tensor_stream 0.6.1 → 0.7.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +10 -0
- data/CHANGELOG.md +8 -0
- data/README.md +40 -1
- data/benchmark/benchmark.rb +4 -1
- data/lib/tensor_stream.rb +5 -0
- data/lib/tensor_stream/debugging/debugging.rb +4 -2
- data/lib/tensor_stream/device.rb +2 -1
- data/lib/tensor_stream/evaluator/base_evaluator.rb +43 -32
- data/lib/tensor_stream/evaluator/evaluator.rb +0 -1
- data/lib/tensor_stream/evaluator/opencl/kernels/acos.cl +8 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_gradient.cl +9 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/asin.cl +9 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_mod.cl +3 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/log_softmax.cl +26 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/max.cl +5 -5
- data/lib/tensor_stream/evaluator/opencl/kernels/min.cl +46 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/real_div.cl +3 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_cross.cl +27 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_cross_grad.cl +28 -0
- data/lib/tensor_stream/evaluator/opencl/opencl_buffer.rb +5 -6
- data/lib/tensor_stream/evaluator/opencl/opencl_evaluator.rb +200 -265
- data/lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb +4 -8
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +193 -122
- data/lib/tensor_stream/exceptions.rb +6 -0
- data/lib/tensor_stream/graph.rb +21 -6
- data/lib/tensor_stream/graph_builder.rb +67 -0
- data/lib/tensor_stream/graph_deserializers/protobuf.rb +271 -0
- data/lib/tensor_stream/graph_keys.rb +1 -0
- data/lib/tensor_stream/graph_serializers/pbtext.rb +11 -10
- data/lib/tensor_stream/helpers/op_helper.rb +7 -33
- data/lib/tensor_stream/helpers/string_helper.rb +16 -0
- data/lib/tensor_stream/math_gradients.rb +67 -44
- data/lib/tensor_stream/nn/nn_ops.rb +7 -1
- data/lib/tensor_stream/operation.rb +14 -27
- data/lib/tensor_stream/ops.rb +82 -29
- data/lib/tensor_stream/session.rb +4 -0
- data/lib/tensor_stream/tensor.rb +30 -12
- data/lib/tensor_stream/tensor_shape.rb +1 -1
- data/lib/tensor_stream/train/gradient_descent_optimizer.rb +37 -4
- data/lib/tensor_stream/train/saver.rb +46 -0
- data/lib/tensor_stream/train/utils.rb +37 -0
- data/lib/tensor_stream/trainer.rb +2 -0
- data/lib/tensor_stream/utils.rb +24 -14
- data/lib/tensor_stream/variable.rb +5 -11
- data/lib/tensor_stream/variable_scope.rb +15 -0
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/iris.rb +8 -4
- data/samples/linear_regression.rb +1 -1
- data/samples/multigpu.rb +73 -0
- data/samples/nearest_neighbor.rb +3 -3
- data/tensor_stream.gemspec +1 -1
- data/test_samples/raw_neural_net_sample.rb +4 -1
- metadata +21 -6
@@ -13,10 +13,10 @@ module TensorStream
|
|
13
13
|
# same as op but with a marker that it was internal generated
|
14
14
|
def i_op(code, *args)
|
15
15
|
options = if args.last.is_a?(Hash)
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
16
|
+
args.pop
|
17
|
+
else
|
18
|
+
{}
|
19
|
+
end
|
20
20
|
|
21
21
|
args << options.merge(internal: true)
|
22
22
|
Operation.new(code.to_sym, *args)
|
@@ -45,32 +45,6 @@ module TensorStream
|
|
45
45
|
arr
|
46
46
|
end
|
47
47
|
|
48
|
-
def dtype_eval(rank, value, data_type = nil)
|
49
|
-
dtype = if data_type.nil?
|
50
|
-
Tensor.detect_type(value[0])
|
51
|
-
else
|
52
|
-
data_type
|
53
|
-
end
|
54
|
-
|
55
|
-
rank += 1 if dtype == :array
|
56
|
-
|
57
|
-
[dtype, rank, value[0], value.size]
|
58
|
-
end
|
59
|
-
|
60
|
-
def val_to_dtype(value)
|
61
|
-
if value.is_a?(String)
|
62
|
-
:string
|
63
|
-
elsif value.is_a?(Float)
|
64
|
-
:float32
|
65
|
-
elsif value.is_a?(Integer)
|
66
|
-
:int32
|
67
|
-
elsif value.is_a?(Array)
|
68
|
-
:array
|
69
|
-
else
|
70
|
-
:float32
|
71
|
-
end
|
72
|
-
end
|
73
|
-
|
74
48
|
def fp_type?(type)
|
75
49
|
TensorStream::Ops::FLOATING_POINT_TYPES.include?(type)
|
76
50
|
end
|
@@ -88,10 +62,10 @@ module TensorStream
|
|
88
62
|
def shapes_fully_specified_and_equal(x, y)
|
89
63
|
return false if !shape_full_specified(x) || !shape_full_specified(y)
|
90
64
|
return false if x.shape.shape != y.shape.shape
|
91
|
-
|
65
|
+
|
92
66
|
true
|
93
67
|
end
|
94
|
-
|
68
|
+
|
95
69
|
def shape_full_specified(tensor)
|
96
70
|
return false if tensor.shape.nil?
