tensor_stream 0.5.1 → 0.6.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/CHANGELOG.md +9 -0
- data/benchmark_ryzen_amd.txt +36 -0
- data/lib/tensor_stream/dynamic_stitch.rb +28 -0
- data/lib/tensor_stream/evaluator/base_evaluator.rb +32 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_div.cl +48 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/mod.cl +3 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/squared_difference.cl +53 -0
- data/lib/tensor_stream/evaluator/opencl/opencl_buffer.rb +1 -2
- data/lib/tensor_stream/evaluator/opencl/opencl_evaluator.rb +44 -24
- data/lib/tensor_stream/evaluator/opencl/opencl_template_helper.rb +2 -0
- data/lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb +21 -11
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +165 -48
- data/lib/tensor_stream/graph_serializers/pbtext.rb +8 -0
- data/lib/tensor_stream/helpers/op_helper.rb +41 -4
- data/lib/tensor_stream/math_gradients.rb +64 -64
- data/lib/tensor_stream/nn/nn_ops.rb +6 -2
- data/lib/tensor_stream/operation.rb +17 -3
- data/lib/tensor_stream/ops.rb +47 -0
- data/lib/tensor_stream/session.rb +9 -1
- data/lib/tensor_stream/tensor.rb +15 -0
- data/lib/tensor_stream/utils.rb +5 -1
- data/lib/tensor_stream/version.rb +1 -1
- data/lib/tensor_stream.rb +1 -0
- data/samples/nearest_neighbor.rb +1 -1
- data/test_samples/raw_neural_net_sample.rb +6 -7
- metadata +8 -3
@@ -16,22 +16,17 @@ module TensorStream
|
|
16
16
|
node.consumers.include?(tensor.name) || node.equal?(tensor)
|
17
17
|
end.compact + [wrt_dx.name]
|
18
18
|
|
19
|
-
grad = i_op(:
|
19
|
+
grad = i_op(:fill, tf.shape(tensor), tf.constant(1, dtype: wrt_dx.data_type))
|
20
20
|
|
21
|
-
|
22
|
-
i_op(:truncate, result, tf.shape(wrt_dx))
|
21
|
+
_propagate(grad, tensor, wrt_dx, nodes_to_compute, options[:stop_gradients] || [] ) || i_op(:zeros_like, wrt_dx)
|
23
22
|
end
|
24
23
|
|
25
24
|
def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = [])
|
26
|
-
return grad
|
27
|
-
return
|
28
|
-
return
|
25
|
+
return grad if stop_tensor.equal?(tensor)
|
26
|
+
return nil if stop_gradients && _include?(stop_gradients, tensor)
|
27
|
+
return nil unless tensor.is_a?(Operation)
|
29
28
|
|
30
|
-
computed_op =
|
31
|
-
_compute_derivative(tensor, _broadcast_transform(tensor, grad)[1])
|
32
|
-
else
|
33
|
-
_compute_derivative(tensor, grad)
|
34
|
-
end
|
29
|
+
computed_op = _compute_derivative(tensor, grad)
|
35
30
|
|
36
31
|
if computed_op.is_a?(Array)
|
37
32
|
partials = []
|
@@ -43,9 +38,9 @@ module TensorStream
|
|
43
38
|
end
|
44
39
|
end
|
45
40
|
|
46
|
-
partials.reduce(:+)
|
41
|
+
partials.compact.reduce(:+)
|
47
42
|
else
|
48
|
-
return
|
43
|
+
return nil if computed_op.nil?
