tensor_stream 1.0.8 → 1.0.9

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 712b5d17b1b84d5289970fa578a8385c80e2a499033a42df8aadefdad654276c
4
- data.tar.gz: ed74482c5913ea6debc5d0902d01c180b52f5028ae1ed7be726bafede9671982
3
+ metadata.gz: 8f7d54f45a96ee2ed86af5916339747701171476e2b1cd6197f4f78d3f7f2eb3
4
+ data.tar.gz: f8a1c615ebf5f67de35e0e6ac84ac531fc5306b62787ac0d2d952f474eb97bad
5
5
  SHA512:
6
- metadata.gz: 95b1715323930f35aeec861efa7b5dd96f9b61c8ea2d45343306798506cbbbc64e0092fed77c615a27e53b219610b7b14384726b5fb976b800c7ce57bcfc1539
7
- data.tar.gz: 45e92e91167a39ca02cc5a1c04022c0dc1942ad863b650710b93862400174dbddd0bbe1889659ef55651bf1ca0b779420fd48811f862c8707be068cd02abed9f
6
+ metadata.gz: 4607a3c117c98f21594bcbf12b98a1e927dab88c2847d4516c4f3dd3502b821e8d4b2b8e17e085c3ed122eec1e339baced66e3822fed2c5c6e3c8e10d0121e08
7
+ data.tar.gz: dd2f7b6c971a25b90a4404319231de6386aef0b536a1df9eca84a3a881e6e9e2faa903fd7fb72b9a05ba8588ec5ffdd153be0072e6c850960fff9ecaecf7b6bc
@@ -228,11 +228,25 @@ module TensorStream
228
228
 
229
229
  def self.register_evaluator(klass, name, index = 0)
230
230
  @evaluators ||= {}
231
+ @storage_managers ||= {}
231
232
  @evaluators[name] = {name: name, class: klass, index: index}
233
+ @storage_managers[klass] = klass.get_storage_manager
232
234
  end
233
235
 
234
236
  def self.default_evaluators
235
237
  evaluators.values.sort { |v| v[:index] }.reverse.map { |v| v[:class] }
236
238
  end
239
+
240
+ def self.clear_storages(graph)
241
+ @storage_managers.values.each { |manager| manager.clear_variables(graph) }
242
+ end
243
+
244
+ def self.read_variable(graph, name)
245
+ @storage_managers.values.each do |manager|
246
+ return manager.read_value(graph, name) if manager.exists?(graph, name)
247
+ end
248
+
249
+ nil
250
+ end
237
251
  end
238
252
  end
@@ -1,5 +1,6 @@
1
1
  require "tensor_stream/evaluator/ruby_evaluator"
2
2
  require "tensor_stream/evaluator/buffer"
3
+ require "tensor_stream/evaluator/evaluator_utils"
3
4
 
4
5
  module TensorStream
5
6
  module Evaluator
@@ -0,0 +1,20 @@
1
+ module TensorStream
2
+ class EvaluatorUtils
3
+ extend TensorStream::StringHelper
4
+
5
+ def self.get_evaluator_classes(evaluators)
6
+ @evaluator_classes ||= if evaluators.is_a?(Array)
7
+ if evaluators.empty?
8
+ TensorStream::Evaluator.default_evaluators
9
+ else
10
+ evaluators.collect { |name| Object.const_get("TensorStream::Evaluator::#{camelize(name.to_s)}") }
11
+ end
12
+ elsif evaluators.nil?
13
+ TensorStream::Evaluator.default_evaluators
14
+ else
15
+ [Object.const_get("TensorStream::Evaluator::#{camelize(evaluators.to_s)}")]
16
+ end
17
+ @evaluator_classes
18
+ end
19
+ end
20
+ end
@@ -58,11 +58,19 @@ module TensorStream
58
58
  channels = 3 if channels.zero?
59
59
 
60
60
  image = Jpeg::Image.open_buffer(content)
61
+ source_channels = image.color_info == :gray ? 1 : 3
62
+
61
63
  image_data = image.raw_data.map do |pixel|
62
- pixel.map!(&:to_f) if fp_type?(tensor.data_type)
64
+ if source_channels == channels
65
+ pixel
66
+ elsif source_channels = 1 && channels == 3
67
+ [pixel, pixel, pixel]
68
+ elsif source_channels = 3 && channels == 1
69
+ raise TensorStream::ValueError, "color to grayscale not supported for jpg"
70
+ end
71
+ end.flatten
63
72
 
64
- pixel
65
- end
73
+ image_data.map!(&:to_f) if fp_type?(tensor.data_type)
66
74
 