|
97
71
|
return false if tensor.shape.shape.nil?
|
@@ -108,7 +82,7 @@ module TensorStream
|
|
108
82
|
axes = (axes + input_rank) % input_rank
|
109
83
|
axes_shape = i_op(:shape, axes)
|
110
84
|
TensorStream.dynamic_stitch([TensorStream.range(0, input_rank), axes],
|
111
|
-
|
85
|
+
[input_shape, i_op(:fill, axes_shape, 1)])
|
112
86
|
end
|
113
87
|
end
|
114
88
|
end
|
@@ -1,4 +1,6 @@
|
|
1
1
|
module TensorStream
|
2
|
+
# helper string methods usually found in ActiveSupport but
|
3
|
+
# need to replicate here
|
2
4
|
module StringHelper
|
3
5
|
def camelize(string, uppercase_first_letter = true)
|
4
6
|
string = if uppercase_first_letter
|
@@ -8,5 +10,19 @@ module TensorStream
|
|
8
10
|
end
|
9
11
|
string.gsub(/(?:_|(\/))([a-z\d]*)/) { "#{$1}#{$2.capitalize}" }.gsub('/', '::')
|
10
12
|
end
|
13
|
+
|
14
|
+
def underscore(string)
|
15
|
+
string.gsub(/::/, '/').
|
16
|
+
gsub(/([A-Z]+)([A-Z][a-z])/,'\1_\2').
|
17
|
+
gsub(/([a-z\d])([A-Z])/,'\1_\2').
|
18
|
+
tr("-", "_").
|
19
|
+
downcase
|
20
|
+
end
|
21
|
+
|
22
|
+
def symbolize_keys(hash)
|
23
|
+
hash.map do |k, v|
|
24
|
+
[k.to_sym, v]
|
25
|
+
end.to_h
|
26
|
+
end
|
11
27
|
end
|
12
28
|
end
|
@@ -18,7 +18,7 @@ module TensorStream
|
|
18
18
|
|
19
19
|
grad = i_op(:fill, tf.shape(tensor), tf.constant(1, dtype: wrt_dx.data_type))
|
20
20
|
|
21
|
-
_propagate(grad, tensor, wrt_dx, nodes_to_compute, options[:stop_gradients] || []
|
21
|
+
_propagate(grad, tensor, wrt_dx, nodes_to_compute, options[:stop_gradients] || []) || i_op(:zeros_like, wrt_dx)
|
22
22
|
end
|
23
23
|
|
24
24
|
def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = [])
|
@@ -29,16 +29,12 @@ module TensorStream
|
|
29
29
|
computed_op = _compute_derivative(tensor, grad)
|
30
30
|
|
31
31
|
if computed_op.is_a?(Array)
|
32
|
-
|
33
|
-
computed_op.each_with_index do |op_grad, index|
|
32
|
+
computed_op.each_with_index.collect do |op_grad, index|
|
34
33
|
next if op_grad.nil?
|
34
|
+
next unless nodes_to_compute.include?(tensor.inputs[index].name)
|
35
35
|
|
36
|
-
|
37
|
-
|
38
|
-
end
|
39
|
-
end
|
40
|
-
|
41
|
-
partials.compact.reduce(:+)
|
36
|
+
_propagate(op_grad, tensor.inputs[index], stop_tensor, nodes_to_compute, stop_gradients)
|
37
|
+
end.compact.reduce(:+)
|
42
38
|
else
|
43
39
|
return nil if computed_op.nil?