|
49
44
|
_propagate(computed_op, tensor.inputs[0], stop_tensor, nodes_to_compute, stop_gradients)
|
50
45
|
end
|
51
46
|
end
|
@@ -57,66 +52,74 @@ module TensorStream
|
|
57
52
|
|
58
53
|
case node.operation
|
59
54
|
when :add
|
60
|
-
return [grad, grad] if
|
61
|
-
|
55
|
+
return [grad, grad] if shapes_fully_specified_and_equal(x, y)
|
62
56
|
sx = tf.shape(x, name: 'add/shape_x')
|
63
57
|
sy = tf.shape(y, name: 'add/shape_y')
|
64
58
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
65
|
-
keep_dims_x = tf.rank(x) == tf.rank(grad)
|
66
|
-
keep_dims_y = tf.rank(y) == tf.rank(grad)
|
67
59
|
|
68
|
-
[tf.reduce_sum(grad, rx, name: 'add/reduce_sum_x',
|
69
|
-
|
60
|
+
[ tf.reshape(tf.reduce_sum(grad, rx, name: 'add/reduce_sum_x'),sx),
|
61
|
+
tf.reshape(tf.reduce_sum(grad, ry, name: 'add/reduce_sum_y'),sy) ]
|
70
62
|
when :sub
|
71
|
-
return [grad, -grad] if
|
63
|
+
return [grad, -grad] if shapes_fully_specified_and_equal(x, y)
|
72
64
|
|
73
65
|
sx = tf.shape(x, name: 'sub/shape_x')
|
74
66
|
sy = tf.shape(y, name: 'sub/shape_y')
|
75
67
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
76
|
-
|
68
|
+
|
69
|
+
[ tf.reshape(tf.reduce_sum(grad, rx, name: 'add/reduce_sub_x'),sx),
|
70
|
+
-tf.reshape(tf.reduce_sum(grad, ry, name: 'add/reduce_sub_y'),sy) ]
|
77
71
|
when :mul
|
78
72
|
sx = tf.shape(x)
|
79
73
|
sy = tf.shape(y)
|
80
74
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
81
75
|
|
82
|
-
[ tf.reduce_sum(tf.mul(grad, y), rx),
|
83
|
-
tf.reduce_sum(tf.mul(x, grad), ry)]
|
76
|
+
[ tf.reshape(tf.reduce_sum(tf.mul(grad, y), rx), sx),
|
77
|
+
tf.reshape(tf.reduce_sum(tf.mul(x, grad), ry), sy)]
|
84
78
|
when :div
|
85
79
|
sx = i_op(:shape, x)
|
86
80
|
sy = i_op(:shape, y)
|
87
81
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
88
82
|
|
89
|
-
[
|
90
|
-
|
91
|
-
|
83
|
+
[
|
84
|
+
tf.reshape(tf.reduce_sum(tf.div(grad, y), rx), sx),
|
85
|
+
tf.reshape(tf.reduce_sum(grad * tf.div(tf.div(-x, y), y),
|
86
|
+
ry), sy)]
|
87
|
+
when :mod
|
88
|
+
sx = tf.shape(x)
|
89
|
+
sy = tf.shape(y)
|
90
|
+
rx, ry = _broadcast_gradient_args(sx, sy)
|
91
|
+
floor_xy = tf.floor_div(x, y)
|
92
|
+
gx = tf.reshape(tf.reduce_sum(grad, rx), sx)
|
93
|
+
gy = tf.reshape(tf.reduce_sum(grad * tf.negative(floor_xy), ry), sy)
|
94
|
+
|
95
|
+
[gx, gy]
|
96
|
+
when :squared_difference
|
97
|
+
sx = i_op(:shape, x)
|
98
|
+
sy = i_op(:shape, y)
|
99
|
+
rx, ry = _broadcast_gradient_args(sx, sy)
|
100
|
+
|
101
|
+
x_grad = tf.mul(2.0, grad) * (x - y)
|
102
|
+
|
103
|
+
[ tf.reshape(tf.reduce_sum(x_grad, rx), sx),
|
104
|
+
tf.reshape(-tf.reduce_sum(x_grad, ry), sy)]
|
92
105
|
when :matmul
|
93
106
|
t_a = node.options[:transpose_a]
|
94
107
|
t_b = node.options[:transpose_b]
|
95
108
|
|
96
|
-
s0 = tf.shape(x)
|
97
|
-
s1 = tf.shape(y)
|
98
|
-
|
99
|
-
identity_0 = tf.ones([ s0[0], s1[1] ], dtype: x.data_type, name: 'matmul/identity0')
|
100
|
-
identity_1 = tf.ones([ s0[0], s1[1] ], dtype: y.data_type, name: 'matmul/identity1')
|
101
|
-
|
102
|
-
grad_a, grad_b = nil
|
103
109
|
if !t_a && !t_b
|
104
|
-
grad_a = tf.matmul(
|
105
|
-
grad_b = tf.matmul(x,
|
110
|
+
grad_a = tf.matmul(grad, y, transpose_b: true)
|
111
|
+
grad_b = tf.matmul(x, grad, transpose_a: true)
|
106
112
|
elsif !ta && tb
|
107
|
-
grad_a = tf.matmul(
|
108
|
-
grad_b = tf.matmul(
|
113
|
+
grad_a = tf.matmul(grad, y)
|
114
|
+
grad_b = tf.matmul(grad, x, transpose_a: true)
|
109
115
|
elsif t_a && !t_b
