset], output_types: output_types, output_shapes: output_shapes)
659
+ end
660
+
661
+ def conditional_accumulator(dtype: nil, shape: nil, container: nil, shared_name: nil, reduction_type: nil)
662
+ Utils.execute("ConditionalAccumulator", [], dtype: dtype, shape: shape, container: container, shared_name: shared_name, reduction_type: reduction_type)
663
+ end
664
+
665
+ def configure_distributed_tpu(embedding_config: nil, tpu_embedding_config: nil, is_global_init: nil)
666
+ Utils.execute("ConfigureDistributedTPU", [], embedding_config: embedding_config, tpu_embedding_config: tpu_embedding_config, is_global_init: is_global_init)
667
+ end
668
+
669
+ def conj(input: nil)
670
+ Utils.execute("Conj", [input])
671
+ end
672
+
673
+ def conjugate_transpose(x: nil, perm: nil)
674
+ Utils.execute("ConjugateTranspose", [x, perm])
675
+ end
676
+
677
+ def const(value: nil, dtype: nil)
678
+ Utils.execute("Const", [], value: value, dtype: dtype)
679
+ end
680
+
681
+ def consume_mutex_lock(mutex_lock: nil)
682
+ Utils.execute("ConsumeMutexLock", [mutex_lock])
683
+ end
684
+
685
+ def control_trigger
686
+ Utils.execute("ControlTrigger", [])
687
+ end
688
+
689
+ def conv2d(input: nil, filter: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
690
+ Utils.execute("Conv2D", [input, filter], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
691
+ end
692
+
693
+ def conv2d_backprop_filter(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
694
+ Utils.execute("Conv2DBackpropFilter", [input, filter_sizes, out_backprop], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
695
+ end
696
+
697
+ def conv2d_backprop_input(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, use_cudnn_on_gpu: nil, padding: nil, explicit_paddings: nil, data_format: nil, dilations: nil)
698
+ Utils.execute("Conv2DBackpropInput", [input_sizes, filter, out_backprop], strides: strides, use_cudnn_on_gpu: use_cudnn_on_gpu, padding: padding, explicit_paddings: explicit_paddings, data_format: data_format, dilations: dilations)
699
+ end
700
+
701
+ def conv3d(input: nil, filter: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
702
+ Utils.execute("Conv3D", [input, filter], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
703
+ end
704
+
705
+ def conv3d_backprop_filter(input: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, dilations: nil)
706
+ Utils.execute("Conv3DBackpropFilter", [input, filter, out_backprop], strides: strides, padding: padding, dilations: dilations)
707
+ end
708
+
709
+ def conv3d_backprop_filter_v2(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
710
+ Utils.execute("Conv3DBackpropFilterV2", [input, filter_sizes, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
711
+ end
712
+
713
+ def conv3d_backprop_input(input: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, dilations: nil)
714
+ Utils.execute("Conv3DBackpropInput", [input, filter, out_backprop], strides: strides, padding: padding, dilations: dilations)
715
+ end
716
+
717
+ def conv3d_backprop_input_v2(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
718
+ Utils.execute("Conv3DBackpropInputV2", [input_sizes, filter, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
719
+ end
720
+
721
+ def copy(input: nil, tensor_name: nil, debug_ops_spec: nil)
722
+ Utils.execute("Copy", [input], tensor_name: tensor_name, debug_ops_spec: debug_ops_spec)
723
+ end
724
+
725
+ def copy_host(input: nil, tensor_name: nil, debug_ops_spec: nil)
726
+ Utils.execute("CopyHost", [input], tensor_name: tensor_name, debug_ops_spec: debug_ops_spec)
727
+ end
728
+
729
+ def cos(x: nil)
730
+ Utils.execute("Cos", [x])
731
+ end
732
+
733
+ def cosh(x: nil)
734
+ Utils.execute("Cosh", [x])
735
+ end
736
+
737
+ def count_up_to(ref: nil, limit: nil)
738
+ Utils.execute("CountUpTo", [ref], limit: limit)
739
+ end
740
+
741
+ def create_summary_db_writer(writer: nil, db_uri: nil, experiment_name: nil, run_name: nil, user_name: nil)
742
+ Utils.execute("CreateSummaryDbWriter", [writer, db_uri, experiment_name, run_name, user_name])
743
+ end
744
+
745
+ def create_summary_file_writer(writer: nil, logdir: nil, max_queue: nil, flush_millis: nil, filename_suffix: nil)
746
+ Utils.execute("CreateSummaryFileWriter", [writer, logdir, max_queue, flush_millis, filename_suffix])
747
+ end
748
+
749
+ def crop_and_resize(image: nil, boxes: nil, box_ind: nil, crop_size: nil, method: nil, extrapolation_value: nil)
750
+ Utils.execute("CropAndResize", [image, boxes, box_ind, crop_size], method: method, extrapolation_value: extrapolation_value)
751
+ end
752
+
753
+ def crop_and_resize_grad_boxes(grads: nil, image: nil, boxes: nil, box_ind: nil, method: nil)
754
+ Utils.execute("CropAndResizeGradBoxes", [grads, image, boxes, box_ind], method: method)
755
+ end
756
+
757
+ def crop_and_resize_grad_image(grads: nil, boxes: nil, box_ind: nil, image_size: nil, method: nil)
758
+ Utils.execute("CropAndResizeGradImage", [grads, boxes, box_ind, image_size], method: method)
759
+ end
760
+
761
+ def cross(a: nil, b: nil)
762
+ Utils.execute("Cross", [a, b])
763
+ end
764
+
765
+ def cross_replica_sum(input: nil, group_assignment: nil)
766
+ Utils.execute("CrossReplicaSum", [input, group_assignment])
767
+ end
768
+
769
+ def cudnn_rnn(input: nil, input_h: nil, input_c: nil, params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil)
770
+ Utils.execute("CudnnRNN", [input, input_h, input_c, params], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training)
771
+ end
772
+
773
+ def cudnn_rnn_backprop(input: nil, input_h: nil, input_c: nil, params: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
774
+ Utils.execute("CudnnRNNBackprop", [input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
775
+ end
776
+
777
+ def cudnn_rnn_backprop_v2(input: nil, input_h: nil, input_c: nil, params: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, host_reserved: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
778
+ Utils.execute("CudnnRNNBackpropV2", [input, input_h, input_c, params, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
779
+ end
780
+
781
+ def cudnn_rnn_backprop_v3(input: nil, input_h: nil, input_c: nil, params: nil, sequence_lengths: nil, output: nil, output_h: nil, output_c: nil, output_backprop: nil, output_h_backprop: nil, output_c_backprop: nil, reserve_space: nil, host_reserved: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, time_major: nil)
782
+ Utils.execute("CudnnRNNBackpropV3", [input, input_h, input_c, params, sequence_lengths, output, output_h, output_c, output_backprop, output_h_backprop, output_c_backprop, reserve_space, host_reserved], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, time_major: time_major)
783
+ end
784
+
785
+ def cudnn_rnn_canonical_to_params(num_layers: nil, num_units: nil, input_size: nil, weights: nil, biases: nil, num_params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
786
+ Utils.execute("CudnnRNNCanonicalToParams", [num_layers, num_units, input_size, weights, biases], num_params: num_params, rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
787
+ end
788
+
789
+ def cudnn_rnn_params_size(num_layers: nil, num_units: nil, input_size: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
790
+ Utils.execute("CudnnRNNParamsSize", [num_layers, num_units, input_size], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
791
+ end
792
+
793
+ def cudnn_rnn_params_to_canonical(num_layers: nil, num_units: nil, input_size: nil, params: nil, num_params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil)
794
+ Utils.execute("CudnnRNNParamsToCanonical", [num_layers, num_units, input_size, params], num_params: num_params, rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2)
795
+ end
796
+
797
+ def cudnn_rnnv2(input: nil, input_h: nil, input_c: nil, params: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil)
798
+ Utils.execute("CudnnRNNV2", [input, input_h, input_c, params], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training)
799
+ end
800
+
801
+ def cudnn_rnnv3(input: nil, input_h: nil, input_c: nil, params: nil, sequence_lengths: nil, rnn_mode: nil, input_mode: nil, direction: nil, dropout: nil, seed: nil, seed2: nil, is_training: nil, time_major: nil)
802
+ Utils.execute("CudnnRNNV3", [input, input_h, input_c, params, sequence_lengths], rnn_mode: rnn_mode, input_mode: input_mode, direction: direction, dropout: dropout, seed: seed, seed2: seed2, is_training: is_training, time_major: time_major)
803
+ end
804
+
805
+ def cumprod(x: nil, axis: nil, exclusive: nil, reverse: nil)
806
+ Utils.execute("Cumprod", [x, axis], exclusive: exclusive, reverse: reverse)
807
+ end
808
+
809
+ def cumsum(x: nil, axis: nil, exclusive: nil, reverse: nil)
810
+ Utils.execute("Cumsum", [x, axis], exclusive: exclusive, reverse: reverse)
811
+ end
812
+
813
+ def data_format_dim_map(x: nil, src_format: nil, dst_format: nil)
814
+ Utils.execute("DataFormatDimMap", [x], src_format: src_format, dst_format: dst_format)
815
+ end
816
+
817
+ def data_format_vec_permute(x: nil, src_format: nil, dst_format: nil)
818
+ Utils.execute("DataFormatVecPermute", [x], src_format: src_format, dst_format: dst_format)
819
+ end
820
+
821
+ def dataset_to_graph(input_dataset: nil)
822
+ Utils.execute("DatasetToGraph", [input_dataset])
823
+ end
824
+
825
+ def dataset_to_single_element(dataset: nil, output_types: nil, output_shapes: nil)
826
+ Utils.execute("DatasetToSingleElement", [dataset], output_types: output_types, output_shapes: output_shapes)
827
+ end
828
+
829
+ def debug_gradient_identity(input: nil)
830
+ Utils.execute("DebugGradientIdentity", [input])
831
+ end
832
+
833
+ def debug_gradient_ref_identity(input: nil)
834
+ Utils.execute("DebugGradientRefIdentity", [input])
835
+ end
836
+
837
+ def debug_identity(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, gated_grpc: nil)
838
+ Utils.execute("DebugIdentity", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, gated_grpc: gated_grpc)
839
+ end
840
+
841
+ def debug_nan_count(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, gated_grpc: nil)
842
+ Utils.execute("DebugNanCount", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, gated_grpc: gated_grpc)
843
+ end
844
+
845
+ def debug_numeric_summary(input: nil, device_name: nil, tensor_name: nil, debug_urls: nil, lower_bound: nil, upper_bound: nil, mute_if_healthy: nil, gated_grpc: nil)
846
+ Utils.execute("DebugNumericSummary", [input], device_name: device_name, tensor_name: tensor_name, debug_urls: debug_urls, lower_bound: lower_bound, upper_bound: upper_bound, mute_if_healthy: mute_if_healthy, gated_grpc: gated_grpc)
847
+ end
848
+
849
+ def decode_and_crop_jpeg(contents: nil, crop_window: nil, channels: nil, ratio: nil, fancy_upscaling: nil, try_recover_truncated: nil, acceptable_fraction: nil, dct_method: nil)
850
+ Utils.execute("DecodeAndCropJpeg", [contents, crop_window], channels: channels, ratio: ratio, fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, acceptable_fraction: acceptable_fraction, dct_method: dct_method)
851
+ end
852
+
853
+ def decode_base64(input: nil)
854
+ Utils.execute("DecodeBase64", [input])
855
+ end
856
+
857
+ def decode_bmp(contents: nil, channels: nil)
858
+ Utils.execute("DecodeBmp", [contents], channels: channels)
859
+ end
860
+
861
+ def decode_csv(records: nil, record_defaults: nil, field_delim: nil, use_quote_delim: nil, na_value: nil, select_cols: nil)
862
+ Utils.execute("DecodeCSV", [records, record_defaults], field_delim: field_delim, use_quote_delim: use_quote_delim, na_value: na_value, select_cols: select_cols)
863
+ end
864
+
865
+ def decode_compressed(bytes: nil, compression_type: nil)
866
+ Utils.execute("DecodeCompressed", [bytes], compression_type: compression_type)
867
+ end
868
+
869
+ def decode_gif(contents: nil)
870
+ Utils.execute("DecodeGif", [contents])
871
+ end
872
+
873
+ def decode_json_example(json_examples: nil)
874
+ Utils.execute("DecodeJSONExample", [json_examples])
875
+ end
876
+
877
+ def decode_jpeg(contents: nil, channels: nil, ratio: nil, fancy_upscaling: nil, try_recover_truncated: nil, acceptable_fraction: nil, dct_method: nil)
878
+ Utils.execute("DecodeJpeg", [contents], channels: channels, ratio: ratio, fancy_upscaling: fancy_upscaling, try_recover_truncated: try_recover_truncated, acceptable_fraction: acceptable_fraction, dct_method: dct_method)
879
+ end
880
+
881
+ def decode_padded_raw(input_bytes: nil, fixed_length: nil, out_type: nil, little_endian: nil)
882
+ Utils.execute("DecodePaddedRaw", [input_bytes, fixed_length], out_type: out_type, little_endian: little_endian)
883
+ end
884
+
885
+ def decode_png(contents: nil, channels: nil, dtype: nil)
886
+ Utils.execute("DecodePng", [contents], channels: channels, dtype: dtype)
887
+ end
888
+
889
+ def decode_proto_v2(bytes: nil, message_type: nil, field_names: nil, output_types: nil, descriptor_source: nil, message_format: nil, sanitize: nil)
890
+ Utils.execute("DecodeProtoV2", [bytes], message_type: message_type, field_names: field_names, output_types: output_types, descriptor_source: descriptor_source, message_format: message_format, sanitize: sanitize)
891
+ end
892
+
893
+ def decode_raw(bytes: nil, out_type: nil, little_endian: nil)
894
+ Utils.execute("DecodeRaw", [bytes], out_type: out_type, little_endian: little_endian)
895
+ end
896
+
897
+ def decode_wav(contents: nil, desired_channels: nil, desired_samples: nil)
898
+ Utils.execute("DecodeWav", [contents], desired_channels: desired_channels, desired_samples: desired_samples)
899
+ end
900
+
901
+ def deep_copy(x: nil)
902
+ Utils.execute("DeepCopy", [x])
903
+ end
904
+
905
+ def delete_iterator(handle: nil, deleter: nil)
906
+ Utils.execute("DeleteIterator", [handle, deleter])
907
+ end
908
+
909
+ def delete_session_tensor(handle: nil)
910
+ Utils.execute("DeleteSessionTensor", [handle])
911
+ end
912
+
913
+ def dense_to_dense_set_operation(set1: nil, set2: nil, set_operation: nil, validate_indices: nil)
914
+ Utils.execute("DenseToDenseSetOperation", [set1, set2], set_operation: set_operation, validate_indices: validate_indices)
915
+ end
916
+
917
+ def dense_to_sparse_set_operation(set1: nil, set2_indices: nil, set2_values: nil, set2_shape: nil, set_operation: nil, validate_indices: nil)
918
+ Utils.execute("DenseToSparseSetOperation", [set1, set2_indices, set2_values, set2_shape], set_operation: set_operation, validate_indices: validate_indices)
919
+ end
920
+
921
+ def depth_to_space(input: nil, block_size: nil, data_format: nil)
922
+ Utils.execute("DepthToSpace", [input], block_size: block_size, data_format: data_format)
923
+ end
924
+
925
+ def depthwise_conv2d_native(input: nil, filter: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
926
+ Utils.execute("DepthwiseConv2dNative", [input, filter], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
927
+ end
928
+
929
+ def depthwise_conv2d_native_backprop_filter(input: nil, filter_sizes: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
930
+ Utils.execute("DepthwiseConv2dNativeBackpropFilter", [input, filter_sizes, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
931
+ end
932
+
933
+ def depthwise_conv2d_native_backprop_input(input_sizes: nil, filter: nil, out_backprop: nil, strides: nil, padding: nil, data_format: nil, dilations: nil)
934
+ Utils.execute("DepthwiseConv2dNativeBackpropInput", [input_sizes, filter, out_backprop], strides: strides, padding: padding, data_format: data_format, dilations: dilations)
935
+ end
936
+
937
+ def dequantize(input: nil, min_range: nil, max_range: nil, mode: nil)
938
+ Utils.execute("Dequantize", [input, min_range, max_range], mode: mode)
939
+ end
940
+
941
+ def deserialize_iterator(resource_handle: nil, serialized: nil)
942
+ Utils.execute("DeserializeIterator", [resource_handle, serialized])
943
+ end
944
+
945
+ def deserialize_many_sparse(serialized_sparse: nil, dtype: nil)
946
+ Utils.execute("DeserializeManySparse", [serialized_sparse], dtype: dtype)
947
+ end
948
+
949
+ def deserialize_sparse(serialized_sparse: nil, dtype: nil)
950
+ Utils.execute("DeserializeSparse", [serialized_sparse], dtype: dtype)
951
+ end
952
+
953
+ def destroy_resource_op(resource: nil, ignore_lookup_error: nil)
954
+ Utils.execute("DestroyResourceOp", [resource], ignore_lookup_error: ignore_lookup_error)
955
+ end
956
+
957
+ def destroy_temporary_variable(ref: nil, var_name: nil)
958
+ Utils.execute("DestroyTemporaryVariable", [ref], var_name: var_name)
959
+ end
960
+
961
+ def diag(diagonal: nil)
962
+ Utils.execute("Diag", [diagonal])
963
+ end
964
+
965
+ def diag_part(input: nil)
966
+ Utils.execute("DiagPart", [input])
967
+ end
968
+
969
+ def digamma(x: nil)
970
+ Utils.execute("Digamma", [x])
971
+ end
972
+
973
+ def dilation2d(input: nil, filter: nil, strides: nil, rates: nil, padding: nil)
974
+ Utils.execute("Dilation2D", [input, filter], strides: strides, rates: rates, padding: padding)
975
+ end
976
+
977
+ def dilation2d_backprop_filter(input: nil, filter: nil, out_backprop: nil, strides: nil, rates: nil, padding: nil)
978
+ Utils.execute("Dilation2DBackpropFilter", [input, filter, out_backprop], strides: strides, rates: rates, padding: padding)
979
+ end
980
+
981
+ def dilation2d_backprop_input(input: nil, filter: nil, out_backprop: nil, strides: nil, rates: nil, padding: nil)
982
+ Utils.execute("Dilation2DBackpropInput", [input, filter, out_backprop], strides: strides, rates: rates, padding: padding)
983
+ end
984
+
985
+ def div(x: nil, y: nil)
986
+ Utils.execute("Div", [x, y])
987
+ end
988
+
989
+ def div_no_nan(x: nil, y: nil)
990
+ Utils.execute("DivNoNan", [x, y])
991
+ end
992
+
993
+ def draw_bounding_boxes(images: nil, boxes: nil)
994
+ Utils.execute("DrawBoundingBoxes", [images, boxes])
995
+ end
996
+
997
+ def draw_bounding_boxes_v2(images: nil, boxes: nil, colors: nil)
998
+ Utils.execute("DrawBoundingBoxesV2", [images, boxes, colors])
999
+ end
1000
+
1001
+ def dynamic_partition(data: nil, partitions: nil, num_partitions: nil)
1002
+ Utils.execute("DynamicPartition", [data, partitions], num_partitions: num_partitions)
1003
+ end
1004
+
1005
+ def dynamic_stitch(indices: nil, data: nil)
1006
+ Utils.execute("DynamicStitch", [indices, data])
1007
+ end
1008
+
1009
+ def eager_py_func(input: nil, token: nil)
1010
+ Utils.execute("EagerPyFunc", [input], token: token)
1011
+ end
1012
+
1013
+ def edit_distance(hypothesis_indices: nil, hypothesis_values: nil, hypothesis_shape: nil, truth_indices: nil, truth_values: nil, truth_shape: nil, normalize: nil)
1014
+ Utils.execute("EditDistance", [hypothesis_indices, hypothesis_values, hypothesis_shape, truth_indices, truth_values, truth_shape], normalize: normalize)
1015
+ end
1016
+
1017
+ def elu(features: nil)
1018
+ Utils.execute("Elu", [features])
1019
+ end
1020
+
1021
+ def elu_grad(gradients: nil, outputs: nil)
1022
+ Utils.execute("EluGrad", [gradients, outputs])
1023
+ end
1024
+
1025
+ def empty(shape: nil, dtype: nil, init: nil)
1026
+ Utils.execute("Empty", [shape], dtype: dtype, init: init)
1027
+ end
1028
+
1029
+ def empty_tensor_list(element_shape: nil, max_num_elements: nil, element_dtype: nil, shape_type: nil)
1030
+ Utils.execute("EmptyTensorList", [element_shape, max_num_elements], element_dtype: element_dtype, shape_type: shape_type)
1031
+ end
1032
+
1033
+ def encode_base64(input: nil, pad: nil)
1034
+ Utils.execute("EncodeBase64", [input], pad: pad)
1035
+ end
1036
+
1037
+ def encode_jpeg(image: nil, format: nil, quality: nil, progressive: nil, optimize_size: nil, chroma_downsampling: nil, density_unit: nil, x_density: nil, y_density: nil, xmp_metadata: nil)
1038
+ Utils.execute("EncodeJpeg", [image], format: format, quality: quality, progressive: progressive, optimize_size: optimize_size, chroma_downsampling: chroma_downsampling, density_unit: density_unit, x_density: x_density, y_density: y_density, xmp_metadata: xmp_metadata)
1039
+ end
1040
+
1041
+ def encode_jpeg_variable_quality(images: nil, quality: nil)
1042
+ Utils.execute("EncodeJpegVariableQuality", [images, quality])
1043
+ end
1044
+
1045
+ def encode_png(image: nil, compression: nil)
1046
+ Utils.execute("EncodePng", [image], compression: compression)
1047
+ end
1048
+
1049
+ def encode_proto(sizes: nil, values: nil, field_names: nil, message_type: nil, descriptor_source: nil)
1050
+ Utils.execute("EncodeProto", [sizes, values], field_names: field_names, message_type: message_type, descriptor_source: descriptor_source)
1051
+ end
1052
+
1053
+ def encode_wav(audio: nil, sample_rate: nil)
1054
+ Utils.execute("EncodeWav", [audio, sample_rate])
1055
+ end
1056
+
1057
+ def enqueue_tpu_embedding_integer_batch(batch: nil, mode_override: nil, device_ordinal: nil)
1058
+ Utils.execute("EnqueueTPUEmbeddingIntegerBatch", [batch, mode_override], device_ordinal: device_ordinal)
1059
+ end
1060
+
1061
+ def enqueue_tpu_embedding_sparse_batch(sample_indices: nil, embedding_indices: nil, aggregation_weights: nil, mode_override: nil, device_ordinal: nil, combiners: nil)
1062
+ Utils.execute("EnqueueTPUEmbeddingSparseBatch", [sample_indices, embedding_indices, aggregation_weights, mode_override], device_ordinal: device_ordinal, combiners: combiners)
1063
+ end
1064
+
1065
+ def enqueue_tpu_embedding_sparse_tensor_batch(sample_indices: nil, embedding_indices: nil, aggregation_weights: nil, mode_override: nil, device_ordinal: nil, combiners: nil, table_ids: nil, max_sequence_lengths: nil)
1066
+ Utils.execute("EnqueueTPUEmbeddingSparseTensorBatch", [sample_indices, embedding_indices, aggregation_weights, mode_override], device_ordinal: device_ordinal, combiners: combiners, table_ids: table_ids, max_sequence_lengths: max_sequence_lengths)
1067
+ end
1068
+
1069
+ def ensure_shape(input: nil, shape: nil)
1070
+ Utils.execute("EnsureShape", [input], shape: shape)
1071
+ end
1072
+
1073
+ def enter(data: nil, frame_name: nil, is_constant: nil, parallel_iterations: nil)
1074
+ Utils.execute("Enter", [data], frame_name: frame_name, is_constant: is_constant, parallel_iterations: parallel_iterations)
1075
+ end
1076
+
1077
+ def equal(x: nil, y: nil)
1078
+ Utils.execute("Equal", [x, y])
1079
+ end
1080
+
1081
+ def erf(x: nil)
1082
+ Utils.execute("Erf", [x])
1083
+ end
1084
+
1085
+ def erfc(x: nil)
1086
+ Utils.execute("Erfc", [x])
1087
+ end
1088
+
1089
+ def euclidean_norm(input: nil, reduction_indices: nil, keep_dims: nil)
1090
+ Utils.execute("EuclideanNorm", [input, reduction_indices], keep_dims: keep_dims)
1091
+ end
1092
+
1093
+ def exit(data: nil)
1094
+ Utils.execute("Exit", [data])
1095
+ end
1096
+
1097
+ def exp(x: nil)
1098
+ Utils.execute("Exp", [x])
1099
+ end
1100
+
1101
+ def expand_dims(input: nil, dim: nil)
1102
+ Utils.execute("ExpandDims", [input, dim])
1103
+ end
1104
+
1105
+ def experimental_assert_next_dataset(input_dataset: nil, transformations: nil, output_types: nil, output_shapes: nil)
1106
+ Utils.execute("ExperimentalAssertNextDataset", [input_dataset, transformations], output_types: output_types, output_shapes: output_shapes)
1107
+ end
1108
+
1109
+ def experimental_auto_shard_dataset(input_dataset: nil, num_workers: nil, index: nil, output_types: nil, output_shapes: nil)
1110
+ Utils.execute("ExperimentalAutoShardDataset", [input_dataset, num_workers, index], output_types: output_types, output_shapes: output_shapes)
1111
+ end
1112
+
1113
+ def experimental_bytes_produced_stats_dataset(input_dataset: nil, tag: nil, output_types: nil, output_shapes: nil)
1114
+ Utils.execute("ExperimentalBytesProducedStatsDataset", [input_dataset, tag], output_types: output_types, output_shapes: output_shapes)
1115
+ end
1116
+
1117
+ def experimental_csv_dataset(filenames: nil, compression_type: nil, buffer_size: nil, header: nil, field_delim: nil, use_quote_delim: nil, na_value: nil, select_cols: nil, record_defaults: nil, output_types: nil, output_shapes: nil)
1118
+ Utils.execute("ExperimentalCSVDataset", [filenames, compression_type, buffer_size, header, field_delim, use_quote_delim, na_value, select_cols, record_defaults], output_types: output_types, output_shapes: output_shapes)
1119
+ end
1120
+
1121
+ def experimental_choose_fastest_dataset(input_datasets: nil, num_experiments: nil, output_types: nil, output_shapes: nil)
1122
+ Utils.execute("ExperimentalChooseFastestDataset", [input_datasets], num_experiments: num_experiments, output_types: output_types, output_shapes: output_shapes)
1123
+ end
1124
+
1125
+ def experimental_dataset_cardinality(input_dataset: nil)
1126
+ Utils.execute("ExperimentalDatasetCardinality", [input_dataset])
1127
+ end
1128
+
1129
+ def experimental_dataset_to_tf_record(input_dataset: nil, filename: nil, compression_type: nil)
1130
+ Utils.execute("ExperimentalDatasetToTFRecord", [input_dataset, filename, compression_type])
1131
+ end
1132
+
1133
+ def experimental_dense_to_sparse_batch_dataset(input_dataset: nil, batch_size: nil, row_shape: nil, output_types: nil, output_shapes: nil)
1134
