tensor_stream 0.8.0 → 0.8.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,101 +0,0 @@
1
- """ Neural Network.
2
-
3
- A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
4
- implementation with TensorFlow. This example is using the MNIST database
5
- of handwritten digits (http://yann.lecun.com/exdb/mnist/).
6
-
7
- Links:
8
- [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
9
-
10
- Author: Aymeric Damien
11
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
12
- """
13
-
14
- from __future__ import print_function
15
-
16
- # Import MNIST data
17
- from tensorflow.examples.tutorials.mnist import input_data
18
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
19
-
20
- import tensorflow as tf
21
-
22
- # Parameters
23
- learning_rate = 0.1
24
- num_steps = 500
25
- batch_size = 128
26
- display_step = 100
27
-
28
- # Network Parameters
29
- n_hidden_1 = 256 # 1st layer number of neurons
30
- n_hidden_2 = 256 # 2nd layer number of neurons
31
- num_input = 784 # MNIST data input (img shape: 28*28)
32
- num_classes = 10 # MNIST total classes (0-9 digits)
33
-
34
- # tf Graph input
35
- X = tf.placeholder("float", [None, num_input])
36
- Y = tf.placeholder("float", [None, num_classes])
37
-
38
- # Store layers weight & bias
39
- weights = {
40
- 'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
41
- 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
42
- 'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
43
- }
44
- biases = {
45
- 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
46
- 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
47
- 'out': tf.Variable(tf.random_normal([num_classes]))
48
- }
49
-
50
-
51
- # Create model
52
- def neural_net(x):
53
- # Hidden fully connected layer with 256 neurons
54
- layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
55
- # Hidden fully connected layer with 256 neurons
56
- layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
57
- # Output fully connected layer with a neuron for each class
58
- out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
59
- return out_layer
60
-
61
- # Construct model
62
- logits = neural_net(X)
63
- prediction = tf.nn.softmax(logits)
64
-
65
- # Define loss and optimizer
66
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
67
- logits=logits, labels=Y))
68
- optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
69
- train_op = optimizer.minimize(loss_op)
70
-
71
- # Evaluate model
72
- correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
73
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
74
-
75
- # Initialize the variables (i.e. assign their default value)
76
- init = tf.global_variables_initializer()
77
-
78
- # Start training
79
- with tf.Session() as sess:
80
-
81
- # Run the initializer
82
- sess.run(init)
83
-
84
- for step in range(1, num_steps+1):
85
- batch_x, batch_y = mnist.train.next_batch(batch_size)
86
- # Run optimization op (backprop)
87
- sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
88
- if step % display_step == 0 or step == 1:
89
- # Calculate batch loss and accuracy
90
- loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
91
- Y: batch_y})
92
- print("Step " + str(step) + ", Minibatch Loss= " + \
93
- "{:.4f}".format(loss) + ", Training Accuracy= " + \
94
- "{:.3f}".format(acc))
95
-
96
- print("Optimization Finished!")
97
-
98
- # Calculate accuracy for MNIST test images
99
- print("Testing Accuracy:", \
100
- sess.run(accuracy, feed_dict={X: mnist.test.images,
101
- Y: mnist.test.labels}))
data/test_samples/test.py DELETED
@@ -1,46 +0,0 @@
1
- import tensorflow as tf
2
-
3
- test_inputs = [
4
- [0.5937, 0.2343, 1.4332, 0.4395],
5
- [-1.0227, -0.6915, 1.2367, 0.3452],
6
- [-0.5675, 1.0374, 1.0429, 0.8839],
7
- [-0.1066, -0.0469, -1.6317, -1.4836],
8
- [0.7835, -3.0105, 1.713, -0.4536],
9
- [-0.3076, 1.3662, -0.6537, 0.0905],
10
- [-0.2459, 0.2243, -2.7048, 0.848],
11
- ]
12
-
13
- num_inputs = 4
14
- num_neurons = 5
15
- inputs = tf.placeholder("float", shape=(None, num_inputs))
16
- biases = tf.constant([0.5012, 1.302, -1.6217, 0.669, 0.1494], name='b1')
17
- biases2 = tf.constant([0.2012, 1.102, -1.5217, 0.469, 0.0494], name='b2')
18
-
19
- weights = tf.constant([
20
- [-0.9135, 1.0376, 0.8537, 0.4376, 1.3255],
21
- [-0.5921, -1.4081, 1.0614, -0.5283, 1.1832],
22
- [0.7285, -0.7844, 0.1793, -0.5275, -0.4426],
23
- [-1.4976, 0.4433, 2.2317, -2.0479, 0.7791]], name='w')
24
-
25