67
75
  TensorShape.reshape(image_data, [image.height, image.width, channels])
68
76
  end
@@ -7,22 +7,20 @@ module TensorStream
7
7
  target_var, learning_rate, delta = inputs
8
8
  assign = tensor.inputs[0] || tensor
9
9
 
10
- assign.container = process_vector_math_op(tensor, target_var, delta, context) { |t, u| t - u * learning_rate }
11
- assign.container
10
+ var_assign_value(assign, process_vector_math_op(tensor, target_var, delta, context) { |t, u| t - u * learning_rate })
12
11
  end
13
12
 
14
13
  register_op :apply_momentum do |_context, tensor, inputs|
15
14
  target_var, momentum_var, learning_rate, grad, momentum = inputs
16
15
  assign = tensor.inputs[0] || tensor
17
16
  assign_acc = tensor.inputs[1]
18
- assign_acc.container = multi_array_op(->(t, u) { t * momentum + u }, momentum_var, grad)
19
- assign.container = if tensor.options[:use_nesterov]
20
- multi_array_op(->(v, g, acc) { v - (g * learning_rate + acc * momentum * learning_rate) }, target_var, grad, momentum_var)
21
- else
22
- multi_array_op(->(v, acc) { v - acc * learning_rate }, target_var, momentum_var)
23
- end
24
-
25
- assign.container
17
+ var_assign_value(assign_acc, multi_array_op(->(t, u) { t * momentum + u }, momentum_var, grad))
18
+ var = if tensor.options[:use_nesterov]
19
+ multi_array_op(->(v, g, acc) { v - (g * learning_rate + acc * momentum * learning_rate) }, target_var, grad, momentum_var)
20
+ else
21
+ multi_array_op(->(v, acc) { v - acc * learning_rate }, target_var, momentum_var)
22
+ end
23
+ var_assign_value(assign, var)
26
24
  end
27
25
 
28
26
  register_op :apply_adadelta do |_context, tensor, inputs|
@@ -30,19 +28,18 @@ module TensorStream
30
28
  assign = tensor.inputs[0] || tensor
31
29
  assign_acc = tensor.inputs[1]
32
30
  assign_acc_update = tensor.inputs[2]
33
- assign_acc.container = multi_array_op(->(acc_t, grad_t) { acc_t * rho + (grad_t * grad_t) * (1.0 - rho) }, accum, grad)
34
- update = multi_array_op(->(acc_update_t, acc_t, grad_t) { Math.sqrt(acc_update_t + epsilon) * (1.0 / Math.sqrt(acc_t + epsilon)) * grad_t }, accum_update, assign_acc.container, grad)
35
- assign.container = multi_array_op(->(v, u) { v - (u * lr) }, target_var, update)
36
- assign_acc_update.container = multi_array_op(->(acc_update_t, u) { acc_update_t * rho + (u * u) * (1.0 - rho) }, accum_update, update)
31
+ acc_val = var_assign_value(assign_acc, multi_array_op(->(acc_t, grad_t) { acc_t * rho + (grad_t * grad_t) * (1.0 - rho) }, accum, grad))
32
+ update = multi_array_op(->(acc_update_t, acc_t, grad_t) { Math.sqrt(acc_update_t + epsilon) * (1.0 / Math.sqrt(acc_t + epsilon)) * grad_t }, accum_update, acc_val, grad)
33
+ result = var_assign_value(assign, multi_array_op(->(v, u) { v - (u * lr) }, target_var, update))
34
+ var_assign_value(assign_acc_update,multi_array_op(->(acc_update_t, u) { acc_update_t * rho + (u * u) * (1.0 - rho) }, accum_update, update))
37
35
 
38
- assign.container
36
+ result
39
37
  end
40
38
 
41
39
  register_op :apply_adagrad do |_context, tensor, inputs|
42
40
  target_var, accum, lr, grad = inputs
43
41
  assign = tensor.inputs[0] || tensor
44
- assign.container = multi_array_op(->(v, a, g) { v - (g * lr * (1.0 / Math.sqrt(a))) }, target_var, accum, grad)
45
- assign.container
42
+ var_assign_value(assign, multi_array_op(->(v, a, g) { v - (g * lr * (1.0 / Math.sqrt(a))) }, target_var, accum, grad))
46
43
  end
47
44
 
48
45
  register_op :apply_adam do |_context, tensor, inputs|
@@ -52,10 +49,9 @@ module TensorStream
52
49
  assign_m = tensor.inputs[1]
53
50
  assign_v = tensor.inputs[2]
54
51
 