+ Utils.execute("ExperimentalDenseToSparseBatchDataset", [input_dataset, batch_size, row_shape], output_types: output_types, output_shapes: output_shapes)
1135
+ end
1136
+
1137
+ def experimental_directed_interleave_dataset(selector_input_dataset: nil, data_input_datasets: nil, output_types: nil, output_shapes: nil)
1138
+ Utils.execute("ExperimentalDirectedInterleaveDataset", [selector_input_dataset, data_input_datasets], output_types: output_types, output_shapes: output_shapes)
1139
+ end
1140
+
1141
+ def experimental_group_by_reducer_dataset(input_dataset: nil, key_func_other_arguments: nil, init_func_other_arguments: nil, reduce_func_other_arguments: nil, finalize_func_other_arguments: nil, key_func: nil, init_func: nil, reduce_func: nil, finalize_func: nil, output_types: nil, output_shapes: nil)
1142
+ Utils.execute("ExperimentalGroupByReducerDataset", [input_dataset, key_func_other_arguments, init_func_other_arguments, reduce_func_other_arguments, finalize_func_other_arguments], key_func: key_func, init_func: init_func, reduce_func: reduce_func, finalize_func: finalize_func, output_types: output_types, output_shapes: output_shapes)
1143
+ end
1144
+
1145
+ def experimental_group_by_window_dataset(input_dataset: nil, key_func_other_arguments: nil, reduce_func_other_arguments: nil, window_size_func_other_arguments: nil, key_func: nil, reduce_func: nil, window_size_func: nil, output_types: nil, output_shapes: nil)
1146
+ Utils.execute("ExperimentalGroupByWindowDataset", [input_dataset, key_func_other_arguments, reduce_func_other_arguments, window_size_func_other_arguments], key_func: key_func, reduce_func: reduce_func, window_size_func: window_size_func, output_types: output_types, output_shapes: output_shapes)
1147
+ end
1148
+
1149
+ def experimental_identity_indexed_dataset(size: nil)
1150
+ Utils.execute("ExperimentalIdentityIndexedDataset", [size])
1151
+ end
1152
+
1153
+ def experimental_ignore_errors_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
1154
+ Utils.execute("ExperimentalIgnoreErrorsDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
1155
+ end
1156
+
1157
+ def experimental_indexed_dataset_get(materialized: nil, index: nil, output_types: nil, output_shapes: nil)
1158
+ Utils.execute("ExperimentalIndexedDatasetGet", [materialized, index], output_types: output_types, output_shapes: output_shapes)
1159
+ end
1160
+
1161
+ def experimental_indexed_dataset_materialize(dataset: nil, materialized: nil)
1162
+ Utils.execute("ExperimentalIndexedDatasetMaterialize", [dataset, materialized])
1163
+ end
1164
+
1165
+ def experimental_iterator_get_device(resource: nil)
1166
+ Utils.execute("ExperimentalIteratorGetDevice", [resource])
1167
+ end
1168
+
1169
+ def experimental_lmdb_dataset(filenames: nil, output_types: nil, output_shapes: nil)
1170
+ Utils.execute("ExperimentalLMDBDataset", [filenames], output_types: output_types, output_shapes: output_shapes)
1171
+ end
1172
+
1173
+ def experimental_latency_stats_dataset(input_dataset: nil, tag: nil, output_types: nil, output_shapes: nil)
1174
+ Utils.execute("ExperimentalLatencyStatsDataset", [input_dataset, tag], output_types: output_types, output_shapes: output_shapes)
1175
+ end
1176
+
1177
+ def experimental_map_and_batch_dataset(input_dataset: nil, other_arguments: nil, batch_size: nil, num_parallel_calls: nil, drop_remainder: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
1178
+ Utils.execute("ExperimentalMapAndBatchDataset", [input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
1179
+ end
1180
+
1181
+ def experimental_map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, preserve_cardinality: nil)
1182
+ Utils.execute("ExperimentalMapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, preserve_cardinality: preserve_cardinality)
1183
+ end
1184
+
1185
+ def experimental_matching_files_dataset(patterns: nil)
1186
+ Utils.execute("ExperimentalMatchingFilesDataset", [patterns])
1187
+ end
1188
+
1189
+ def experimental_materialized_index_dataset_handle(container: nil, shared_name: nil, output_types: nil, output_shapes: nil)
1190
+ Utils.execute("ExperimentalMaterializedIndexDatasetHandle", [], container: container, shared_name: shared_name, output_types: output_types, output_shapes: output_shapes)
1191
+ end
1192
+
1193
+ def experimental_max_intra_op_parallelism_dataset(input_dataset: nil, max_intra_op_parallelism: nil, output_types: nil, output_shapes: nil)
1194
+ Utils.execute("ExperimentalMaxIntraOpParallelismDataset", [input_dataset, max_intra_op_parallelism], output_types: output_types, output_shapes: output_shapes)
1195
+ end
1196
+
1197
+ def experimental_non_serializable_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
1198
+ Utils.execute("ExperimentalNonSerializableDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
1199
+ end
1200
+
1201
+ def experimental_numa_map_and_batch_dataset(input_dataset: nil, other_arguments: nil, batch_size: nil, num_parallel_calls: nil, drop_remainder: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
1202
+ Utils.execute("ExperimentalNumaMapAndBatchDataset", [input_dataset, other_arguments, batch_size, num_parallel_calls, drop_remainder], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
1203
+ end
1204
+
1205
+ def experimental_parallel_interleave_dataset(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, sloppy: nil, buffer_output_elements: nil, prefetch_input_elements: nil, f: nil, output_types: nil, output_shapes: nil)
1206
+ Utils.execute("ExperimentalParallelInterleaveDataset", [input_dataset, other_arguments, cycle_length, block_length, sloppy, buffer_output_elements, prefetch_input_elements], f: f, output_types: output_types, output_shapes: output_shapes)
1207
+ end
1208
+
1209
+ def experimental_parse_example_dataset(input_dataset: nil, num_parallel_calls: nil, dense_defaults: nil, sparse_keys: nil, dense_keys: nil, sparse_types: nil, dense_shapes: nil, output_types: nil, output_shapes: nil, sloppy: nil)
1210
+ Utils.execute("ExperimentalParseExampleDataset", [input_dataset, num_parallel_calls, dense_defaults], sparse_keys: sparse_keys, dense_keys: dense_keys, sparse_types: sparse_types, dense_shapes: dense_shapes, output_types: output_types, output_shapes: output_shapes, sloppy: sloppy)
1211
+ end
1212
+
1213
+ def experimental_private_thread_pool_dataset(input_dataset: nil, num_threads: nil, output_types: nil, output_shapes: nil)
1214
+ Utils.execute("ExperimentalPrivateThreadPoolDataset", [input_dataset, num_threads], output_types: output_types, output_shapes: output_shapes)
1215
+ end
1216
+
1217
+ def experimental_random_dataset(seed: nil, seed2: nil, output_types: nil, output_shapes: nil)
1218
+ Utils.execute("ExperimentalRandomDataset", [seed, seed2], output_types: output_types, output_shapes: output_shapes)
1219
+ end
1220
+
1221
+ def experimental_rebatch_dataset(input_dataset: nil, num_workers: nil, output_types: nil, output_shapes: nil)
1222
+ Utils.execute("ExperimentalRebatchDataset", [input_dataset, num_workers], output_types: output_types, output_shapes: output_shapes)
1223
+ end
1224
+
1225
+ def experimental_scan_dataset(input_dataset: nil, initial_state: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, preserve_cardinality: nil)
1226
+ Utils.execute("ExperimentalScanDataset", [input_dataset, initial_state, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, preserve_cardinality: preserve_cardinality)
1227
+ end
1228
+
1229
+ def experimental_set_stats_aggregator_dataset(input_dataset: nil, stats_aggregator: nil, tag: nil, counter_prefix: nil, output_types: nil, output_shapes: nil)
1230
+ Utils.execute("ExperimentalSetStatsAggregatorDataset", [input_dataset, stats_aggregator, tag, counter_prefix], output_types: output_types, output_shapes: output_shapes)
1231
+ end
1232
+
1233
+ def experimental_sleep_dataset(input_dataset: nil, sleep_microseconds: nil, output_types: nil, output_shapes: nil)
1234
+ Utils.execute("ExperimentalSleepDataset", [input_dataset, sleep_microseconds], output_types: output_types, output_shapes: output_shapes)
1235
+ end
1236
+
1237
+ def experimental_sliding_window_dataset(input_dataset: nil, window_size: nil, window_shift: nil, window_stride: nil, output_types: nil, output_shapes: nil)
1238
+ Utils.execute("ExperimentalSlidingWindowDataset", [input_dataset, window_size, window_shift, window_stride], output_types: output_types, output_shapes: output_shapes)
1239
+ end
1240
+
1241
+ def experimental_sql_dataset(driver_name: nil, data_source_name: nil, query: nil, output_types: nil, output_shapes: nil)
1242
+ Utils.execute("ExperimentalSqlDataset", [driver_name, data_source_name, query], output_types: output_types, output_shapes: output_shapes)
1243
+ end
1244
+
1245
+ def experimental_stats_aggregator_handle(container: nil, shared_name: nil)
1246
+ Utils.execute("ExperimentalStatsAggregatorHandle", [], container: container, shared_name: shared_name)
1247
+ end
1248
+
1249
+ def experimental_stats_aggregator_summary(iterator: nil)
1250
+ Utils.execute("ExperimentalStatsAggregatorSummary", [iterator])
1251
+ end
1252
+
1253
+ def experimental_take_while_dataset(input_dataset: nil, other_arguments: nil, predicate: nil, output_types: nil, output_shapes: nil)
1254
+ Utils.execute("ExperimentalTakeWhileDataset", [input_dataset, other_arguments], predicate: predicate, output_types: output_types, output_shapes: output_shapes)
1255
+ end
1256
+
1257
+ def experimental_thread_pool_dataset(input_dataset: nil, thread_pool: nil, output_types: nil, output_shapes: nil)
1258
+ Utils.execute("ExperimentalThreadPoolDataset", [input_dataset, thread_pool], output_types: output_types, output_shapes: output_shapes)
1259
+ end
1260
+
1261
+ def experimental_thread_pool_handle(num_threads: nil, max_intra_op_parallelism: nil, display_name: nil, container: nil, shared_name: nil)
1262
+ Utils.execute("ExperimentalThreadPoolHandle", [], num_threads: num_threads, max_intra_op_parallelism: max_intra_op_parallelism, display_name: display_name, container: container, shared_name: shared_name)
1263
+ end
1264
+
1265
+ def experimental_unbatch_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
1266
+ Utils.execute("ExperimentalUnbatchDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
1267
+ end
1268
+
1269
+ def experimental_unique_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
1270
+ Utils.execute("ExperimentalUniqueDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
1271
+ end
1272
+
1273
+ def expm1(x: nil)
1274
+ Utils.execute("Expm1", [x])
1275
+ end
1276
+
1277
+ def extract_glimpse(input: nil, size: nil, offsets: nil, centered: nil, normalized: nil, uniform_noise: nil, noise: nil)
1278
+ Utils.execute("ExtractGlimpse", [input, size, offsets], centered: centered, normalized: normalized, uniform_noise: uniform_noise, noise: noise)
1279
+ end
1280
+
1281
+ def extract_image_patches(images: nil, ksizes: nil, strides: nil, rates: nil, padding: nil)
1282
+ Utils.execute("ExtractImagePatches", [images], ksizes: ksizes, strides: strides, rates: rates, padding: padding)
1283
+ end
1284
+
1285
+ def extract_jpeg_shape(contents: nil, output_type: nil)
1286
+ Utils.execute("ExtractJpegShape", [contents], output_type: output_type)
1287
+ end
1288
+
1289
+ def extract_volume_patches(input: nil, ksizes: nil, strides: nil, padding: nil)
1290
+ Utils.execute("ExtractVolumePatches", [input], ksizes: ksizes, strides: strides, padding: padding)
1291
+ end
1292
+
1293
+ def fft(input: nil)
1294
+ Utils.execute("FFT", [input])
1295
+ end
1296
+
1297
+ def fft2d(input: nil)
1298
+ Utils.execute("FFT2D", [input])
1299
+ end
1300
+
1301
+ def fft3d(input: nil)
1302
+ Utils.execute("FFT3D", [input])
1303
+ end
1304
+
1305
+ def fifo_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
1306
+ Utils.execute("FIFOQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
1307
+ end
1308
+
1309
+ def fifo_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
1310
+ Utils.execute("FIFOQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
1311
+ end
1312
+
1313
+ def fact
1314
+ Utils.execute("Fact", [])
1315
+ end
1316
+
1317
+ def fake_param(dtype: nil, shape: nil)
1318
+ Utils.execute("FakeParam", [], dtype: dtype, shape: shape)
1319
+ end
1320
+
1321
+ def fake_quant_with_min_max_args(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
1322
+ Utils.execute("FakeQuantWithMinMaxArgs", [inputs], min: min, max: max, num_bits: num_bits, narrow_range: narrow_range)
1323
+ end
1324
+
1325
+ def fake_quant_with_min_max_args_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
1326
+ Utils.execute("FakeQuantWithMinMaxArgsGradient", [gradients, inputs], min: min, max: max, num_bits: num_bits, narrow_range: narrow_range)
1327
+ end
1328
+
1329
+ def fake_quant_with_min_max_vars(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
1330
+ Utils.execute("FakeQuantWithMinMaxVars", [inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
1331
+ end
1332
+
1333
+ def fake_quant_with_min_max_vars_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
1334
+ Utils.execute("FakeQuantWithMinMaxVarsGradient", [gradients, inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
1335
+ end
1336
+
1337
+ def fake_quant_with_min_max_vars_per_channel(inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
1338
+ Utils.execute("FakeQuantWithMinMaxVarsPerChannel", [inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
1339
+ end
1340
+
1341
+ def fake_quant_with_min_max_vars_per_channel_gradient(gradients: nil, inputs: nil, min: nil, max: nil, num_bits: nil, narrow_range: nil)
1342
+ Utils.execute("FakeQuantWithMinMaxVarsPerChannelGradient", [gradients, inputs, min, max], num_bits: num_bits, narrow_range: narrow_range)
1343
+ end
1344
+
1345
+ def fake_queue(resource: nil)
1346
+ Utils.execute("FakeQueue", [resource])
1347
+ end
1348
+
1349
+ def fill(dims: nil, value: nil, index_type: nil)
1350
+ Utils.execute("Fill", [dims, value], index_type: index_type)
1351
+ end
1352
+
1353
+ def filter_by_last_component_dataset(input_dataset: nil, output_types: nil, output_shapes: nil)
1354
+ Utils.execute("FilterByLastComponentDataset", [input_dataset], output_types: output_types, output_shapes: output_shapes)
1355
+ end
1356
+
1357
+ def filter_dataset(input_dataset: nil, other_arguments: nil, predicate: nil, output_types: nil, output_shapes: nil)
1358
+ Utils.execute("FilterDataset", [input_dataset, other_arguments], predicate: predicate, output_types: output_types, output_shapes: output_shapes)
1359
+ end
1360
+
1361
+ def fingerprint(data: nil, method: nil)
1362
+ Utils.execute("Fingerprint", [data, method])
1363
+ end
1364
+
1365
+ def fixed_length_record_dataset(filenames: nil, header_bytes: nil, record_bytes: nil, footer_bytes: nil, buffer_size: nil)
1366
+ Utils.execute("FixedLengthRecordDataset", [filenames, header_bytes, record_bytes, footer_bytes, buffer_size])
1367
+ end
1368
+
1369
+ def fixed_length_record_dataset_v2(filenames: nil, header_bytes: nil, record_bytes: nil, footer_bytes: nil, buffer_size: nil, compression_type: nil)
1370
+ Utils.execute("FixedLengthRecordDatasetV2", [filenames, header_bytes, record_bytes, footer_bytes, buffer_size, compression_type])
1371
+ end
1372
+
1373
+ def fixed_length_record_reader(header_bytes: nil, record_bytes: nil, footer_bytes: nil, hop_bytes: nil, container: nil, shared_name: nil)
1374
+ Utils.execute("FixedLengthRecordReader", [], header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name)
1375
+ end
1376
+
1377
+ def fixed_length_record_reader_v2(header_bytes: nil, record_bytes: nil, footer_bytes: nil, hop_bytes: nil, container: nil, shared_name: nil, encoding: nil)
1378
+ Utils.execute("FixedLengthRecordReaderV2", [], header_bytes: header_bytes, record_bytes: record_bytes, footer_bytes: footer_bytes, hop_bytes: hop_bytes, container: container, shared_name: shared_name, encoding: encoding)
1379
+ end
1380
+
1381
+ def fixed_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, vocab_file: nil, distortion: nil, num_reserved_ids: nil, num_shards: nil, shard: nil, unigrams: nil, seed: nil, seed2: nil)
1382
+ Utils.execute("FixedUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, vocab_file: vocab_file, distortion: distortion, num_reserved_ids: num_reserved_ids, num_shards: num_shards, shard: shard, unigrams: unigrams, seed: seed, seed2: seed2)
1383
+ end
1384
+
1385
+ def flat_map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil)
1386
+ Utils.execute("FlatMapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes)
1387
+ end
1388
+
1389
+ def floor(x: nil)
1390
+ Utils.execute("Floor", [x])
1391
+ end
1392
+
1393
+ def floor_div(x: nil, y: nil)
1394
+ Utils.execute("FloorDiv", [x, y])
1395
+ end
1396
+
1397
+ def floor_mod(x: nil, y: nil)
1398
+ Utils.execute("FloorMod", [x, y])
1399
+ end
1400
+
1401
+ def flush_summary_writer(writer: nil)
1402
+ Utils.execute("FlushSummaryWriter", [writer])
1403
+ end
1404
+
1405
+ def for(start: nil, limit: nil, delta: nil, input: nil, body: nil)
1406
+ Utils.execute("For", [start, limit, delta, input], body: body)
1407
+ end
1408
+
1409
+ def fractional_avg_pool(value: nil, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil)
1410
+ Utils.execute("FractionalAvgPool", [value], pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2)
1411
+ end
1412
+
1413
+ def fractional_avg_pool_grad(orig_input_tensor_shape: nil, out_backprop: nil, row_pooling_sequence: nil, col_pooling_sequence: nil, overlapping: nil)
1414
+ Utils.execute("FractionalAvgPoolGrad", [orig_input_tensor_shape, out_backprop, row_pooling_sequence, col_pooling_sequence], overlapping: overlapping)
1415
+ end
1416
+
1417
+ def fractional_max_pool(value: nil, pooling_ratio: nil, pseudo_random: nil, overlapping: nil, deterministic: nil, seed: nil, seed2: nil)
1418
+ Utils.execute("FractionalMaxPool", [value], pooling_ratio: pooling_ratio, pseudo_random: pseudo_random, overlapping: overlapping, deterministic: deterministic, seed: seed, seed2: seed2)
1419
+ end
1420
+
1421
+ def fractional_max_pool_grad(orig_input: nil, orig_output: nil, out_backprop: nil, row_pooling_sequence: nil, col_pooling_sequence: nil, overlapping: nil)
1422
+ Utils.execute("FractionalMaxPoolGrad", [orig_input, orig_output, out_backprop, row_pooling_sequence, col_pooling_sequence], overlapping: overlapping)
1423
+ end
1424
+
1425
+ def fused_batch_norm(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
1426
+ Utils.execute("FusedBatchNorm", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
1427
+ end
1428
+
1429
+ def fused_batch_norm_grad(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, epsilon: nil, data_format: nil, is_training: nil)
1430
+ Utils.execute("FusedBatchNormGrad", [y_backprop, x, scale, reserve_space_1, reserve_space_2], epsilon: epsilon, data_format: data_format, is_training: is_training)
1431
+ end
1432
+
1433
+ def fused_batch_norm_grad_v2(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, epsilon: nil, data_format: nil, is_training: nil)
1434
+ Utils.execute("FusedBatchNormGradV2", [y_backprop, x, scale, reserve_space_1, reserve_space_2], epsilon: epsilon, data_format: data_format, is_training: is_training)
1435
+ end
1436
+
1437
+ def fused_batch_norm_grad_v3(y_backprop: nil, x: nil, scale: nil, reserve_space_1: nil, reserve_space_2: nil, reserve_space_3: nil, epsilon: nil, data_format: nil, is_training: nil)
1438
+ Utils.execute("FusedBatchNormGradV3", [y_backprop, x, scale, reserve_space_1, reserve_space_2, reserve_space_3], epsilon: epsilon, data_format: data_format, is_training: is_training)
1439
+ end
1440
+
1441
+ def fused_batch_norm_v2(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
1442
+ Utils.execute("FusedBatchNormV2", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
1443
+ end
1444
+
1445
+ def fused_batch_norm_v3(x: nil, scale: nil, offset: nil, mean: nil, variance: nil, epsilon: nil, data_format: nil, is_training: nil)
1446
+ Utils.execute("FusedBatchNormV3", [x, scale, offset, mean, variance], epsilon: epsilon, data_format: data_format, is_training: is_training)
1447
+ end
1448
+
1449
+ def fused_pad_conv2d(input: nil, paddings: nil, filter: nil, mode: nil, strides: nil, padding: nil)
1450
+ Utils.execute("FusedPadConv2D", [input, paddings, filter], mode: mode, strides: strides, padding: padding)
1451
+ end
1452
+
1453
+ def fused_resize_and_pad_conv2d(input: nil, size: nil, paddings: nil, filter: nil, resize_align_corners: nil, mode: nil, strides: nil, padding: nil)
1454
+ Utils.execute("FusedResizeAndPadConv2D", [input, size, paddings, filter], resize_align_corners: resize_align_corners, mode: mode, strides: strides, padding: padding)
1455
+ end
1456
+
1457
+ def gather(params: nil, indices: nil, validate_indices: nil)
1458
+ Utils.execute("Gather", [params, indices], validate_indices: validate_indices)
1459
+ end
1460
+
1461
+ def gather_nd(params: nil, indices: nil)
1462
+ Utils.execute("GatherNd", [params, indices])
1463
+ end
1464
+
1465
+ def gather_v2(params: nil, indices: nil, axis: nil, batch_dims: nil)
1466
+ Utils.execute("GatherV2", [params, indices, axis], batch_dims: batch_dims)
1467
+ end
1468
+
1469
+ def gcs_configure_block_cache(max_cache_size: nil, block_size: nil, max_staleness: nil)
1470
+ Utils.execute("GcsConfigureBlockCache", [max_cache_size, block_size, max_staleness])
1471
+ end
1472
+
1473
+ def gcs_configure_credentials(json: nil)
1474
+ Utils.execute("GcsConfigureCredentials", [json])
1475
+ end
1476
+
1477
+ def generate_big_query_reader_partitions(project_id: nil, dataset_id: nil, table_id: nil, columns: nil, timestamp_millis: nil, num_partitions: nil, test_end_point: nil)
1478
+ Utils.execute("GenerateBigQueryReaderPartitions", [], project_id: project_id, dataset_id: dataset_id, table_id: table_id, columns: columns, timestamp_millis: timestamp_millis, num_partitions: num_partitions, test_end_point: test_end_point)
1479
+ end
1480
+
1481
+ def generate_vocab_remapping(new_vocab_file: nil, old_vocab_file: nil, new_vocab_offset: nil, num_new_vocab: nil, old_vocab_size: nil)
1482
+ Utils.execute("GenerateVocabRemapping", [new_vocab_file, old_vocab_file], new_vocab_offset: new_vocab_offset, num_new_vocab: num_new_vocab, old_vocab_size: old_vocab_size)
1483
+ end
1484
+
1485
+ def generator_dataset(init_func_other_args: nil, next_func_other_args: nil, finalize_func_other_args: nil, init_func: nil, next_func: nil, finalize_func: nil, output_types: nil, output_shapes: nil)
1486
+ Utils.execute("GeneratorDataset", [init_func_other_args, next_func_other_args, finalize_func_other_args], init_func: init_func, next_func: next_func, finalize_func: finalize_func, output_types: output_types, output_shapes: output_shapes)
1487
+ end
1488
+
1489
+ def get_session_handle(value: nil)
1490
+ Utils.execute("GetSessionHandle", [value])
1491
+ end
1492
+
1493
+ def get_session_handle_v2(value: nil)
1494
+ Utils.execute("GetSessionHandleV2", [value])
1495
+ end
1496
+
1497
+ def get_session_tensor(handle: nil, dtype: nil)
1498
+ Utils.execute("GetSessionTensor", [handle], dtype: dtype)
1499
+ end
1500
+
1501
+ def greater(x: nil, y: nil)
1502
+ Utils.execute("Greater", [x, y])
1503
+ end
1504
+
1505
+ def greater_equal(x: nil, y: nil)
1506
+ Utils.execute("GreaterEqual", [x, y])
1507
+ end
1508
+
1509
+ def guarantee_const(input: nil)
1510
+ Utils.execute("GuaranteeConst", [input])
1511
+ end
1512
+
1513
+ def hsv_to_rgb(images: nil)
1514
+ Utils.execute("HSVToRGB", [images])
1515
+ end
1516
+
1517
+ def hash_table(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
1518
+ Utils.execute("HashTable", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
1519
+ end
1520
+
1521
+ def hash_table_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
1522
+ Utils.execute("HashTableV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
1523
+ end
1524
+
1525
+ def histogram_fixed_width(values: nil, value_range: nil, nbins: nil, dtype: nil)
1526
+ Utils.execute("HistogramFixedWidth", [values, value_range, nbins], dtype: dtype)
1527
+ end
1528
+
1529
+ def histogram_summary(tag: nil, values: nil)
1530
+ Utils.execute("HistogramSummary", [tag, values])
1531
+ end
1532
+
1533
+ def host_const(value: nil, dtype: nil)
1534
+ Utils.execute("HostConst", [], value: value, dtype: dtype)
1535
+ end
1536
+
1537
+ def ifft(input: nil)
1538
+ Utils.execute("IFFT", [input])
1539
+ end
1540
+
1541
+ def ifft2d(input: nil)
1542
+ Utils.execute("IFFT2D", [input])
1543
+ end
1544
+
1545
+ def ifft3d(input: nil)
1546
+ Utils.execute("IFFT3D", [input])
1547
+ end
1548
+
1549
+ def irfft(input: nil, fft_length: nil)
1550
+ Utils.execute("IRFFT", [input, fft_length])
1551
+ end
1552
+
1553
+ def irfft2d(input: nil, fft_length: nil)
1554
+ Utils.execute("IRFFT2D", [input, fft_length])
1555
+ end
1556
+
1557
+ def irfft3d(input: nil, fft_length: nil)
1558
+ Utils.execute("IRFFT3D", [input, fft_length])
1559
+ end
1560
+
1561
+ def identity(input: nil)
1562
+ Utils.execute("Identity", [input])
1563
+ end