|
44
40
|
_propagate(computed_op, tensor.inputs[0], stop_tensor, nodes_to_compute, stop_gradients)
|
@@ -51,14 +47,32 @@ module TensorStream
|
|
51
47
|
y = node.inputs[1] if node.inputs[1]
|
52
48
|
|
53
49
|
case node.operation
|
50
|
+
when :add_n
|
51
|
+
return [grad] * node.inputs.size
|
54
52
|
when :add
|
55
53
|
return [grad, grad] if shapes_fully_specified_and_equal(x, y)
|
56
54
|
sx = tf.shape(x, name: 'add/shape_x')
|
57
55
|
sy = tf.shape(y, name: 'add/shape_y')
|
58
56
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
59
57
|
|
60
|
-
[
|
61
|
-
|
58
|
+
[tf.reshape(tf.reduce_sum(grad, rx, name: 'add/reduce_sum_x'), sx),
|
59
|
+
tf.reshape(tf.reduce_sum(grad, ry, name: 'add/reduce_sum_y'), sy)]
|
60
|
+
when :asin
|
61
|
+
tf.control_dependencies([grad]) do
|
62
|
+
x2 = tf.square(x)
|
63
|
+
one = tf.constant(1, dtype: grad.data_type)
|
64
|
+
den = tf.sqrt(tf.subtract(one, x2))
|
65
|
+
inv = tf.reciprocal(den)
|
66
|
+
grad * inv
|
67
|
+
end
|
68
|
+
when :acos
|
69
|
+
tf.control_dependencies([grad]) do
|
70
|
+
x2 = tf.square(x)
|
71
|
+
one = tf.constant(1, dtype: grad.data_type)
|
72
|
+
den = tf.sqrt(tf.subtract(one, x2))
|
73
|
+
inv = tf.reciprocal(den)
|
74
|
+
-grad * inv
|
75
|
+
end
|
62
76
|
when :sub
|
63
77
|
return [grad, -grad] if shapes_fully_specified_and_equal(x, y)
|
64
78
|
|
@@ -66,24 +80,22 @@ module TensorStream
|
|
66
80
|
sy = tf.shape(y, name: 'sub/shape_y')
|
67
81
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
68
82
|
|
69
|
-
[
|
70
|
-
|
83
|
+
[tf.reshape(tf.reduce_sum(grad, rx, name: 'add/reduce_sub_x'), sx),
|
84
|
+
-tf.reshape(tf.reduce_sum(grad, ry, name: 'add/reduce_sub_y'), sy)]
|
71
85
|
when :mul
|
72
86
|
sx = tf.shape(x)
|
73
87
|
sy = tf.shape(y)
|
74
88
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
75
89
|
|
76
|
-
[
|
77
|
-
|
90
|
+
[tf.reshape(tf.reduce_sum(tf.mul(grad, y), rx), sx),
|
91
|
+
tf.reshape(tf.reduce_sum(tf.mul(x, grad), ry), sy)]
|
78
92
|
when :div
|
79
93
|
sx = i_op(:shape, x)
|
80
94
|
sy = i_op(:shape, y)
|
81
95
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
82
96
|
|
83
|
-
[
|
84
|
-
|
85
|
-
tf.reshape(tf.reduce_sum(grad * tf.div(tf.div(-x, y), y),
|
86
|
-
ry), sy)]
|
97
|
+
[tf.reshape(tf.reduce_sum(tf.div(grad, y), rx), sx),
|
98
|
+
tf.reshape(tf.reduce_sum(grad * tf.div(tf.div(-x, y), y), ry), sy)]
|
87
99
|
when :mod
|
88
100
|
sx = tf.shape(x)
|
89
101
|
sy = tf.shape(y)
|
@@ -100,9 +112,9 @@ module TensorStream
|
|
100
112
|
|
101
113
|
x_grad = tf.mul(2.0, grad) * (x - y)
|
102
114
|
|
103
|
-
[
|
104
|
-
|
105
|
-
when :
|
115
|
+
[tf.reshape(tf.reduce_sum(x_grad, rx), sx),
|
116
|
+
tf.reshape(-tf.reduce_sum(x_grad, ry), sy)]
|
117
|
+
when :mat_mul
|
106
118
|
t_a = node.options[:transpose_a]
|
107
119
|
t_b = node.options[:transpose_b]
|
108
120
|
|
@@ -140,14 +152,12 @@ module TensorStream
|
|
140
152
|
grad * tf.sign(x)
|
141
153
|
when :log
|
142
154
|
grad * tf.reciprocal(x)
|
143
|
-
when :tanh
|
144
|
-
i_op(:tanh_grad, x) * grad
