tensor_stream 0.8.0 → 0.8.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +5 -5
- data/CHANGELOG.md +4 -0
- data/README.md +18 -5
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_adam.cl +23 -0
- data/lib/tensor_stream/evaluator/opencl/opencl_evaluator.rb +51 -4
- data/lib/tensor_stream/evaluator/ruby/math_ops.rb +144 -0
- data/lib/tensor_stream/evaluator/ruby/nn_ops.rb +99 -0
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +6 -253
- data/lib/tensor_stream/ops.rb +2 -1
- data/lib/tensor_stream/session.rb +17 -8
- data/lib/tensor_stream/train/adam_optimizer.rb +87 -0
- data/lib/tensor_stream/train/gradient_descent_optimizer.rb +2 -1
- data/lib/tensor_stream/train/optimizer.rb +25 -2
- data/lib/tensor_stream/train/slot_creator.rb +1 -1
- data/lib/tensor_stream/trainer.rb +1 -0
- data/lib/tensor_stream/utils.rb +25 -4
- data/lib/tensor_stream/variable.rb +1 -1
- data/lib/tensor_stream/variable_scope.rb +7 -1
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/iris.rb +9 -6
- data/samples/linear_regression.rb +6 -4
- data/samples/nearest_neighbor.rb +2 -2
- data/{test_samples → samples}/raw_neural_net_sample.rb +17 -20
- metadata +7 -8
- data/test_samples/error.graphml +0 -120
- data/test_samples/gradient_sample.graphml +0 -1255
- data/test_samples/neural_network_raw.py +0 -101
- data/test_samples/test.py +0 -46
- data/test_samples/test2.py +0 -87
@@ -1,101 +0,0 @@
|
|
1
|
-
""" Neural Network.
|
2
|
-
|
3
|
-
A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
|
4
|
-
implementation with TensorFlow. This example is using the MNIST database
|
5
|
-
of handwritten digits (http://yann.lecun.com/exdb/mnist/).
|
6
|
-
|
7
|
-
Links:
|
8
|
-
[MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
|
9
|
-
|
10
|
-
Author: Aymeric Damien
|
11
|
-
Project: https://github.com/aymericdamien/TensorFlow-Examples/
|
12
|
-
"""
|
13
|
-
|
14
|
-
from __future__ import print_function
|
15
|
-
|
16
|
-
# Import MNIST data
|
17
|
-
from tensorflow.examples.tutorials.mnist import input_data
|
18
|
-
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
19
|
-
|
20
|
-
import tensorflow as tf
|
21
|
-
|
22
|
-
# Parameters
|
23
|
-
learning_rate = 0.1
|
24
|
-
num_steps = 500
|
25
|
-
batch_size = 128
|
26
|
-
display_step = 100
|
27
|
-
|
28
|
-
# Network Parameters
|
29
|
-
n_hidden_1 = 256 # 1st layer number of neurons
|
30
|
-
n_hidden_2 = 256 # 2nd layer number of neurons
|
31
|
-
num_input = 784 # MNIST data input (img shape: 28*28)
|
32
|
-
num_classes = 10 # MNIST total classes (0-9 digits)
|
33
|
-
|
34
|
-
# tf Graph input
|
35
|
-
X = tf.placeholder("float", [None, num_input])
|
36
|
-
Y = tf.placeholder("float", [None, num_classes])
|
37
|
-
|
38
|
-
# Store layers weight & bias
|
39
|
-
weights = {
|
40
|
-