1564
+
1565
+ def identity_n(input: nil)
1566
+ Utils.execute("IdentityN", [input])
1567
+ end
1568
+
1569
+ def identity_reader(container: nil, shared_name: nil)
1570
+ Utils.execute("IdentityReader", [], container: container, shared_name: shared_name)
1571
+ end
1572
+
1573
+ def identity_reader_v2(container: nil, shared_name: nil)
1574
+ Utils.execute("IdentityReaderV2", [], container: container, shared_name: shared_name)
1575
+ end
1576
+
1577
+ def if(cond: nil, input: nil, then_branch: nil, else_branch: nil, output_shapes: nil)
1578
+ Utils.execute("If", [cond, input], then_branch: then_branch, else_branch: else_branch, output_shapes: output_shapes)
1579
+ end
1580
+
1581
+ def igamma(a: nil, x: nil)
1582
+ Utils.execute("Igamma", [a, x])
1583
+ end
1584
+
1585
+ def igamma_grad_a(a: nil, x: nil)
1586
+ Utils.execute("IgammaGradA", [a, x])
1587
+ end
1588
+
1589
+ def igammac(a: nil, x: nil)
1590
+ Utils.execute("Igammac", [a, x])
1591
+ end
1592
+
1593
+ def imag(input: nil)
1594
+ Utils.execute("Imag", [input])
1595
+ end
1596
+
1597
+ def image_summary(tag: nil, tensor: nil, max_images: nil, bad_color: nil)
1598
+ Utils.execute("ImageSummary", [tag, tensor], max_images: max_images, bad_color: bad_color)
1599
+ end
1600
+
1601
+ def immutable_const(dtype: nil, shape: nil, memory_region_name: nil)
1602
+ Utils.execute("ImmutableConst", [], dtype: dtype, shape: shape, memory_region_name: memory_region_name)
1603
+ end
1604
+
1605
+ def import_event(writer: nil, event: nil)
1606
+ Utils.execute("ImportEvent", [writer, event])
1607
+ end
1608
+
1609
+ def in_top_k(predictions: nil, targets: nil, k: nil)
1610
+ Utils.execute("InTopK", [predictions, targets], k: k)
1611
+ end
1612
+
1613
+ def in_top_kv2(predictions: nil, targets: nil, k: nil)
1614
+ Utils.execute("InTopKV2", [predictions, targets, k])
1615
+ end
1616
+
1617
+ def infeed_dequeue(dtype: nil, shape: nil)
1618
+ Utils.execute("InfeedDequeue", [], dtype: dtype, shape: shape)
1619
+ end
1620
+
1621
+ def infeed_dequeue_tuple(dtypes: nil, shapes: nil)
1622
+ Utils.execute("InfeedDequeueTuple", [], dtypes: dtypes, shapes: shapes)
1623
+ end
1624
+
1625
+ def infeed_enqueue(input: nil, dtype: nil, shape: nil, layout: nil, device_ordinal: nil)
1626
+ Utils.execute("InfeedEnqueue", [input], dtype: dtype, shape: shape, layout: layout, device_ordinal: device_ordinal)
1627
+ end
1628
+
1629
+ def infeed_enqueue_prelinearized_buffer(input: nil, device_ordinal: nil)
1630
+ Utils.execute("InfeedEnqueuePrelinearizedBuffer", [input], device_ordinal: device_ordinal)
1631
+ end
1632
+
1633
+ def infeed_enqueue_tuple(inputs: nil, dtypes: nil, shapes: nil, layouts: nil, device_ordinal: nil)
1634
+ Utils.execute("InfeedEnqueueTuple", [inputs], dtypes: dtypes, shapes: shapes, layouts: layouts, device_ordinal: device_ordinal)
1635
+ end
1636
+
1637
+ def initialize_table(table_handle: nil, keys: nil, values: nil)
1638
+ Utils.execute("InitializeTable", [table_handle, keys, values])
1639
+ end
1640
+
1641
+ def initialize_table_from_text_file(table_handle: nil, filename: nil, key_index: nil, value_index: nil, vocab_size: nil, delimiter: nil)
1642
+ Utils.execute("InitializeTableFromTextFile", [table_handle, filename], key_index: key_index, value_index: value_index, vocab_size: vocab_size, delimiter: delimiter)
1643
+ end
1644
+
1645
+ def initialize_table_from_text_file_v2(table_handle: nil, filename: nil, key_index: nil, value_index: nil, vocab_size: nil, delimiter: nil)
1646
+ Utils.execute("InitializeTableFromTextFileV2", [table_handle, filename], key_index: key_index, value_index: value_index, vocab_size: vocab_size, delimiter: delimiter)
1647
+ end
1648
+
1649
+ def initialize_table_v2(table_handle: nil, keys: nil, values: nil)
1650
+ Utils.execute("InitializeTableV2", [table_handle, keys, values])
1651
+ end
1652
+
1653
+ def inplace_add(x: nil, i: nil, v: nil)
1654
+ Utils.execute("InplaceAdd", [x, i, v])
1655
+ end
1656
+
1657
+ def inplace_sub(x: nil, i: nil, v: nil)
1658
+ Utils.execute("InplaceSub", [x, i, v])
1659
+ end
1660
+
1661
+ def inplace_update(x: nil, i: nil, v: nil)
1662
+ Utils.execute("InplaceUpdate", [x, i, v])
1663
+ end
1664
+
1665
+ def interleave_dataset(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, f: nil, output_types: nil, output_shapes: nil)
1666
+ Utils.execute("InterleaveDataset", [input_dataset, other_arguments, cycle_length, block_length], f: f, output_types: output_types, output_shapes: output_shapes)
1667
+ end
1668
+
1669
+ def inv(x: nil)
1670
+ Utils.execute("Inv", [x])
1671
+ end
1672
+
1673
+ def inv_grad(y: nil, dy: nil)
1674
+ Utils.execute("InvGrad", [y, dy])
1675
+ end
1676
+
1677
+ def invert(x: nil)
1678
+ Utils.execute("Invert", [x])
1679
+ end
1680
+
1681
+ def invert_permutation(x: nil)
1682
+ Utils.execute("InvertPermutation", [x])
1683
+ end
1684
+
1685
+ def is_boosted_trees_ensemble_initialized(tree_ensemble_handle: nil)
1686
+ Utils.execute("IsBoostedTreesEnsembleInitialized", [tree_ensemble_handle])
1687
+ end
1688
+
1689
+ def is_boosted_trees_quantile_stream_resource_initialized(quantile_stream_resource_handle: nil)
1690
+ Utils.execute("IsBoostedTreesQuantileStreamResourceInitialized", [quantile_stream_resource_handle])
1691
+ end
1692
+
1693
+ def is_finite(x: nil)
1694
+ Utils.execute("IsFinite", [x])
1695
+ end
1696
+
1697
+ def is_inf(x: nil)
1698
+ Utils.execute("IsInf", [x])
1699
+ end
1700
+
1701
+ def is_nan(x: nil)
1702
+ Utils.execute("IsNan", [x])
1703
+ end
1704
+
1705
+ def is_variable_initialized(ref: nil, dtype: nil)
1706
+ Utils.execute("IsVariableInitialized", [ref], dtype: dtype)
1707
+ end
1708
+
1709
+ def iterator(shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
1710
+ Utils.execute("Iterator", [], shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
1711
+ end
1712
+
1713
+ def iterator_from_string_handle(string_handle: nil, output_types: nil, output_shapes: nil)
1714
+ Utils.execute("IteratorFromStringHandle", [string_handle], output_types: output_types, output_shapes: output_shapes)
1715
+ end
1716
+
1717
+ def iterator_from_string_handle_v2(string_handle: nil, output_types: nil, output_shapes: nil)
1718
+ Utils.execute("IteratorFromStringHandleV2", [string_handle], output_types: output_types, output_shapes: output_shapes)
1719
+ end
1720
+
1721
+ def iterator_get_next(iterator: nil, output_types: nil, output_shapes: nil)
1722
+ Utils.execute("IteratorGetNext", [iterator], output_types: output_types, output_shapes: output_shapes)
1723
+ end
1724
+
1725
+ def iterator_get_next_as_optional(iterator: nil, output_types: nil, output_shapes: nil)
1726
+ Utils.execute("IteratorGetNextAsOptional", [iterator], output_types: output_types, output_shapes: output_shapes)
1727
+ end
1728
+
1729
+ def iterator_get_next_sync(iterator: nil, output_types: nil, output_shapes: nil)
1730
+ Utils.execute("IteratorGetNextSync", [iterator], output_types: output_types, output_shapes: output_shapes)
1731
+ end
1732
+
1733
+ def iterator_to_string_handle(resource_handle: nil)
1734
+ Utils.execute("IteratorToStringHandle", [resource_handle])
1735
+ end
1736
+
1737
+ def iterator_v2(shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
1738
+ Utils.execute("IteratorV2", [], shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
1739
+ end
1740
+
1741
+ def kmc2_chain_initialization(distances: nil, seed: nil)
1742
+ Utils.execute("KMC2ChainInitialization", [distances, seed])
1743
+ end
1744
+
1745
+ def kmeans_plus_plus_initialization(points: nil, num_to_sample: nil, seed: nil, num_retries_per_sample: nil)
1746
+ Utils.execute("KmeansPlusPlusInitialization", [points, num_to_sample, seed, num_retries_per_sample])
1747
+ end
1748
+
1749
+ def l2_loss(t: nil)
1750
+ Utils.execute("L2Loss", [t])
1751
+ end
1752
+
1753
+ def lmdb_reader(container: nil, shared_name: nil)
1754
+ Utils.execute("LMDBReader", [], container: container, shared_name: shared_name)
1755
+ end
1756
+
1757
+ def lrn(input: nil, depth_radius: nil, bias: nil, alpha: nil, beta: nil)
1758
+ Utils.execute("LRN", [input], depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta)
1759
+ end
1760
+
1761
+ def lrn_grad(input_grads: nil, input_image: nil, output_image: nil, depth_radius: nil, bias: nil, alpha: nil, beta: nil)
1762
+ Utils.execute("LRNGrad", [input_grads, input_image, output_image], depth_radius: depth_radius, bias: bias, alpha: alpha, beta: beta)
1763
+ end
1764
+
1765
+ def leaky_relu(features: nil, alpha: nil)
1766
+ Utils.execute("LeakyRelu", [features], alpha: alpha)
1767
+ end
1768
+
1769
+ def leaky_relu_grad(gradients: nil, features: nil, alpha: nil)
1770
+ Utils.execute("LeakyReluGrad", [gradients, features], alpha: alpha)
1771
+ end
1772
+
1773
+ def learned_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
1774
+ Utils.execute("LearnedUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
1775
+ end
1776
+
1777
+ def left_shift(x: nil, y: nil)
1778
+ Utils.execute("LeftShift", [x, y])
1779
+ end
1780
+
1781
+ def less(x: nil, y: nil)
1782
+ Utils.execute("Less", [x, y])
1783
+ end
1784
+
1785
+ def less_equal(x: nil, y: nil)
1786
+ Utils.execute("LessEqual", [x, y])
1787
+ end
1788
+
1789
+ def lgamma(x: nil)
1790
+ Utils.execute("Lgamma", [x])
1791
+ end
1792
+
1793
+ def lin_space(start: nil, stop: nil, num: nil)
1794
+ Utils.execute("LinSpace", [start, stop, num])
1795
+ end
1796
+
1797
+ def list_diff(x: nil, y: nil, out_idx: nil)
1798
+ Utils.execute("ListDiff", [x, y], out_idx: out_idx)
1799
+ end
1800
+
1801
+ def load_and_remap_matrix(ckpt_path: nil, old_tensor_name: nil, row_remapping: nil, col_remapping: nil, initializing_values: nil, num_rows: nil, num_cols: nil, max_rows_in_memory: nil)
1802
+ Utils.execute("LoadAndRemapMatrix", [ckpt_path, old_tensor_name, row_remapping, col_remapping, initializing_values], num_rows: num_rows, num_cols: num_cols, max_rows_in_memory: max_rows_in_memory)
1803
+ end
1804
+
1805
+ def load_tpu_embedding_adam_parameters(parameters: nil, momenta: nil, velocities: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1806
+ Utils.execute("LoadTPUEmbeddingADAMParameters", [parameters, momenta, velocities], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1807
+ end
1808
+
1809
+ def load_tpu_embedding_adam_parameters_grad_accum_debug(parameters: nil, momenta: nil, velocities: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1810
+ Utils.execute("LoadTPUEmbeddingADAMParametersGradAccumDebug", [parameters, momenta, velocities, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1811
+ end
1812
+
1813
+ def load_tpu_embedding_adadelta_parameters(parameters: nil, accumulators: nil, updates: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1814
+ Utils.execute("LoadTPUEmbeddingAdadeltaParameters", [parameters, accumulators, updates], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1815
+ end
1816
+
1817
+ def load_tpu_embedding_adadelta_parameters_grad_accum_debug(parameters: nil, accumulators: nil, updates: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1818
+ Utils.execute("LoadTPUEmbeddingAdadeltaParametersGradAccumDebug", [parameters, accumulators, updates, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1819
+ end
1820
+
1821
+ def load_tpu_embedding_adagrad_parameters(parameters: nil, accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1822
+ Utils.execute("LoadTPUEmbeddingAdagradParameters", [parameters, accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1823
+ end
1824
+
1825
+ def load_tpu_embedding_adagrad_parameters_grad_accum_debug(parameters: nil, accumulators: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1826
+ Utils.execute("LoadTPUEmbeddingAdagradParametersGradAccumDebug", [parameters, accumulators, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1827
+ end
1828
+
1829
+ def load_tpu_embedding_centered_rms_prop_parameters(parameters: nil, ms: nil, mom: nil, mg: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1830
+ Utils.execute("LoadTPUEmbeddingCenteredRMSPropParameters", [parameters, ms, mom, mg], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1831
+ end
1832
+
1833
+ def load_tpu_embedding_ftrl_parameters(parameters: nil, accumulators: nil, linears: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1834
+ Utils.execute("LoadTPUEmbeddingFTRLParameters", [parameters, accumulators, linears], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1835
+ end
1836
+
1837
+ def load_tpu_embedding_ftrl_parameters_grad_accum_debug(parameters: nil, accumulators: nil, linears: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1838
+ Utils.execute("LoadTPUEmbeddingFTRLParametersGradAccumDebug", [parameters, accumulators, linears, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1839
+ end
1840
+
1841
+ def load_tpu_embedding_mdl_adagrad_light_parameters(parameters: nil, accumulators: nil, weights: nil, benefits: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1842
+ Utils.execute("LoadTPUEmbeddingMDLAdagradLightParameters", [parameters, accumulators, weights, benefits], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1843
+ end
1844
+
1845
+ def load_tpu_embedding_momentum_parameters(parameters: nil, momenta: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1846
+ Utils.execute("LoadTPUEmbeddingMomentumParameters", [parameters, momenta], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1847
+ end
1848
+
1849
+ def load_tpu_embedding_momentum_parameters_grad_accum_debug(parameters: nil, momenta: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1850
+ Utils.execute("LoadTPUEmbeddingMomentumParametersGradAccumDebug", [parameters, momenta, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1851
+ end
1852
+
1853
+ def load_tpu_embedding_proximal_adagrad_parameters(parameters: nil, accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1854
+ Utils.execute("LoadTPUEmbeddingProximalAdagradParameters", [parameters, accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1855
+ end
1856
+
1857
+ def load_tpu_embedding_proximal_adagrad_parameters_grad_accum_debug(parameters: nil, accumulators: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1858
+ Utils.execute("LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug", [parameters, accumulators, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1859
+ end
1860
+
1861
+ def load_tpu_embedding_rms_prop_parameters(parameters: nil, ms: nil, mom: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1862
+ Utils.execute("LoadTPUEmbeddingRMSPropParameters", [parameters, ms, mom], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1863
+ end
1864
+
1865
+ def load_tpu_embedding_rms_prop_parameters_grad_accum_debug(parameters: nil, ms: nil, mom: nil, gradient_accumulators: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1866
+ Utils.execute("LoadTPUEmbeddingRMSPropParametersGradAccumDebug", [parameters, ms, mom, gradient_accumulators], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1867
+ end
1868
+
1869
+ def load_tpu_embedding_stochastic_gradient_descent_parameters(parameters: nil, table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
1870
+ Utils.execute("LoadTPUEmbeddingStochasticGradientDescentParameters", [parameters], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
1871
+ end
1872
+
1873
+ def log(x: nil)
1874
+ Utils.execute("Log", [x])
1875
+ end
1876
+
1877
+ def log1p(x: nil)
1878
+ Utils.execute("Log1p", [x])
1879
+ end
1880
+
1881
+ def log_matrix_determinant(input: nil)
1882
+ Utils.execute("LogMatrixDeterminant", [input])
1883
+ end
1884
+
1885
+ def log_softmax(logits: nil)
1886
+ Utils.execute("LogSoftmax", [logits])
1887
+ end
1888
+
1889
+ def log_uniform_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
1890
+ Utils.execute("LogUniformCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
1891
+ end
1892
+
1893
+ def logical_and(x: nil, y: nil)
1894
+ Utils.execute("LogicalAnd", [x, y])
1895
+ end
1896
+
1897
+ def logical_not(x: nil)
1898
+ Utils.execute("LogicalNot", [x])
1899
+ end
1900
+
1901
+ def logical_or(x: nil, y: nil)
1902
+ Utils.execute("LogicalOr", [x, y])
1903
+ end
1904
+
1905
+ def lookup_table_export(table_handle: nil)
1906
+ Utils.execute("LookupTableExport", [table_handle])
1907
+ end
1908
+
1909
+ def lookup_table_export_v2(table_handle: nil)
1910
+ Utils.execute("LookupTableExportV2", [table_handle])
1911
+ end
1912
+
1913
+ def lookup_table_find(table_handle: nil, keys: nil, default_value: nil)
1914
+ Utils.execute("LookupTableFind", [table_handle, keys, default_value])
1915
+ end
1916
+
1917
+ def lookup_table_find_v2(table_handle: nil, keys: nil, default_value: nil)
1918
+ Utils.execute("LookupTableFindV2", [table_handle, keys, default_value])
1919
+ end
1920
+
1921
+ def lookup_table_import(table_handle: nil, keys: nil, values: nil)
1922
+ Utils.execute("LookupTableImport", [table_handle, keys, values])
1923
+ end
1924
+
1925
+ def lookup_table_import_v2(table_handle: nil, keys: nil, values: nil)
1926
+ Utils.execute("LookupTableImportV2", [table_handle, keys, values])
1927
+ end
1928
+
1929
+ def lookup_table_insert(table_handle: nil, keys: nil, values: nil)
1930
+ Utils.execute("LookupTableInsert", [table_handle, keys, values])
1931
+ end
1932
+
1933
+ def lookup_table_insert_v2(table_handle: nil, keys: nil, values: nil)
1934
+ Utils.execute("LookupTableInsertV2", [table_handle, keys, values])
1935
+ end
1936
+
1937
+ def lookup_table_remove_v2(table_handle: nil, keys: nil)
1938
+ Utils.execute("LookupTableRemoveV2", [table_handle, keys])
1939
+ end
1940
+
1941
+ def lookup_table_size(table_handle: nil)
1942
+ Utils.execute("LookupTableSize", [table_handle])
1943
+ end
1944
+
1945
+ def lookup_table_size_v2(table_handle: nil)
1946
+ Utils.execute("LookupTableSizeV2", [table_handle])
1947
+ end
1948
+
1949
+ def loop_cond(input: nil)
1950
+ Utils.execute("LoopCond", [input])
1951
+ end
1952
+
1953
+ def lower_bound(sorted_inputs: nil, values: nil, out_type: nil)
1954
+ Utils.execute("LowerBound", [sorted_inputs, values], out_type: out_type)
1955
+ end
1956
+
1957
+ def lu(input: nil, output_idx_type: nil)
1958
+ Utils.execute("Lu", [input], output_idx_type: output_idx_type)
1959
+ end
1960
+
1961
+ def make_iterator(dataset: nil, iterator: nil)
1962
+ Utils.execute("MakeIterator", [dataset, iterator])
1963
+ end
1964
+
1965
+ def map_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
1966
+ Utils.execute("MapClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
1967
+ end
1968
+
1969
+ def map_dataset(input_dataset: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, preserve_cardinality: nil)
1970
+ Utils.execute("MapDataset", [input_dataset, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, preserve_cardinality: preserve_cardinality)
1971
+ end
1972
+
1973
+ def map_defun(arguments: nil, captured_inputs: nil, output_types: nil, output_shapes: nil, f: nil, max_intra_op_parallelism: nil)
1974
+ Utils.execute("MapDefun", [arguments, captured_inputs], output_types: output_types, output_shapes: output_shapes, f: f, max_intra_op_parallelism: max_intra_op_parallelism)
1975
+ end
1976
+
1977
+ def map_incomplete_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
1978
+ Utils.execute("MapIncompleteSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
1979
+ end
1980
+
1981
+ def map_peek(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
1982
+ Utils.execute("MapPeek", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
1983
+ end
1984
+
1985
+ def map_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
1986
+ Utils.execute("MapSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
1987
+ end
1988
+
1989
+ def map_stage(key: nil, indices: nil, values: nil, capacity: nil, memory_limit: nil, dtypes: nil, fake_dtypes: nil, container: nil, shared_name: nil)
1990
+ Utils.execute("MapStage", [key, indices, values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, fake_dtypes: fake_dtypes, container: container, shared_name: shared_name)
1991
+ end
1992
+
1993
+ def map_unstage(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
1994
+ Utils.execute("MapUnstage", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
1995
+ end
1996
+
1997
+ def map_unstage_no_key(indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
1998
+ Utils.execute("MapUnstageNoKey", [indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
1999
+ end
2000
+
2001
+ def mat_mul(a: nil, b: nil, transpose_a: nil, transpose_b: nil)
2002
+ Utils.execute("MatMul", [a, b], transpose_a: transpose_a, transpose_b: transpose_b)
2003
+ end
2004
+
2005
+ def matching_files(pattern: nil)
2006
+ Utils.execute("MatchingFiles", [pattern])
2007
+ end
2008
+
2009
+ def matrix_band_part(input: nil, num_lower: nil, num_upper: nil)
2010
+ Utils.execute("MatrixBandPart", [input, num_lower, num_upper])
2011
+ end
2012
+
2013
+ def matrix_determinant(input: nil)
2014
+ Utils.execute("MatrixDeterminant", [input])
2015
+ end
2016
+
2017
+ def matrix_diag(diagonal: nil)
2018
+ Utils.execute("MatrixDiag", [diagonal])
2019
+ end
2020
+
2021
+ def matrix_diag_part(input: nil)
2022
+ Utils.execute("MatrixDiagPart", [input])
2023
+ end
2024
+
2025
+ def matrix_exponential(input: nil)
2026
+ Utils.execute("MatrixExponential", [input])
2027
+ end
2028
+
2029
+ def matrix_inverse(input: nil, adjoint: nil)
2030
+ Utils.execute("MatrixInverse", [input], adjoint: adjoint)
2031
+ end
2032
+
2033
+ def matrix_logarithm(input: nil)
2034
+ Utils.execute("MatrixLogarithm", [input])
2035
+ end
2036
+
2037
+ def matrix_set_diag(input: nil, diagonal: nil)
2038
+ Utils.execute("MatrixSetDiag", [input, diagonal])
2039
+ end
2040
+
2041
+ def matrix_solve(matrix: nil, rhs: nil, adjoint: nil)
2042
+ Utils.execute("MatrixSolve", [matrix, rhs], adjoint: adjoint)
2043
+ end
2044
+
2045
+ def matrix_solve_ls(matrix: nil, rhs: nil, l2_regularizer: nil, fast: nil)
2046
+ Utils.execute("MatrixSolveLs", [matrix, rhs, l2_regularizer], fast: fast)
2047
+ end
2048
+
2049
+ def matrix_square_root(input: nil)
2050
+ Utils.execute("MatrixSquareRoot", [input])
2051
+ end
2052
+
2053
+ def matrix_triangular_solve(matrix: nil, rhs: nil, lower: nil, adjoint: nil)
2054
+ Utils.execute("MatrixTriangularSolve", [matrix, rhs], lower: lower, adjoint: adjoint)
2055
+ end
2056
+
2057
+ def max(input: nil, reduction_indices: nil, keep_dims: nil)
2058
+ Utils.execute("Max", [input, reduction_indices], keep_dims: keep_dims)
2059
+ end
2060
+
2061
+ def max_pool(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2062
+ Utils.execute("MaxPool", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
2063
+ end
2064
+
2065
+ def max_pool3d(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2066
+ Utils.execute("MaxPool3D", [input], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
2067
+ end
2068
+
2069
+ def max_pool3d_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2070
+ Utils.execute("MaxPool3DGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
2071
+ end
2072
+
2073
+ def max_pool3d_grad_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2074
+ Utils.execute("MaxPool3DGradGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
2075
+ end
2076
+
2077
+ def max_pool_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2078
+ Utils.execute("MaxPoolGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
2079
+ end
2080
+
2081
+ def max_pool_grad_grad(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2082
+ Utils.execute("MaxPoolGradGrad", [orig_input, orig_output, grad], ksize: ksize, strides: strides, padding: padding, data_format: data_format)
2083
+ end
2084
+
2085
+ def max_pool_grad_grad_v2(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2086
+ Utils.execute("MaxPoolGradGradV2", [orig_input, orig_output, grad, ksize, strides], padding: padding, data_format: data_format)
2087
+ end
2088
+
2089
+ def max_pool_grad_grad_with_argmax(input: nil, grad: nil, argmax: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
2090
+ Utils.execute("MaxPoolGradGradWithArgmax", [input, grad, argmax], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
2091
+ end
2092
+
2093
+ def max_pool_grad_v2(orig_input: nil, orig_output: nil, grad: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2094
+ Utils.execute("MaxPoolGradV2", [orig_input, orig_output, grad, ksize, strides], padding: padding, data_format: data_format)
2095
+ end
2096
+
2097
+ def max_pool_grad_with_argmax(input: nil, grad: nil, argmax: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
2098
+ Utils.execute("MaxPoolGradWithArgmax", [input, grad, argmax], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
2099
+ end
2100
+
2101
+ def max_pool_v2(input: nil, ksize: nil, strides: nil, padding: nil, data_format: nil)
2102
+ Utils.execute("MaxPoolV2", [input, ksize, strides], padding: padding, data_format: data_format)
2103
+ end
2104
+
2105
+ def max_pool_with_argmax(input: nil, ksize: nil, strides: nil, padding: nil, include_batch_in_index: nil)
2106