|
110
|
-
grad_a = tf.matmul(y,
|
111
|
-
grad_b = tf.matmul(x,
|
116
|
+
grad_a = tf.matmul(y, grad, transpose_b: true)
|
117
|
+
grad_b = tf.matmul(x, grad)
|
112
118
|
elsif t_a && t_b
|
113
|
-
grad_a = tf.matmul(y,
|
114
|
-
grad_b = tf.matmul(
|
119
|
+
grad_a = tf.matmul(y, grad, transpose_a: true, transpose_b: true)
|
120
|
+
grad_b = tf.matmul(grad, x, transpose_a: true, transpose_b: true)
|
115
121
|
end
|
116
122
|
|
117
|
-
grad_a = i_op(:mul, grad, grad_a, name: 'matmul/grad_a_norm_mul_da')
|
118
|
-
grad_b = i_op(:mul, grad, grad_b, name: 'matmul/grad_b_norm_mul_db')
|
119
|
-
|
120
123
|
[grad_a, grad_b]
|
121
124
|
when :sin
|
122
125
|
grad * tf.cos(x)
|
@@ -153,7 +156,7 @@ module TensorStream
|
|
153
156
|
-grad
|
154
157
|
when :exp
|
155
158
|
grad * node
|
156
|
-
when :identity
|
159
|
+
when :identity, :print
|
157
160
|
grad
|
158
161
|
when :sum
|
159
162
|
_sum_grad(x, y, grad)
|
@@ -175,7 +178,7 @@ module TensorStream
|
|
175
178
|
y_cond = i_op(:cond, i_op(:zeros_like, x), i_op(:ones_like, x), pred: node.options[:pred])
|
176
179
|
[x_cond * grad, y_cond * grad]
|
177
180
|
when :mean
|
178
|
-
sum_grad
|
181
|
+
sum_grad = _sum_grad(x, y, grad)[0]
|
179
182
|
input_shape = tf.shape(x)
|
180
183
|
output_shape = tf.shape(node)
|
181
184
|
factor = _safe_shape_div(tf.reduce_prod(input_shape), tf.reduce_prod(output_shape))
|
@@ -186,6 +189,10 @@ module TensorStream
|
|
186
189
|
i_op(:sigmoid_grad, x, grad)
|
187
190
|
when :softmax
|
188
191
|
i_op(:softmax_grad, x, grad)
|
192
|
+
when :softmax_cross_entropy_with_logits_v2
|
193
|
+
# -grad * tf.reciprocal(i_op(:softmax, x))
|
194
|
+
[i_op(:softmax_cross_entropy_with_logits_v2_grad, x, y, grad), nil]
|
195
|
+
# i_op(:softmax_grad, x, -grad * tf.reciprocal(i_op(:softmax, x)))
|
189
196
|
when :floor, :ceil
|
190
197
|
# non differentiable
|
191
198
|
nil
|
@@ -202,7 +209,8 @@ module TensorStream
|
|
202
209
|
end
|
203
210
|
|
204
211
|
def self._broadcast_gradient_args(input_a, input_b)
|
205
|
-
|
212
|
+
res = _op(:broadcast_gradient_args, input_a, input_b)
|
213
|
+
[res[0], res[1]]
|
206
214
|
end
|
207
215
|
|
208
216
|
def self._broadcast_transform(input_a, input_b)
|
@@ -210,11 +218,18 @@ module TensorStream
|
|
210
218
|
end
|
211
219
|
|
212
220
|
def self._safe_shape_div(x, y)
|
213
|
-
x
|
221
|
+
_op(:floor_div, x , tf.maximum(y, 1))
|
214
222
|
end
|
215
223
|
|
216
224
|
def self._sum_grad(x, y, grad)
|
217
|
-
|
225
|
+
input_shape = _op(:shape, x)
|
226
|
+
output_shape_kept_dims = tf.reduced_shape(input_shape, y)
|
227
|
+
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
|
228
|
+
new_grad = _op(:reshape, grad, output_shape_kept_dims)
|
229
|
+
|
230
|
+
grad = _op(:cond, _op(:fill, input_shape, grad) , _op(:tile, new_grad, tile_scaling), pred: _op(:rank, grad) == 0 )
|
231
|
+
|
232
|
+
[grad, nil ]
|
218
233
|
end
|
219
234
|
|
220
235
|
def self._op_supports_broadcast?(node)
|
@@ -233,20 +248,5 @@ module TensorStream
|
|
233
248
|
arr.each { |a| return true if a.equal?(obj) }
|
234
249
|
false
|
235
250
|
end
|
236
|
-
|
237
|
-
def self._shapes_fully_specified_and_equal(x, y)
|
238
|
-
return false if !_shape_full_specified(x) || !_shape_full_specified(y)
|
239
|
-
return false if x.shape.shape != y.shape.shape
|
240
|
-
|
241
|
-
true
|
242
|
-
end
|
243
|
-
|
244
|
-
def self._shape_full_specified(tensor)
|
245
|
-
return false if tensor.shape.nil?
|
246
|
-
return false if tensor.shape.shape.nil?