'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])),
|
41
|
-
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
|
42
|
-
'out': tf.Variable(tf.random_normal([n_hidden_2, num_classes]))
|
43
|
-
}
|
44
|
-
biases = {
|
45
|
-
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
|
46
|
-
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
|
47
|
-
'out': tf.Variable(tf.random_normal([num_classes]))
|
48
|
-
}
|
49
|
-
|
50
|
-
|
51
|
-
# Create model
|
52
|
-
def neural_net(x):
|
53
|
-
# Hidden fully connected layer with 256 neurons
|
54
|
-
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
|
55
|
-
# Hidden fully connected layer with 256 neurons
|
56
|
-
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
|
57
|
-
# Output fully connected layer with a neuron for each class
|
58
|
-
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
|
59
|
-
return out_layer
|
60
|
-
|
61
|
-
# Construct model
|
62
|
-
logits = neural_net(X)
|
63
|
-
prediction = tf.nn.softmax(logits)
|
64
|
-
|
65
|
-
# Define loss and optimizer
|
66
|
-
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
|
67
|
-
logits=logits, labels=Y))
|
68
|
-
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
|
69
|
-
train_op = optimizer.minimize(loss_op)
|
70
|
-
|
71
|
-
# Evaluate model
|
72
|
-
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
|
73
|
-
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
|
74
|
-
|
75
|
-
# Initialize the variables (i.e. assign their default value)
|
76
|
-
init = tf.global_variables_initializer()
|
77
|
-
|
78
|
-
# Start training
|
79
|
-
with tf.Session() as sess:
|
80
|
-
|
81
|
-
# Run the initializer
|
82
|
-
sess.run(init)
|
83
|
-
|
84
|
-
for step in range(1, num_steps+1):
|
85
|
-
batch_x, batch_y = mnist.train.next_batch(batch_size)
|
86
|
-
# Run optimization op (backprop)
|
87
|
-
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
|
88
|
-
if step % display_step == 0 or step == 1:
|
89
|
-
# Calculate batch loss and accuracy
|
90
|
-
loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
|
91
|
-
Y: batch_y})
|
92
|
-
print("Step " + str(step) + ", Minibatch Loss= " + \
|
93
|
-
"{:.4f}".format(loss) + ", Training Accuracy= " + \
|
94
|
-
"{:.3f}".format(acc))
|
95
|
-
|
96
|
-
print("Optimization Finished!")
|
97
|
-
|
98
|
-
# Calculate accuracy for MNIST test images
|
99
|
-
print("Testing Accuracy:", \
|
100
|
-
sess.run(accuracy, feed_dict={X: mnist.test.images,
|
101
|
-
Y: mnist.test.labels}))
|
data/test_samples/test.py
DELETED
@@ -1,46 +0,0 @@
|
|
1
|
-
import tensorflow as tf
|
2
|
-
|
3
|
-
test_inputs = [
|
4
|
-
[0.5937, 0.2343, 1.4332, 0.4395],
|
5
|
-
[-1.0227, -0.6915, 1.2367, 0.3452],
|
6
|
-
[-0.5675, 1.0374, 1.0429, 0.8839],
|
7
|
-
[-0.1066, -0.0469, -1.6317, -1.4836],
|
8
|
-
[0.7835, -3.0105, 1.713, -0.4536],