+ Utils.execute("MaxPoolWithArgmax", [input], ksize: ksize, strides: strides, padding: padding, include_batch_in_index: include_batch_in_index)
2107
+ end
2108
+
2109
+ def maximum(x: nil, y: nil)
2110
+ Utils.execute("Maximum", [x, y])
2111
+ end
2112
+
2113
+ def mean(input: nil, reduction_indices: nil, keep_dims: nil)
2114
+ Utils.execute("Mean", [input, reduction_indices], keep_dims: keep_dims)
2115
+ end
2116
+
2117
+ def merge(inputs: nil)
2118
+ Utils.execute("Merge", [inputs])
2119
+ end
2120
+
2121
+ def merge_summary(inputs: nil)
2122
+ Utils.execute("MergeSummary", [inputs])
2123
+ end
2124
+
2125
+ def merge_v2_checkpoints(checkpoint_prefixes: nil, destination_prefix: nil, delete_old_dirs: nil)
2126
+ Utils.execute("MergeV2Checkpoints", [checkpoint_prefixes, destination_prefix], delete_old_dirs: delete_old_dirs)
2127
+ end
2128
+
2129
+ def mfcc(spectrogram: nil, sample_rate: nil, upper_frequency_limit: nil, lower_frequency_limit: nil, filterbank_channel_count: nil, dct_coefficient_count: nil)
2130
+ Utils.execute("Mfcc", [spectrogram, sample_rate], upper_frequency_limit: upper_frequency_limit, lower_frequency_limit: lower_frequency_limit, filterbank_channel_count: filterbank_channel_count, dct_coefficient_count: dct_coefficient_count)
2131
+ end
2132
+
2133
+ def min(input: nil, reduction_indices: nil, keep_dims: nil)
2134
+ Utils.execute("Min", [input, reduction_indices], keep_dims: keep_dims)
2135
+ end
2136
+
2137
+ def minimum(x: nil, y: nil)
2138
+ Utils.execute("Minimum", [x, y])
2139
+ end
2140
+
2141
+ def mirror_pad(input: nil, paddings: nil, mode: nil)
2142
+ Utils.execute("MirrorPad", [input, paddings], mode: mode)
2143
+ end
2144
+
2145
+ def mirror_pad_grad(input: nil, paddings: nil, mode: nil)
2146
+ Utils.execute("MirrorPadGrad", [input, paddings], mode: mode)
2147
+ end
2148
+
2149
+ def mod(x: nil, y: nil)
2150
+ Utils.execute("Mod", [x, y])
2151
+ end
2152
+
2153
+ def model_dataset(input_dataset: nil, cpu_budget: nil, output_types: nil, output_shapes: nil)
2154
+ Utils.execute("ModelDataset", [input_dataset], cpu_budget: cpu_budget, output_types: output_types, output_shapes: output_shapes)
2155
+ end
2156
+
2157
+ def mul(x: nil, y: nil)
2158
+ Utils.execute("Mul", [x, y])
2159
+ end
2160
+
2161
+ def mul_no_nan(x: nil, y: nil)
2162
+ Utils.execute("MulNoNan", [x, y])
2163
+ end
2164
+
2165
+ def multi_device_iterator(devices: nil, shared_name: nil, container: nil, output_types: nil, output_shapes: nil)
2166
+ Utils.execute("MultiDeviceIterator", [], devices: devices, shared_name: shared_name, container: container, output_types: output_types, output_shapes: output_shapes)
2167
+ end
2168
+
2169
+ def multi_device_iterator_from_string_handle(string_handle: nil, output_types: nil, output_shapes: nil)
2170
+ Utils.execute("MultiDeviceIteratorFromStringHandle", [string_handle], output_types: output_types, output_shapes: output_shapes)
2171
+ end
2172
+
2173
+ def multi_device_iterator_get_next_from_shard(multi_device_iterator: nil, shard_num: nil, incarnation_id: nil, output_types: nil, output_shapes: nil)
2174
+ Utils.execute("MultiDeviceIteratorGetNextFromShard", [multi_device_iterator, shard_num, incarnation_id], output_types: output_types, output_shapes: output_shapes)
2175
+ end
2176
+
2177
+ def multi_device_iterator_init(dataset: nil, multi_device_iterator: nil, max_buffer_size: nil)
2178
+ Utils.execute("MultiDeviceIteratorInit", [dataset, multi_device_iterator, max_buffer_size])
2179
+ end
2180
+
2181
+ def multi_device_iterator_to_string_handle(multi_device_iterator: nil)
2182
+ Utils.execute("MultiDeviceIteratorToStringHandle", [multi_device_iterator])
2183
+ end
2184
+
2185
+ def multinomial(logits: nil, num_samples: nil, seed: nil, seed2: nil, output_dtype: nil)
2186
+ Utils.execute("Multinomial", [logits, num_samples], seed: seed, seed2: seed2, output_dtype: output_dtype)
2187
+ end
2188
+
2189
+ def mutable_dense_hash_table(empty_key: nil, container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil, initial_num_buckets: nil, max_load_factor: nil)
2190
+ Utils.execute("MutableDenseHashTable", [empty_key], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape, initial_num_buckets: initial_num_buckets, max_load_factor: max_load_factor)
2191
+ end
2192
+
2193
+ def mutable_dense_hash_table_v2(empty_key: nil, deleted_key: nil, container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil, initial_num_buckets: nil, max_load_factor: nil)
2194
+ Utils.execute("MutableDenseHashTableV2", [empty_key, deleted_key], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape, initial_num_buckets: initial_num_buckets, max_load_factor: max_load_factor)
2195
+ end
2196
+
2197
+ def mutable_hash_table(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
2198
+ Utils.execute("MutableHashTable", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
2199
+ end
2200
+
2201
+ def mutable_hash_table_of_tensors(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil)
2202
+ Utils.execute("MutableHashTableOfTensors", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape)
2203
+ end
2204
+
2205
+ def mutable_hash_table_of_tensors_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil, value_shape: nil)
2206
+ Utils.execute("MutableHashTableOfTensorsV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype, value_shape: value_shape)
2207
+ end
2208
+
2209
+ def mutable_hash_table_v2(container: nil, shared_name: nil, use_node_name_sharing: nil, key_dtype: nil, value_dtype: nil)
2210
+ Utils.execute("MutableHashTableV2", [], container: container, shared_name: shared_name, use_node_name_sharing: use_node_name_sharing, key_dtype: key_dtype, value_dtype: value_dtype)
2211
+ end
2212
+
2213
+ def mutex_lock(mutex: nil)
2214
+ Utils.execute("MutexLock", [mutex])
2215
+ end
2216
+
2217
+ def mutex_v2(container: nil, shared_name: nil)
2218
+ Utils.execute("MutexV2", [], container: container, shared_name: shared_name)
2219
+ end
2220
+
2221
+ def nccl_all_reduce(input: nil, reduction: nil, num_devices: nil, shared_name: nil)
2222
+ Utils.execute("NcclAllReduce", [input], reduction: reduction, num_devices: num_devices, shared_name: shared_name)
2223
+ end
2224
+
2225
+ def nccl_broadcast(input: nil, shape: nil)
2226
+ Utils.execute("NcclBroadcast", [input], shape: shape)
2227
+ end
2228
+
2229
+ def nccl_reduce(input: nil, reduction: nil, num_devices: nil)
2230
+ Utils.execute("NcclReduce", [input], reduction: reduction, num_devices: num_devices)
2231
+ end
2232
+
2233
+ def nearest_neighbors(points: nil, centers: nil, k: nil)
2234
+ Utils.execute("NearestNeighbors", [points, centers, k])
2235
+ end
2236
+
2237
+ def neg(x: nil)
2238
+ Utils.execute("Neg", [x])
2239
+ end
2240
+
2241
+ def neg_train(w_in: nil, w_out: nil, examples: nil, labels: nil, lr: nil, vocab_count: nil, num_negative_samples: nil)
2242
+ Utils.execute("NegTrain", [w_in, w_out, examples, labels, lr], vocab_count: vocab_count, num_negative_samples: num_negative_samples)
2243
+ end
2244
+
2245
+ def next_after(x1: nil, x2: nil)
2246
+ Utils.execute("NextAfter", [x1, x2])
2247
+ end
2248
+
2249
+ def next_iteration(data: nil)
2250
+ Utils.execute("NextIteration", [data])
2251
+ end
2252
+
2253
+ def no_op
2254
+ Utils.execute("NoOp", [])
2255
+ end
2256
+
2257
+ def non_deterministic_ints(shape: nil, dtype: nil, shape_dtype: nil)
2258
+ Utils.execute("NonDeterministicInts", [shape], dtype: dtype, shape_dtype: shape_dtype)
2259
+ end
2260
+
2261
+ def non_max_suppression(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil)
2262
+ Utils.execute("NonMaxSuppression", [boxes, scores, max_output_size], iou_threshold: iou_threshold)
2263
+ end
2264
+
2265
+ def non_max_suppression_v2(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil)
2266
+ Utils.execute("NonMaxSuppressionV2", [boxes, scores, max_output_size, iou_threshold])
2267
+ end
2268
+
2269
+ def non_max_suppression_v3(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil, score_threshold: nil)
2270
+ Utils.execute("NonMaxSuppressionV3", [boxes, scores, max_output_size, iou_threshold, score_threshold])
2271
+ end
2272
+
2273
+ def non_max_suppression_v4(boxes: nil, scores: nil, max_output_size: nil, iou_threshold: nil, score_threshold: nil, pad_to_max_output_size: nil)
2274
+ Utils.execute("NonMaxSuppressionV4", [boxes, scores, max_output_size, iou_threshold, score_threshold], pad_to_max_output_size: pad_to_max_output_size)
2275
+ end
2276
+
2277
+ def non_max_suppression_with_overlaps(overlaps: nil, scores: nil, max_output_size: nil, overlap_threshold: nil, score_threshold: nil)
2278
+ Utils.execute("NonMaxSuppressionWithOverlaps", [overlaps, scores, max_output_size, overlap_threshold, score_threshold])
2279
+ end
2280
+
2281
+ def not_equal(x: nil, y: nil)
2282
+ Utils.execute("NotEqual", [x, y])
2283
+ end
2284
+
2285
+ def nth_element(input: nil, n: nil, reverse: nil)
2286
+ Utils.execute("NthElement", [input, n], reverse: reverse)
2287
+ end
2288
+
2289
+ def one_hot(indices: nil, depth: nil, on_value: nil, off_value: nil, axis: nil)
2290
+ Utils.execute("OneHot", [indices, depth, on_value, off_value], axis: axis)
2291
+ end
2292
+
2293
+ def one_shot_iterator(dataset_factory: nil, output_types: nil, output_shapes: nil, container: nil, shared_name: nil)
2294
+ Utils.execute("OneShotIterator", [], dataset_factory: dataset_factory, output_types: output_types, output_shapes: output_shapes, container: container, shared_name: shared_name)
2295
+ end
2296
+
2297
+ def ones_like(x: nil)
2298
+ Utils.execute("OnesLike", [x])
2299
+ end
2300
+
2301
+ def optimize_dataset(input_dataset: nil, optimizations: nil, output_types: nil, output_shapes: nil, optimization_configs: nil)
2302
+ Utils.execute("OptimizeDataset", [input_dataset, optimizations], output_types: output_types, output_shapes: output_shapes, optimization_configs: optimization_configs)
2303
+ end
2304
+
2305
+ def optional_from_value(components: nil)
2306
+ Utils.execute("OptionalFromValue", [components])
2307
+ end
2308
+
2309
+ def optional_get_value(optional: nil, output_types: nil, output_shapes: nil)
2310
+ Utils.execute("OptionalGetValue", [optional], output_types: output_types, output_shapes: output_shapes)
2311
+ end
2312
+
2313
+ def optional_has_value(optional: nil)
2314
+ Utils.execute("OptionalHasValue", [optional])
2315
+ end
2316
+
2317
+ def optional_none
2318
+ Utils.execute("OptionalNone", [])
2319
+ end
2320
+
2321
+ def ordered_map_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
2322
+ Utils.execute("OrderedMapClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
2323
+ end
2324
+
2325
+ def ordered_map_incomplete_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
2326
+ Utils.execute("OrderedMapIncompleteSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
2327
+ end
2328
+
2329
+ def ordered_map_peek(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
2330
+ Utils.execute("OrderedMapPeek", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
2331
+ end
2332
+
2333
+ def ordered_map_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
2334
+ Utils.execute("OrderedMapSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
2335
+ end
2336
+
2337
+ def ordered_map_stage(key: nil, indices: nil, values: nil, capacity: nil, memory_limit: nil, dtypes: nil, fake_dtypes: nil, container: nil, shared_name: nil)
2338
+ Utils.execute("OrderedMapStage", [key, indices, values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, fake_dtypes: fake_dtypes, container: container, shared_name: shared_name)
2339
+ end
2340
+
2341
+ def ordered_map_unstage(key: nil, indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
2342
+ Utils.execute("OrderedMapUnstage", [key, indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
2343
+ end
2344
+
2345
+ def ordered_map_unstage_no_key(indices: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
2346
+ Utils.execute("OrderedMapUnstageNoKey", [indices], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
2347
+ end
2348
+
2349
+ def outfeed_dequeue(dtype: nil, shape: nil, device_ordinal: nil)
2350
+ Utils.execute("OutfeedDequeue", [], dtype: dtype, shape: shape, device_ordinal: device_ordinal)
2351
+ end
2352
+
2353
+ def outfeed_dequeue_tuple(dtypes: nil, shapes: nil, device_ordinal: nil)
2354
+ Utils.execute("OutfeedDequeueTuple", [], dtypes: dtypes, shapes: shapes, device_ordinal: device_ordinal)
2355
+ end
2356
+
2357
+ def outfeed_enqueue(input: nil, dtype: nil)
2358
+ Utils.execute("OutfeedEnqueue", [input], dtype: dtype)
2359
+ end
2360
+
2361
+ def outfeed_enqueue_tuple(inputs: nil, dtypes: nil)
2362
+ Utils.execute("OutfeedEnqueueTuple", [inputs], dtypes: dtypes)
2363
+ end
2364
+
2365
+ def pack(values: nil, axis: nil)
2366
+ Utils.execute("Pack", [values], axis: axis)
2367
+ end
2368
+
2369
+ def pad(input: nil, paddings: nil)
2370
+ Utils.execute("Pad", [input, paddings])
2371
+ end
2372
+
2373
+ def pad_v2(input: nil, paddings: nil, constant_values: nil)
2374
+ Utils.execute("PadV2", [input, paddings, constant_values])
2375
+ end
2376
+
2377
+ def padded_batch_dataset(input_dataset: nil, batch_size: nil, padded_shapes: nil, padding_values: nil, output_shapes: nil)
2378
+ Utils.execute("PaddedBatchDataset", [input_dataset, batch_size, padded_shapes, padding_values], output_shapes: output_shapes)
2379
+ end
2380
+
2381
+ def padded_batch_dataset_v2(input_dataset: nil, batch_size: nil, padded_shapes: nil, padding_values: nil, drop_remainder: nil, parallel_copy: nil, output_shapes: nil)
2382
+ Utils.execute("PaddedBatchDatasetV2", [input_dataset, batch_size, padded_shapes, padding_values, drop_remainder], parallel_copy: parallel_copy, output_shapes: output_shapes)
2383
+ end
2384
+
2385
+ def padding_fifo_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
2386
+ Utils.execute("PaddingFIFOQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
2387
+ end
2388
+
2389
+ def padding_fifo_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
2390
+ Utils.execute("PaddingFIFOQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
2391
+ end
2392
+
2393
+ def parallel_concat(values: nil, shape: nil)
2394
+ Utils.execute("ParallelConcat", [values], shape: shape)
2395
+ end
2396
+
2397
+ def parallel_dynamic_stitch(indices: nil, data: nil)
2398
+ Utils.execute("ParallelDynamicStitch", [indices, data])
2399
+ end
2400
+
2401
+ def parallel_interleave_dataset_v2(input_dataset: nil, other_arguments: nil, cycle_length: nil, block_length: nil, num_parallel_calls: nil, f: nil, output_types: nil, output_shapes: nil, sloppy: nil)
2402
+ Utils.execute("ParallelInterleaveDatasetV2", [input_dataset, other_arguments, cycle_length, block_length, num_parallel_calls], f: f, output_types: output_types, output_shapes: output_shapes, sloppy: sloppy)
2403
+ end
2404
+
2405
+ def parallel_map_dataset(input_dataset: nil, other_arguments: nil, num_parallel_calls: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil, sloppy: nil, preserve_cardinality: nil)
2406
+ Utils.execute("ParallelMapDataset", [input_dataset, other_arguments, num_parallel_calls], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism, sloppy: sloppy, preserve_cardinality: preserve_cardinality)
2407
+ end
2408
+
2409
+ def parameterized_truncated_normal(shape: nil, means: nil, stdevs: nil, minvals: nil, maxvals: nil, seed: nil, seed2: nil, dtype: nil)
2410
+ Utils.execute("ParameterizedTruncatedNormal", [shape, means, stdevs, minvals, maxvals], seed: seed, seed2: seed2, dtype: dtype)
2411
+ end
2412
+
2413
+ def parse_example(serialized: nil, names: nil, sparse_keys: nil, dense_keys: nil, dense_defaults: nil, sparse_types: nil, dense_shapes: nil)
2414
+ Utils.execute("ParseExample", [serialized, names, sparse_keys, dense_keys, dense_defaults], sparse_types: sparse_types, dense_shapes: dense_shapes)
2415
+ end
2416
+
2417
+ def parse_sequence_example(serialized: nil, debug_name: nil, context_dense_defaults: nil, feature_list_dense_missing_assumed_empty: nil, context_sparse_keys: nil, context_dense_keys: nil, feature_list_sparse_keys: nil, feature_list_dense_keys: nil, context_sparse_types: nil, feature_list_dense_types: nil, context_dense_shapes: nil, feature_list_sparse_types: nil, feature_list_dense_shapes: nil)
2418
+ Utils.execute("ParseSequenceExample", [serialized, debug_name, context_dense_defaults], feature_list_dense_missing_assumed_empty: feature_list_dense_missing_assumed_empty, context_sparse_keys: context_sparse_keys, context_dense_keys: context_dense_keys, feature_list_sparse_keys: feature_list_sparse_keys, feature_list_dense_keys: feature_list_dense_keys, context_sparse_types: context_sparse_types, feature_list_dense_types: feature_list_dense_types, context_dense_shapes: context_dense_shapes, feature_list_sparse_types: feature_list_sparse_types, feature_list_dense_shapes: feature_list_dense_shapes)
2419
+ end
2420
+
2421
+ def parse_single_example(serialized: nil, dense_defaults: nil, num_sparse: nil, sparse_keys: nil, dense_keys: nil, sparse_types: nil, dense_shapes: nil)
2422
+ Utils.execute("ParseSingleExample", [serialized, dense_defaults], num_sparse: num_sparse, sparse_keys: sparse_keys, dense_keys: dense_keys, sparse_types: sparse_types, dense_shapes: dense_shapes)
2423
+ end
2424
+
2425
+ def parse_single_sequence_example(serialized: nil, feature_list_dense_missing_assumed_empty: nil, context_sparse_keys: nil, context_dense_keys: nil, feature_list_sparse_keys: nil, feature_list_dense_keys: nil, context_dense_defaults: nil, debug_name: nil, context_sparse_types: nil, feature_list_dense_types: nil, context_dense_shapes: nil, feature_list_sparse_types: nil, feature_list_dense_shapes: nil)
2426
+ Utils.execute("ParseSingleSequenceExample", [serialized, feature_list_dense_missing_assumed_empty, context_sparse_keys, context_dense_keys, feature_list_sparse_keys, feature_list_dense_keys, context_dense_defaults, debug_name], context_sparse_types: context_sparse_types, feature_list_dense_types: feature_list_dense_types, context_dense_shapes: context_dense_shapes, feature_list_sparse_types: feature_list_sparse_types, feature_list_dense_shapes: feature_list_dense_shapes)
2427
+ end
2428
+
2429
+ def parse_tensor(serialized: nil, out_type: nil)
2430
+ Utils.execute("ParseTensor", [serialized], out_type: out_type)
2431
+ end
2432
+
2433
+ def partitioned_call(args: nil, f: nil, config: nil, config_proto: nil, executor_type: nil)
2434
+ Utils.execute("PartitionedCall", [args], f: f, config: config, config_proto: config_proto, executor_type: executor_type)
2435
+ end
2436
+
2437
+ def placeholder(dtype: nil, shape: nil)
2438
+ Utils.execute("Placeholder", [], dtype: dtype, shape: shape)
2439
+ end
2440
+
2441
+ def placeholder_v2(dtype: nil, shape: nil)
2442
+ Utils.execute("PlaceholderV2", [], dtype: dtype, shape: shape)
2443
+ end
2444
+
2445
+ def placeholder_with_default(input: nil, dtype: nil, shape: nil)
2446
+ Utils.execute("PlaceholderWithDefault", [input], dtype: dtype, shape: shape)
2447
+ end
2448
+
2449
+ def polygamma(a: nil, x: nil)
2450
+ Utils.execute("Polygamma", [a, x])
2451
+ end
2452
+
2453
+ def population_count(x: nil)
2454
+ Utils.execute("PopulationCount", [x])
2455
+ end
2456
+
2457
+ def pow(x: nil, y: nil)
2458
+ Utils.execute("Pow", [x, y])
2459
+ end
2460
+
2461
+ def prefetch_dataset(input_dataset: nil, buffer_size: nil, output_types: nil, output_shapes: nil, slack_period: nil)
2462
+ Utils.execute("PrefetchDataset", [input_dataset, buffer_size], output_types: output_types, output_shapes: output_shapes, slack_period: slack_period)
2463
+ end
2464
+
2465
+ def prelinearize(input: nil, dtype: nil, shape: nil, layout: nil)
2466
+ Utils.execute("Prelinearize", [input], dtype: dtype, shape: shape, layout: layout)
2467
+ end
2468
+
2469
+ def prelinearize_tuple(inputs: nil, dtypes: nil, shapes: nil, layouts: nil)
2470
+ Utils.execute("PrelinearizeTuple", [inputs], dtypes: dtypes, shapes: shapes, layouts: layouts)
2471
+ end
2472
+
2473
+ def prevent_gradient(input: nil, message: nil)
2474
+ Utils.execute("PreventGradient", [input], message: message)
2475
+ end
2476
+
2477
+ def print(input: nil, data: nil, message: nil, first_n: nil, summarize: nil)
2478
+ Utils.execute("Print", [input, data], message: message, first_n: first_n, summarize: summarize)
2479
+ end
2480
+
2481
+ def print_v2(input: nil, output_stream: nil, stop: nil)
2482
+ Utils.execute("PrintV2", [input], output_stream: output_stream, stop: stop)
2483
+ end
2484
+
2485
+ def priority_queue(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
2486
+ Utils.execute("PriorityQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
2487
+ end
2488
+
2489
+ def priority_queue_v2(component_types: nil, shapes: nil, capacity: nil, container: nil, shared_name: nil)
2490
+ Utils.execute("PriorityQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, container: container, shared_name: shared_name)
2491
+ end
2492
+
2493
+ def prod(input: nil, reduction_indices: nil, keep_dims: nil)
2494
+ Utils.execute("Prod", [input, reduction_indices], keep_dims: keep_dims)
2495
+ end
2496
+
2497
+ def py_func(input: nil, token: nil)
2498
+ Utils.execute("PyFunc", [input], token: token)
2499
+ end
2500
+
2501
+ def py_func_stateless(input: nil, token: nil)
2502
+ Utils.execute("PyFuncStateless", [input], token: token)
2503
+ end
2504
+
2505
+ def qr(input: nil, full_matrices: nil)
2506
+ Utils.execute("Qr", [input], full_matrices: full_matrices)
2507
+ end
2508
+
2509
+ def quantize_and_dequantize(input: nil, signed_input: nil, num_bits: nil, range_given: nil, input_min: nil, input_max: nil)
2510
+ Utils.execute("QuantizeAndDequantize", [input], signed_input: signed_input, num_bits: num_bits, range_given: range_given, input_min: input_min, input_max: input_max)
2511
+ end
2512
+
2513
+ def quantize_and_dequantize_v2(input: nil, input_min: nil, input_max: nil, signed_input: nil, num_bits: nil, range_given: nil, round_mode: nil)
2514
+ Utils.execute("QuantizeAndDequantizeV2", [input, input_min, input_max], signed_input: signed_input, num_bits: num_bits, range_given: range_given, round_mode: round_mode)
2515
+ end
2516
+
2517
+ def quantize_and_dequantize_v3(input: nil, input_min: nil, input_max: nil, num_bits: nil, signed_input: nil, range_given: nil)
2518
+ Utils.execute("QuantizeAndDequantizeV3", [input, input_min, input_max, num_bits], signed_input: signed_input, range_given: range_given)
2519
+ end
2520
+
2521
+ def quantize_down_and_shrink_range(input: nil, input_min: nil, input_max: nil, out_type: nil)
2522
+ Utils.execute("QuantizeDownAndShrinkRange", [input, input_min, input_max], out_type: out_type)
2523
+ end
2524
+
2525
+ def quantize_v2(input: nil, min_range: nil, max_range: nil, mode: nil, round_mode: nil)
2526
+ Utils.execute("QuantizeV2", [input, min_range, max_range], mode: mode, round_mode: round_mode)
2527
+ end
2528
+
2529
+ def quantized_add(x: nil, y: nil, min_x: nil, max_x: nil, min_y: nil, max_y: nil)
2530
+ Utils.execute("QuantizedAdd", [x, y, min_x, max_x, min_y, max_y])
2531
+ end
2532
+
2533
+ def quantized_avg_pool(input: nil, min_input: nil, max_input: nil, ksize: nil, strides: nil, padding: nil)
2534
+ Utils.execute("QuantizedAvgPool", [input, min_input, max_input], ksize: ksize, strides: strides, padding: padding)
2535
+ end
2536
+
2537
+ def quantized_batch_norm_with_global_normalization(t: nil, t_min: nil, t_max: nil, m: nil, m_min: nil, m_max: nil, v: nil, v_min: nil, v_max: nil, beta: nil, beta_min: nil, beta_max: nil, gamma: nil, gamma_min: nil, gamma_max: nil, out_type: nil, variance_epsilon: nil, scale_after_normalization: nil)
2538
+ Utils.execute("QuantizedBatchNormWithGlobalNormalization", [t, t_min, t_max, m, m_min, m_max, v, v_min, v_max, beta, beta_min, beta_max, gamma, gamma_min, gamma_max], out_type: out_type, variance_epsilon: variance_epsilon, scale_after_normalization: scale_after_normalization)
2539
+ end
2540
+
2541
+ def quantized_bias_add(input: nil, bias: nil, min_input: nil, max_input: nil, min_bias: nil, max_bias: nil, out_type: nil)
2542
+ Utils.execute("QuantizedBiasAdd", [input, bias, min_input, max_input, min_bias, max_bias], out_type: out_type)
2543
+ end
2544
+
2545
+ def quantized_concat(concat_dim: nil, values: nil, input_mins: nil, input_maxes: nil)
2546
+ Utils.execute("QuantizedConcat", [concat_dim, values, input_mins, input_maxes])
2547
+ end
2548
+
2549
+ def quantized_conv2d(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
2550
+ Utils.execute("QuantizedConv2D", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
2551
+ end
2552
+
2553
+ def quantized_conv2d_and_relu(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2554
+ Utils.execute("QuantizedConv2DAndRelu", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2555
+ end
2556
+
2557
+ def quantized_conv2d_and_relu_and_requantize(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2558
+ Utils.execute("QuantizedConv2DAndReluAndRequantize", [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2559
+ end
2560
+
2561
+ def quantized_conv2d_and_requantize(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2562