55
- assign_m.container = multi_array_op(->(u_d, g) { u_d + (g - u_d) * (1.0 - beta1_t) }, m, grad)
56
- assign_v.container = multi_array_op(->(u_d, v_d) { u_d + (v_d**2 - u_d) * (1.0 - beta2_t)}, v, grad)
57
- assign.container = multi_array_op(->(t, m_d, v_d) { t - ((m_d * alpha) / (Math.sqrt(v_d) + epsilon_t)) }, target_var, assign_m.container, assign_v.container)
58
- assign.container
52
+ m_val = var_assign_value(assign_m, multi_array_op(->(u_d, g) { u_d + (g - u_d) * (1.0 - beta1_t) }, m, grad))
53
+ v_val = var_assign_value(assign_v, multi_array_op(->(u_d, v_d) { u_d + (v_d**2 - u_d) * (1.0 - beta2_t)}, v, grad))
54
+ var_assign_value(assign, multi_array_op(->(t, m_d, v_d) { t - ((m_d * alpha) / (Math.sqrt(v_d) + epsilon_t)) }, target_var, m_val, v_val))
59
55
  end
60
56
 
61
57
  register_op :apply_rms_prop do |_context, tensor, inputs|
@@ -63,9 +59,9 @@ module TensorStream
63
59
  assign = tensor.inputs[0]
64
60
  assign_ms = tensor.inputs[1]
65
61
  assign_mom = tensor.inputs[2]
66
- assign_ms.container = multi_array_op(->(g, m) { m + (g * g - m) * (1.0 - rho)}, grad, ms)
67
- assign_mom.container = multi_array_op(->(mom_t, g, m) { mom_t * momentum + (g * lr) / Math.sqrt(m + epsilon)}, mom, grad, assign_ms.container)
68
- assign.container = multi_array_op(->(v, m) { v - m }, var, assign_mom.container)
62
+ ms_val = var_assign_value(assign_ms, multi_array_op(->(g, m) { m + (g * g - m) * (1.0 - rho)}, grad, ms))
63
+ mom_val = var_assign_value(assign_mom, multi_array_op(->(mom_t, g, m) { mom_t * momentum + (g * lr) / Math.sqrt(m + epsilon)}, mom, grad, ms_val))
64
+ var_assign_value(assign, multi_array_op(->(v, m) { v - m }, var, mom_val))
69
65
  end
70
66
 
71
67
  register_op :apply_centered_rms_prop do |_context, tensor, inputs|
@@ -75,11 +71,11 @@ module TensorStream
75
71
  assign_ms = tensor.inputs[2]
76
72
  assign_mom = tensor.inputs[3]
77
73
 
78
- assign_ms.container = multi_array_op(->(g, m) { m + (g * g - m) * (1.0 - rho) }, grad, ms)
79
- assign_mg.container = multi_array_op(->(g, mg_t) { (g - mg_t) * (1.0 - rho) }, grad, mg)
80
- denom = multi_array_op(->(s, mg_t) { (s - mg_t * mg_t) + epsilon }, assign_ms.container, mg)
81
- assign_mom.container = multi_array_op(->(mom_t, g, d) { mom_t * momentum + (g * lr) / Math.sqrt(d)}, mom, grad, denom)
82
- assign.container = multi_array_op(->(v, m) { v - m }, var, assign_mom.container)
74
+ val_ms = var_assign_value(assign_ms, multi_array_op(->(g, m) { m + (g * g - m) * (1.0 - rho) }, grad, ms))
75
+ var_assign_value(assign_mg, multi_array_op(->(g, mg_t) { (g - mg_t) * (1.0 - rho) }, grad, mg))
76
+ denom = multi_array_op(->(s, mg_t) { (s - mg_t * mg_t) + epsilon }, val_ms, mg)
77
+ val_mom = var_assign_value(assign_mom, multi_array_op(->(mom_t, g, d) { mom_t * momentum + (g * lr) / Math.sqrt(d)}, mom, grad, denom))
78
+ var_assign_value(assign, multi_array_op(->(v, m) { v - m }, var, val_mom))
83
79
  end
84
80
 
