tensor_stream 0.8.6 → 0.9.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +1 -3
- data/lib/tensor_stream/evaluator/ruby/array_ops.rb +4 -4
- data/lib/tensor_stream/evaluator/ruby/nn_ops.rb +1 -0
- data/lib/tensor_stream/operation.rb +14 -16
- data/lib/tensor_stream/ops.rb +1 -1
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/mnist_data.rb +5 -4
- metadata +3 -5
- data/benchmark/benchmark.rb +0 -88
- data/samples/rnn.rb +0 -105
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d5c4d8c8c2e586ef8c9cce0b57d31b68d9b30ddba682c79e0de5e0c905c76a22
|
4
|
+
data.tar.gz: c503cbef1dd51f563479a248b209f62b035fc076a531269b1d26656521a928a0
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8a9fb88f5ac1c4f8ec47809405370f28009630155b56e6f1f9e0b1cf0d975188bcfe522216226d425c135a43551e08ddc9603c6ccf2c37e6d78ea3321c52ff5d
|
7
|
+
data.tar.gz: '080d79da1a32290f9ee5b411270835a80f9dd9d1b9d1d10ee28d67ad82c856f2bb3b31bfd122812ba6ff3206b3ff25ccf5294a5a2837d22cd038940229161ce4'
|
data/README.md
CHANGED
@@ -1,6 +1,4 @@
|
|
1
|
-
[](https://badge.fury.io/rb/tensor_stream)
|
2
|
-
|
3
|
-
[](https://circleci.com/gh/jedld/tensor_stream)
|
1
|
+
[](https://badge.fury.io/rb/tensor_stream)[](https://circleci.com/gh/jedld/tensor_stream) [](https://gitter.im/tensor_stream/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
|
4
2
|
|
5
3
|
# TensorStream
|
6
4
|
|
@@ -122,7 +122,7 @@ module TensorStream
|
|
122
122
|
|
123
123
|
res = TensorShape.reshape(output_buffer, new_shape)
|
124
124
|
|
125
|
-
TensorStream::Evaluator::OutputGroup.new(res)
|
125
|
+
TensorStream::Evaluator::OutputGroup.new(res, res.map { tensor.inputs[0].data_type })
|
126
126
|
end
|
127
127
|
|
128
128
|
register_op :squeeze do |_context, tensor, inputs|
|
@@ -302,7 +302,7 @@ module TensorStream
|
|
302
302
|
split_tensor(value, begin_index, end_index, axis)
|
303
303
|
end
|
304
304
|
end
|
305
|
-
TensorStream::Evaluator::OutputGroup.new(res)
|
305
|
+
TensorStream::Evaluator::OutputGroup.new(res, res.map { tensor.inputs[0].data_type })
|
306
306
|
end
|
307
307
|
|
308
308
|
register_op :reshape do |_context, _tensor, inputs|
|
@@ -352,11 +352,11 @@ module TensorStream
|
|
352
352
|
shape_eval(inputs[0], tensor.options[:out_type])
|
353
353
|
end
|
354
354
|
|
355
|
-
register_op :shape_n do |_context,
|
355
|
+
register_op :shape_n do |_context, tensor, inputs|
|
356
356
|
shapes = inputs.collect do |input|
|
357
357
|
shape_eval(input)
|
358
358
|
end
|
359
|
-
TensorStream::Evaluator::OutputGroup.new(shapes)
|
359
|
+
TensorStream::Evaluator::OutputGroup.new(shapes, shapes.map { tensor.options[:out_type] })
|
360
360
|
end
|
361
361
|
end
|
362
362
|
end
|
@@ -40,6 +40,7 @@ module TensorStream
|
|
40
40
|
register_op :apply_adagrad do |_context, tensor, inputs|
|
41
41
|
target_var, accum, lr, grad = inputs
|
42
42
|
assign = tensor.inputs[0] || tensor
|
43
|
+
|
43
44
|
assign.value = multi_array_op(->(v, a, g) { v - (g * lr * (1.0 / Math.sqrt(a))) }, target_var, accum, grad)
|
44
45
|
assign.value
|
45
46
|
end
|
@@ -224,7 +224,7 @@ module TensorStream
|
|
224
224
|
when :index
|
225
225
|
input_shape = inputs[0].shape.shape
|
226
226
|
return nil if input_shape.nil?