|
145
155
|
when :cos
|
146
156
|
-grad * tf.sin(x)
|
147
157
|
when :max
|
148
|
-
|
149
|
-
|
150
|
-
|
158
|
+
_min_or_max_grad(node.inputs, grad, ->(x, y) { tf.greater_equal(x, y) } )
|
159
|
+
when :min
|
160
|
+
_min_or_max_grad(node.inputs, grad, ->(x, y) { tf.less_equal(x, y) } )
|
151
161
|
when :tan
|
152
162
|
secx = tf.reciprocal(tf.cos(x))
|
153
163
|
secx2 = tf.square(secx)
|
@@ -158,6 +168,8 @@ module TensorStream
|
|
158
168
|
grad * node
|
159
169
|
when :identity, :print
|
160
170
|
grad
|
171
|
+
when :sign
|
172
|
+
tf.zeros(tf.shape(x), dtype: x.data_type)
|
161
173
|
when :sum
|
162
174
|
_sum_grad(x, y, grad)
|
163
175
|
when :reciprocal
|
@@ -178,7 +190,7 @@ module TensorStream
|
|
178
190
|
y_cond = i_op(:cond, i_op(:zeros_like, x), i_op(:ones_like, x), pred: node.options[:pred])
|
179
191
|
[x_cond * grad, y_cond * grad]
|
180
192
|
when :mean
|
181
|
-
sum_grad
|
193
|
+
sum_grad = _sum_grad(x, y, grad)[0]
|
182
194
|
input_shape = tf.shape(x)
|
183
195
|
output_shape = tf.shape(node)
|
184
196
|
factor = _safe_shape_div(tf.reduce_prod(input_shape), tf.reduce_prod(output_shape))
|
@@ -187,19 +199,20 @@ module TensorStream
|
|
187
199
|
grad * tf.reciprocal(i_cons(1, dtype: grad.data_type) + x)
|
188
200
|
when :sigmoid
|
189
201
|
i_op(:sigmoid_grad, x, grad)
|
202
|
+
when :sigmoid_grad
|
203
|
+
gb = grad * y
|
204
|
+
[gb - 2.0 * gb * x, i_op(:sigmoid_grad, x, grad)]
|
190
205
|
when :softmax
|
191
206
|
i_op(:softmax_grad, x, grad)
|
192
207
|
when :softmax_cross_entropy_with_logits_v2
|
193
|
-
# -grad * tf.reciprocal(i_op(:softmax, x))
|
194
208
|
[i_op(:softmax_cross_entropy_with_logits_v2_grad, x, y, grad), nil]
|
195
|
-
# i_op(:softmax_grad, x, -grad * tf.reciprocal(i_op(:softmax, x)))
|
196
209
|
when :floor, :ceil
|
197
210
|
# non differentiable
|
198
211
|
nil
|
199
212
|
when :zeros_like
|
200
213
|
# non differentiable
|
201
214
|
nil
|
202
|
-
when :argmin, :argmax
|
215
|
+
when :argmin, :argmax, :floor_div
|
203
216
|
# non differentiable
|
204
217
|
[nil, nil]
|
205
218
|
else
|
@@ -217,19 +230,19 @@ module TensorStream
|
|
217
230
|
_op(:broadcast_transform, input_a, input_b)
|
218
231
|
end
|
219
232
|
|
220
|
-
def self._safe_shape_div(
|
221
|
-
_op(:floor_div,
|
233
|
+
def self._safe_shape_div(arg_x, arg_y)
|
234
|
+
_op(:floor_div, arg_x, tf.maximum(arg_y, 1))
|
222
235
|
end
|
223
236
|
|
224
|
-
def self._sum_grad(
|
225
|
-
input_shape = _op(:shape,
|
226
|
-
output_shape_kept_dims = tf.reduced_shape(input_shape,
|
237
|
+
def self._sum_grad(arg_x, arg_y, grad)
|
238
|
+
input_shape = _op(:shape, arg_x)
|
239
|
+
output_shape_kept_dims = tf.reduced_shape(input_shape, arg_y)
|
227
240
|
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
|
228
241
|
new_grad = _op(:reshape, grad, output_shape_kept_dims)
|
229
242
|
|
230
|
-
grad = _op(:cond, _op(:fill, input_shape, grad)
|
243
|
+
grad = _op(:cond, _op(:fill, input_shape, grad), _op(:tile, new_grad, tile_scaling), pred: _op(:rank, grad).zero?)