85
81
  register_op %i[softmax_cross_entropy_with_logits_v2 softmax_cross_entropy_with_logits] do |_context, tensor, inputs|
@@ -0,0 +1,40 @@
1
+ module TensorStream
2
+ class RubyStorageManager
3
+ def self.current_storage_manager
4
+ @storage_manager ||= RubyStorageManager.new
5
+ end
6
+
7
+ def initialize
8
+ @variables = {}
9
+ end
10
+
11
+ def exists?(graph, name)
12
+ return false if !@variables.key?(graph.object_id)
13
+
14
+ @variables[graph.object_id].key?(name.to_sym)
15
+ end
16
+
17
+ def create_variable(graph, name, value)
18
+ raise "no name specified" if name.nil?
19
+
20
+ @variables[graph.object_id][name.to_sym] = value
21
+ end
22
+
23
+ def assign_value(graph, name, value)
24
+ raise "no name specified" if name.nil?
25
+
26
+ @variables[graph.object_id] ||= {}
27
+ @variables[graph.object_id][name.to_sym] = value
28
+ end
29
+
30
+ def read_value(graph, name)
31
+ raise "no name specified" if name.nil?
32
+
33
+ @variables[graph.object_id][name.to_sym]
34
+ end
35
+
36
+ def clear_variables(graph)
37
+ @variables[graph.object_id] = {}
38
+ end
39
+ end
40
+ end
@@ -0,0 +1,74 @@
1
+ module TensorStream
2
+ ## Collection of machine learning related ops
3
+ module VariableOps
4
+ def self.included(klass)
5
+ klass.class_eval do
6
+ register_op :variable_v2 do |_context, tensor, _inputs|
7
+ value = var_read_value(tensor)
8
+ raise "variable #{tensor.options[:var_name]} not initalized" if value.nil?
9
+
10
+ value
11
+ end
12
+
13
+ register_op :assign do |context, tensor, inputs|
14
+ var_assign_value(tensor, inputs[0])
15
+ end
16
+
17
+ register_op :assign_add, no_eval: true do |context, tensor, inputs|
18
+ current_val = var_read_value(tensor)
19
+
20
+ raise "variable #{tensor.options[:var_name]} not initialized" if current_val.nil?
21
+ eval_a, eval_b = broadcast(current_val, inputs[0])
22
+ result = multi_array_op(->(var, val) { var + val }, eval_a, eval_b)
23
+ var_assign_value(tensor, result)
24
+ end
25
+
26
+ register_op :assign_sub do |context, tensor, inputs|
27
+ current_val = var_read_value(tensor)
28
+ raise "variable #{tensor.options[:var_name]} not initialized" if current_val.nil?
29
+ eval_a, eval_b = broadcast(current_val, inputs[0])
30
+ result = multi_array_op(->(var, val) { var - val }, eval_a, eval_b)
31
+ var_assign_value(tensor, result)
32
+ end
33
+
34
+ register_op :save_ts do |_context, tensor, inputs|
35
+ outputfile = inputs[0]
36
+ inputs = tensor.inputs.dup
37
+
38
+ inputs.shift
39
+ variables = {}
40
+ inputs.each do |savable|
41
+ val = var_read_value(savable)
42
+
43
+ packed_data = Zlib::Deflate.deflate(TensorStream::Packer.pack(val, savable.data_type))
44
+ variables[savable.options[:var_name]] = {
45
+ "shape" => shape_eval(val),
46
+ "data" => Base64.strict_encode64(packed_data),
47
+ }
48
+ end
49
+
50
+ File.write(outputfile, {"variables" => variables}.to_yaml)
51
+ nil
52
+ end
53
+
54
+ register_op :restore_ts do |_context, tensor, inputs|
55
+ inputs = inputs.dup
56
+ filename = inputs.shift
57
+ tensor_names = inputs
58
+
59
+ input_dump = YAML.safe_load(File.read(filename), [Symbol])
60
+ vars = tensor.graph.get_collection(GraphKeys::GLOBAL_VARIABLES)
61
+ vars.select! { |v| input_dump["variables"].key?(v.name) && tensor_names.include?(v.name) }
62
+ vars.each do |variable|
63
+ data = TensorStream::Packer.unpack(Zlib::Inflate.inflate(Base64.decode64(input_dump["variables"][variable.name]["data"])), variable.data_type)
64
+ shape = input_dump["variables"][variable.name]["shape"]
65
+ variable.buffer = nil
66
+ var_assign_value(variable, TensorShape.reshape(data, shape))
67
+ end
68
+
69
+ nil
70
+ end
71
+ end
72
+ end
73
+ end
74
+ end
@@ -2,12 +2,14 @@ require "tensor_stream/evaluator/operation_helpers/random_gaussian"
2
2
  require "tensor_stream/evaluator/operation_helpers/array_ops_helper"
3
3
  require "tensor_stream/evaluator/operation_helpers/math_helper"
4
4
  require "tensor_stream/evaluator/base_evaluator"
5
+ require "tensor_stream/evaluator/ruby/storage_manager"
5
6
  require "tensor_stream/evaluator/ruby/math_ops"
6
7
  require "tensor_stream/evaluator/ruby/nn_ops"
7
8
  require "tensor_stream/evaluator/ruby/array_ops"
8
9
  require "tensor_stream/evaluator/ruby/random_ops"
9
10
  require "tensor_stream/evaluator/ruby/images_ops"
10
11
  require "tensor_stream/evaluator/ruby/check_ops"
12
+ require "tensor_stream/evaluator/ruby/variable_ops"
11
13
 