|
227
|
-
|
227
|
+
input_shape[1, input_shape.size]
|
228
228
|
when :mean, :prod, :sum
|
229
229
|
return [] if inputs[1].nil?
|
230
230
|
return nil if inputs[0].nil?
|
@@ -235,7 +235,7 @@ module TensorStream
|
|
235
235
|
axis = inputs[1].is_a?(Tensor) ? inputs[1].value : inputs[1]
|
236
236
|
|
237
237
|
axis = [axis] unless axis.is_a?(Array)
|
238
|
-
|
238
|
+
input_shape.each_with_index.map do |s, index|
|
239
239
|
next nil if axis.include?(index)
|
240
240
|
s
|
241
241
|
end.compact
|
@@ -246,27 +246,27 @@ module TensorStream
|
|
246
246
|
|
247
247
|
input_shape = inputs[0].shape.shape
|
248
248
|
return new_shape if input_shape.nil?
|
249
|
-
|
250
|
-
|
249
|
+
return nil if input_shape.include?(nil)
|
250
|
+
TensorShape.fix_inferred_elements(new_shape, input_shape.reduce(:*))
|
251
251
|
when :flow_group
|
252
|
-
|
252
|
+
[]
|
253
253
|
when :zeros, :ones, :fill
|
254
|
-
|
254
|
+
inputs[0] ? inputs[0].value : options[:shape]
|
255
255
|
when :zeros_like, :ones_like
|
256
256
|
inputs[0].shape.shape
|
257
257
|
when :shape
|
258
|
-
|
258
|
+
inputs[0].shape.shape ? [inputs[0].shape.shape.size] : nil
|
259
259
|
when :mat_mul
|
260
260
|
shape1 = inputs[0].shape.shape.nil? ? nil : inputs[0].shape.shape[0]
|
261
261
|
shape2 = inputs[1].shape.shape.nil? ? nil : inputs[1].shape.shape[1]
|
262
|
-
|
262
|
+
[shape1, shape2]
|
263
263
|
when :transpose
|
264
264
|
return nil unless shape_full_specified(inputs[0])
|
265
265
|
return nil if inputs[1].is_a?(Tensor)
|
266
266
|
|
267
267
|
rank = inputs[0].shape.shape.size
|
268
268
|
perm = inputs[1] || (0...rank).to_a.reverse
|
269
|
-
|
269
|
+
perm.map { |p| inputs[0].shape.shape[p] }
|
270
270
|
when :stack
|
271
271
|
return nil unless shape_full_specified(inputs[0])
|
272
272
|
|
@@ -276,7 +276,7 @@ module TensorStream
|
|
276
276
|
rank = inputs[0].shape.shape.size + 1
|
277
277
|
axis = rank + axis if axis < 0
|
278
278
|
rotated_shape = Array.new(axis + 1) { new_shape.shift }
|
279
|
-
|
279
|
+
rotated_shape.rotate! + new_shape
|
280
280
|
when :concat
|
281
281
|
return nil if inputs[0].value.nil?
|
282
282
|
|
@@ -293,18 +293,16 @@ module TensorStream
|
|
293
293
|
|
294
294
|
new_shape = inputs[1].shape.shape.dup
|
295
295
|
new_shape[axis] = axis_size
|
296
|
-
|
296
|
+
new_shape
|
297
297
|
when :slice, :squeeze
|
298
|
-
|
298
|
+
nil
|
299
299
|
when :tile
|
300
|
-
|
300
|
+
nil
|
301
301
|
else
|
302
302
|
return nil if inputs[0].nil?