|
231
244
|
|
232
|
-
[grad, nil
|
245
|
+
[grad, nil]
|
233
246
|
end
|
234
247
|
|
235
248
|
def self._op_supports_broadcast?(node)
|
@@ -237,11 +250,21 @@ module TensorStream
|
|
237
250
|
false
|
238
251
|
end
|
239
252
|
|
240
|
-
def self._min_or_max_grad(
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
253
|
+
def self._min_or_max_grad(inputs, grad, selector_op)
|
254
|
+
x = inputs[0]
|
255
|
+
y = inputs[1]
|
256
|
+
gdtype = grad.data_type
|
257
|
+
sx = tf.shape(x)
|
258
|
+
sy = tf.shape(y)
|
259
|
+
gradshape = tf.shape(grad)
|
260
|
+
zeros = tf.zeros(gradshape, dtype: gdtype)
|
261
|
+
xmask = selector_op.call(x, y)
|
262
|
+
rx, ry = _broadcast_gradient_args(sx, sy)
|
263
|
+
xgrad = tf.where(xmask, grad, zeros, name: 'x')
|
264
|
+
ygrad = tf.where(xmask, zeros, grad, name: 'y')
|
265
|
+
gx = tf.reshape(tf.reduce_sum(xgrad, rx), sx)
|
266
|
+
gy = tf.reshape(tf.reduce_sum(ygrad, ry), sy)
|
267
|
+
[gx, gy]
|
245
268
|
end
|
246
269
|
|
247
270
|
def self._include?(arr, obj)
|
@@ -249,4 +272,4 @@ module TensorStream
|
|
249
272
|
false
|
250
273
|
end
|
251
274
|
end
|
252
|
-
end
|
275
|
+
end
|
@@ -2,6 +2,7 @@ module TensorStream
|
|
2
2
|
# High level machine learning functions
|
3
3
|
class NN
|
4
4
|
extend TensorStream::OpHelper
|
5
|
+
|
5
6
|
def self.softmax(logits, axis: nil, name: nil)
|
6
7
|
_op(:softmax, logits, nil, axis: axis, name: name)
|
7
8
|
end
|
@@ -29,8 +30,13 @@ module TensorStream
|
|
29
30
|
end
|
30
31
|
end
|
31
32
|
|
33
|
+
# Computes log softmax activations.
|
34
|
+
def self.log_softmax(logits, axis: -1, name: nil)
|
35
|
+
_op(:log_softmax, logits, axis: axis, name: name)
|
36
|
+
end
|
37
|
+
|
32
38
|
def self.sigmoid_cross_entropy_with_logits(labels: nil, logits: nil, name: nil)
|
33
|
-
TensorStream.name_scope(name, default: 'logistic_loss', values: [logits, labels]) do |
|
39
|
+
TensorStream.name_scope(name, default: 'logistic_loss', values: [logits, labels]) do |_name|
|
34
40
|
tf = TensorStream
|
35
41
|
logits = tf.convert_to_tensor(logits, name: 'logits')
|
36
42
|
labels = tf.convert_to_tensor(labels, name: 'labels')
|
@@ -6,10 +6,10 @@ module TensorStream
|
|
6
6
|
|
7
7
|
def initialize(operation, *args)
|
8
8
|
options = if args.last.is_a?(Hash)
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
9
|
+
args.pop
|
10
|
+
else
|
11
|
+
{}
|
12
|
+
end
|
13
13
|
|
14
14
|
inputs = args
|
15
15
|
|
@@ -42,24 +42,10 @@ module TensorStream
|
|
42
42
|
}
|
43
43
|
end
|
44
44
|
|
45
|
-
def self.empty_matrix?(input)
|
46
|
-
if input.is_a?(Array)
|
47
|
-
input.each do |input|
|
48
|
-
if input.is_a?(Array)
|
49
|
-
return false unless empty_matrix?(input)
|
50
|
-
elsif input != 0 || input != 0.0
|
51
|
-
return false
|
52
|
-
end
|
53
|
-
end
|
54
|
-
end
|
55
|
-
|
56
|
-
true
|
57
|
-
end
|
58
|
-
|
59
45
|
def infer_const
|
60
46
|
return false if breakpoint
|
61
47
|
case operation
|
62
|
-
when :
|
48
|
+
when :random_standard_normal, :random_uniform, :glorot_uniform, :print
|
63
49
|
false
|
64
50
|
else
|
65
51
|
non_const = @inputs.compact.find { |input| !input.is_const }
|
@@ -75,7 +61,7 @@ module TensorStream
|
|
75
61
|
:boolean
|
76
62
|
when :shape, :rank
|
77
63
|
options[:out_type] || :int32
|
78
|
-
when :
|
64
|
+
when :random_standard_normal, :random_uniform, :glorot_uniform
|
79
65
|
passed_data_type || :float32
|
80
66
|
when :index
|
81
67
|
if @inputs[0].is_a?(ControlFlow)
|
@@ -150,7 +136,7 @@ module TensorStream
|
|
150
136
|
"gradient(#{sub_input})"
|
151
137
|
when :stop_gradient
|
152
138
|
sub_input
|
153
|
-
when :
|
139
|
+
when :mat_mul
|
154
140
|
"#{sub_input}.matmul(#{sub_input2})"
|
155
141
|
when :eye
|
156
142
|
"eye(#{sub_input})"
|
@@ -261,13 +247,13 @@ module TensorStream
|
|
261
247
|
return TensorShape.fix_inferred_elements(new_shape, input_shape.reduce(:*))
|
262
248
|
when :flow_group
|
263
249
|
return []
|
264
|
-
when :zeros, :ones
|
250
|
+
when :zeros, :ones, :fill
|
265
251
|
return inputs[0] ? inputs[0].value : options[:shape]