12
14
  module TensorStream
13
15
  module Evaluator
@@ -41,6 +43,11 @@ module TensorStream
41
43
  include TensorStream::RandomOps
42
44
  include TensorStream::ImagesOps
43
45
  include TensorStream::CheckOps
46
+ include TensorStream::VariableOps
47
+
48
+ def self.get_storage_manager
49
+ RubyStorageManager.current_storage_manager
50
+ end
44
51
 
45
52
  def run(tensor, execution_context)
46
53
  return tensor.map { |t| run(t, execution_context) } if tensor.is_a?(Array) && !tensor.empty? && tensor[0].is_a?(Tensor)
@@ -82,6 +89,18 @@ module TensorStream
82
89
 
83
90
  protected
84
91
 
92
+ def var_read_value(tensor)
93
+ @storage_manager ||= TensorStream::RubyStorageManager.current_storage_manager
94
+ @storage_manager.read_value(tensor.graph, tensor.options[:var_name])
95
+ end
96
+
97
+ def var_assign_value(tensor, value)
98
+ @storage_manager ||= TensorStream::RubyStorageManager.current_storage_manager
99
+ @storage_manager.assign_value(tensor.graph, tensor.options[:var_name] || tensor.name, value)
100
+
101
+ value
102
+ end
103
+
85
104
  def prepare_input(tensor, context, options = {})
86
105
  return nil unless tensor
87
106
 
@@ -154,37 +173,10 @@ module TensorStream
154
173
  end
155
174
  end
156
175
 
157
- register_op :variable_v2, no_eval: true do |_context, tensor, _inputs|
158
- value = tensor.options[:container].read_value
159
- raise "variable #{tensor.options[:container].name} not initalized" if value.nil?
160
-
161
- value
162
- end
163
-
164
176
  register_op :stop_gradient, no_eval: true do |_context, _tensor, inputs|
165
177
  inputs[0]
166
178
  end
167
179
 
168
- register_op :assign, noop: true do |context, tensor, _inputs|
169
- assign = tensor.inputs[0] || tensor
170
- assign.container = global_eval(tensor, tensor.inputs[1], context)
171
- assign.container
172
- end
173
-
174
- register_op :assign_add, noop: true do |context, tensor, _inputs|
175
- assign = tensor.inputs[0] || tensor
176
-
177
- assign.container = process_vector_math_op(tensor, tensor.inputs[0], tensor.inputs[1], context) { |t, u| t + u }
178
- assign.container
179
- end
180
-
181
- register_op :assign_sub, noop: true do |context, tensor, _inputs|
182
- assign = tensor.inputs[0] || tensor
183
-
184
- assign.container = process_vector_math_op(tensor, tensor.inputs[0], tensor.inputs[1], context) { |t, u| t - u }
185
- assign.container
186
- end
187
-
188
180
  register_op :less do |context, tensor, inputs|
189
181
  a, b = inputs
190
182
  call_vector_op(tensor, :less, a, b, context) { |t, u| t < u }
@@ -236,44 +228,6 @@ module TensorStream
236
228
  softmax(inputs[0])
237
229
  end
238
230
 
239
- register_op :save_ts do |_context, tensor, inputs|
240
- outputfile = inputs[0]
241
- inputs = tensor.inputs.dup
242
-
243
- inputs.shift
244
- variables = {}
245
- inputs.each do |savable|
246
- val = savable.container
247
- packed_data = Zlib::Deflate.deflate(TensorStream::Packer.pack(val, savable.data_type))
248
- variables[savable.name] = {
249
- "shape" => shape_eval(val),
250
- "data" => Base64.strict_encode64(packed_data),
251
- }
252
- end
253
-
254
- File.write(outputfile, {"variables" => variables}.to_yaml)
255
- nil
256
- end
257
-
258
- register_op :restore_ts do |_context, tensor, inputs|
259
- inputs = inputs.dup
260
- filename = inputs.shift
261
- tensor_names = inputs
262
-
263
- input_dump = YAML.safe_load(File.read(filename), [Symbol])
264
- vars = tensor.graph.get_collection(GraphKeys::GLOBAL_VARIABLES)
265
-
266
- vars.select! { |v| input_dump["variables"].key?(v.name) && tensor_names.include?(v.name) }
267
- vars.each do |variable|
268
- data = TensorStream::Packer.unpack(Zlib::Inflate.inflate(Base64.decode64(input_dump["variables"][variable.name]["data"])), variable.data_type)
269
- shape = input_dump["variables"][variable.name]["shape"]
270
- variable.buffer = nil
271
- variable.value = TensorShape.reshape(data, shape)
272
- end
273
-
274
- nil
275
- end
276
-
277
231
  register_op :check_numerics do |context, tensor, inputs|
278
232
  message = tensor.options[:message]
279
233
  call_op(inputs[0], context) do |t, _b|
@@ -379,7 +333,7 @@ module TensorStream
379
333
  elem = args[0]
380
334
  if elem.is_a?(Array)
381
335
  elem.each_with_index.collect do |_item, index|
382
- indexed_args = args.collect { |a| a[index] }
336
+ indexed_args = args.collect { |a| a = a.is_a?(Array) ? a : [a]; a[index] }
383
337
  multi_array_op(func, *indexed_args)
384
338
  end
385
339
  else
@@ -30,6 +30,7 @@ module TensorStream
30
30
  :"#{GraphKeys::TRAINABLE_VARIABLES}" => [],
31
31
  }
32
32
  @constants = {}
33
+ TensorStream::Evaluator.clear_storages(self)
33
34
  end
34
35
 