|
9
|
-
[-0.3076, 1.3662, -0.6537, 0.0905],
|
10
|
-
[-0.2459, 0.2243, -2.7048, 0.848],
|
11
|
-
]
|
12
|
-
|
13
|
-
num_inputs = 4
|
14
|
-
num_neurons = 5
|
15
|
-
inputs = tf.placeholder("float", shape=(None, num_inputs))
|
16
|
-
biases = tf.constant([0.5012, 1.302, -1.6217, 0.669, 0.1494], name='b1')
|
17
|
-
biases2 = tf.constant([0.2012, 1.102, -1.5217, 0.469, 0.0494], name='b2')
|
18
|
-
|
19
|
-
weights = tf.constant([
|
20
|
-
[-0.9135, 1.0376, 0.8537, 0.4376, 1.3255],
|
21
|
-
[-0.5921, -1.4081, 1.0614, -0.5283, 1.1832],
|
22
|
-
[0.7285, -0.7844, 0.1793, -0.5275, -0.4426],
|
23
|
-
[-1.4976, 0.4433, 2.2317, -2.0479, 0.7791]], name='w')
|
24
|
-
|
25
|
-
weights_layer2 = tf.constant([
|
26
|
-
[-1.0465, -0.8766, 1.6849, -0.6625, 0.7928],
|
27
|
-
[2.0412, 1.3564, 0.7905, 0.6434, -2.5495],
|
28
|
-
[2.4276, -0.6893, -1.5917, 0.0911, 0.9112],
|
29
|
-
[-0.012, 0.0794, 1.3829, -1.018, -0.9328],
|
30
|
-
[0.061, 0.9791, -2.1727, -0.9553, -1.434]], name='w2')
|
31
|
-
|
32
|
-
|
33
|
-
sess = tf.Session()
|
34
|
-
|
35
|
-
layer_1 = tf.matmul(inputs, weights) + biases
|
36
|
-
neural_net = tf.matmul(layer_1, weights_layer2) + biases2
|
37
|
-
|
38
|
-
output = sess.run(neural_net, feed_dict={ inputs: test_inputs })
|
39
|
-
|
40
|
-
g0 = tf.gradients(layer_1, [weights, biases])
|
41
|
-
g = tf.gradients(neural_net, [weights, biases])
|
42
|
-
g2 = tf.gradients(neural_net, [weights_layer2, biases2])
|
43
|
-
|
44
|
-
weight_gradient0, biases_gradient0 = sess.run(g0, feed_dict = { inputs: test_inputs })
|
45
|
-
weight_gradient, biases_gradient = sess.run(g, feed_dict = { inputs: test_inputs })
|
46
|
-
weight_gradient2, biases_gradient2 = sess.run(g2, feed_dict: { inputs => test_inputs })
|
data/test_samples/test2.py
DELETED
@@ -1,87 +0,0 @@
|
|
1
|
-
import tensorflow as tf
|
2
|
-
|
3
|
-
batch_x = [
|
4
|
-
[0.686274, 0.10196, 0.6509, 1.0, 0.9686, 0.49803, 0.0, 0.0, 0.0, 0.0],
|
5
|
-
[0.543244, 0.10123, 0.4509, 0.0, 0.6986, 0.39803, 1.0, 0.0, 0.0, 0.0]]
|
6
|
-
|
7
|
-
batch_y = [
|
8
|
-
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
|
9
|
-
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
|
10
|
-
]
|
11
|
-
|
12
|
-
num_input = 10
|
13
|
-
num_classes = 10
|
14
|
-
n_hidden_1 = 4 # 1st layer number of neurons
|
15
|
-
n_hidden_2 = 4 # 2nd layer number of neurons
|
16
|
-
|
17
|
-
X = batch_x #tf.placeholder(tf.float32, shape=[None, num_input])
|
18
|
-
Y = batch_y # tf.placeholder(tf.float32, shape=[None, num_classes])
|
19
|
-
|
20
|
-
h1_init = tf.constant([[0.5937, 0.2343, 1.4332, 0.4395],
|
21
|
-
[-1.0227, -0.6915, 1.2367, 0.3452],
|
22
|
-
[-0.5675, 1.0374, 1.0429, 0.8839],
|
23
|
-
[-0.1066, -0.0469, -1.6317, -1.4836],
|
24
|
-
[0.7835, -3.0105, 1.713, -0.4536],
|
25
|
-
[-0.3076, 1.3662, -0.6537, 0.0905],
|