|
303
303
|
return inputs[0].shape.shape if inputs.size == 1
|
304
|
-
|
304
|
+
TensorShape.infer_shape(inputs[0].shape.shape, inputs[1].shape.shape) if inputs.size == 2 && inputs[0] && inputs[1]
|
305
305
|
end
|
306
|
-
|
307
|
-
nil
|
308
306
|
end
|
309
307
|
|
310
308
|
def propagate_consumer(consumer)
|
data/lib/tensor_stream/ops.rb
CHANGED
@@ -115,7 +115,7 @@ module TensorStream
|
|
115
115
|
end
|
116
116
|
|
117
117
|
if shapes_known
|
118
|
-
inputs.collect { |input| cons(input.shape.shape dtype: out_type) }
|
118
|
+
inputs.collect { |input| cons(input.shape.shape, dtype: out_type) }
|
119
119
|
else
|
120
120
|
res = _op(:shape_n, *inputs, out_type: out_type, name: name)
|
121
121
|
Array.new(inputs.size) do |index|
|
data/samples/mnist_data.rb
CHANGED
@@ -11,7 +11,7 @@ require 'tensor_stream'
|
|
11
11
|
require 'mnist-learn'
|
12
12
|
|
13
13
|
# Enable OpenCL hardware accelerated computation, not using OpenCL can be very slow
|
14
|
-
require 'tensor_stream/
|
14
|
+
# require 'tensor_stream/opencl'
|
15
15
|
|
16
16
|
tf = TensorStream
|
17
17
|
|
@@ -20,11 +20,11 @@ puts "downloading minst data"
|
|
20
20
|
mnist = Mnist.read_data_sets('/tmp/data', one_hot: true)
|
21
21
|
puts "downloading finished"
|
22
22
|
|
23
|
-
x = tf.placeholder(:float32, shape: [nil,
|
23
|
+
x = tf.placeholder(:float32, shape: [nil, 784])
|
24
24
|
w = tf.variable(tf.zeros([784, 10]))
|
25
25
|
b = tf.variable(tf.zeros([10]))
|
26
26
|
|
27
|
-
|
27
|
+
|
28
28
|
|
29
29
|
# model
|
30
30
|
y = tf.nn.softmax(tf.matmul(tf.reshape(x, [-1, 784]), w) + b)
|
@@ -37,10 +37,11 @@ cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
|
|
37
37
|
is_correct = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
|
38
38
|
accuracy = tf.reduce_mean(tf.cast(is_correct, :float32))
|
39
39
|
|
40
|
-
optimizer = TensorStream::Train::
|
40
|
+
optimizer = TensorStream::Train::AdamOptimizer.new
|
41
41
|
train_step = optimizer.minimize(cross_entropy)
|
42
42
|
|
43
43
|
sess = tf.session
|
44
|
+
init = tf.global_variables_initializer
|
44
45
|
sess.run(init)
|
45
46
|
|
46
47
|
(0...1000).each do |i|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: tensor_stream
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.9.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Joseph Emmanuel Dayo
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-
|
11
|
+
date: 2018-10-05 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -243,7 +243,6 @@ files:
|
|
243
243
|
- LICENSE.txt
|
244
244
|
- README.md
|
245
245
|
- Rakefile
|
246
|
-
- benchmark/benchmark.rb
|
247
246
|
- benchmark_intel.txt
|
248
247
|
- benchmark_nvidia.txt
|
249
248
|
- benchmark_ryzen_amd.txt
|
@@ -314,7 +313,6 @@ files:
|
|
314
313
|
- samples/multigpu.rb
|
315
314
|
- samples/nearest_neighbor.rb
|
316
315
|
- samples/raw_neural_net_sample.rb
|
317
|
-
- samples/rnn.rb
|
318
316
|
- tensor_stream.gemspec
|
319
317
|
homepage: http://www.github.com/jedld/tensor_stream