+ Utils.execute("QuantizedConv2DAndRequantize", [input, filter, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2563
+ end
2564
+
2565
+ def quantized_conv2d_per_channel(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
2566
+ Utils.execute("QuantizedConv2DPerChannel", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
2567
+ end
2568
+
2569
+ def quantized_conv2d_with_bias(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2570
+ Utils.execute("QuantizedConv2DWithBias", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2571
+ end
2572
+
2573
+ def quantized_conv2d_with_bias_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2574
+ Utils.execute("QuantizedConv2DWithBiasAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2575
+ end
2576
+
2577
+ def quantized_conv2d_with_bias_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2578
+ Utils.execute("QuantizedConv2DWithBiasAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2579
+ end
2580
+
2581
+ def quantized_conv2d_with_bias_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2582
+ Utils.execute("QuantizedConv2DWithBiasAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2583
+ end
2584
+
2585
+ def quantized_conv2d_with_bias_signed_sum_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, summand: nil, min_summand: nil, max_summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2586
+ Utils.execute("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2587
+ end
2588
+
2589
+ def quantized_conv2d_with_bias_sum_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2590
+ Utils.execute("QuantizedConv2DWithBiasSumAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter, summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2591
+ end
2592
+
2593
+ def quantized_conv2d_with_bias_sum_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, summand: nil, min_summand: nil, max_summand: nil, out_type: nil, strides: nil, padding: nil, dilations: nil, padding_list: nil)
2594
+ Utils.execute("QuantizedConv2DWithBiasSumAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output, summand, min_summand, max_summand], out_type: out_type, strides: strides, padding: padding, dilations: dilations, padding_list: padding_list)
2595
+ end
2596
+
2597
+ def quantized_depthwise_conv2d(input: nil, filter: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
2598
+ Utils.execute("QuantizedDepthwiseConv2D", [input, filter, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
2599
+ end
2600
+
2601
+ def quantized_depthwise_conv2d_with_bias(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
2602
+ Utils.execute("QuantizedDepthwiseConv2DWithBias", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
2603
+ end
2604
+
2605
+ def quantized_depthwise_conv2d_with_bias_and_relu(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
2606
+ Utils.execute("QuantizedDepthwiseConv2DWithBiasAndRelu", [input, filter, bias, min_input, max_input, min_filter, max_filter], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
2607
+ end
2608
+
2609
+ def quantized_depthwise_conv2d_with_bias_and_relu_and_requantize(input: nil, filter: nil, bias: nil, min_input: nil, max_input: nil, min_filter: nil, max_filter: nil, min_freezed_output: nil, max_freezed_output: nil, out_type: nil, strides: nil, padding: nil, dilations: nil)
2610
+ Utils.execute("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", [input, filter, bias, min_input, max_input, min_filter, max_filter, min_freezed_output, max_freezed_output], out_type: out_type, strides: strides, padding: padding, dilations: dilations)
2611
+ end
2612
+
2613
+ def quantized_instance_norm(x: nil, x_min: nil, x_max: nil, output_range_given: nil, given_y_min: nil, given_y_max: nil, variance_epsilon: nil, min_separation: nil)
2614
+ Utils.execute("QuantizedInstanceNorm", [x, x_min, x_max], output_range_given: output_range_given, given_y_min: given_y_min, given_y_max: given_y_max, variance_epsilon: variance_epsilon, min_separation: min_separation)
2615
+ end
2616
+
2617
+ def quantized_mat_mul(a: nil, b: nil, min_a: nil, max_a: nil, min_b: nil, max_b: nil, transpose_a: nil, transpose_b: nil)
2618
+ Utils.execute("QuantizedMatMul", [a, b, min_a, max_a, min_b, max_b], transpose_a: transpose_a, transpose_b: transpose_b)
2619
+ end
2620
+
2621
+ def quantized_max_pool(input: nil, min_input: nil, max_input: nil, ksize: nil, strides: nil, padding: nil)
2622
+ Utils.execute("QuantizedMaxPool", [input, min_input, max_input], ksize: ksize, strides: strides, padding: padding)
2623
+ end
2624
+
2625
+ def quantized_mul(x: nil, y: nil, min_x: nil, max_x: nil, min_y: nil, max_y: nil)
2626
+ Utils.execute("QuantizedMul", [x, y, min_x, max_x, min_y, max_y])
2627
+ end
2628
+
2629
+ def quantized_relu(features: nil, min_features: nil, max_features: nil, out_type: nil)
2630
+ Utils.execute("QuantizedRelu", [features, min_features, max_features], out_type: out_type)
2631
+ end
2632
+
2633
+ def quantized_relu6(features: nil, min_features: nil, max_features: nil, out_type: nil)
2634
+ Utils.execute("QuantizedRelu6", [features, min_features, max_features], out_type: out_type)
2635
+ end
2636
+
2637
+ def quantized_relu_x(features: nil, max_value: nil, min_features: nil, max_features: nil, out_type: nil)
2638
+ Utils.execute("QuantizedReluX", [features, max_value, min_features, max_features], out_type: out_type)
2639
+ end
2640
+
2641
+ def quantized_reshape(tensor: nil, shape: nil, input_min: nil, input_max: nil)
2642
+ Utils.execute("QuantizedReshape", [tensor, shape, input_min, input_max])
2643
+ end
2644
+
2645
+ def quantized_resize_bilinear(images: nil, size: nil, min: nil, max: nil, align_corners: nil, half_pixel_centers: nil)
2646
+ Utils.execute("QuantizedResizeBilinear", [images, size, min, max], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
2647
+ end
2648
+
2649
+ def queue_close(handle: nil, cancel_pending_enqueues: nil)
2650
+ Utils.execute("QueueClose", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
2651
+ end
2652
+
2653
+ def queue_close_v2(handle: nil, cancel_pending_enqueues: nil)
2654
+ Utils.execute("QueueCloseV2", [handle], cancel_pending_enqueues: cancel_pending_enqueues)
2655
+ end
2656
+
2657
+ def queue_dequeue(handle: nil, component_types: nil, timeout_ms: nil)
2658
+ Utils.execute("QueueDequeue", [handle], component_types: component_types, timeout_ms: timeout_ms)
2659
+ end
2660
+
2661
+ def queue_dequeue_many(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
2662
+ Utils.execute("QueueDequeueMany", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
2663
+ end
2664
+
2665
+ def queue_dequeue_many_v2(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
2666
+ Utils.execute("QueueDequeueManyV2", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
2667
+ end
2668
+
2669
+ def queue_dequeue_up_to(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
2670
+ Utils.execute("QueueDequeueUpTo", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
2671
+ end
2672
+
2673
+ def queue_dequeue_up_to_v2(handle: nil, n: nil, component_types: nil, timeout_ms: nil)
2674
+ Utils.execute("QueueDequeueUpToV2", [handle, n], component_types: component_types, timeout_ms: timeout_ms)
2675
+ end
2676
+
2677
+ def queue_dequeue_v2(handle: nil, component_types: nil, timeout_ms: nil)
2678
+ Utils.execute("QueueDequeueV2", [handle], component_types: component_types, timeout_ms: timeout_ms)
2679
+ end
2680
+
2681
+ def queue_enqueue(handle: nil, components: nil, timeout_ms: nil)
2682
+ Utils.execute("QueueEnqueue", [handle, components], timeout_ms: timeout_ms)
2683
+ end
2684
+
2685
+ def queue_enqueue_many(handle: nil, components: nil, timeout_ms: nil)
2686
+ Utils.execute("QueueEnqueueMany", [handle, components], timeout_ms: timeout_ms)
2687
+ end
2688
+
2689
+ def queue_enqueue_many_v2(handle: nil, components: nil, timeout_ms: nil)
2690
+ Utils.execute("QueueEnqueueManyV2", [handle, components], timeout_ms: timeout_ms)
2691
+ end
2692
+
2693
+ def queue_enqueue_v2(handle: nil, components: nil, timeout_ms: nil)
2694
+ Utils.execute("QueueEnqueueV2", [handle, components], timeout_ms: timeout_ms)
2695
+ end
2696
+
2697
+ def queue_is_closed(handle: nil)
2698
+ Utils.execute("QueueIsClosed", [handle])
2699
+ end
2700
+
2701
+ def queue_is_closed_v2(handle: nil)
2702
+ Utils.execute("QueueIsClosedV2", [handle])
2703
+ end
2704
+
2705
+ def queue_size(handle: nil)
2706
+ Utils.execute("QueueSize", [handle])
2707
+ end
2708
+
2709
+ def queue_size_v2(handle: nil)
2710
+ Utils.execute("QueueSizeV2", [handle])
2711
+ end
2712
+
2713
+ def rfft(input: nil, fft_length: nil)
2714
+ Utils.execute("RFFT", [input, fft_length])
2715
+ end
2716
+
2717
+ def rfft2d(input: nil, fft_length: nil)
2718
+ Utils.execute("RFFT2D", [input, fft_length])
2719
+ end
2720
+
2721
+ def rfft3d(input: nil, fft_length: nil)
2722
+ Utils.execute("RFFT3D", [input, fft_length])
2723
+ end
2724
+
2725
+ def rgb_to_hsv(images: nil)
2726
+ Utils.execute("RGBToHSV", [images])
2727
+ end
2728
+
2729
+ def ragged_gather(params_nested_splits: nil, params_dense_values: nil, indices: nil)
2730
+ Utils.execute("RaggedGather", [params_nested_splits, params_dense_values, indices])
2731
+ end
2732
+
2733
+ def ragged_range(starts: nil, limits: nil, deltas: nil)
2734
+ Utils.execute("RaggedRange", [starts, limits, deltas])
2735
+ end
2736
+
2737
+ def ragged_tensor_from_variant(encoded_ragged: nil, input_ragged_rank: nil, output_ragged_rank: nil)
2738
+ Utils.execute("RaggedTensorFromVariant", [encoded_ragged], input_ragged_rank: input_ragged_rank, output_ragged_rank: output_ragged_rank)
2739
+ end
2740
+
2741
+ def ragged_tensor_to_sparse(rt_nested_splits: nil, rt_dense_values: nil)
2742
+ Utils.execute("RaggedTensorToSparse", [rt_nested_splits, rt_dense_values])
2743
+ end
2744
+
2745
+ def ragged_tensor_to_variant(rt_nested_splits: nil, rt_dense_values: nil, batched_input: nil)
2746
+ Utils.execute("RaggedTensorToVariant", [rt_nested_splits, rt_dense_values], batched_input: batched_input)
2747
+ end
2748
+
2749
+ def random_crop(image: nil, size: nil, seed: nil, seed2: nil)
2750
+ Utils.execute("RandomCrop", [image, size], seed: seed, seed2: seed2)
2751
+ end
2752
+
2753
+ def random_gamma(shape: nil, alpha: nil, seed: nil, seed2: nil)
2754
+ Utils.execute("RandomGamma", [shape, alpha], seed: seed, seed2: seed2)
2755
+ end
2756
+
2757
+ def random_gamma_grad(alpha: nil, sample: nil)
2758
+ Utils.execute("RandomGammaGrad", [alpha, sample])
2759
+ end
2760
+
2761
+ def random_poisson(shape: nil, rate: nil, seed: nil, seed2: nil, dtype: nil)
2762
+ Utils.execute("RandomPoisson", [shape, rate], seed: seed, seed2: seed2, dtype: dtype)
2763
+ end
2764
+
2765
+ def random_poisson_v2(shape: nil, rate: nil, seed: nil, seed2: nil, dtype: nil)
2766
+ Utils.execute("RandomPoissonV2", [shape, rate], seed: seed, seed2: seed2, dtype: dtype)
2767
+ end
2768
+
2769
+ def random_shuffle(value: nil, seed: nil, seed2: nil)
2770
+ Utils.execute("RandomShuffle", [value], seed: seed, seed2: seed2)
2771
+ end
2772
+
2773
+ def random_shuffle_queue(component_types: nil, shapes: nil, capacity: nil, min_after_dequeue: nil, seed: nil, seed2: nil, container: nil, shared_name: nil)
2774
+ Utils.execute("RandomShuffleQueue", [], component_types: component_types, shapes: shapes, capacity: capacity, min_after_dequeue: min_after_dequeue, seed: seed, seed2: seed2, container: container, shared_name: shared_name)
2775
+ end
2776
+
2777
+ def random_shuffle_queue_v2(component_types: nil, shapes: nil, capacity: nil, min_after_dequeue: nil, seed: nil, seed2: nil, container: nil, shared_name: nil)
2778
+ Utils.execute("RandomShuffleQueueV2", [], component_types: component_types, shapes: shapes, capacity: capacity, min_after_dequeue: min_after_dequeue, seed: seed, seed2: seed2, container: container, shared_name: shared_name)
2779
+ end
2780
+
2781
+ def random_standard_normal(shape: nil, seed: nil, seed2: nil, dtype: nil)
2782
+ Utils.execute("RandomStandardNormal", [shape], seed: seed, seed2: seed2, dtype: dtype)
2783
+ end
2784
+
2785
+ def random_uniform(shape: nil, seed: nil, seed2: nil, dtype: nil)
2786
+ Utils.execute("RandomUniform", [shape], seed: seed, seed2: seed2, dtype: dtype)
2787
+ end
2788
+
2789
+ def random_uniform_int(shape: nil, minval: nil, maxval: nil, seed: nil, seed2: nil)
2790
+ Utils.execute("RandomUniformInt", [shape, minval, maxval], seed: seed, seed2: seed2)
2791
+ end
2792
+
2793
+ def range(start: nil, limit: nil, delta: nil)
2794
+ Utils.execute("Range", [start, limit, delta])
2795
+ end
2796
+
2797
+ def range_dataset(start: nil, stop: nil, step: nil, output_types: nil, output_shapes: nil)
2798
+ Utils.execute("RangeDataset", [start, stop, step], output_types: output_types, output_shapes: output_shapes)
2799
+ end
2800
+
2801
+ def rank(input: nil)
2802
+ Utils.execute("Rank", [input])
2803
+ end
2804
+
2805
+ def read_file(filename: nil)
2806
+ Utils.execute("ReadFile", [filename])
2807
+ end
2808
+
2809
+ def read_variable_op(resource: nil, dtype: nil)
2810
+ Utils.execute("ReadVariableOp", [resource], dtype: dtype)
2811
+ end
2812
+
2813
+ def reader_num_records_produced(reader_handle: nil)
2814
+ Utils.execute("ReaderNumRecordsProduced", [reader_handle])
2815
+ end
2816
+
2817
+ def reader_num_records_produced_v2(reader_handle: nil)
2818
+ Utils.execute("ReaderNumRecordsProducedV2", [reader_handle])
2819
+ end
2820
+
2821
+ def reader_num_work_units_completed(reader_handle: nil)
2822
+ Utils.execute("ReaderNumWorkUnitsCompleted", [reader_handle])
2823
+ end
2824
+
2825
+ def reader_num_work_units_completed_v2(reader_handle: nil)
2826
+ Utils.execute("ReaderNumWorkUnitsCompletedV2", [reader_handle])
2827
+ end
2828
+
2829
+ def reader_read(reader_handle: nil, queue_handle: nil)
2830
+ Utils.execute("ReaderRead", [reader_handle, queue_handle])
2831
+ end
2832
+
2833
+ def reader_read_up_to(reader_handle: nil, queue_handle: nil, num_records: nil)
2834
+ Utils.execute("ReaderReadUpTo", [reader_handle, queue_handle, num_records])
2835
+ end
2836
+
2837
+ def reader_read_up_to_v2(reader_handle: nil, queue_handle: nil, num_records: nil)
2838
+ Utils.execute("ReaderReadUpToV2", [reader_handle, queue_handle, num_records])
2839
+ end
2840
+
2841
+ def reader_read_v2(reader_handle: nil, queue_handle: nil)
2842
+ Utils.execute("ReaderReadV2", [reader_handle, queue_handle])
2843
+ end
2844
+
2845
+ def reader_reset(reader_handle: nil)
2846
+ Utils.execute("ReaderReset", [reader_handle])
2847
+ end
2848
+
2849
+ def reader_reset_v2(reader_handle: nil)
2850
+ Utils.execute("ReaderResetV2", [reader_handle])
2851
+ end
2852
+
2853
+ def reader_restore_state(reader_handle: nil, state: nil)
2854
+ Utils.execute("ReaderRestoreState", [reader_handle, state])
2855
+ end
2856
+
2857
+ def reader_restore_state_v2(reader_handle: nil, state: nil)
2858
+ Utils.execute("ReaderRestoreStateV2", [reader_handle, state])
2859
+ end
2860
+
2861
+ def reader_serialize_state(reader_handle: nil)
2862
+ Utils.execute("ReaderSerializeState", [reader_handle])
2863
+ end
2864
+
2865
+ def reader_serialize_state_v2(reader_handle: nil)
2866
+ Utils.execute("ReaderSerializeStateV2", [reader_handle])
2867
+ end
2868
+
2869
+ def real(input: nil)
2870
+ Utils.execute("Real", [input])
2871
+ end
2872
+
2873
+ def real_div(x: nil, y: nil)
2874
+ Utils.execute("RealDiv", [x, y])
2875
+ end
2876
+
2877
+ def reciprocal(x: nil)
2878
+ Utils.execute("Reciprocal", [x])
2879
+ end
2880
+
2881
+ def reciprocal_grad(y: nil, dy: nil)
2882
+ Utils.execute("ReciprocalGrad", [y, dy])
2883
+ end
2884
+
2885
+ def record_input(file_pattern: nil, file_random_seed: nil, file_shuffle_shift_ratio: nil, file_buffer_size: nil, file_parallelism: nil, batch_size: nil, compression_type: nil)
2886
+ Utils.execute("RecordInput", [], file_pattern: file_pattern, file_random_seed: file_random_seed, file_shuffle_shift_ratio: file_shuffle_shift_ratio, file_buffer_size: file_buffer_size, file_parallelism: file_parallelism, batch_size: batch_size, compression_type: compression_type)
2887
+ end
2888
+
2889
+ def recv_tpu_embedding_activations(num_outputs: nil, config: nil)
2890
+ Utils.execute("RecvTPUEmbeddingActivations", [], num_outputs: num_outputs, config: config)
2891
+ end
2892
+
2893
+ def reduce_dataset(input_dataset: nil, initial_state: nil, other_arguments: nil, f: nil, output_types: nil, output_shapes: nil, use_inter_op_parallelism: nil)
2894
+ Utils.execute("ReduceDataset", [input_dataset, initial_state, other_arguments], f: f, output_types: output_types, output_shapes: output_shapes, use_inter_op_parallelism: use_inter_op_parallelism)
2895
+ end
2896
+
2897
+ def reduce_join(inputs: nil, reduction_indices: nil, keep_dims: nil, separator: nil)
2898
+ Utils.execute("ReduceJoin", [inputs, reduction_indices], keep_dims: keep_dims, separator: separator)
2899
+ end
2900
+
2901
+ def ref_enter(data: nil, frame_name: nil, is_constant: nil, parallel_iterations: nil)
2902
+ Utils.execute("RefEnter", [data], frame_name: frame_name, is_constant: is_constant, parallel_iterations: parallel_iterations)
2903
+ end
2904
+
2905
+ def ref_exit(data: nil)
2906
+ Utils.execute("RefExit", [data])
2907
+ end
2908
+
2909
+ def ref_identity(input: nil)
2910
+ Utils.execute("RefIdentity", [input])
2911
+ end
2912
+
2913
+ def ref_merge(inputs: nil)
2914
+ Utils.execute("RefMerge", [inputs])
2915
+ end
2916
+
2917
+ def ref_next_iteration(data: nil)
2918
+ Utils.execute("RefNextIteration", [data])
2919
+ end
2920
+
2921
+ def ref_select(index: nil, inputs: nil)
2922
+ Utils.execute("RefSelect", [index, inputs])
2923
+ end
2924
+
2925
+ def ref_switch(data: nil, pred: nil)
2926
+ Utils.execute("RefSwitch", [data, pred])
2927
+ end
2928
+
2929
+ def regex_full_match(input: nil, pattern: nil)
2930
+ Utils.execute("RegexFullMatch", [input, pattern])
2931
+ end
2932
+
2933
+ def regex_replace(input: nil, pattern: nil, rewrite: nil, replace_global: nil)
2934
+ Utils.execute("RegexReplace", [input, pattern, rewrite], replace_global: replace_global)
2935
+ end
2936
+
2937
+ def relu(features: nil)
2938
+ Utils.execute("Relu", [features])
2939
+ end
2940
+
2941
+ def relu6(features: nil)
2942
+ Utils.execute("Relu6", [features])
2943
+ end
2944
+
2945
+ def relu6_grad(gradients: nil, features: nil)
2946
+ Utils.execute("Relu6Grad", [gradients, features])
2947
+ end
2948
+
2949
+ def relu_grad(gradients: nil, features: nil)
2950
+ Utils.execute("ReluGrad", [gradients, features])
2951
+ end
2952
+
2953
+ def remote_call(target: nil, args: nil, f: nil)
2954
+ Utils.execute("RemoteCall", [target, args], f: f)
2955
+ end
2956
+
2957
+ def remote_fused_graph_execute(inputs: nil, serialized_remote_fused_graph_execute_info: nil)
2958
+ Utils.execute("RemoteFusedGraphExecute", [inputs], serialized_remote_fused_graph_execute_info: serialized_remote_fused_graph_execute_info)
2959
+ end
2960
+
2961
+ def repeat_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
2962
+ Utils.execute("RepeatDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
2963
+ end
2964
+
2965
+ def requantization_range(input: nil, input_min: nil, input_max: nil)
2966
+ Utils.execute("RequantizationRange", [input, input_min, input_max])
2967
+ end
2968
+
2969
+ def requantization_range_per_channel(input: nil, input_min: nil, input_max: nil, clip_value_max: nil)
2970
+ Utils.execute("RequantizationRangePerChannel", [input, input_min, input_max], clip_value_max: clip_value_max)
2971
+ end
2972
+
2973
+ def requantize(input: nil, input_min: nil, input_max: nil, requested_output_min: nil, requested_output_max: nil, out_type: nil)
2974
+ Utils.execute("Requantize", [input, input_min, input_max, requested_output_min, requested_output_max], out_type: out_type)
2975
+ end
2976
+
2977
+ def requantize_per_channel(input: nil, input_min: nil, input_max: nil, requested_output_min: nil, requested_output_max: nil, out_type: nil)
2978
+ Utils.execute("RequantizePerChannel", [input, input_min, input_max, requested_output_min, requested_output_max], out_type: out_type)
2979
+ end
2980
+
2981
+ def reshape(tensor: nil, shape: nil)
2982
+ Utils.execute("Reshape", [tensor, shape])
2983
+ end
2984
+
2985
+ def resize_area(images: nil, size: nil, align_corners: nil)
2986
+ Utils.execute("ResizeArea", [images, size], align_corners: align_corners)
2987
+ end
2988
+
2989
+ def resize_bicubic(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
2990
+ Utils.execute("ResizeBicubic", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
2991
+ end
2992
+
2993
+ def resize_bicubic_grad(grads: nil, original_image: nil, align_corners: nil, half_pixel_centers: nil)
2994
+ Utils.execute("ResizeBicubicGrad", [grads, original_image], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
2995
+ end
2996
+
2997
+ def resize_bilinear(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
2998
+ Utils.execute("ResizeBilinear", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
2999
+ end
3000
+
3001
+ def resize_bilinear_grad(grads: nil, original_image: nil, align_corners: nil, half_pixel_centers: nil)
3002
+ Utils.execute("ResizeBilinearGrad", [grads, original_image], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
3003
+ end
3004
+
3005
+ def resize_nearest_neighbor(images: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
3006
+ Utils.execute("ResizeNearestNeighbor", [images, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
3007
+ end
3008
+
3009
+ def resize_nearest_neighbor_grad(grads: nil, size: nil, align_corners: nil, half_pixel_centers: nil)
3010
+ Utils.execute("ResizeNearestNeighborGrad", [grads, size], align_corners: align_corners, half_pixel_centers: half_pixel_centers)
3011
+ end
3012
+
3013
+ def resource_apply_ada_max(var: nil, m: nil, v: nil, beta1_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
3014
+ Utils.execute("ResourceApplyAdaMax", [var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
3015
+ end
3016
+
3017
+ def resource_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, use_locking: nil)
3018
+ Utils.execute("ResourceApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad], use_locking: use_locking)
3019
+ end
3020
+
3021
+ def resource_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, use_locking: nil, update_slots: nil)
3022
+ Utils.execute("ResourceApplyAdagrad", [var, accum, lr, grad], use_locking: use_locking, update_slots: update_slots)
3023
+ end
3024
+
3025
+ def resource_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
3026
+ Utils.execute("ResourceApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, lr, l1, l2, global_step], use_locking: use_locking)
3027
+ end
3028
+
3029
+ def resource_apply_adam(var: nil, m: nil, v: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil, use_nesterov: nil)
3030
+ Utils.execute("ResourceApplyAdam", [var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking, use_nesterov: use_nesterov)
3031
+ end
3032
+
3033
+ def resource_apply_adam_with_amsgrad(var: nil, m: nil, v: nil, vhat: nil, beta1_power: nil, beta2_power: nil, lr: nil, beta1: nil, beta2: nil, epsilon: nil, grad: nil, use_locking: nil)
3034
+ Utils.execute("ResourceApplyAdamWithAmsgrad", [var, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad], use_locking: use_locking)
3035
+ end
3036
+
3037
+ def resource_apply_add_sign(var: nil, m: nil, lr: nil, alpha: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
3038
+ Utils.execute("ResourceApplyAddSign", [var, m, lr, alpha, sign_decay, beta, grad], use_locking: use_locking)
3039
+ end
3040
+
3041
+ def resource_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
3042
+ Utils.execute("ResourceApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
3043
+ end
3044
+
3045
+ def resource_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
3046
+ Utils.execute("ResourceApplyFtrl", [var, accum, linear, grad, lr, l1, l2, lr_power], use_locking: use_locking)
3047
+ end
3048
+
3049
+ def resource_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
3050
+ Utils.execute("ResourceApplyFtrlV2", [var, accum, linear, grad, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
3051
+ end
3052
+
3053
+ def resource_apply_gradient_descent(var: nil, alpha: nil, delta: nil, use_locking: nil)
3054
+ Utils.execute("ResourceApplyGradientDescent", [var, alpha, delta], use_locking: use_locking)
3055
+ end
3056
+
3057
+ def resource_apply_keras_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
3058
+ Utils.execute("ResourceApplyKerasMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
3059
+ end
3060
+
3061
+ def resource_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
3062
+ Utils.execute("ResourceApplyMomentum", [var, accum, lr, grad, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
3063
+ end
3064
+
3065
+ def resource_apply_power_sign(var: nil, m: nil, lr: nil, logbase: nil, sign_decay: nil, beta: nil, grad: nil, use_locking: nil)
3066
+ Utils.execute("ResourceApplyPowerSign", [var, m, lr, logbase, sign_decay, beta, grad], use_locking: use_locking)