35
36
  def as_default
@@ -129,7 +130,7 @@ module TensorStream
129
130
 
130
131
  def add_op(operation, *args)
131
132
  options = if args.last.is_a?(Hash)
132
- args.pop
133
+ args.pop || {}
133
134
  else
134
135
  {}
135
136
  end
@@ -180,8 +181,7 @@ module TensorStream
180
181
 
181
182
  def add_variable!(node, options = {})
182
183
  node = add_variable(node, options)
183
- op = Graph.get_default_graph.add_op!(:variable_v2, container: node, internal_name: node.name, shape: options[:shape], data_type: options[:data_type])
184
- node.name = op.name
184
+ op = Graph.get_default_graph.add_op!(:variable_v2, var_name: node.name, shape: options[:shape], data_type: options[:data_type])
185
185
  op
186
186
  end
187
187
 
@@ -31,15 +31,13 @@ module TensorStream
31
31
  options = {}
32
32
 
33
33
  new_var = nil
34
- if op_def.dig(:attrs, :container)
34
+ if op_def[:op].to_sym == :variable_v2
35
35
  new_var = Variable.new(op_def.dig(:attrs, :data_type))
36
- var_shape = op_def.dig(:attrs, :container, :shape)
37
- var_options = op_def.dig(:attrs, :container, :options)
38
- var_options[:name] = op_def[:name]
39
36
 
40
- new_var.prepare(var_shape.size, var_shape, TensorStream.get_variable_scope, var_options)
41
- options[:container] = new_var
37
+ var_options = {}
38
+ var_options[:name] = op_def.dig(:attrs, :var_name)
42
39
 
40
+ new_var.prepare(nil, nil, TensorStream.get_variable_scope, var_options)
43
41
  @graph.add_variable(new_var, var_options)
44
42
  end
45
43
 
@@ -10,13 +10,7 @@ module TensorStream
10
10
  def self.infer_shape(tensor)
11
11
  case tensor.operation
12
12
  when :assign
13
- possible_shape = if tensor.inputs[0]&.shape&.shape
14
- tensor.inputs[0].shape.shape
15
- else
16
- tensor.inputs[1].shape.shape
17
- end
18
-
19
- possible_shape
13
+ tensor.inputs[0]&.shape&.shape
20
14
  when :const
21
15
  shape_eval(tensor.options[:value])
22
16
  when :variable_v2
@@ -7,7 +7,7 @@ module TensorStream
7
7
  attr_accessor :name, :operation, :inputs, :rank, :device, :consumers, :breakpoint
8
8
  attr_reader :outputs, :options, :is_const, :data_type, :shape
9
9
 
10
- def initialize(graph, inputs:, options:)
10
+ def initialize(graph, inputs: [], options: {})
11
11
  @consumers = Set.new
12
12
  @outputs = []
13
13
  @op = self
@@ -42,14 +42,6 @@ module TensorStream
42
42
  @options[:container] ? @options[:container].buffer : nil
43
43
  end
44
44
 
45
- def container
46
- @options[:container].read_value
47
- end
48
-
49
- def container=(value)
50
- @options[:container].value = value
51
- end
52
-
53
45
  def set_input(index, value)
54
46
  @inputs[index] = value
55
47
  @shape = TensorShape.new(TensorStream::InferShape.infer_shape(self))
@@ -58,6 +50,10 @@ module TensorStream
58
50
  @data_type = set_data_type(@options[:data_type])
59
51
  end
60
52
 
53
+ def set_option(key, value)
54
+ @options.merge!(key.to_sym => value)
55
+ end
56
+
61
57
  def infer_const
62
58
  return false if breakpoint
63
59
 