|
320
318
|
licenses:
|
@@ -337,7 +335,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
337
335
|
version: '0'
|
338
336
|
requirements: []
|
339
337
|
rubyforge_project:
|
340
|
-
rubygems_version:
|
338
|
+
rubygems_version: 2.7.7
|
341
339
|
signing_key:
|
342
340
|
specification_version: 4
|
343
341
|
summary: A Pure ruby tensorflow implementation
|
data/benchmark/benchmark.rb
DELETED
@@ -1,88 +0,0 @@
|
|
1
|
-
require "bundler/setup"
|
2
|
-
require 'tensor_stream'
|
3
|
-
require 'benchmark'
|
4
|
-
require 'pry-byebug'
|
5
|
-
require 'awesome_print'
|
6
|
-
require 'tensor_stream/evaluator/opencl/opencl_evaluator'
|
7
|
-
|
8
|
-
def tr(t, places = 1)
|
9
|
-
if t.is_a?(Array)
|
10
|
-
return t.collect do |v|
|
11
|
-
tr(v, places)
|
12
|
-
end
|
13
|
-
end
|
14
|
-
|
15
|
-
return t unless t.is_a?(Float)
|
16
|
-
|
17
|
-
t.round(places)
|
18
|
-
end
|
19
|
-
|
20
|
-
tf = TensorStream
|
21
|
-
|
22
|
-
srand(5)
|
23
|
-
seed = 5
|
24
|
-
tf.set_random_seed(seed)
|
25
|
-
|
26
|
-
SHAPES = [32, 32]
|
27
|
-
|
28
|
-
sess = tf.session(:ruby_evaluator)
|
29
|
-
|
30
|
-
a = tf.constant(sess.run(tf.random_uniform(SHAPES)))
|
31
|
-
a_int = tf.constant([
|
32
|
-
[1, 2, 3, 4, 4, 1, 4, 8, 3, 4, 1, 1],
|
33
|
-
[2, 2, 3, 4, 4, 1, 1, 1, 1, 4, 1, 1],
|
34
|
-
[3, 2, 3, 4, 0, 1, 1, 2, 1, 1, 2, 1],
|
35
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 1, 1, 3, 1],
|
36
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 1, 1, 4, 1],
|
37
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 1, 5, 1],
|
38
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 1, 6, 1],
|
39
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 0, 0, 1],
|
40
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 2, 6, 1],
|
41
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 2, 1, 1],
|
42
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 2, 1, 2],
|
43
|
-
[4, 2, 3, 4, 0, 1, 1, 0, 0, 2, 1, 2],
|
44
|
-
])
|
45
|
-
|
46
|
-
b = tf.constant(sess.run(tf.random_uniform(SHAPES)))
|
47
|
-
|
48
|
-
c = tf.constant(sess.run(tf.random_uniform(SHAPES)))
|
49
|
-
|
50
|
-
d = tf.constant(sess.run(tf.random_uniform(SHAPES)))
|
51
|
-
|
52
|
-
p = tf.placeholder('float')
|
53
|
-
q = tf.placeholder('float')
|
54
|
-
|
55
|
-
model = -tf.sin(a.dot(b + p) + c).dot(a) + tf.cos(a.dot(d + q))
|
56
|
-
single_function_test = (tf.sigmoid(a * p) * tf.sigmoid(b * q)) + c
|
57
|
-
pow_f = tf.pow(a, 3)
|
58
|
-
pow_i = tf.pow(a_int, 3)
|
59
|
-
matmul = tf.matmul(a, b)
|
60
|
-
out_of_order = tf.matmul(a, b) + tf.matmul(a, c)
|
61
|
-
softmax = tf.nn.softmax(a)
|
62
|
-
add_n = tf.add_n([a,b,c,d])
|
63
|
-
|
64
|
-
puts TensorStream::Evaluator.default_evaluators
|
65
|
-
|
66
|
-
sess2 = tf.session
|
67
|
-
|
68
|
-
puts `cat /proc/cpuinfo | grep "model name" | head -1`
|
69
|
-
device = TensorStream::Evaluator::OpenclEvaluator.default_device.native_device
|
70
|
-
puts "OpenCL device #{device.platform.to_s} #{device.name}"