3067
+ end
3068
+
3069
+ def resource_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, use_locking: nil)
3070
+ Utils.execute("ResourceApplyProximalAdagrad", [var, accum, lr, l1, l2, grad], use_locking: use_locking)
3071
+ end
3072
+
3073
+ def resource_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, delta: nil, use_locking: nil)
3074
+ Utils.execute("ResourceApplyProximalGradientDescent", [var, alpha, l1, l2, delta], use_locking: use_locking)
3075
+ end
3076
+
3077
+ def resource_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, use_locking: nil)
3078
+ Utils.execute("ResourceApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad], use_locking: use_locking)
3079
+ end
3080
+
3081
+ def resource_count_up_to(resource: nil, limit: nil)
3082
+ Utils.execute("ResourceCountUpTo", [resource], limit: limit)
3083
+ end
3084
+
3085
+ def resource_gather(resource: nil, indices: nil, batch_dims: nil, validate_indices: nil, dtype: nil)
3086
+ Utils.execute("ResourceGather", [resource, indices], batch_dims: batch_dims, validate_indices: validate_indices, dtype: dtype)
3087
+ end
3088
+
3089
+ def resource_gather_nd(resource: nil, indices: nil, dtype: nil)
3090
+ Utils.execute("ResourceGatherNd", [resource, indices], dtype: dtype)
3091
+ end
3092
+
3093
+ def resource_scatter_add(resource: nil, indices: nil, updates: nil, dtype: nil)
3094
+ Utils.execute("ResourceScatterAdd", [resource, indices, updates], dtype: dtype)
3095
+ end
3096
+
3097
+ def resource_scatter_div(resource: nil, indices: nil, updates: nil, dtype: nil)
3098
+ Utils.execute("ResourceScatterDiv", [resource, indices, updates], dtype: dtype)
3099
+ end
3100
+
3101
+ def resource_scatter_max(resource: nil, indices: nil, updates: nil, dtype: nil)
3102
+ Utils.execute("ResourceScatterMax", [resource, indices, updates], dtype: dtype)
3103
+ end
3104
+
3105
+ def resource_scatter_min(resource: nil, indices: nil, updates: nil, dtype: nil)
3106
+ Utils.execute("ResourceScatterMin", [resource, indices, updates], dtype: dtype)
3107
+ end
3108
+
3109
+ def resource_scatter_mul(resource: nil, indices: nil, updates: nil, dtype: nil)
3110
+ Utils.execute("ResourceScatterMul", [resource, indices, updates], dtype: dtype)
3111
+ end
3112
+
3113
+ def resource_scatter_nd_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
3114
+ Utils.execute("ResourceScatterNdAdd", [ref, indices, updates], use_locking: use_locking)
3115
+ end
3116
+
3117
+ def resource_scatter_nd_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
3118
+ Utils.execute("ResourceScatterNdSub", [ref, indices, updates], use_locking: use_locking)
3119
+ end
3120
+
3121
+ def resource_scatter_nd_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
3122
+ Utils.execute("ResourceScatterNdUpdate", [ref, indices, updates], use_locking: use_locking)
3123
+ end
3124
+
3125
+ def resource_scatter_sub(resource: nil, indices: nil, updates: nil, dtype: nil)
3126
+ Utils.execute("ResourceScatterSub", [resource, indices, updates], dtype: dtype)
3127
+ end
3128
+
3129
+ def resource_scatter_update(resource: nil, indices: nil, updates: nil, dtype: nil)
3130
+ Utils.execute("ResourceScatterUpdate", [resource, indices, updates], dtype: dtype)
3131
+ end
3132
+
3133
+ def resource_sparse_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
3134
+ Utils.execute("ResourceSparseApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad, indices], use_locking: use_locking)
3135
+ end
3136
+
3137
+ def resource_sparse_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, use_locking: nil, update_slots: nil)
3138
+ Utils.execute("ResourceSparseApplyAdagrad", [var, accum, lr, grad, indices], use_locking: use_locking, update_slots: update_slots)
3139
+ end
3140
+
3141
+ def resource_sparse_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
3142
+ Utils.execute("ResourceSparseApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step], use_locking: use_locking)
3143
+ end
3144
+
3145
+ def resource_sparse_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
3146
+ Utils.execute("ResourceSparseApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
3147
+ end
3148
+
3149
+ def resource_sparse_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
3150
+ Utils.execute("ResourceSparseApplyFtrl", [var, accum, linear, grad, indices, lr, l1, l2, lr_power], use_locking: use_locking)
3151
+ end
3152
+
3153
+ def resource_sparse_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
3154
+ Utils.execute("ResourceSparseApplyFtrlV2", [var, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
3155
+ end
3156
+
3157
+ def resource_sparse_apply_keras_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
3158
+ Utils.execute("ResourceSparseApplyKerasMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
3159
+ end
3160
+
3161
+ def resource_sparse_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
3162
+ Utils.execute("ResourceSparseApplyMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
3163
+ end
3164
+
3165
+ def resource_sparse_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
3166
+ Utils.execute("ResourceSparseApplyProximalAdagrad", [var, accum, lr, l1, l2, grad, indices], use_locking: use_locking)
3167
+ end
3168
+
3169
+ def resource_sparse_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
3170
+ Utils.execute("ResourceSparseApplyProximalGradientDescent", [var, alpha, l1, l2, grad, indices], use_locking: use_locking)
3171
+ end
3172
+
3173
+ def resource_sparse_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
3174
+ Utils.execute("ResourceSparseApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
3175
+ end
3176
+
3177
+ def resource_strided_slice_assign(ref: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
3178
+ Utils.execute("ResourceStridedSliceAssign", [ref, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
3179
+ end
3180
+
3181
+ def restore(file_pattern: nil, tensor_name: nil, dt: nil, preferred_shard: nil)
3182
+ Utils.execute("Restore", [file_pattern, tensor_name], dt: dt, preferred_shard: preferred_shard)
3183
+ end
3184
+
3185
+ def restore_slice(file_pattern: nil, tensor_name: nil, shape_and_slice: nil, dt: nil, preferred_shard: nil)
3186
+ Utils.execute("RestoreSlice", [file_pattern, tensor_name, shape_and_slice], dt: dt, preferred_shard: preferred_shard)
3187
+ end
3188
+
3189
+ def restore_v2(prefix: nil, tensor_names: nil, shape_and_slices: nil, dtypes: nil)
3190
+ Utils.execute("RestoreV2", [prefix, tensor_names, shape_and_slices], dtypes: dtypes)
3191
+ end
3192
+
3193
+ def retrieve_tpu_embedding_adam_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3194
+ Utils.execute("RetrieveTPUEmbeddingADAMParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3195
+ end
3196
+
3197
+ def retrieve_tpu_embedding_adam_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3198
+ Utils.execute("RetrieveTPUEmbeddingADAMParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3199
+ end
3200
+
3201
+ def retrieve_tpu_embedding_adadelta_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3202
+ Utils.execute("RetrieveTPUEmbeddingAdadeltaParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3203
+ end
3204
+
3205
+ def retrieve_tpu_embedding_adadelta_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3206
+ Utils.execute("RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3207
+ end
3208
+
3209
+ def retrieve_tpu_embedding_adagrad_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3210
+ Utils.execute("RetrieveTPUEmbeddingAdagradParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3211
+ end
3212
+
3213
+ def retrieve_tpu_embedding_adagrad_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3214
+ Utils.execute("RetrieveTPUEmbeddingAdagradParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3215
+ end
3216
+
3217
+ def retrieve_tpu_embedding_centered_rms_prop_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3218
+ Utils.execute("RetrieveTPUEmbeddingCenteredRMSPropParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3219
+ end
3220
+
3221
+ def retrieve_tpu_embedding_ftrl_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3222
+ Utils.execute("RetrieveTPUEmbeddingFTRLParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3223
+ end
3224
+
3225
+ def retrieve_tpu_embedding_ftrl_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3226
+ Utils.execute("RetrieveTPUEmbeddingFTRLParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3227
+ end
3228
+
3229
+ def retrieve_tpu_embedding_mdl_adagrad_light_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3230
+ Utils.execute("RetrieveTPUEmbeddingMDLAdagradLightParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3231
+ end
3232
+
3233
+ def retrieve_tpu_embedding_momentum_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3234
+ Utils.execute("RetrieveTPUEmbeddingMomentumParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3235
+ end
3236
+
3237
+ def retrieve_tpu_embedding_momentum_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3238
+ Utils.execute("RetrieveTPUEmbeddingMomentumParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3239
+ end
3240
+
3241
+ def retrieve_tpu_embedding_proximal_adagrad_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3242
+ Utils.execute("RetrieveTPUEmbeddingProximalAdagradParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3243
+ end
3244
+
3245
+ def retrieve_tpu_embedding_proximal_adagrad_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3246
+ Utils.execute("RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3247
+ end
3248
+
3249
+ def retrieve_tpu_embedding_rms_prop_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3250
+ Utils.execute("RetrieveTPUEmbeddingRMSPropParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3251
+ end
3252
+
3253
+ def retrieve_tpu_embedding_rms_prop_parameters_grad_accum_debug(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3254
+ Utils.execute("RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3255
+ end
3256
+
3257
+ def retrieve_tpu_embedding_stochastic_gradient_descent_parameters(table_id: nil, table_name: nil, num_shards: nil, shard_id: nil)
3258
+ Utils.execute("RetrieveTPUEmbeddingStochasticGradientDescentParameters", [], table_id: table_id, table_name: table_name, num_shards: num_shards, shard_id: shard_id)
3259
+ end
3260
+
3261
+ def reverse(tensor: nil, dims: nil)
3262
+ Utils.execute("Reverse", [tensor, dims])
3263
+ end
3264
+
3265
+ def reverse_sequence(input: nil, seq_lengths: nil, seq_dim: nil, batch_dim: nil)
3266
+ Utils.execute("ReverseSequence", [input, seq_lengths], seq_dim: seq_dim, batch_dim: batch_dim)
3267
+ end
3268
+
3269
+ def reverse_v2(tensor: nil, axis: nil)
3270
+ Utils.execute("ReverseV2", [tensor, axis])
3271
+ end
3272
+
3273
+ def right_shift(x: nil, y: nil)
3274
+ Utils.execute("RightShift", [x, y])
3275
+ end
3276
+
3277
+ def rint(x: nil)
3278
+ Utils.execute("Rint", [x])
3279
+ end
3280
+
3281
+ def rng_skip(resource: nil, algorithm: nil, delta: nil)
3282
+ Utils.execute("RngSkip", [resource, algorithm, delta])
3283
+ end
3284
+
3285
+ def roll(input: nil, shift: nil, axis: nil)
3286
+ Utils.execute("Roll", [input, shift, axis])
3287
+ end
3288
+
3289
+ def round(x: nil)
3290
+ Utils.execute("Round", [x])
3291
+ end
3292
+
3293
+ def rpc(address: nil, method: nil, request: nil, protocol: nil, fail_fast: nil, timeout_in_ms: nil)
3294
+ Utils.execute("Rpc", [address, method, request], protocol: protocol, fail_fast: fail_fast, timeout_in_ms: timeout_in_ms)
3295
+ end
3296
+
3297
+ def rsqrt(x: nil)
3298
+ Utils.execute("Rsqrt", [x])
3299
+ end
3300
+
3301
+ def rsqrt_grad(y: nil, dy: nil)
3302
+ Utils.execute("RsqrtGrad", [y, dy])
3303
+ end
3304
+
3305
+ def sample_distorted_bounding_box(image_size: nil, bounding_boxes: nil, seed: nil, seed2: nil, min_object_covered: nil, aspect_ratio_range: nil, area_range: nil, max_attempts: nil, use_image_if_no_bounding_boxes: nil)
3306
+ Utils.execute("SampleDistortedBoundingBox", [image_size, bounding_boxes], seed: seed, seed2: seed2, min_object_covered: min_object_covered, aspect_ratio_range: aspect_ratio_range, area_range: area_range, max_attempts: max_attempts, use_image_if_no_bounding_boxes: use_image_if_no_bounding_boxes)
3307
+ end
3308
+
3309
+ def sample_distorted_bounding_box_v2(image_size: nil, bounding_boxes: nil, min_object_covered: nil, seed: nil, seed2: nil, aspect_ratio_range: nil, area_range: nil, max_attempts: nil, use_image_if_no_bounding_boxes: nil)
3310
+ Utils.execute("SampleDistortedBoundingBoxV2", [image_size, bounding_boxes, min_object_covered], seed: seed, seed2: seed2, aspect_ratio_range: aspect_ratio_range, area_range: area_range, max_attempts: max_attempts, use_image_if_no_bounding_boxes: use_image_if_no_bounding_boxes)
3311
+ end
3312
+
3313
+ def sampling_dataset(input_dataset: nil, rate: nil, seed: nil, seed2: nil, output_types: nil, output_shapes: nil)
3314
+ Utils.execute("SamplingDataset", [input_dataset, rate, seed, seed2], output_types: output_types, output_shapes: output_shapes)
3315
+ end
3316
+
3317
+ def save(filename: nil, tensor_names: nil, data: nil)
3318
+ Utils.execute("Save", [filename, tensor_names, data])
3319
+ end
3320
+
3321
+ def save_slices(filename: nil, tensor_names: nil, shapes_and_slices: nil, data: nil)
3322
+ Utils.execute("SaveSlices", [filename, tensor_names, shapes_and_slices, data])
3323
+ end
3324
+
3325
+ def save_v2(prefix: nil, tensor_names: nil, shape_and_slices: nil, tensors: nil, dtypes: nil)
3326
+ Utils.execute("SaveV2", [prefix, tensor_names, shape_and_slices, tensors], dtypes: dtypes)
3327
+ end
3328
+
3329
+ def scalar_summary(tags: nil, values: nil)
3330
+ Utils.execute("ScalarSummary", [tags, values])
3331
+ end
3332
+
3333
+ def scale_and_translate(images: nil, size: nil, scale: nil, translation: nil, kernel_type: nil, antialias: nil)
3334
+ Utils.execute("ScaleAndTranslate", [images, size, scale, translation], kernel_type: kernel_type, antialias: antialias)
3335
+ end
3336
+
3337
+ def scale_and_translate_grad(grads: nil, original_image: nil, scale: nil, translation: nil, kernel_type: nil, antialias: nil)
3338
+ Utils.execute("ScaleAndTranslateGrad", [grads, original_image, scale, translation], kernel_type: kernel_type, antialias: antialias)
3339
+ end
3340
+
3341
+ def scatter_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
3342
+ Utils.execute("ScatterAdd", [ref, indices, updates], use_locking: use_locking)
3343
+ end
3344
+
3345
+ def scatter_div(ref: nil, indices: nil, updates: nil, use_locking: nil)
3346
+ Utils.execute("ScatterDiv", [ref, indices, updates], use_locking: use_locking)
3347
+ end
3348
+
3349
+ def scatter_max(ref: nil, indices: nil, updates: nil, use_locking: nil)
3350
+ Utils.execute("ScatterMax", [ref, indices, updates], use_locking: use_locking)
3351
+ end
3352
+
3353
+ def scatter_min(ref: nil, indices: nil, updates: nil, use_locking: nil)
3354
+ Utils.execute("ScatterMin", [ref, indices, updates], use_locking: use_locking)
3355
+ end
3356
+
3357
+ def scatter_mul(ref: nil, indices: nil, updates: nil, use_locking: nil)
3358
+ Utils.execute("ScatterMul", [ref, indices, updates], use_locking: use_locking)
3359
+ end
3360
+
3361
+ def scatter_nd(indices: nil, updates: nil, shape: nil)
3362
+ Utils.execute("ScatterNd", [indices, updates, shape])
3363
+ end
3364
+
3365
+ def scatter_nd_add(ref: nil, indices: nil, updates: nil, use_locking: nil)
3366
+ Utils.execute("ScatterNdAdd", [ref, indices, updates], use_locking: use_locking)
3367
+ end
3368
+
3369
+ def scatter_nd_non_aliasing_add(input: nil, indices: nil, updates: nil)
3370
+ Utils.execute("ScatterNdNonAliasingAdd", [input, indices, updates])
3371
+ end
3372
+
3373
+ def scatter_nd_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
3374
+ Utils.execute("ScatterNdSub", [ref, indices, updates], use_locking: use_locking)
3375
+ end
3376
+
3377
+ def scatter_nd_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
3378
+ Utils.execute("ScatterNdUpdate", [ref, indices, updates], use_locking: use_locking)
3379
+ end
3380
+
3381
+ def scatter_sub(ref: nil, indices: nil, updates: nil, use_locking: nil)
3382
+ Utils.execute("ScatterSub", [ref, indices, updates], use_locking: use_locking)
3383
+ end
3384
+
3385
+ def scatter_update(ref: nil, indices: nil, updates: nil, use_locking: nil)
3386
+ Utils.execute("ScatterUpdate", [ref, indices, updates], use_locking: use_locking)
3387
+ end
3388
+
3389
+ def sdca_fprint(input: nil)
3390
+ Utils.execute("SdcaFprint", [input])
3391
+ end
3392
+
3393
+ def sdca_optimizer(sparse_example_indices: nil, sparse_feature_indices: nil, sparse_feature_values: nil, dense_features: nil, example_weights: nil, example_labels: nil, sparse_indices: nil, sparse_weights: nil, dense_weights: nil, example_state_data: nil, loss_type: nil, adaptative: nil, num_sparse_features: nil, num_sparse_features_with_values: nil, num_dense_features: nil, l1: nil, l2: nil, num_loss_partitions: nil, num_inner_iterations: nil)
3394
+ Utils.execute("SdcaOptimizer", [sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data], loss_type: loss_type, adaptative: adaptative, num_sparse_features: num_sparse_features, num_sparse_features_with_values: num_sparse_features_with_values, num_dense_features: num_dense_features, l1: l1, l2: l2, num_loss_partitions: num_loss_partitions, num_inner_iterations: num_inner_iterations)
3395
+ end
3396
+
3397
+ def sdca_optimizer_v2(sparse_example_indices: nil, sparse_feature_indices: nil, sparse_feature_values: nil, dense_features: nil, example_weights: nil, example_labels: nil, sparse_indices: nil, sparse_weights: nil, dense_weights: nil, example_state_data: nil, loss_type: nil, adaptive: nil, num_sparse_features: nil, num_sparse_features_with_values: nil, num_dense_features: nil, l1: nil, l2: nil, num_loss_partitions: nil, num_inner_iterations: nil)
3398
+ Utils.execute("SdcaOptimizerV2", [sparse_example_indices, sparse_feature_indices, sparse_feature_values, dense_features, example_weights, example_labels, sparse_indices, sparse_weights, dense_weights, example_state_data], loss_type: loss_type, adaptive: adaptive, num_sparse_features: num_sparse_features, num_sparse_features_with_values: num_sparse_features_with_values, num_dense_features: num_dense_features, l1: l1, l2: l2, num_loss_partitions: num_loss_partitions, num_inner_iterations: num_inner_iterations)
3399
+ end
3400
+
3401
+ def sdca_shrink_l1(weights: nil, num_features: nil, l1: nil, l2: nil)
3402
+ Utils.execute("SdcaShrinkL1", [weights], num_features: num_features, l1: l1, l2: l2)
3403
+ end
3404
+
3405
+ def segment_max(data: nil, segment_ids: nil)
3406
+ Utils.execute("SegmentMax", [data, segment_ids])
3407
+ end
3408
+
3409
+ def segment_mean(data: nil, segment_ids: nil)
3410
+ Utils.execute("SegmentMean", [data, segment_ids])
3411
+ end
3412
+
3413
+ def segment_min(data: nil, segment_ids: nil)
3414
+ Utils.execute("SegmentMin", [data, segment_ids])
3415
+ end
3416
+
3417
+ def segment_prod(data: nil, segment_ids: nil)
3418
+ Utils.execute("SegmentProd", [data, segment_ids])
3419
+ end
3420
+
3421
+ def segment_sum(data: nil, segment_ids: nil)
3422
+ Utils.execute("SegmentSum", [data, segment_ids])
3423
+ end
3424
+
3425
+ def select(condition: nil, t: nil, e: nil)
3426
+ Utils.execute("Select", [condition, t, e])
3427
+ end
3428
+
3429
+ def select_v2(condition: nil, t: nil, e: nil)
3430
+ Utils.execute("SelectV2", [condition, t, e])
3431
+ end
3432
+
3433
+ def self_adjoint_eig(input: nil)
3434
+ Utils.execute("SelfAdjointEig", [input])
3435
+ end
3436
+
3437
+ def self_adjoint_eig_v2(input: nil, compute_v: nil)
3438
+ Utils.execute("SelfAdjointEigV2", [input], compute_v: compute_v)
3439
+ end
3440
+
3441
+ def selu(features: nil)
3442
+ Utils.execute("Selu", [features])
3443
+ end
3444
+
3445
+ def selu_grad(gradients: nil, outputs: nil)
3446
+ Utils.execute("SeluGrad", [gradients, outputs])
3447
+ end
3448
+
3449
+ def send_tpu_embedding_gradients(inputs: nil, learning_rates: nil, config: nil)
3450
+ Utils.execute("SendTPUEmbeddingGradients", [inputs, learning_rates], config: config)
3451
+ end
3452
+
3453
+ def serialize_iterator(resource_handle: nil)
3454
+ Utils.execute("SerializeIterator", [resource_handle])
3455
+ end
3456
+
3457
+ def serialize_many_sparse(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, out_type: nil)
3458
+ Utils.execute("SerializeManySparse", [sparse_indices, sparse_values, sparse_shape], out_type: out_type)
3459
+ end
3460
+
3461
+ def serialize_sparse(sparse_indices: nil, sparse_values: nil, sparse_shape: nil, out_type: nil)
3462
+ Utils.execute("SerializeSparse", [sparse_indices, sparse_values, sparse_shape], out_type: out_type)
3463
+ end
3464
+
3465
+ def serialize_tensor(tensor: nil)
3466
+ Utils.execute("SerializeTensor", [tensor])
3467
+ end
3468
+
3469
+ def set_size(set_indices: nil, set_values: nil, set_shape: nil, validate_indices: nil)
3470
+ Utils.execute("SetSize", [set_indices, set_values, set_shape], validate_indices: validate_indices)
3471
+ end
3472
+
3473
+ def shape(input: nil, out_type: nil)
3474
+ Utils.execute("Shape", [input], out_type: out_type)
3475
+ end
3476
+
3477
+ def shape_n(input: nil, out_type: nil)
3478
+ Utils.execute("ShapeN", [input], out_type: out_type)
3479
+ end
3480
+
3481
+ def shard_dataset(input_dataset: nil, num_shards: nil, index: nil, require_non_empty: nil, output_types: nil, output_shapes: nil)
3482
+ Utils.execute("ShardDataset", [input_dataset, num_shards, index], require_non_empty: require_non_empty, output_types: output_types, output_shapes: output_shapes)
3483
+ end
3484
+
3485
+ def sharded_filename(basename: nil, shard: nil, num_shards: nil)
3486
+ Utils.execute("ShardedFilename", [basename, shard, num_shards])
3487
+ end
3488
+
3489
+ def sharded_filespec(basename: nil, num_shards: nil)
3490
+ Utils.execute("ShardedFilespec", [basename, num_shards])
3491
+ end
3492
+
3493
+ def shuffle_and_repeat_dataset(input_dataset: nil, buffer_size: nil, seed: nil, seed2: nil, count: nil, output_types: nil, output_shapes: nil)
3494
+ Utils.execute("ShuffleAndRepeatDataset", [input_dataset, buffer_size, seed, seed2, count], output_types: output_types, output_shapes: output_shapes)
3495
+ end
3496
+
3497
+ def shuffle_dataset(input_dataset: nil, buffer_size: nil, seed: nil, seed2: nil, reshuffle_each_iteration: nil, output_types: nil, output_shapes: nil)
3498
+ Utils.execute("ShuffleDataset", [input_dataset, buffer_size, seed, seed2], reshuffle_each_iteration: reshuffle_each_iteration, output_types: output_types, output_shapes: output_shapes)
3499
+ end
3500
+
3501
+ def shutdown_distributed_tpu
3502
+ Utils.execute("ShutdownDistributedTPU", [])
3503
+ end
3504
+
3505
+ def sigmoid(x: nil)
3506
+ Utils.execute("Sigmoid", [x])
3507
+ end
3508
+
3509
+ def sigmoid_grad(y: nil, dy: nil)
3510
+ Utils.execute("SigmoidGrad", [y, dy])
3511
+ end
3512
+
3513
+ def sign(x: nil)
3514
+ Utils.execute("Sign", [x])
3515
+ end
3516
+
3517
+ def sin(x: nil)
3518
+ Utils.execute("Sin", [x])
3519
+ end
3520
+
3521
+ def sinh(x: nil)
3522
+ Utils.execute("Sinh", [x])
3523
+ end
3524
+
3525
+ def size(input: nil, out_type: nil)
3526
+ Utils.execute("Size", [input], out_type: out_type)
3527
+ end
3528
+
3529
+ def skip_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
3530
+ Utils.execute("SkipDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
3531
+ end
3532
+
3533
+ def skipgram(filename: nil, batch_size: nil, window_size: nil, min_count: nil, subsample: nil)
3534
+ Utils.execute("Skipgram", [], filename: filename, batch_size: batch_size, window_size: window_size, min_count: min_count, subsample: subsample)
3535
+ end
3536
+
3537
+ def slice(input: nil, start: nil, size: nil)
3538
+ Utils.execute("Slice", [input, start, size])
3539
+ end
3540
+
3541
+ def snapshot(input: nil)
3542
+ Utils.execute("Snapshot", [input])
3543
+ end
3544
+
3545
+ def snapshot_dataset(input_dataset: nil, path: nil, output_types: nil, output_shapes: nil)
3546
+ Utils.execute("SnapshotDataset", [input_dataset, path], output_types: output_types, output_shapes: output_shapes)
3547
+ end
3548
+
3549
+ def softmax(logits: nil)
3550
+ Utils.execute("Softmax", [logits])
3551
+ end
3552
+
3553
+ def softmax_cross_entropy_with_logits(features: nil, labels: nil)
3554
+ Utils.execute("SoftmaxCrossEntropyWithLogits", [features, labels])
3555
+ end
3556
+
3557
+ def softplus(features: nil)
3558
+ Utils.execute("Softplus", [features])
3559
+ end
3560
+
3561
+ def softplus_grad(gradients: nil, features: nil)
3562
+ Utils.execute("SoftplusGrad", [gradients, features])
3563
+ end
3564
+
3565
+ def softsign(features: nil)
3566
+ Utils.execute("Softsign", [features])
3567
+ end
3568
+
3569
+ def softsign_grad(gradients: nil, features: nil)
3570
+ Utils.execute("SoftsignGrad", [gradients, features])
3571
+ end
3572
+
3573
+ def space_to_batch(input: nil, paddings: nil, block_size: nil)
3574