|
266
252
|
when :zeros_like, :ones_like
|
267
253
|
inputs[0].shape.shape
|
268
254
|
when :shape
|
269
255
|
return inputs[0].shape.shape ? [inputs[0].shape.shape.size] : nil
|
270
|
-
when :
|
256
|
+
when :mat_mul
|
271
257
|
shape1 = inputs[0].shape.shape.nil? ? nil : inputs[0].shape.shape[0]
|
272
258
|
shape2 = inputs[1].shape.shape.nil? ? nil : inputs[1].shape.shape[1]
|
273
259
|
return [shape1, shape2]
|
@@ -285,11 +271,12 @@ module TensorStream
|
|
285
271
|
super
|
286
272
|
@inputs.compact.each do |input|
|
287
273
|
if input.is_a?(Array)
|
288
|
-
input.flatten.compact.each do |t|
|
289
|
-
|
274
|
+
input.flatten.compact.select { |t| t.is_a?(Tensor) }.each do |t|
|
275
|
+
next if t.consumers.include?(consumer.name)
|
276
|
+
t.send(:propagate_consumer, consumer)
|
290
277
|
end
|
291
|
-
|
292
|
-
input.send(:propagate_consumer, consumer)
|
278
|
+
elsif input.name != name && !input.consumers.include?(consumer.name)
|
279
|
+
input.send(:propagate_consumer, consumer)
|
293
280
|
end
|
294
281
|
end
|
295
282
|
end
|
data/lib/tensor_stream/ops.rb
CHANGED
@@ -35,24 +35,24 @@ module TensorStream
|
|
35
35
|
# ys and xs are each a Tensor or a list of tensors. grad_ys is a list of Tensor, holding the gradients received by the ys. The list must be the same length as ys.
|
36
36
|
#
|
37
37
|
# Arguments:
|
38
|
-
# +
|
38
|
+
# +tensor_ys+ : A Tensor or list of tensors to be differentiated.
|
39
39
|
# +wrt_xs+ : A Tensor or list of tensors to be used for differentiation.
|
40
|
-
# +stop_gradients
|
41
|
-
def gradients(
|
42
|
-
|
40
|
+
# +stop_gradients+ : Optional. A Tensor or list of tensors not to differentiate through
|
41
|
+
def gradients(tensor_ys, wrt_xs, name: 'gradients', stop_gradients: nil)
|
43
42
|
gs = wrt_xs.collect do |x|
|
44
43
|
stops = stop_gradients ? stop_gradients.map(&:name).join('_') : ''
|
45
|
-
gradient_program_name = "grad_#{
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
44
|
+
gradient_program_name = "grad_#{tensor_ys.name}_#{x.name}_#{stops}".to_sym
|
45
|
+
tensor_graph = tensor_ys.graph
|
46
|
+
|
47
|
+
tensor_program = if tensor_graph.node_added?(gradient_program_name)
|
48
|
+
tensor_graph.get_node(gradient_program_name)
|
49
|
+
else
|
50
|
+
tensor_graph.name_scope("gradient_wrt_#{x.name}") do
|
51
|
+
derivative_ops = TensorStream::MathGradients.derivative(tensor_ys, x, graph: tensor_graph,
|
52
|
+
stop_gradients: stop_gradients)
|
53
|
+
tensor_graph.add_node!(gradient_program_name, derivative_ops)
|
54
|
+
end
|
55
|
+
end
|
56
56
|
tensor_program
|
57
57
|
end
|
58
58
|
TensorStream.group(gs)
|
@@ -69,7 +69,7 @@ module TensorStream
|
|
69
69
|
# Outputs random values from a normal distribution.
|
70
70
|
def random_normal(shape, dtype: :float32, mean: 0.0, stddev: 1.0, seed: nil, name: nil)
|
71
71
|
options = { shape: shape, dtype: dtype, mean: mean, stddev: stddev, seed: seed, name: name }
|
72
|
-
_op(:
|
72
|
+
_op(:random_standard_normal, nil, nil, options)
|
73
73
|
end
|
74
74
|
|
75
75
|
##
|
@@ -86,6 +86,10 @@ module TensorStream
|
|
86
86
|
_op(:eye, num_rows, num_columns || num_rows, data_type: dtype, name: name)
|
87
87
|
end
|
88
88
|
|
89
|
+
def expand_dims(input, axis = nil, name: nil)
|
90
|
+
_op(:expand_dims, input, axis, name: name)
|
91
|
+
end
|
92
|
+
|
89
93
|
##
|
90
94
|
# This operation returns a 1-D integer tensor representing the shape of input
|
91
95
|
def shape(input, name: nil, out_type: :int32)
|
@@ -98,7 +102,9 @@ module TensorStream
|
|
98
102
|
##
|
99
103
|
# Constructs a tensor by tiling a given tensor.
|
100
104
|
#
|
101
|
-
# This operation creates a new tensor by replicating input multiples times.
|
105
|
+
# This operation creates a new tensor by replicating input multiples times.
|
106
|
+
# The output tensor's i'th dimension has input.dims(i) * multiples[i] elements,
|
107
|
+
# and the values of input are replicated multiples[i] times along the 'i'th dimension. For example, tiling [a b c d] by [2] produces [a b c d a b c d].