@@ -68,7 +64,7 @@ module TensorStream
68
64
  true
69
65
  when :placeholder
70
66
  false
71
- when :variable_v2
67
+ when :variable_v2, :assign, :assign_add, :assign_sub
72
68
  false
73
69
  else
74
70
  non_const = @inputs.compact.find { |input| !input.is_const }
@@ -18,17 +18,7 @@ module TensorStream
18
18
  end
19
19
 
20
20
  def get_evaluator_classes(evaluators)
21
- @evaluator_classes = if evaluators.is_a?(Array)
22
- if evaluators.empty?
23
- TensorStream::Evaluator.default_evaluators
24
- else
25
- evaluators.collect { |name| Object.const_get("TensorStream::Evaluator::#{camelize(name.to_s)}") }
26
- end
27
- elsif evaluators.nil?
28
- TensorStream::Evaluator.default_evaluators
29
- else
30
- [Object.const_get("TensorStream::Evaluator::#{camelize(evaluators.to_s)}")]
31
- end
21
+ @evaluator_classes = TensorStream::EvaluatorUtils.get_evaluator_classes(evaluators)
32
22
  end
33
23
 
34
24
  def clear_session_cache
@@ -58,7 +48,8 @@ module TensorStream
58
48
  # scan for placeholders and assign value
59
49
  options[:feed_dict]&.each_key do |k|
60
50
  if k.is_a?(Placeholder)
61
- context[k.name.to_sym] = options[:feed_dict][k]
51
+ ph = options[:feed_dict][k]
52
+ context[k.name.to_sym] = ph.is_a?(Tensor) ? ph.op : ph
62
53
  elsif k.is_a?(String)
63
54
  target_graph = args[0].graph
64
55
  node = target_graph.get_node(k)
@@ -4,6 +4,7 @@ module TensorStream
4
4
  # Base class that defines a tensor like interface
5
5
  class Tensor
6
6
  include OpHelper
7
+ extend OpHelper
7
8
  include TensorMixins
8
9
 
9
10
  attr_reader :graph, :value
@@ -50,7 +50,6 @@ module TensorStream
50
50
  meta_data = JSON.parse(File.read(meta_file))
51
51
  gs = meta_data["gs"]
52
52
  filename = File.join(modelpath, ["model", gs, ".ckpt"].compact.join("-"))
53
-
54
53
  session.run(@restore_op, feed_dict: {@filename => filename})
55
54
  end
56
55
 
@@ -45,25 +45,22 @@ module TensorStream
45
45
  # Creates a variable
46
46
  # A variable maintains state across sessions
47
47
  def variable(value, name: nil, initializer: nil, graph: nil, dtype: nil, trainable: true)
48
- op = Graph.get_default_graph.add_op(:assign, nil, value)
49
48
  common_options = {
50
- initializer: initializer || op,
49
+ initializer: TensorStream.convert_to_tensor(initializer || value),
51
50
  name: name,
52
51
  graph: graph,
53
52
  dtype: dtype,
54
53
  trainable: trainable,
55
54
  }
56
55
  tensor = if value.is_a?(String)
57
- i_var(dtype || :string, 0, [], get_variable_scope, common_options)
58
- elsif value.is_a?(Integer)
59
- i_var(dtype || :int32, 0, [], get_variable_scope, common_options)
60
- elsif value.is_a?(Float)
61
- i_var(dtype || :float32, 0, [], get_variable_scope, common_options)
62
- else
63
- i_var(dtype || :float32, 0, nil, get_variable_scope, common_options)
64
- end
65
- op.set_input(0, tensor.op)
66
- Graph.get_default_graph.add_node(op)
56
+ i_var(dtype || :string, 0, [], get_variable_scope, common_options)
57
+ elsif value.is_a?(Integer)
58
+ i_var(dtype || :int32, 0, [], get_variable_scope, common_options)
59
+ elsif value.is_a?(Float)
60
+ i_var(dtype || :float32, 0, [], get_variable_scope, common_options)
61
+ else
62
+ i_var(dtype || :float32, 0, nil, get_variable_scope, common_options)
63
+ end
67
64
  tensor
68
65
  end
69
66
 
@@ -19,7 +19,11 @@ module TensorStream
19
19
  node = graph.get_tensor_by_name(node_key)
20
20
  case node.operation
21
21
  when :variable_v2
22
- value = node.container
22
+ value = Evaluator.read_variable(node.graph, node.options[:var_name])
23
+ if value.nil?
24
+ raise "#{node.options[:var_name]} has no value"
25
+ end
26
+
23
27
  options = {
24
28
  value: value,
25
29
  data_type: node.data_type,
@@ -46,17 +46,16 @@ module TensorStream
46
46
 