+ Utils.execute("SpaceToBatch", [input, paddings], block_size: block_size)
3575
+ end
3576
+
3577
+ def space_to_batch_nd(input: nil, block_shape: nil, paddings: nil)
3578
+ Utils.execute("SpaceToBatchND", [input, block_shape, paddings])
3579
+ end
3580
+
3581
+ def space_to_depth(input: nil, block_size: nil, data_format: nil)
3582
+ Utils.execute("SpaceToDepth", [input], block_size: block_size, data_format: data_format)
3583
+ end
3584
+
3585
+ def sparse_accumulator_apply_gradient(handle: nil, local_step: nil, gradient_indices: nil, gradient_values: nil, gradient_shape: nil, dtype: nil, has_known_shape: nil)
3586
+ Utils.execute("SparseAccumulatorApplyGradient", [handle, local_step, gradient_indices, gradient_values, gradient_shape], dtype: dtype, has_known_shape: has_known_shape)
3587
+ end
3588
+
3589
+ def sparse_accumulator_take_gradient(handle: nil, num_required: nil, dtype: nil)
3590
+ Utils.execute("SparseAccumulatorTakeGradient", [handle, num_required], dtype: dtype)
3591
+ end
3592
+
3593
+ def sparse_add(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil, thresh: nil)
3594
+ Utils.execute("SparseAdd", [a_indices, a_values, a_shape, b_indices, b_values, b_shape, thresh])
3595
+ end
3596
+
3597
+ def sparse_add_grad(backprop_val_grad: nil, a_indices: nil, b_indices: nil, sum_indices: nil)
3598
+ Utils.execute("SparseAddGrad", [backprop_val_grad, a_indices, b_indices, sum_indices])
3599
+ end
3600
+
3601
+ def sparse_apply_adadelta(var: nil, accum: nil, accum_update: nil, lr: nil, rho: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
3602
+ Utils.execute("SparseApplyAdadelta", [var, accum, accum_update, lr, rho, epsilon, grad, indices], use_locking: use_locking)
3603
+ end
3604
+
3605
+ def sparse_apply_adagrad(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, use_locking: nil, update_slots: nil)
3606
+ Utils.execute("SparseApplyAdagrad", [var, accum, lr, grad, indices], use_locking: use_locking, update_slots: update_slots)
3607
+ end
3608
+
3609
+ def sparse_apply_adagrad_da(var: nil, gradient_accumulator: nil, gradient_squared_accumulator: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, global_step: nil, use_locking: nil)
3610
+ Utils.execute("SparseApplyAdagradDA", [var, gradient_accumulator, gradient_squared_accumulator, grad, indices, lr, l1, l2, global_step], use_locking: use_locking)
3611
+ end
3612
+
3613
+ def sparse_apply_centered_rms_prop(var: nil, mg: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
3614
+ Utils.execute("SparseApplyCenteredRMSProp", [var, mg, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
3615
+ end
3616
+
3617
+ def sparse_apply_ftrl(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, lr_power: nil, use_locking: nil)
3618
+ Utils.execute("SparseApplyFtrl", [var, accum, linear, grad, indices, lr, l1, l2, lr_power], use_locking: use_locking)
3619
+ end
3620
+
3621
+ def sparse_apply_ftrl_v2(var: nil, accum: nil, linear: nil, grad: nil, indices: nil, lr: nil, l1: nil, l2: nil, l2_shrinkage: nil, lr_power: nil, use_locking: nil)
3622
+ Utils.execute("SparseApplyFtrlV2", [var, accum, linear, grad, indices, lr, l1, l2, l2_shrinkage, lr_power], use_locking: use_locking)
3623
+ end
3624
+
3625
+ def sparse_apply_momentum(var: nil, accum: nil, lr: nil, grad: nil, indices: nil, momentum: nil, use_locking: nil, use_nesterov: nil)
3626
+ Utils.execute("SparseApplyMomentum", [var, accum, lr, grad, indices, momentum], use_locking: use_locking, use_nesterov: use_nesterov)
3627
+ end
3628
+
3629
+ def sparse_apply_proximal_adagrad(var: nil, accum: nil, lr: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
3630
+ Utils.execute("SparseApplyProximalAdagrad", [var, accum, lr, l1, l2, grad, indices], use_locking: use_locking)
3631
+ end
3632
+
3633
+ def sparse_apply_proximal_gradient_descent(var: nil, alpha: nil, l1: nil, l2: nil, grad: nil, indices: nil, use_locking: nil)
3634
+ Utils.execute("SparseApplyProximalGradientDescent", [var, alpha, l1, l2, grad, indices], use_locking: use_locking)
3635
+ end
3636
+
3637
+ def sparse_apply_rms_prop(var: nil, ms: nil, mom: nil, lr: nil, rho: nil, momentum: nil, epsilon: nil, grad: nil, indices: nil, use_locking: nil)
3638
+ Utils.execute("SparseApplyRMSProp", [var, ms, mom, lr, rho, momentum, epsilon, grad, indices], use_locking: use_locking)
3639
+ end
3640
+
3641
+ def sparse_concat(indices: nil, values: nil, shapes: nil, concat_dim: nil)
3642
+ Utils.execute("SparseConcat", [indices, values, shapes], concat_dim: concat_dim)
3643
+ end
3644
+
3645
+ def sparse_conditional_accumulator(dtype: nil, shape: nil, container: nil, shared_name: nil, reduction_type: nil)
3646
+ Utils.execute("SparseConditionalAccumulator", [], dtype: dtype, shape: shape, container: container, shared_name: shared_name, reduction_type: reduction_type)
3647
+ end
3648
+
3649
+ def sparse_cross(indices: nil, values: nil, shapes: nil, dense_inputs: nil, hashed_output: nil, num_buckets: nil, hash_key: nil, sparse_types: nil, dense_types: nil, out_type: nil, internal_type: nil)
3650
+ Utils.execute("SparseCross", [indices, values, shapes, dense_inputs], hashed_output: hashed_output, num_buckets: num_buckets, hash_key: hash_key, sparse_types: sparse_types, dense_types: dense_types, out_type: out_type, internal_type: internal_type)
3651
+ end
3652
+
3653
+ def sparse_dense_cwise_add(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
3654
+ Utils.execute("SparseDenseCwiseAdd", [sp_indices, sp_values, sp_shape, dense])
3655
+ end
3656
+
3657
+ def sparse_dense_cwise_div(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
3658
+ Utils.execute("SparseDenseCwiseDiv", [sp_indices, sp_values, sp_shape, dense])
3659
+ end
3660
+
3661
+ def sparse_dense_cwise_mul(sp_indices: nil, sp_values: nil, sp_shape: nil, dense: nil)
3662
+ Utils.execute("SparseDenseCwiseMul", [sp_indices, sp_values, sp_shape, dense])
3663
+ end
3664
+
3665
+ def sparse_fill_empty_rows(indices: nil, values: nil, dense_shape: nil, default_value: nil)
3666
+ Utils.execute("SparseFillEmptyRows", [indices, values, dense_shape, default_value])
3667
+ end
3668
+
3669
+ def sparse_fill_empty_rows_grad(reverse_index_map: nil, grad_values: nil)
3670
+ Utils.execute("SparseFillEmptyRowsGrad", [reverse_index_map, grad_values])
3671
+ end
3672
+
3673
+ def sparse_mat_mul(a: nil, b: nil, transpose_a: nil, transpose_b: nil, a_is_sparse: nil, b_is_sparse: nil)
3674
+ Utils.execute("SparseMatMul", [a, b], transpose_a: transpose_a, transpose_b: transpose_b, a_is_sparse: a_is_sparse, b_is_sparse: b_is_sparse)
3675
+ end
3676
+
3677
+ def sparse_reduce_max(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
3678
+ Utils.execute("SparseReduceMax", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
3679
+ end
3680
+
3681
+ def sparse_reduce_max_sparse(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
3682
+ Utils.execute("SparseReduceMaxSparse", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
3683
+ end
3684
+
3685
+ def sparse_reduce_sum(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
3686
+ Utils.execute("SparseReduceSum", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
3687
+ end
3688
+
3689
+ def sparse_reduce_sum_sparse(input_indices: nil, input_values: nil, input_shape: nil, reduction_axes: nil, keep_dims: nil)
3690
+ Utils.execute("SparseReduceSumSparse", [input_indices, input_values, input_shape, reduction_axes], keep_dims: keep_dims)
3691
+ end
3692
+
3693
+ def sparse_reorder(input_indices: nil, input_values: nil, input_shape: nil)
3694
+ Utils.execute("SparseReorder", [input_indices, input_values, input_shape])
3695
+ end
3696
+
3697
+ def sparse_reshape(input_indices: nil, input_shape: nil, new_shape: nil)
3698
+ Utils.execute("SparseReshape", [input_indices, input_shape, new_shape])
3699
+ end
3700
+
3701
+ def sparse_segment_mean(data: nil, indices: nil, segment_ids: nil)
3702
+ Utils.execute("SparseSegmentMean", [data, indices, segment_ids])
3703
+ end
3704
+
3705
+ def sparse_segment_mean_grad(grad: nil, indices: nil, segment_ids: nil, output_dim0: nil)
3706
+ Utils.execute("SparseSegmentMeanGrad", [grad, indices, segment_ids, output_dim0])
3707
+ end
3708
+
3709
+ def sparse_segment_mean_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
3710
+ Utils.execute("SparseSegmentMeanWithNumSegments", [data, indices, segment_ids, num_segments])
3711
+ end
3712
+
3713
+ def sparse_segment_sqrt_n(data: nil, indices: nil, segment_ids: nil)
3714
+ Utils.execute("SparseSegmentSqrtN", [data, indices, segment_ids])
3715
+ end
3716
+
3717
+ def sparse_segment_sqrt_n_grad(grad: nil, indices: nil, segment_ids: nil, output_dim0: nil)
3718
+ Utils.execute("SparseSegmentSqrtNGrad", [grad, indices, segment_ids, output_dim0])
3719
+ end
3720
+
3721
+ def sparse_segment_sqrt_n_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
3722
+ Utils.execute("SparseSegmentSqrtNWithNumSegments", [data, indices, segment_ids, num_segments])
3723
+ end
3724
+
3725
+ def sparse_segment_sum(data: nil, indices: nil, segment_ids: nil)
3726
+ Utils.execute("SparseSegmentSum", [data, indices, segment_ids])
3727
+ end
3728
+
3729
+ def sparse_segment_sum_with_num_segments(data: nil, indices: nil, segment_ids: nil, num_segments: nil)
3730
+ Utils.execute("SparseSegmentSumWithNumSegments", [data, indices, segment_ids, num_segments])
3731
+ end
3732
+
3733
+ def sparse_slice(indices: nil, values: nil, shape: nil, start: nil, size: nil)
3734
+ Utils.execute("SparseSlice", [indices, values, shape, start, size])
3735
+ end
3736
+
3737
+ def sparse_slice_grad(backprop_val_grad: nil, input_indices: nil, input_start: nil, output_indices: nil)
3738
+ Utils.execute("SparseSliceGrad", [backprop_val_grad, input_indices, input_start, output_indices])
3739
+ end
3740
+
3741
+ def sparse_softmax(sp_indices: nil, sp_values: nil, sp_shape: nil)
3742
+ Utils.execute("SparseSoftmax", [sp_indices, sp_values, sp_shape])
3743
+ end
3744
+
3745
+ def sparse_softmax_cross_entropy_with_logits(features: nil, labels: nil)
3746
+ Utils.execute("SparseSoftmaxCrossEntropyWithLogits", [features, labels])
3747
+ end
3748
+
3749
+ def sparse_sparse_maximum(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil)
3750
+ Utils.execute("SparseSparseMaximum", [a_indices, a_values, a_shape, b_indices, b_values, b_shape])
3751
+ end
3752
+
3753
+ def sparse_sparse_minimum(a_indices: nil, a_values: nil, a_shape: nil, b_indices: nil, b_values: nil, b_shape: nil)
3754
+ Utils.execute("SparseSparseMinimum", [a_indices, a_values, a_shape, b_indices, b_values, b_shape])
3755
+ end
3756
+
3757
+ def sparse_split(split_dim: nil, indices: nil, values: nil, shape: nil, num_split: nil)
3758
+ Utils.execute("SparseSplit", [split_dim, indices, values, shape], num_split: num_split)
3759
+ end
3760
+
3761
+ def sparse_tensor_dense_add(a_indices: nil, a_values: nil, a_shape: nil, b: nil)
3762
+ Utils.execute("SparseTensorDenseAdd", [a_indices, a_values, a_shape, b])
3763
+ end
3764
+
3765
+ def sparse_tensor_dense_mat_mul(a_indices: nil, a_values: nil, a_shape: nil, b: nil, adjoint_a: nil, adjoint_b: nil)
3766
+ Utils.execute("SparseTensorDenseMatMul", [a_indices, a_values, a_shape, b], adjoint_a: adjoint_a, adjoint_b: adjoint_b)
3767
+ end
3768
+
3769
+ def sparse_tensor_slice_dataset(indices: nil, values: nil, dense_shape: nil)
3770
+ Utils.execute("SparseTensorSliceDataset", [indices, values, dense_shape])
3771
+ end
3772
+
3773
+ def sparse_to_dense(sparse_indices: nil, output_shape: nil, sparse_values: nil, default_value: nil, validate_indices: nil)
3774
+ Utils.execute("SparseToDense", [sparse_indices, output_shape, sparse_values, default_value], validate_indices: validate_indices)
3775
+ end
3776
+
3777
+ def sparse_to_sparse_set_operation(set1_indices: nil, set1_values: nil, set1_shape: nil, set2_indices: nil, set2_values: nil, set2_shape: nil, set_operation: nil, validate_indices: nil)
3778
+ Utils.execute("SparseToSparseSetOperation", [set1_indices, set1_values, set1_shape, set2_indices, set2_values, set2_shape], set_operation: set_operation, validate_indices: validate_indices)
3779
+ end
3780
+
3781
+ def split(split_dim: nil, value: nil, num_split: nil)
3782
+ Utils.execute("Split", [split_dim, value], num_split: num_split)
3783
+ end
3784
+
3785
+ def split_v(value: nil, size_splits: nil, split_dim: nil, num_split: nil)
3786
+ Utils.execute("SplitV", [value, size_splits, split_dim], num_split: num_split)
3787
+ end
3788
+
3789
+ def sqrt(x: nil)
3790
+ Utils.execute("Sqrt", [x])
3791
+ end
3792
+
3793
+ def sqrt_grad(y: nil, dy: nil)
3794
+ Utils.execute("SqrtGrad", [y, dy])
3795
+ end
3796
+
3797
+ def square(x: nil)
3798
+ Utils.execute("Square", [x])
3799
+ end
3800
+
3801
+ def squared_difference(x: nil, y: nil)
3802
+ Utils.execute("SquaredDifference", [x, y])
3803
+ end
3804
+
3805
+ def squeeze(input: nil, squeeze_dims: nil)
3806
+ Utils.execute("Squeeze", [input], squeeze_dims: squeeze_dims)
3807
+ end
3808
+
3809
+ def stack(elem_type: nil, stack_name: nil)
3810
+ Utils.execute("Stack", [], elem_type: elem_type, stack_name: stack_name)
3811
+ end
3812
+
3813
+ def stack_close(handle: nil)
3814
+ Utils.execute("StackClose", [handle])
3815
+ end
3816
+
3817
+ def stack_close_v2(handle: nil)
3818
+ Utils.execute("StackCloseV2", [handle])
3819
+ end
3820
+
3821
+ def stack_pop(handle: nil, elem_type: nil)
3822
+ Utils.execute("StackPop", [handle], elem_type: elem_type)
3823
+ end
3824
+
3825
+ def stack_pop_v2(handle: nil, elem_type: nil)
3826
+ Utils.execute("StackPopV2", [handle], elem_type: elem_type)
3827
+ end
3828
+
3829
+ def stack_push(handle: nil, elem: nil, swap_memory: nil)
3830
+ Utils.execute("StackPush", [handle, elem], swap_memory: swap_memory)
3831
+ end
3832
+
3833
+ def stack_push_v2(handle: nil, elem: nil, swap_memory: nil)
3834
+ Utils.execute("StackPushV2", [handle, elem], swap_memory: swap_memory)
3835
+ end
3836
+
3837
+ def stack_v2(max_size: nil, elem_type: nil, stack_name: nil)
3838
+ Utils.execute("StackV2", [max_size], elem_type: elem_type, stack_name: stack_name)
3839
+ end
3840
+
3841
+ def stage(values: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
3842
+ Utils.execute("Stage", [values], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
3843
+ end
3844
+
3845
+ def stage_clear(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
3846
+ Utils.execute("StageClear", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
3847
+ end
3848
+
3849
+ def stage_peek(index: nil, capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
3850
+ Utils.execute("StagePeek", [index], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
3851
+ end
3852
+
3853
+ def stage_size(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
3854
+ Utils.execute("StageSize", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
3855
+ end
3856
+
3857
+ def stateful_partitioned_call(args: nil, f: nil, config: nil, config_proto: nil, executor_type: nil)
3858
+ Utils.execute("StatefulPartitionedCall", [args], f: f, config: config, config_proto: config_proto, executor_type: executor_type)
3859
+ end
3860
+
3861
+ def stateful_random_binomial(resource: nil, algorithm: nil, shape: nil, counts: nil, probs: nil, dtype: nil)
3862
+ Utils.execute("StatefulRandomBinomial", [resource, algorithm, shape, counts, probs], dtype: dtype)
3863
+ end
3864
+
3865
+ def stateful_standard_normal(resource: nil, shape: nil, dtype: nil, shape_dtype: nil)
3866
+ Utils.execute("StatefulStandardNormal", [resource, shape], dtype: dtype, shape_dtype: shape_dtype)
3867
+ end
3868
+
3869
+ def stateful_standard_normal_v2(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
3870
+ Utils.execute("StatefulStandardNormalV2", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
3871
+ end
3872
+
3873
+ def stateful_truncated_normal(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
3874
+ Utils.execute("StatefulTruncatedNormal", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
3875
+ end
3876
+
3877
+ def stateful_uniform(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
3878
+ Utils.execute("StatefulUniform", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
3879
+ end
3880
+
3881
+ def stateful_uniform_full_int(resource: nil, algorithm: nil, shape: nil, dtype: nil, shape_dtype: nil)
3882
+ Utils.execute("StatefulUniformFullInt", [resource, algorithm, shape], dtype: dtype, shape_dtype: shape_dtype)
3883
+ end
3884
+
3885
+ def stateful_uniform_int(resource: nil, algorithm: nil, shape: nil, minval: nil, maxval: nil, dtype: nil, shape_dtype: nil)
3886
+ Utils.execute("StatefulUniformInt", [resource, algorithm, shape, minval, maxval], dtype: dtype, shape_dtype: shape_dtype)
3887
+ end
3888
+
3889
+ def stateless_if(cond: nil, input: nil, then_branch: nil, else_branch: nil)
3890
+ Utils.execute("StatelessIf", [cond, input], then_branch: then_branch, else_branch: else_branch)
3891
+ end
3892
+
3893
+ def stateless_multinomial(logits: nil, num_samples: nil, seed: nil, output_dtype: nil)
3894
+ Utils.execute("StatelessMultinomial", [logits, num_samples, seed], output_dtype: output_dtype)
3895
+ end
3896
+
3897
+ def stateless_random_normal(shape: nil, seed: nil, dtype: nil)
3898
+ Utils.execute("StatelessRandomNormal", [shape, seed], dtype: dtype)
3899
+ end
3900
+
3901
+ def stateless_random_uniform(shape: nil, seed: nil, dtype: nil)
3902
+ Utils.execute("StatelessRandomUniform", [shape, seed], dtype: dtype)
3903
+ end
3904
+
3905
+ def stateless_random_uniform_int(shape: nil, seed: nil, minval: nil, maxval: nil, dtype: nil)
3906
+ Utils.execute("StatelessRandomUniformInt", [shape, seed, minval, maxval], dtype: dtype)
3907
+ end
3908
+
3909
+ def stateless_truncated_normal(shape: nil, seed: nil, dtype: nil)
3910
+ Utils.execute("StatelessTruncatedNormal", [shape, seed], dtype: dtype)
3911
+ end
3912
+
3913
+ def stateless_while(input: nil, cond: nil, body: nil)
3914
+ Utils.execute("StatelessWhile", [input], cond: cond, body: body)
3915
+ end
3916
+
3917
+ def static_regex_full_match(input: nil, pattern: nil)
3918
+ Utils.execute("StaticRegexFullMatch", [input], pattern: pattern)
3919
+ end
3920
+
3921
+ def static_regex_replace(input: nil, pattern: nil, rewrite: nil, replace_global: nil)
3922
+ Utils.execute("StaticRegexReplace", [input], pattern: pattern, rewrite: rewrite, replace_global: replace_global)
3923
+ end
3924
+
3925
+ def stats_aggregator_handle_v2(container: nil, shared_name: nil)
3926
+ Utils.execute("StatsAggregatorHandleV2", [], container: container, shared_name: shared_name)
3927
+ end
3928
+
3929
+ def stats_aggregator_set_summary_writer(stats_aggregator: nil, summary: nil)
3930
+ Utils.execute("StatsAggregatorSetSummaryWriter", [stats_aggregator, summary])
3931
+ end
3932
+
3933
+ def stop_gradient(input: nil)
3934
+ Utils.execute("StopGradient", [input])
3935
+ end
3936
+
3937
+ def strided_slice(input: nil, start: nil, stop: nil, strides: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
3938
+ Utils.execute("StridedSlice", [input, start, stop, strides], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
3939
+ end
3940
+
3941
+ def strided_slice_assign(ref: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
3942
+ Utils.execute("StridedSliceAssign", [ref, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
3943
+ end
3944
+
3945
+ def strided_slice_grad(shape: nil, start: nil, stop: nil, strides: nil, dy: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
3946
+ Utils.execute("StridedSliceGrad", [shape, start, stop, strides, dy], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
3947
+ end
3948
+
3949
+ def string_format(inputs: nil, template: nil, placeholder: nil, summarize: nil)
3950
+ Utils.execute("StringFormat", [inputs], template: template, placeholder: placeholder, summarize: summarize)
3951
+ end
3952
+
3953
+ def string_join(inputs: nil, separator: nil)
3954
+ Utils.execute("StringJoin", [inputs], separator: separator)
3955
+ end
3956
+
3957
+ def string_length(input: nil, unit: nil)
3958
+ Utils.execute("StringLength", [input], unit: unit)
3959
+ end
3960
+
3961
+ def string_lower(input: nil, encoding: nil)
3962
+ Utils.execute("StringLower", [input], encoding: encoding)
3963
+ end
3964
+
3965
+ def string_split(input: nil, delimiter: nil, skip_empty: nil)
3966
+ Utils.execute("StringSplit", [input, delimiter], skip_empty: skip_empty)
3967
+ end
3968
+
3969
+ def string_split_v2(input: nil, sep: nil, maxsplit: nil)
3970
+ Utils.execute("StringSplitV2", [input, sep], maxsplit: maxsplit)
3971
+ end
3972
+
3973
+ def string_strip(input: nil)
3974
+ Utils.execute("StringStrip", [input])
3975
+ end
3976
+
3977
+ def string_to_hash_bucket(string_tensor: nil, num_buckets: nil)
3978
+ Utils.execute("StringToHashBucket", [string_tensor], num_buckets: num_buckets)
3979
+ end
3980
+
3981
+ def string_to_hash_bucket_fast(input: nil, num_buckets: nil)
3982
+ Utils.execute("StringToHashBucketFast", [input], num_buckets: num_buckets)
3983
+ end
3984
+
3985
+ def string_to_hash_bucket_strong(input: nil, num_buckets: nil, key: nil)
3986
+ Utils.execute("StringToHashBucketStrong", [input], num_buckets: num_buckets, key: key)
3987
+ end
3988
+
3989
+ def string_to_number(string_tensor: nil, out_type: nil)
3990
+ Utils.execute("StringToNumber", [string_tensor], out_type: out_type)
3991
+ end
3992
+
3993
+ def string_upper(input: nil, encoding: nil)
3994
+ Utils.execute("StringUpper", [input], encoding: encoding)
3995
+ end
3996
+
3997
+ def sub(x: nil, y: nil)
3998
+ Utils.execute("Sub", [x, y])
3999
+ end
4000
+
4001
+ def substr(input: nil, pos: nil, len: nil, unit: nil)
4002
+ Utils.execute("Substr", [input, pos, len], unit: unit)
4003
+ end
4004
+
4005
+ def sum(input: nil, reduction_indices: nil, keep_dims: nil)
4006
+ Utils.execute("Sum", [input, reduction_indices], keep_dims: keep_dims)
4007
+ end
4008
+
4009
+ def summary_writer(shared_name: nil, container: nil)
4010
+ Utils.execute("SummaryWriter", [], shared_name: shared_name, container: container)
4011
+ end
4012
+
4013
+ def svd(input: nil, compute_uv: nil, full_matrices: nil)
4014
+ Utils.execute("Svd", [input], compute_uv: compute_uv, full_matrices: full_matrices)
4015
+ end
4016
+
4017
+ def switch(data: nil, pred: nil)
4018
+ Utils.execute("Switch", [data, pred])
4019
+ end
4020
+
4021
+ def symbolic_gradient(input: nil, f: nil)
4022
+ Utils.execute("SymbolicGradient", [input], f: f)
4023
+ end
4024
+
4025
+ def tf_record_dataset(filenames: nil, compression_type: nil, buffer_size: nil)
4026
+ Utils.execute("TFRecordDataset", [filenames, compression_type, buffer_size])
4027
+ end
4028
+
4029
+ def tf_record_reader(container: nil, shared_name: nil, compression_type: nil)
4030
+ Utils.execute("TFRecordReader", [], container: container, shared_name: shared_name, compression_type: compression_type)
4031
+ end
4032
+
4033
+ def tf_record_reader_v2(container: nil, shared_name: nil, compression_type: nil)
4034
+ Utils.execute("TFRecordReaderV2", [], container: container, shared_name: shared_name, compression_type: compression_type)
4035
+ end
4036
+
4037
+ def tpu_compilation_result
4038
+ Utils.execute("TPUCompilationResult", [])
4039
+ end
4040
+
4041
+ def tpu_embedding_activations(embedding_variable: nil, sliced_activations: nil, table_id: nil, lookup_id: nil)
4042
+ Utils.execute("TPUEmbeddingActivations", [embedding_variable, sliced_activations], table_id: table_id, lookup_id: lookup_id)
4043
+ end
4044
+
4045
+ def tpu_ordinal_selector
4046
+ Utils.execute("TPUOrdinalSelector", [])
4047
+ end
4048
+
4049
+ def tpu_partitioned_call(args: nil, device_ordinal: nil, f: nil)
4050
+ Utils.execute("TPUPartitionedCall", [args, device_ordinal], f: f)
4051
+ end
4052
+
4053
+ def tpu_replicate_metadata(num_replicas: nil, num_cores_per_replica: nil, topology: nil, use_tpu: nil, device_assignment: nil, computation_shape: nil, host_compute_core: nil, padding_map: nil, step_marker_location: nil)
4054
+ Utils.execute("TPUReplicateMetadata", [], num_replicas: num_replicas, num_cores_per_replica: num_cores_per_replica, topology: topology, use_tpu: use_tpu, device_assignment: device_assignment, computation_shape: computation_shape, host_compute_core: host_compute_core, padding_map: padding_map, step_marker_location: step_marker_location)
4055
+ end
4056
+
4057
+ def tpu_replicated_input(inputs: nil)
4058
+ Utils.execute("TPUReplicatedInput", [inputs])
4059
+ end
4060
+
4061
+ def tpu_replicated_output(input: nil, num_replicas: nil)
4062
+ Utils.execute("TPUReplicatedOutput", [input], num_replicas: num_replicas)
4063
+ end
4064
+
4065
+ def take_dataset(input_dataset: nil, count: nil, output_types: nil, output_shapes: nil)
4066
+ Utils.execute("TakeDataset", [input_dataset, count], output_types: output_types, output_shapes: output_shapes)
4067
+ end
4068
+
4069
+ def take_many_sparse_from_tensors_map(sparse_handles: nil, dtype: nil, container: nil, shared_name: nil)
4070
+ Utils.execute("TakeManySparseFromTensorsMap", [sparse_handles], dtype: dtype, container: container, shared_name: shared_name)