|
102
108
|
def tile(input, multiples, name: nil)
|
103
109
|
_op(:tile, input, multiples, name: name)
|
104
110
|
end
|
@@ -118,7 +124,9 @@ module TensorStream
|
|
118
124
|
##
|
119
125
|
# The Glorot uniform initializer, also called Xavier uniform initializer.
|
120
126
|
#
|
121
|
-
# It draws samples from a uniform distribution within [-limit, limit]
|
127
|
+
# It draws samples from a uniform distribution within [-limit, limit]
|
128
|
+
# where limit is sqrt(6 / (fan_in + fan_out)) where fan_in is the number
|
129
|
+
# of input units in the weight tensor and fan_out is the number of output units in the weight tensor.
|
122
130
|
def glorot_uniform_initializer(seed: nil, dtype: nil)
|
123
131
|
TensorStream::Initializer.new(-> { _op(:glorot_uniform, nil, nil, seed: seed, data_type: dtype) })
|
124
132
|
end
|
@@ -132,7 +140,9 @@ module TensorStream
|
|
132
140
|
##
|
133
141
|
# Extracts a slice from a tensor.
|
134
142
|
#
|
135
|
-
# This operation extracts a slice of size size from a tensor input starting at the location specified by begin.
|
143
|
+
# This operation extracts a slice of size size from a tensor input starting at the location specified by begin.
|
144
|
+
# The slice size is represented as a tensor shape, where size[i] is the number of elements of the 'i'th dimension of input that you want to slice. The starting location (begin) for the slice is
|
145
|
+
# represented as an offset in each dimension of input. In other words, begin[i] is the offset into the 'i'th dimension of input that you want to slice from.
|
136
146
|
def slice(input, start, size, name: nil)
|
137
147
|
_op(:slice, input, start, size: size, name: name)
|
138
148
|
end
|
@@ -188,7 +198,7 @@ module TensorStream
|
|
188
198
|
|
189
199
|
##
|
190
200
|
# Returns the truth value of (x >= y) element-wise.
|
191
|
-
#
|
201
|
+
#
|
192
202
|
# This operation supports broadcasting
|
193
203
|
def greater_equal(input_a, input_b, name: nil)
|
194
204
|
input_a, input_b = check_data_types(input_a, input_b)
|
@@ -205,14 +215,17 @@ module TensorStream
|
|
205
215
|
##
|
206
216
|
# Computes the mean of elements across dimensions of a tensor.
|
207
217
|
def reduce_mean(input_tensor, axis = nil, keepdims: false, name: nil)
|
208
|
-
_op(:mean, input_tensor, axis,
|
218
|
+
_op(:mean, input_tensor, axis, keepdims: keepdims, name: name)
|
209
219
|
end
|
210
220
|
|
211
221
|
##
|
212
222
|
# Computes the sum of elements across dimensions of a tensor.
|
213
223
|
#
|
214
|
-
# Reduces input_tensor along the dimensions given in axis. Unless keepdims is true,
|
215
|
-
#
|
224
|
+
# Reduces input_tensor along the dimensions given in axis. Unless keepdims is true,
|
225
|
+
# the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true,
|
226
|
+
# the reduced dimensions are retained with length 1.
|
227
|
+
# If axis has no entries, all dimensions are reduced, and a tensor with a single element
|
228
|
+
# is returned.
|
216
229
|
def reduce_sum(input_tensor, axis = nil, keepdims: false, name: nil)
|
217
230
|
_op(:sum, input_tensor, axis, keepdims: keepdims, name: name)