- weights_layer2 = tf.constant([
26
- [-1.0465, -0.8766, 1.6849, -0.6625, 0.7928],
27
- [2.0412, 1.3564, 0.7905, 0.6434, -2.5495],
28
- [2.4276, -0.6893, -1.5917, 0.0911, 0.9112],
29
- [-0.012, 0.0794, 1.3829, -1.018, -0.9328],
30
- [0.061, 0.9791, -2.1727, -0.9553, -1.434]], name='w2')
31
-
32
-
33
- sess = tf.Session()
34
-
35
- layer_1 = tf.matmul(inputs, weights) + biases
36
- neural_net = tf.matmul(layer_1, weights_layer2) + biases2
37
-
38
- output = sess.run(neural_net, feed_dict={ inputs: test_inputs })
39
-
40
- g0 = tf.gradients(layer_1, [weights, biases])
41
- g = tf.gradients(neural_net, [weights, biases])
42
- g2 = tf.gradients(neural_net, [weights_layer2, biases2])
43
-
44
- weight_gradient0, biases_gradient0 = sess.run(g0, feed_dict = { inputs: test_inputs })
45
- weight_gradient, biases_gradient = sess.run(g, feed_dict = { inputs: test_inputs })
46
- weight_gradient2, biases_gradient2 = sess.run(g2, feed_dict: { inputs => test_inputs })
@@ -1,87 +0,0 @@
1
- import tensorflow as tf
2
-
3
- batch_x = [
4
- [0.686274, 0.10196, 0.6509, 1.0, 0.9686, 0.49803, 0.0, 0.0, 0.0, 0.0],
5
- [0.543244, 0.10123, 0.4509, 0.0, 0.6986, 0.39803, 1.0, 0.0, 0.0, 0.0]]
6
-
7
- batch_y = [
8
- [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
9
- [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
10
- ]
11
-
12
- num_input = 10
13
- num_classes = 10
14
- n_hidden_1 = 4 # 1st layer number of neurons
15
- n_hidden_2 = 4 # 2nd layer number of neurons
16
-
17
- X = batch_x #tf.placeholder(tf.float32, shape=[None, num_input])
18
- Y = batch_y # tf.placeholder(tf.float32, shape=[None, num_classes])
19
-
20
- h1_init = tf.constant([[0.5937, 0.2343, 1.4332, 0.4395],
21
- [-1.0227, -0.6915, 1.2367, 0.3452],
22
- [-0.5675, 1.0374, 1.0429, 0.8839],
23
- [-0.1066, -0.0469, -1.6317, -1.4836],
24
- [0.7835, -3.0105, 1.713, -0.4536],
25
- [-0.3076, 1.3662, -0.6537, 0.0905],
26
- [-0.2459, 0.2243, -2.7048, 0.848],
27
- [0.3589, 0.3542, -0.0959, -1.327],
28
- [-0.4685, 0.0844, 0.2794, 2.1275],
29
- [-1.0733, 0.6189, 0.845, 0.033]])
30
-
31
- h2_init = tf.constant([[0.5012, 1.302, -1.6217, 0.669], [0.1494, -0.7837, -0.2978, 1.7745], [1.9727, -0.5312, -0.7391, 0.9187], [-0.6412, -1.4434, -0.8801, 0.9343]])
32
- h3_init = tf.constant([[0.5012, 1.302, -1.6217, 0.669, 0.1494, -0.7837, -0.2978, 1.7745, 1.9727, -0.5312],
33
- [-0.7391, 0.9187, -0.6412, -1.4434, -0.8801, 0.9343, -0.1665, -0.0032, 0.2959, -2.0488],
34
- [-0.9135, 1.0376, 0.8537, 0.4376, 1.3255, -0.5921, -1.4081, 1.0614, -0.5283, 1.1832],
35
- [0.7285, -0.7844, 0.1793, -0.5275, -0.4426, -1.4976, 0.4433, 2.2317, -2.0479, 0.7791]])
36
-
37
-
38
- b1_init = tf.constant([0.1494, -0.7837, -0.2978, 1.7745])
39
-
40
- b2_init = tf.constant([1.9727, -0.5312, -0.7391, 0.9187])
41
- out_init = tf.constant([-0.6412, -1.4434, -0.8801, 0.9343, -0.1665, -0.0032, 0.2959, -2.0488, -0.9135, 1.0376])
42
-
43
- h1 = tf.Variable(h1_init, dtype=tf.float32, name='h1')
44
- h2 = tf.Variable(h2_init, dtype=tf.float32, name='h2')
45
- h3 = tf.Variable(h3_init, dtype=tf.float32, name='out')
46
-
47
- b1 = tf.Variable(b1_init, dtype=tf.float32, name='b1')
48
- b2 = tf.Variable(b2_init, dtype=tf.float32, name='b2')
49
- out = tf.Variable(out_init, dtype=tf.float32, name='out2')
50
-
51
- layer_1 = tf.add(tf.matmul(X, h1), b1)
52
- # Hidden fully connected layer with 256 neurons
53
- layer_2 = tf.add(tf.matmul(layer_1, h2), b2)
54
- # Output fully connected layer with a neuron for each class
55
-
56
- sess = tf.Session()
57
-
58
- logits = tf.matmul(layer_2, h3) + out
59
- prediction = tf.nn.softmax(logits)
60
-
61
- loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y))
62
-
63
- optimizer = tf.train.GradientDescentOptimizer(0.01)
64
- train_op = optimizer.minimize(loss_op)
65
- init = tf.global_variables_initializer()
66
-
67
- sess.run(init)
68
- # print(sess.run(layer_1))
69
- tf.gradients(loss_op, [logits])
70
- print("------------")
71
-
72
- print("H1: ", sess.run(h1))
73
- print("------------ Running train 1")
74
- # sess.run(train_op, feed_dict={ X: batch_x, Y: batch_y })
75
- sess.run(train_op)
76
- print("H1:", sess.run(h1))
77
- print("H2:", sess.run(h2))
78
- print("H3:", sess.run(h3))
79
-
80
- print(sess.run(b1))
81
- print(sess.run(b2))
82
- print(sess.run(out))
83
-
84
- # sess.run(train_op, feed_dict={ X: batch_x, Y: batch_y })
85
- print("------------- Running train 2")
86
- sess.run(train_op)
87
- print("H1:", sess.run(h1))