4071
+ end
4072
+
4073
+ def tan(x: nil)
4074
+ Utils.execute("Tan", [x])
4075
+ end
4076
+
4077
+ def tanh(x: nil)
4078
+ Utils.execute("Tanh", [x])
4079
+ end
4080
+
4081
+ def tanh_grad(y: nil, dy: nil)
4082
+ Utils.execute("TanhGrad", [y, dy])
4083
+ end
4084
+
4085
+ def temporary_variable(shape: nil, dtype: nil, var_name: nil)
4086
+ Utils.execute("TemporaryVariable", [], shape: shape, dtype: dtype, var_name: var_name)
4087
+ end
4088
+
4089
+ def tensor_array(size: nil, dtype: nil, dynamic_size: nil, clear_after_read: nil, tensor_array_name: nil, element_shape: nil)
4090
+ Utils.execute("TensorArray", [size], dtype: dtype, dynamic_size: dynamic_size, clear_after_read: clear_after_read, tensor_array_name: tensor_array_name, element_shape: element_shape)
4091
+ end
4092
+
4093
+ def tensor_array_close(handle: nil)
4094
+ Utils.execute("TensorArrayClose", [handle])
4095
+ end
4096
+
4097
+ def tensor_array_close_v2(handle: nil)
4098
+ Utils.execute("TensorArrayCloseV2", [handle])
4099
+ end
4100
+
4101
+ def tensor_array_close_v3(handle: nil)
4102
+ Utils.execute("TensorArrayCloseV3", [handle])
4103
+ end
4104
+
4105
+ def tensor_array_concat(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
4106
+ Utils.execute("TensorArrayConcat", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
4107
+ end
4108
+
4109
+ def tensor_array_concat_v2(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
4110
+ Utils.execute("TensorArrayConcatV2", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
4111
+ end
4112
+
4113
+ def tensor_array_concat_v3(handle: nil, flow_in: nil, dtype: nil, element_shape_except0: nil)
4114
+ Utils.execute("TensorArrayConcatV3", [handle, flow_in], dtype: dtype, element_shape_except0: element_shape_except0)
4115
+ end
4116
+
4117
+ def tensor_array_gather(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
4118
+ Utils.execute("TensorArrayGather", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
4119
+ end
4120
+
4121
+ def tensor_array_gather_v2(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
4122
+ Utils.execute("TensorArrayGatherV2", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
4123
+ end
4124
+
4125
+ def tensor_array_gather_v3(handle: nil, indices: nil, flow_in: nil, dtype: nil, element_shape: nil)
4126
+ Utils.execute("TensorArrayGatherV3", [handle, indices, flow_in], dtype: dtype, element_shape: element_shape)
4127
+ end
4128
+
4129
+ def tensor_array_grad(handle: nil, flow_in: nil, source: nil)
4130
+ Utils.execute("TensorArrayGrad", [handle, flow_in], source: source)
4131
+ end
4132
+
4133
+ def tensor_array_grad_v2(handle: nil, flow_in: nil, source: nil)
4134
+ Utils.execute("TensorArrayGradV2", [handle, flow_in], source: source)
4135
+ end
4136
+
4137
+ def tensor_array_grad_v3(handle: nil, flow_in: nil, source: nil)
4138
+ Utils.execute("TensorArrayGradV3", [handle, flow_in], source: source)
4139
+ end
4140
+
4141
+ def tensor_array_grad_with_shape(handle: nil, flow_in: nil, shape_to_prepend: nil, source: nil)
4142
+ Utils.execute("TensorArrayGradWithShape", [handle, flow_in, shape_to_prepend], source: source)
4143
+ end
4144
+
4145
+ def tensor_array_pack(handle: nil, flow_in: nil, dtype: nil, element_shape: nil)
4146
+ Utils.execute("TensorArrayPack", [handle, flow_in], dtype: dtype, element_shape: element_shape)
4147
+ end
4148
+
4149
+ def tensor_array_read(handle: nil, index: nil, flow_in: nil, dtype: nil)
4150
+ Utils.execute("TensorArrayRead", [handle, index, flow_in], dtype: dtype)
4151
+ end
4152
+
4153
+ def tensor_array_read_v2(handle: nil, index: nil, flow_in: nil, dtype: nil)
4154
+ Utils.execute("TensorArrayReadV2", [handle, index, flow_in], dtype: dtype)
4155
+ end
4156
+
4157
+ def tensor_array_read_v3(handle: nil, index: nil, flow_in: nil, dtype: nil)
4158
+ Utils.execute("TensorArrayReadV3", [handle, index, flow_in], dtype: dtype)
4159
+ end
4160
+
4161
+ def tensor_array_scatter(handle: nil, indices: nil, value: nil, flow_in: nil)
4162
+ Utils.execute("TensorArrayScatter", [handle, indices, value, flow_in])
4163
+ end
4164
+
4165
+ def tensor_array_scatter_v2(handle: nil, indices: nil, value: nil, flow_in: nil)
4166
+ Utils.execute("TensorArrayScatterV2", [handle, indices, value, flow_in])
4167
+ end
4168
+
4169
+ def tensor_array_scatter_v3(handle: nil, indices: nil, value: nil, flow_in: nil)
4170
+ Utils.execute("TensorArrayScatterV3", [handle, indices, value, flow_in])
4171
+ end
4172
+
4173
+ def tensor_array_size(handle: nil, flow_in: nil)
4174
+ Utils.execute("TensorArraySize", [handle, flow_in])
4175
+ end
4176
+
4177
+ def tensor_array_size_v2(handle: nil, flow_in: nil)
4178
+ Utils.execute("TensorArraySizeV2", [handle, flow_in])
4179
+ end
4180
+
4181
+ def tensor_array_size_v3(handle: nil, flow_in: nil)
4182
+ Utils.execute("TensorArraySizeV3", [handle, flow_in])
4183
+ end
4184
+
4185
+ def tensor_array_split(handle: nil, value: nil, lengths: nil, flow_in: nil)
4186
+ Utils.execute("TensorArraySplit", [handle, value, lengths, flow_in])
4187
+ end
4188
+
4189
+ def tensor_array_split_v2(handle: nil, value: nil, lengths: nil, flow_in: nil)
4190
+ Utils.execute("TensorArraySplitV2", [handle, value, lengths, flow_in])
4191
+ end
4192
+
4193
+ def tensor_array_split_v3(handle: nil, value: nil, lengths: nil, flow_in: nil)
4194
+ Utils.execute("TensorArraySplitV3", [handle, value, lengths, flow_in])
4195
+ end
4196
+
4197
+ def tensor_array_unpack(handle: nil, value: nil, flow_in: nil)
4198
+ Utils.execute("TensorArrayUnpack", [handle, value, flow_in])
4199
+ end
4200
+
4201
+ def tensor_array_v2(size: nil, dtype: nil, element_shape: nil, dynamic_size: nil, clear_after_read: nil, tensor_array_name: nil)
4202
+ Utils.execute("TensorArrayV2", [size], dtype: dtype, element_shape: element_shape, dynamic_size: dynamic_size, clear_after_read: clear_after_read, tensor_array_name: tensor_array_name)
4203
+ end
4204
+
4205
+ def tensor_array_v3(size: nil, dtype: nil, element_shape: nil, dynamic_size: nil, clear_after_read: nil, identical_element_shapes: nil, tensor_array_name: nil)
4206
+ Utils.execute("TensorArrayV3", [size], dtype: dtype, element_shape: element_shape, dynamic_size: dynamic_size, clear_after_read: clear_after_read, identical_element_shapes: identical_element_shapes, tensor_array_name: tensor_array_name)
4207
+ end
4208
+
4209
+ def tensor_array_write(handle: nil, index: nil, value: nil, flow_in: nil)
4210
+ Utils.execute("TensorArrayWrite", [handle, index, value, flow_in])
4211
+ end
4212
+
4213
+ def tensor_array_write_v2(handle: nil, index: nil, value: nil, flow_in: nil)
4214
+ Utils.execute("TensorArrayWriteV2", [handle, index, value, flow_in])
4215
+ end
4216
+
4217
+ def tensor_array_write_v3(handle: nil, index: nil, value: nil, flow_in: nil)
4218
+ Utils.execute("TensorArrayWriteV3", [handle, index, value, flow_in])
4219
+ end
4220
+
4221
+ def tensor_dataset(components: nil, output_shapes: nil)
4222
+ Utils.execute("TensorDataset", [components], output_shapes: output_shapes)
4223
+ end
4224
+
4225
+ def tensor_forest_create_tree_variable(tree_handle: nil, tree_config: nil)
4226
+ Utils.execute("TensorForestCreateTreeVariable", [tree_handle, tree_config])
4227
+ end
4228
+
4229
+ def tensor_forest_tree_deserialize(tree_handle: nil, tree_config: nil)
4230
+ Utils.execute("TensorForestTreeDeserialize", [tree_handle, tree_config])
4231
+ end
4232
+
4233
+ def tensor_forest_tree_is_initialized_op(tree_handle: nil)
4234
+ Utils.execute("TensorForestTreeIsInitializedOp", [tree_handle])
4235
+ end
4236
+
4237
+ def tensor_forest_tree_predict(tree_handle: nil, dense_features: nil, logits_dimension: nil)
4238
+ Utils.execute("TensorForestTreePredict", [tree_handle, dense_features], logits_dimension: logits_dimension)
4239
+ end
4240
+
4241
+ def tensor_forest_tree_resource_handle_op(container: nil, shared_name: nil)
4242
+ Utils.execute("TensorForestTreeResourceHandleOp", [], container: container, shared_name: shared_name)
4243
+ end
4244
+
4245
+ def tensor_forest_tree_serialize(tree_handle: nil)
4246
+ Utils.execute("TensorForestTreeSerialize", [tree_handle])
4247
+ end
4248
+
4249
+ def tensor_forest_tree_size(tree_handle: nil)
4250
+ Utils.execute("TensorForestTreeSize", [tree_handle])
4251
+ end
4252
+
4253
+ def tensor_list_concat(input_handle: nil, element_dtype: nil, element_shape: nil)
4254
+ Utils.execute("TensorListConcat", [input_handle], element_dtype: element_dtype, element_shape: element_shape)
4255
+ end
4256
+
4257
+ def tensor_list_concat_lists(input_a: nil, input_b: nil, element_dtype: nil)
4258
+ Utils.execute("TensorListConcatLists", [input_a, input_b], element_dtype: element_dtype)
4259
+ end
4260
+
4261
+ def tensor_list_concat_v2(input_handle: nil, element_shape: nil, leading_dims: nil, element_dtype: nil, shape_type: nil)
4262
+ Utils.execute("TensorListConcatV2", [input_handle, element_shape, leading_dims], element_dtype: element_dtype, shape_type: shape_type)
4263
+ end
4264
+
4265
+ def tensor_list_element_shape(input_handle: nil, shape_type: nil)
4266
+ Utils.execute("TensorListElementShape", [input_handle], shape_type: shape_type)
4267
+ end
4268
+
4269
+ def tensor_list_from_tensor(tensor: nil, element_shape: nil, element_dtype: nil, shape_type: nil)
4270
+ Utils.execute("TensorListFromTensor", [tensor, element_shape], element_dtype: element_dtype, shape_type: shape_type)
4271
+ end
4272
+
4273
+ def tensor_list_gather(input_handle: nil, indices: nil, element_shape: nil, element_dtype: nil)
4274
+ Utils.execute("TensorListGather", [input_handle, indices, element_shape], element_dtype: element_dtype)
4275
+ end
4276
+
4277
+ def tensor_list_get_item(input_handle: nil, index: nil, element_shape: nil, element_dtype: nil)
4278
+ Utils.execute("TensorListGetItem", [input_handle, index, element_shape], element_dtype: element_dtype)
4279
+ end
4280
+
4281
+ def tensor_list_length(input_handle: nil)
4282
+ Utils.execute("TensorListLength", [input_handle])
4283
+ end
4284
+
4285
+ def tensor_list_pop_back(input_handle: nil, element_shape: nil, element_dtype: nil)
4286
+ Utils.execute("TensorListPopBack", [input_handle, element_shape], element_dtype: element_dtype)
4287
+ end
4288
+
4289
+ def tensor_list_push_back(input_handle: nil, tensor: nil, element_dtype: nil)
4290
+ Utils.execute("TensorListPushBack", [input_handle, tensor], element_dtype: element_dtype)
4291
+ end
4292
+
4293
+ def tensor_list_push_back_batch(input_handles: nil, tensor: nil, element_dtype: nil)
4294
+ Utils.execute("TensorListPushBackBatch", [input_handles, tensor], element_dtype: element_dtype)
4295
+ end
4296
+
4297
+ def tensor_list_reserve(element_shape: nil, num_elements: nil, element_dtype: nil, shape_type: nil)
4298
+ Utils.execute("TensorListReserve", [element_shape, num_elements], element_dtype: element_dtype, shape_type: shape_type)
4299
+ end
4300
+
4301
+ def tensor_list_resize(input_handle: nil, size: nil)
4302
+ Utils.execute("TensorListResize", [input_handle, size])
4303
+ end
4304
+
4305
+ def tensor_list_scatter(tensor: nil, indices: nil, element_shape: nil, element_dtype: nil, shape_type: nil)
4306
+ Utils.execute("TensorListScatter", [tensor, indices, element_shape], element_dtype: element_dtype, shape_type: shape_type)
4307
+ end
4308
+
4309
+ def tensor_list_scatter_into_existing_list(input_handle: nil, tensor: nil, indices: nil, element_dtype: nil)
4310
+ Utils.execute("TensorListScatterIntoExistingList", [input_handle, tensor, indices], element_dtype: element_dtype)
4311
+ end
4312
+
4313
+ def tensor_list_scatter_v2(tensor: nil, indices: nil, element_shape: nil, num_elements: nil, element_dtype: nil, shape_type: nil)
4314
+ Utils.execute("TensorListScatterV2", [tensor, indices, element_shape, num_elements], element_dtype: element_dtype, shape_type: shape_type)
4315
+ end
4316
+
4317
+ def tensor_list_set_item(input_handle: nil, index: nil, item: nil, element_dtype: nil)
4318
+ Utils.execute("TensorListSetItem", [input_handle, index, item], element_dtype: element_dtype)
4319
+ end
4320
+
4321
+ def tensor_list_split(tensor: nil, element_shape: nil, lengths: nil, element_dtype: nil, shape_type: nil)
4322
+ Utils.execute("TensorListSplit", [tensor, element_shape, lengths], element_dtype: element_dtype, shape_type: shape_type)
4323
+ end
4324
+
4325
+ def tensor_list_stack(input_handle: nil, element_shape: nil, element_dtype: nil, num_elements: nil)
4326
+ Utils.execute("TensorListStack", [input_handle, element_shape], element_dtype: element_dtype, num_elements: num_elements)
4327
+ end
4328
+
4329
+ def tensor_scatter_add(tensor: nil, indices: nil, updates: nil)
4330
+ Utils.execute("TensorScatterAdd", [tensor, indices, updates])
4331
+ end
4332
+
4333
+ def tensor_scatter_sub(tensor: nil, indices: nil, updates: nil)
4334
+ Utils.execute("TensorScatterSub", [tensor, indices, updates])
4335
+ end
4336
+
4337
+ def tensor_scatter_update(tensor: nil, indices: nil, updates: nil)
4338
+ Utils.execute("TensorScatterUpdate", [tensor, indices, updates])
4339
+ end
4340
+
4341
+ def tensor_slice_dataset(components: nil, output_shapes: nil)
4342
+ Utils.execute("TensorSliceDataset", [components], output_shapes: output_shapes)
4343
+ end
4344
+
4345
+ def tensor_strided_slice_update(input: nil, start: nil, stop: nil, strides: nil, value: nil, begin_mask: nil, end_mask: nil, ellipsis_mask: nil, new_axis_mask: nil, shrink_axis_mask: nil)
4346
+ Utils.execute("TensorStridedSliceUpdate", [input, start, stop, strides, value], begin_mask: begin_mask, end_mask: end_mask, ellipsis_mask: ellipsis_mask, new_axis_mask: new_axis_mask, shrink_axis_mask: shrink_axis_mask)
4347
+ end
4348
+
4349
+ def tensor_summary(tensor: nil, description: nil, labels: nil, display_name: nil)
4350
+ Utils.execute("TensorSummary", [tensor], description: description, labels: labels, display_name: display_name)
4351
+ end
4352
+
4353
+ def tensor_summary_v2(tag: nil, tensor: nil, serialized_summary_metadata: nil)
4354
+ Utils.execute("TensorSummaryV2", [tag, tensor, serialized_summary_metadata])
4355
+ end
4356
+
4357
+ def text_line_dataset(filenames: nil, compression_type: nil, buffer_size: nil)
4358
+ Utils.execute("TextLineDataset", [filenames, compression_type, buffer_size])
4359
+ end
4360
+
4361
+ def text_line_reader(skip_header_lines: nil, container: nil, shared_name: nil)
4362
+ Utils.execute("TextLineReader", [], skip_header_lines: skip_header_lines, container: container, shared_name: shared_name)
4363
+ end
4364
+
4365
+ def text_line_reader_v2(skip_header_lines: nil, container: nil, shared_name: nil)
4366
+ Utils.execute("TextLineReaderV2", [], skip_header_lines: skip_header_lines, container: container, shared_name: shared_name)
4367
+ end
4368
+
4369
+ def thread_unsafe_unigram_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
4370
+ Utils.execute("ThreadUnsafeUnigramCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
4371
+ end
4372
+
4373
+ def tile(input: nil, multiples: nil)
4374
+ Utils.execute("Tile", [input, multiples])
4375
+ end
4376
+
4377
+ def tile_grad(input: nil, multiples: nil)
4378
+ Utils.execute("TileGrad", [input, multiples])
4379
+ end
4380
+
4381
+ def timestamp
4382
+ Utils.execute("Timestamp", [])
4383
+ end
4384
+
4385
+ def top_k(input: nil, k: nil, sorted: nil)
4386
+ Utils.execute("TopK", [input], k: k, sorted: sorted)
4387
+ end
4388
+
4389
+ def top_kv2(input: nil, k: nil, sorted: nil)
4390
+ Utils.execute("TopKV2", [input, k], sorted: sorted)
4391
+ end
4392
+
4393
+ def transpose(x: nil, perm: nil)
4394
+ Utils.execute("Transpose", [x, perm])
4395
+ end
4396
+
4397
+ def tridiagonal_mat_mul(superdiag: nil, maindiag: nil, subdiag: nil, rhs: nil)
4398
+ Utils.execute("TridiagonalMatMul", [superdiag, maindiag, subdiag, rhs])
4399
+ end
4400
+
4401
+ def tridiagonal_solve(diagonals: nil, rhs: nil, partial_pivoting: nil)
4402
+ Utils.execute("TridiagonalSolve", [diagonals, rhs], partial_pivoting: partial_pivoting)
4403
+ end
4404
+
4405
+ def truncate_div(x: nil, y: nil)
4406
+ Utils.execute("TruncateDiv", [x, y])
4407
+ end
4408
+
4409
+ def truncate_mod(x: nil, y: nil)
4410
+ Utils.execute("TruncateMod", [x, y])
4411
+ end
4412
+
4413
+ def truncated_normal(shape: nil, seed: nil, seed2: nil, dtype: nil)
4414
+ Utils.execute("TruncatedNormal", [shape], seed: seed, seed2: seed2, dtype: dtype)
4415
+ end
4416
+
4417
+ def try_rpc(address: nil, method: nil, request: nil, protocol: nil, fail_fast: nil, timeout_in_ms: nil)
4418
+ Utils.execute("TryRpc", [address, method, request], protocol: protocol, fail_fast: fail_fast, timeout_in_ms: timeout_in_ms)
4419
+ end
4420
+
4421
+ def unbatch(batched_tensor: nil, batch_index: nil, id: nil, timeout_micros: nil, container: nil, shared_name: nil)
4422
+ Utils.execute("Unbatch", [batched_tensor, batch_index, id], timeout_micros: timeout_micros, container: container, shared_name: shared_name)
4423
+ end
4424
+
4425
+ def unbatch_grad(original_input: nil, batch_index: nil, grad: nil, id: nil, container: nil, shared_name: nil)
4426
+ Utils.execute("UnbatchGrad", [original_input, batch_index, grad, id], container: container, shared_name: shared_name)
4427
+ end
4428
+
4429
+ def unicode_decode(input: nil, input_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
4430
+ Utils.execute("UnicodeDecode", [input], input_encoding: input_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
4431
+ end
4432
+
4433
+ def unicode_decode_with_offsets(input: nil, input_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
4434
+ Utils.execute("UnicodeDecodeWithOffsets", [input], input_encoding: input_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
4435
+ end
4436
+
4437
+ def unicode_encode(input_values: nil, input_splits: nil, errors: nil, output_encoding: nil, replacement_char: nil)
4438
+ Utils.execute("UnicodeEncode", [input_values, input_splits], errors: errors, output_encoding: output_encoding, replacement_char: replacement_char)
4439
+ end
4440
+
4441
+ def unicode_script(input: nil)
4442
+ Utils.execute("UnicodeScript", [input])
4443
+ end
4444
+
4445
+ def unicode_transcode(input: nil, input_encoding: nil, output_encoding: nil, errors: nil, replacement_char: nil, replace_control_characters: nil)
4446
+ Utils.execute("UnicodeTranscode", [input], input_encoding: input_encoding, output_encoding: output_encoding, errors: errors, replacement_char: replacement_char, replace_control_characters: replace_control_characters)
4447
+ end
4448
+
4449
+ def uniform_candidate_sampler(true_classes: nil, num_true: nil, num_sampled: nil, unique: nil, range_max: nil, seed: nil, seed2: nil)
4450
+ Utils.execute("UniformCandidateSampler", [true_classes], num_true: num_true, num_sampled: num_sampled, unique: unique, range_max: range_max, seed: seed, seed2: seed2)
4451
+ end
4452
+
4453
+ def unique(x: nil, out_idx: nil)
4454
+ Utils.execute("Unique", [x], out_idx: out_idx)
4455
+ end
4456
+
4457
+ def unique_v2(x: nil, axis: nil, out_idx: nil)
4458
+ Utils.execute("UniqueV2", [x, axis], out_idx: out_idx)
4459
+ end
4460
+
4461
+ def unique_with_counts(x: nil, out_idx: nil)
4462
+ Utils.execute("UniqueWithCounts", [x], out_idx: out_idx)
4463
+ end
4464
+
4465
+ def unique_with_counts_v2(x: nil, axis: nil, out_idx: nil)
4466
+ Utils.execute("UniqueWithCountsV2", [x, axis], out_idx: out_idx)
4467
+ end
4468
+
4469
+ def unpack(value: nil, num: nil, axis: nil)
4470
+ Utils.execute("Unpack", [value], num: num, axis: axis)
4471
+ end
4472
+
4473
+ def unravel_index(indices: nil, dims: nil)
4474
+ Utils.execute("UnravelIndex", [indices, dims])
4475
+ end
4476
+
4477
+ def unsorted_segment_max(data: nil, segment_ids: nil, num_segments: nil)
4478
+ Utils.execute("UnsortedSegmentMax", [data, segment_ids, num_segments])
4479
+ end
4480
+
4481
+ def unsorted_segment_min(data: nil, segment_ids: nil, num_segments: nil)
4482
+ Utils.execute("UnsortedSegmentMin", [data, segment_ids, num_segments])
4483
+ end
4484
+
4485
+ def unsorted_segment_prod(data: nil, segment_ids: nil, num_segments: nil)
4486
+ Utils.execute("UnsortedSegmentProd", [data, segment_ids, num_segments])
4487
+ end
4488
+
4489
+ def unsorted_segment_sum(data: nil, segment_ids: nil, num_segments: nil)
4490
+ Utils.execute("UnsortedSegmentSum", [data, segment_ids, num_segments])
4491
+ end
4492
+
4493
+ def unstage(capacity: nil, memory_limit: nil, dtypes: nil, container: nil, shared_name: nil)
4494
+ Utils.execute("Unstage", [], capacity: capacity, memory_limit: memory_limit, dtypes: dtypes, container: container, shared_name: shared_name)
4495
+ end
4496
+
4497
+ def unwrap_dataset_variant(input_handle: nil)
4498
+ Utils.execute("UnwrapDatasetVariant", [input_handle])
4499
+ end
4500
+
4501
+ def upper_bound(sorted_inputs: nil, values: nil, out_type: nil)
4502
+ Utils.execute("UpperBound", [sorted_inputs, values], out_type: out_type)
4503
+ end
4504
+
4505
+ def var_handle_op(container: nil, shared_name: nil, dtype: nil, shape: nil)
4506
+ Utils.execute("VarHandleOp", [], container: container, shared_name: shared_name, dtype: dtype, shape: shape)
4507
+ end
4508
+
4509
+ def var_is_initialized_op(resource: nil)
4510
+ Utils.execute("VarIsInitializedOp", [resource])
4511
+ end
4512
+
4513
+ def variable(shape: nil, dtype: nil, container: nil, shared_name: nil)
4514
+ Utils.execute("Variable", [], shape: shape, dtype: dtype, container: container, shared_name: shared_name)
4515
+ end
4516
+
4517
+ def variable_shape(input: nil, out_type: nil)
4518
+ Utils.execute("VariableShape", [input], out_type: out_type)
4519
+ end
4520
+
4521
+ def variable_v2(shape: nil, dtype: nil, container: nil, shared_name: nil)
4522
+ Utils.execute("VariableV2", [], shape: shape, dtype: dtype, container: container, shared_name: shared_name)
4523
+ end
4524
+
4525
+ def where(input: nil)
4526
+ Utils.execute("Where", [input])
4527
+ end
4528
+
4529
+ def while(input: nil, cond: nil, body: nil, output_shapes: nil, parallel_iterations: nil)
4530
+ Utils.execute("While", [input], cond: cond, body: body, output_shapes: output_shapes, parallel_iterations: parallel_iterations)
4531
+ end
4532
+
4533
+ def whole_file_reader(container: nil, shared_name: nil)
4534
+ Utils.execute("WholeFileReader", [], container: container, shared_name: shared_name)
4535
+ end
4536
+
4537
+ def whole_file_reader_v2(container: nil, shared_name: nil)
4538
+ Utils.execute("WholeFileReaderV2", [], container: container, shared_name: shared_name)
4539
+ end
4540
+
4541
+ def window_dataset(input_dataset: nil, size: nil, shift: nil, stride: nil, drop_remainder: nil, output_types: nil, output_shapes: nil)
4542
+ Utils.execute("WindowDataset", [input_dataset, size, shift, stride, drop_remainder], output_types: output_types, output_shapes: output_shapes)
4543
+ end
4544
+
4545
+ def worker_heartbeat(request: nil)
4546
+ Utils.execute("WorkerHeartbeat", [request])
4547
+ end
4548
+
4549
+ def wrap_dataset_variant(input_handle: nil)
4550
+ Utils.execute("WrapDatasetVariant", [input_handle])
4551
+ end
4552
+
4553
+ def write_audio_summary(writer: nil, step: nil, tag: nil, tensor: nil, sample_rate: nil, max_outputs: nil)
4554
+ Utils.execute("WriteAudioSummary", [writer, step, tag, tensor, sample_rate], max_outputs: max_outputs)
4555
+ end
4556
+
4557
+ def write_file(filename: nil, contents: nil)
4558
+ Utils.execute("WriteFile", [filename, contents])
4559
+ end
4560
+
4561
+ def write_graph_summary(writer: nil, step: nil, tensor: nil)
4562
+ Utils.execute("WriteGraphSummary", [writer, step, tensor])
4563
+ end
4564
+
4565
+ def write_histogram_summary(writer: nil, step: nil, tag: nil, values: nil)
4566
+ Utils.execute("WriteHistogramSummary", [writer, step, tag, values])
4567
+ end
4568
+
4569
+ def write_image_summary(writer: nil, step: nil, tag: nil, tensor: nil, bad_color: nil, max_images: nil)
4570
+ Utils.execute("WriteImageSummary", [writer, step, tag, tensor, bad_color], max_images: max_images)
4571
+ end
4572
+
4573
+ def write_raw_proto_summary(writer: nil, step: nil, tensor: nil)
4574
+ Utils.execute("WriteRawProtoSummary", [writer, step, tensor])
4575
+ end
4576
+
4577
+ def write_scalar_summary(writer: nil, step: nil, tag: nil, value: nil)
4578
+ Utils.execute("WriteScalarSummary", [writer, step, tag, value])
4579
+ end
4580
+
4581
+ def write_summary(writer: nil, step: nil, tensor: nil, tag: nil, summary_metadata: nil)
4582
+ Utils.execute("WriteSummary", [writer, step, tensor, tag, summary_metadata])
4583
+ end
4584
+
4585
+ def xdivy(x: nil, y: nil)
4586
+ Utils.execute("Xdivy", [x, y])
4587
+ end
4588
+
4589
+ def xlogy(x: nil, y: nil)
4590
+ Utils.execute("Xlogy", [x, y])
4591
+ end
4592
+
4593
+ def zeros_like(x: nil)
4594
+ Utils.execute("ZerosLike", [x])
4595
+ end
4596
+
4597
+ def zeta(x: nil, q: nil)
4598
+ Utils.execute("Zeta", [x, q])
4599
+ end
4600
+
4601
+ def zip_dataset(input_datasets: nil, output_types: nil, output_shapes: nil)
4602
+ Utils.execute("ZipDataset", [input_datasets], output_types: output_types, output_shapes: output_shapes)
4603
+ end
4604
+ end
4605
+ end
4606
+ end