47
47
  def assign(value, name: nil, use_locking: false)
48
48
  TensorStream.check_data_types(self, value)
49
- _op(:assign, self, value, name: name)
49
+ _op(:assign, value, name: name, var_name: @name)
50
50
  end
51
51
 
52
52
  def read_value
53
- @value = buffer.to_ruby if buffer
54
- @value
53
+ Evaluator.read_variable(@graph, @name)
55
54
  end
56
55
 
57
56
  def assign_add(value, name: nil)
58
57
  TensorStream.check_data_types(self, value)
59
- _op(:assign_add, self, value, data_type: data_type, name: name)
58
+ _op(:assign_add, value, data_type: data_type, name: name, var_name: @name)
60
59
  end
61
60
 
62
61
  def to_math(_tensor, _name_only = false, _max_depth = 99, _unused = 0)
@@ -65,11 +64,15 @@ module TensorStream
65
64
 
66
65
  def assign_sub(value)
67
66
  TensorStream.check_data_types(self, value)
68
- _op(:assign_sub, self, value)
67
+ _op(:assign_sub, value, data_type: data_type, name: name, var_name: @name)
69
68
  end
70
69
 
71
70
  def self.variables_initializer(collection)
72
- TensorStream.group(TensorStream.get_default_graph.get_collection(collection).map(&:initializer))
71
+ global_variables_ops = TensorStream.get_default_graph.get_collection(collection).map do |variable|
72
+ _op(:assign, variable.initializer, var_name: variable.name)
73
+ end
74
+
75
+ TensorStream.group(global_variables_ops)
73
76
  end
74
77
 
75
78
  def self.global_variables_initializer
@@ -1,5 +1,5 @@
1
1
  module TensorStream
2
- VERSION = "1.0.8".freeze
2
+ VERSION = "1.0.9".freeze
3
3
 
4
4
  def self.version
5
5
  VERSION
@@ -32,7 +32,7 @@ Gem::Specification.new do |spec|
32
32
  spec.require_paths = ["lib"]
33
33
 
34
34
  spec.add_development_dependency "bundler"
35
- spec.add_development_dependency "rake", "~> 10.0"
35
+ spec.add_development_dependency "rake", "~> 12.3"
36
36
  spec.add_development_dependency "rspec", "~> 3.0"
37
37
  spec.add_development_dependency "awesome_print"
38
38
  spec.add_development_dependency "rubocop"
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: tensor_stream
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.0.8
4
+ version: 1.0.9
5
5
  platform: ruby
6
6
  authors:
7
7
  - Joseph Emmanuel Dayo
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2019-06-12 00:00:00.000000000 Z
11
+ date: 2020-12-26 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: bundler
@@ -30,14 +30,14 @@ dependencies:
30
30
  requirements:
31
31
  - - "~>"
32
32
  - !ruby/object:Gem::Version
33
- version: '10.0'
33
+ version: '12.3'
34
34
  type: :development
35
35
  prerelease: false
36
36
  version_requirements: !ruby/object:Gem::Requirement
37
37
  requirements:
38
38
  - - "~>"
39
39
  - !ruby/object:Gem::Version
40
- version: '10.0'
40
+ version: '12.3'
41
41
  - !ruby/object:Gem::Dependency
42
42
  name: rspec
43
43
  requirement: !ruby/object:Gem::Requirement
@@ -317,6 +317,7 @@ files:
317
317
  - lib/tensor_stream/evaluator/base_evaluator.rb
318
318
  - lib/tensor_stream/evaluator/buffer.rb
319
319
  - lib/tensor_stream/evaluator/evaluator.rb
320
+ - lib/tensor_stream/evaluator/evaluator_utils.rb
320
321
  - lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb
321
322
  - lib/tensor_stream/evaluator/operation_helpers/math_helper.rb
322
323
  - lib/tensor_stream/evaluator/operation_helpers/random_gaussian.rb
@@ -326,6 +327,8 @@ files:
326
327
  - lib/tensor_stream/evaluator/ruby/math_ops.rb
327
328
  - lib/tensor_stream/evaluator/ruby/nn_ops.rb
328
329
  - lib/tensor_stream/evaluator/ruby/random_ops.rb
330
+ - lib/tensor_stream/evaluator/ruby/storage_manager.rb
331
+ - lib/tensor_stream/evaluator/ruby/variable_ops.rb
329
332
  - lib/tensor_stream/evaluator/ruby_evaluator.rb
330
333
  - lib/tensor_stream/exceptions.rb
331
334
  - lib/tensor_stream/generated_stub/ops.rb