|
71
|
-
Benchmark.bmbm do |x|
|
72
|
-
x.report("pure ruby add_n :") { 100.times do sess.run(add_n) end }
|
73
|
-
x.report("opencl ruby add_n :") { 100.times do sess2.run(add_n) end }
|
74
|
-
x.report("pure ruby ooo matmul :") { 100.times do sess.run(out_of_order) end }
|
75
|
-
x.report("opencl ooo matmul :") { 100.times do sess2.run(out_of_order) end }
|
76
|
-
x.report("pure ruby softmax :") { 100.times do sess.run(softmax) end }
|
77
|
-
x.report("opencl softmax :") { 100.times do sess2.run(softmax) end }
|
78
|
-
x.report("pure ruby matmul :") { 100.times do sess.run(matmul) end }
|
79
|
-
x.report("opencl matmul :") { 100.times do sess2.run(matmul) end }
|
80
|
-
x.report("pure ruby :") { 100.times do sess.run(model, feed_dict: { p => rand, q => rand }) end }
|
81
|
-
x.report("opencl :") { 100.times do sess2.run(model, feed_dict: { p => rand, q => rand }) end }
|
82
|
-
x.report("pure ruby single function:") { 100.times do sess.run(single_function_test, feed_dict: { p => rand, q => rand }) end }
|
83
|
-
x.report("opencl singlefunction:") { 100.times do sess2.run(single_function_test, feed_dict: { p => rand, q => rand }) end }
|
84
|
-
x.report("pure ruby pow float:") { 100.times do sess.run(pow_f, feed_dict: { p => rand, q => rand }) end }
|
85
|
-
x.report("opencl pow float:") { 100.times do sess2.run(pow_f, feed_dict: { p => rand, q => rand }) end }
|
86
|
-
x.report("pure ruby pow int:") { 100.times do sess.run(pow_i, feed_dict: { p => rand, q => rand }) end }
|
87
|
-
x.report("opencl pow int:") { 100.times do sess2.run(pow_i, feed_dict: { p => rand, q => rand }) end }
|
88
|
-
end
|
data/samples/rnn.rb
DELETED
@@ -1,105 +0,0 @@
|
|
1
|
-
# RNN sample
|
2
|
-
#
|
3
|
-
# Ruby port Example based on article by Erik Hallström
|
4
|
-
# https://medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767
|
5
|
-
#
|
6
|
-
#
|
7
|
-
|
8
|
-
require "bundler/setup"
|
9
|
-
require 'tensor_stream'
|
10
|
-
|
11
|
-
tf = TensorStream
|
12
|
-
|
13
|
-
num_epochs = 100
|
14
|
-
total_series_length = 50000
|
15
|
-
truncated_backprop_length = 15
|
16
|
-
state_size = 4
|
17
|
-
num_classes = 2
|
18
|
-
echo_step = 3
|
19
|
-
batch_size = 5
|
20
|
-
num_batches = total_series_length / batch_size / truncated_backprop_length
|
21
|
-
randomizer = TensorStream.random_uniform([total_series_length], minval: 0, maxval: 2)
|
22
|
-
|
23
|
-
|
24
|
-
def generate_data(randomizer, total_series_length, batch_size, echo_step)
|
25
|
-
x = randomizer.eval
|
26
|
-
y = x.rotate(-echo_step)
|
27
|
-
|
28
|
-
y[echo_step] = 0
|
29
|
-
|
30
|
-
x = TensorStream::TensorShape.reshape(x, [batch_size, -1]) # The first index changing slowest, subseries as rows
|
31
|
-
y = TensorStream::TensorShape.reshape(y, [batch_size, -1])
|
32
|
-
[x, y]
|
33
|
-
end
|
34
|
-
|
35
|
-
batchX_placeholder = tf.placeholder(:float32, shape: [batch_size, truncated_backprop_length], name: 'batch_x')
|
36
|
-