|
218
231
|
end
|
@@ -220,7 +233,9 @@ module TensorStream
|
|
220
233
|
##
|
221
234
|
# Computes the product of elements across dimensions of a tensor.
|
222
235
|
#
|
223
|
-
# Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the
|
236
|
+
# Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the
|
237
|
+
# tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are
|
238
|
+
# retained with length 1.
|
224
239
|
#
|
225
240
|
# If axis has no entries, all dimensions are reduced, and a tensor with a single element is returned.
|
226
241
|
def reduce_prod(input, axis = nil, keepdims: false, name: nil)
|
@@ -281,6 +296,28 @@ module TensorStream
|
|
281
296
|
_op(:add, input_a, input_b, name: name)
|
282
297
|
end
|
283
298
|
|
299
|
+
##
|
300
|
+
# Adds all input tensors element-wise.
|
301
|
+
#
|
302
|
+
# Elements must all be the same shape and type
|
303
|
+
def add_n(inputs, name: nil)
|
304
|
+
_op(:add_n, *inputs, name: name)
|
305
|
+
end
|
306
|
+
|
307
|
+
##
|
308
|
+
# Computes asin of input element-wise
|
309
|
+
def asin(input, name: nil)
|
310
|
+
check_allowed_types(input, FLOATING_POINT_TYPES)
|
311
|
+
_op(:asin, input, name: name)
|
312
|
+
end
|
313
|
+
|
314
|
+
##
|
315
|
+
# Computes acos of input element-wise
|
316
|
+
def acos(input, name: nil)
|
317
|
+
check_allowed_types(input, FLOATING_POINT_TYPES)
|
318
|
+
_op(:acos, input, name: name)
|
319
|
+
end
|
320
|
+
|
284
321
|
##
|
285
322
|
# Returns x - y element-wise.
|
286
323
|
#
|
@@ -329,10 +366,22 @@ module TensorStream
|
|
329
366
|
##
|
330
367
|
# Returns the max of x and y (i.e. x > y ? x : y) element-wise.
|
331
368
|
def maximum(input_a, input_b, name: nil)
|
369
|
+
max(input_a, input_b, name: name)
|
370
|
+
end
|
371
|
+
|
372
|
+
##
|
373
|
+
# Returns the min of x and y (i.e. x < y ? x : y) element-wise.
|
374
|
+
def min(input_a, input_b, name: nil)
|
332
375
|
check_allowed_types(input_a, NUMERIC_TYPES)
|
333
376
|
check_allowed_types(input_b, NUMERIC_TYPES)
|
334
377
|
input_a, input_b = check_data_types(input_a, input_b)
|
335
|
-
|
378
|
+
_op(:min, input_a, input_b, name: name)
|
379
|
+
end
|
380
|
+
|
381
|
+
##
|
382
|
+
# Returns the min of x and y (i.e. x < y ? x : y) element-wise.
|
383
|
+
def minimum(input_a, input_b, name: nil)
|
384
|
+
min(input_a, input_b, name: name)
|
336
385
|
end
|
337
386
|
|
338
387
|
##
|
@@ -378,14 +427,18 @@ module TensorStream
|
|
378
427
|
|
379
428
|
##
|
380
429
|
# reates a tensor with all elements set to zero.
|
381
|
-
# Given a single tensor (tensor), this operation returns a tensor
|
430
|
+
# Given a single tensor (tensor), this operation returns a tensor
|
431
|
+
# of the same type and shape as tensor with all elements set to zero.
|
432
|
+
# Optionally, you can use dtype to specify a new type for the returned tensor.
|
382
433
|
def zeros_like(tensor, dtype: nil, name: nil)
|
383
434
|
_op(:zeros_like, tensor, nil, data_type: dtype, name: name)
|
384
435
|
end
|
385
436
|
|
386
437
|
##
|
387
438
|
# Creates a tensor with all elements set to 1.
|
388
|
-
# Given a single tensor (tensor), this operation returns a
|
439
|
+
# Given a single tensor (tensor), this operation returns a
|
440
|
+
# tensor of the same type and shape as tensor with all elements set to 1.
|
441
|
+
# Optionally, you can specify a new type (dtype) for the returned tensor.
|
389
442
|
def ones_like(tensor, dtype: nil, name: nil)
|
390
443
|
_op(:ones_like, tensor, nil, data_type: dtype, name: name)
|
391
444
|
end
|
@@ -505,7 +558,7 @@ module TensorStream
|
|
505
558
|
# For example:
|
506
559
|
# Output tensor has shape [2, 3].
|
507
560
|
# fill([2, 3], 9) => [[9, 9, 9]
|
508
|
-
|
561
|
+
# [9, 9, 9]]
|
509
562
|
def fill(dims, value, name: nil)
|
510
563
|
_op(:fill, dims, value, name: name)
|
511
564
|
end
|
@@ -524,7 +577,7 @@ module TensorStream
|
|
524
577
|
transpose_b: false,
|
525
578
|
name: nil)
|
526
579
|
input_a, input_b = check_data_types(input_a, input_b)
|
527
|
-
_op(:
|
580
|
+
_op(:mat_mul, input_a, input_b, transpose_a: transpose_a, transpose_b: transpose_b, name: name)
|
528
581
|
end
|
529
582
|
|
530
583
|
##
|