26
|
-
[-0.2459, 0.2243, -2.7048, 0.848],
|
27
|
-
[0.3589, 0.3542, -0.0959, -1.327],
|
28
|
-
[-0.4685, 0.0844, 0.2794, 2.1275],
|
29
|
-
[-1.0733, 0.6189, 0.845, 0.033]])
|
30
|
-
|
31
|
-
h2_init = tf.constant([[0.5012, 1.302, -1.6217, 0.669], [0.1494, -0.7837, -0.2978, 1.7745], [1.9727, -0.5312, -0.7391, 0.9187], [-0.6412, -1.4434, -0.8801, 0.9343]])
|
32
|
-
h3_init = tf.constant([[0.5012, 1.302, -1.6217, 0.669, 0.1494, -0.7837, -0.2978, 1.7745, 1.9727, -0.5312],
|
33
|
-
[-0.7391, 0.9187, -0.6412, -1.4434, -0.8801, 0.9343, -0.1665, -0.0032, 0.2959, -2.0488],
|
34
|
-
[-0.9135, 1.0376, 0.8537, 0.4376, 1.3255, -0.5921, -1.4081, 1.0614, -0.5283, 1.1832],
|
35
|
-
[0.7285, -0.7844, 0.1793, -0.5275, -0.4426, -1.4976, 0.4433, 2.2317, -2.0479, 0.7791]])
|
36
|
-
|
37
|
-
|
38
|
-
b1_init = tf.constant([0.1494, -0.7837, -0.2978, 1.7745])
|
39
|
-
|
40
|
-
b2_init = tf.constant([1.9727, -0.5312, -0.7391, 0.9187])
|
41
|
-
out_init = tf.constant([-0.6412, -1.4434, -0.8801, 0.9343, -0.1665, -0.0032, 0.2959, -2.0488, -0.9135, 1.0376])
|
42
|
-
|
43
|
-
h1 = tf.Variable(h1_init, dtype=tf.float32, name='h1')
|
44
|
-
h2 = tf.Variable(h2_init, dtype=tf.float32, name='h2')
|
45
|
-
h3 = tf.Variable(h3_init, dtype=tf.float32, name='out')
|
46
|
-
|
47
|
-
b1 = tf.Variable(b1_init, dtype=tf.float32, name='b1')
|
48
|
-
b2 = tf.Variable(b2_init, dtype=tf.float32, name='b2')
|
49
|
-
out = tf.Variable(out_init, dtype=tf.float32, name='out2')
|
50
|
-
|
51
|
-
layer_1 = tf.add(tf.matmul(X, h1), b1)
|
52
|
-
# Hidden fully connected layer with 256 neurons
|
53
|
-
layer_2 = tf.add(tf.matmul(layer_1, h2), b2)
|
54
|
-
# Output fully connected layer with a neuron for each class
|
55
|
-
|
56
|
-
sess = tf.Session()
|
57
|
-
|
58
|
-
logits = tf.matmul(layer_2, h3) + out
|
59
|
-
prediction = tf.nn.softmax(logits)
|
60
|
-
|
61
|
-
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y))
|
62
|
-
|
63
|
-
optimizer = tf.train.GradientDescentOptimizer(0.01)
|
64
|
-
train_op = optimizer.minimize(loss_op)
|
65
|
-
init = tf.global_variables_initializer()
|
66
|
-
|
67
|
-
sess.run(init)
|
68
|
-
# print(sess.run(layer_1))
|
69
|
-
tf.gradients(loss_op, [logits])
|
70
|
-
print("------------")
|
71
|
-
|
72
|
-
print("H1: ", sess.run(h1))
|
73
|
-
print("------------ Running train 1")
|
74
|
-
# sess.run(train_op, feed_dict={ X: batch_x, Y: batch_y })
|
75
|
-
sess.run(train_op)
|
76
|
-
print("H1:", sess.run(h1))
|
77
|
-
print("H2:", sess.run(h2))
|
78
|
-
print("H3:", sess.run(h3))
|
79
|
-
|
80
|
-
print(sess.run(b1))
|
81
|
-
print(sess.run(b2))
|
82
|
-
print(sess.run(out))
|
83
|
-
|
84
|
-
# sess.run(train_op, feed_dict={ X: batch_x, Y: batch_y })
|
85
|
-
print("------------- Running train 2")
|
86
|
-
sess.run(train_op)
|
87
|
-
print("H1:", sess.run(h1))
|