batchY_placeholder = tf.placeholder(:int32, shape: [batch_size, truncated_backprop_length], name: 'batch_y')
|
37
|
-
|
38
|
-
init_state = tf.placeholder(:float32, shape: [batch_size, state_size], name: 'init_state')
|
39
|
-
|
40
|
-
|
41
|
-
W = tf.variable(tf.random_uniform([state_size+1, state_size]), dtype: :float32, name: 'W')
|
42
|
-
b = tf.variable(tf.zeros([state_size]), dtype: :float32, name: 'b')
|
43
|
-
|
44
|
-
W2 = tf.variable(tf.random_uniform([state_size, num_classes]), dtype: :float32, name: 'W2')
|
45
|
-
b2 = tf.variable(tf.zeros([num_classes]), dtype: :float32, name: 'b2')
|
46
|
-
|
47
|
-
|
48
|
-
inputs_series = tf.unpack(batchX_placeholder, axis: 1)
|
49
|
-
labels_series = tf.unpack(batchY_placeholder, axis: 1)
|
50
|
-
|
51
|
-
current_state = init_state
|
52
|
-
states_series = []
|
53
|
-
|
54
|
-
inputs_series.each do |current_input|
|
55
|
-
current_input = tf.reshape(current_input, [batch_size, 1])
|
56
|
-
input_and_state_concatenated = tf.concat([current_input, current_state], 1) # Increasing number of columns
|
57
|
-
next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) # Broadcasted addition
|
58
|
-
states_series << next_state
|
59
|
-
current_state = next_state
|
60
|
-
end
|
61
|
-
|
62
|
-
logits_series = states_series.collect do |state|
|
63
|
-
tf.matmul(state, W2) + b2
|
64
|
-
end
|
65
|
-
|
66
|
-
predictions_series = logits_series.collect do |logits|
|
67
|
-
tf.nn.softmax(logits)
|
68
|
-
end
|
69
|
-
|
70
|
-
losses = logits_series.zip(labels_series).collect do |logits, labels|
|
71
|
-
tf.nn.sparse_softmax_cross_entropy_with_logits(logits: logits, labels: labels)
|
72
|
-
end
|
73
|
-
total_loss = tf.reduce_mean(losses)
|
74
|
-
|
75
|
-
train_step = TensorStream::Train::AdagradOptimizer.new(0.3).minimize(total_loss)
|
76
|
-
|
77
|
-
puts "#{tf.get_default_graph.nodes.keys.size} nodes created"
|
78
|
-
zeros_state = tf.zeros([batch_size, state_size]).eval
|
79
|
-
tf.session do |sess|
|
80
|
-
sess.run(tf.global_variables_initializer)
|
81
|
-
(0..num_epochs).each do |epoch_idx|
|
82
|
-
x, y = generate_data(randomizer, total_series_length, batch_size, echo_step)
|
83
|
-
_current_state = zeros_state
|
84
|
-
print("New data, epoch", epoch_idx, "\n")
|
85
|
-
(0..num_batches - 1).each do |batch_idx|
|
86
|
-
start_idx = batch_idx * truncated_backprop_length
|
87
|
-
end_idx = start_idx + truncated_backprop_length
|
88
|
-
|
89
|
-
batchX = x.map { |x| x[start_idx...end_idx] }
|
90
|
-
batchY = y.map { |y| y[start_idx...end_idx] }
|
91
|
-
|
92
|
-
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
|
93
|
-
[total_loss, train_step, current_state, predictions_series],
|
94
|
-
feed_dict: {
|
95
|
-
batchX_placeholder => batchX,
|
96
|
-
batchY_placeholder => batchY,
|
97
|
-
init_state => _current_state
|
98
|
-
})
|
99
|
-
|
100
|
-
if batch_idx%100 == 0
|
101
|
-
print("Step",batch_idx, " Loss ", _total_loss, "\n")
|
102
|
-
end
|
103
|
-
end
|
104
|
-
end
|
105
|
-
end
|