|
247
|
-
|
248
|
-
tensor.shape.shape.each { |s| return false if s.nil? }
|
249
|
-
true
|
250
|
-
end
|
251
251
|
end
|
252
252
|
end
|
@@ -15,12 +15,16 @@ module TensorStream
|
|
15
15
|
end
|
16
16
|
|
17
17
|
def self.softmax_cross_entropy_with_logits(labels: nil, logits: nil, name: nil)
|
18
|
-
|
18
|
+
softmax_cross_entropy_with_logits_v2(labels, logits, name)
|
19
|
+
end
|
20
|
+
|
21
|
+
def self.softmax_cross_entropy_with_logits_v2(labels: nil, logits: nil, name: nil)
|
22
|
+
TensorStream.name_scope(name, default: 'softmax_cross_entropy_with_logits', values: [logits, labels]) do
|
19
23
|
tf = TensorStream
|
20
24
|
logits = tf.convert_to_tensor(logits, name: 'logits')
|
21
25
|
labels = tf.convert_to_tensor(labels, name: 'labels')
|
22
26
|
labels = tf.cast(labels, logits.dtype)
|
23
|
-
softmax_logits =
|
27
|
+
softmax_logits = _op(:softmax_cross_entropy_with_logits_v2, logits, labels)
|
24
28
|
tf.reduce_sum(softmax_logits, tf.rank(logits) - 1)
|
25
29
|
end
|
26
30
|
end
|
@@ -69,10 +69,12 @@ module TensorStream
|
|
69
69
|
|
70
70
|
def set_data_type(passed_data_type)
|
71
71
|
case operation
|
72
|
+
when :fill
|
73
|
+
@inputs[1].data_type
|
72
74
|
when :greater, :less, :equal, :not_equal, :greater_equal, :less_equal, :logical_and
|
73
75
|
:boolean
|
74
76
|
when :shape, :rank
|
75
|
-
:int32
|
77
|
+
options[:out_type] || :int32
|
76
78
|
when :random_normal, :random_uniform, :glorot_uniform
|
77
79
|
passed_data_type || :float32
|
78
80
|
when :index
|
@@ -282,13 +284,25 @@ module TensorStream
|
|
282
284
|
def propagate_consumer(consumer)
|
283
285
|
super
|
284
286
|
@inputs.compact.each do |input|
|
285
|
-
input.
|
287
|
+
if input.is_a?(Array)
|
288
|
+
input.flatten.compact.each do |t|
|
289
|
+
t.send(:propagate_consumer, consumer) if t.is_a?(Tensor)
|
290
|
+
end
|
291
|
+
else
|
292
|
+
input.send(:propagate_consumer, consumer) if input.name != name
|
293
|
+
end
|
286
294
|
end
|
287
295
|
end
|
288
296
|
|
289
297
|
def propagate_outputs
|
290
298
|
@inputs.compact.each do |input|
|
291
|
-
input.
|
299
|
+
if input.is_a?(Array)
|
300
|
+
input.flatten.compact.each do |t|
|
301
|
+
t.send(:setup_output, self) if t.is_a?(Tensor)
|
302
|
+
end
|
303
|
+
else
|
304
|
+
input.send(:setup_output, self) if input.is_a?(Tensor) && (input.name != self.name)
|
305
|
+
end
|
292
306
|
end
|
293
307
|
end
|
294
308
|
|
data/lib/tensor_stream/ops.rb
CHANGED
@@ -89,6 +89,9 @@ module TensorStream
|
|
89
89
|
##
|
90
90
|
# This operation returns a 1-D integer tensor representing the shape of input
|
91
91
|
def shape(input, name: nil, out_type: :int32)
|
92
|
+
return constant(shape_eval(input, out_type), dtype: out_type, name: name) if input.is_a?(Array)
|
93
|
+
return constant(input.shape.shape, dtype: out_type, name: "Shape/#{input.name}") if shape_full_specified(input)
|
94
|
+
|
92
95
|
_op(:shape, input, nil, name: name, out_type: out_type)
|
93
96
|
end
|
94
97
|
|
@@ -287,6 +290,24 @@ module TensorStream
|
|
287
290
|
_op(:sub, input_a, input_b, name: name)
|
288
291
|
end
|
289
292
|
|
293
|
+
##
|
294
|
+
# Returns element-wise remainder of division.
|
295
|
+
def mod(input_a, input_b, name: nil)
|
296
|
+
input_a, input_b = check_data_types(input_a, input_b)
|
297
|
+
_op(:mod, input_a, input_b, name: name)
|
298
|
+
end
|
299
|
+
|
300
|
+
##
|
301
|
+
# Returns element-wise integer divistion.
|
302
|
+
def floor_div(input_a, input_b, name: nil)
|
303
|
+
input_a, input_b = check_data_types(input_a, input_b)
|
304
|
+
_op(:floor_div, input_a, input_b, name: name)
|
305
|
+
end
|
306
|
+
|
307
|
+
def range(start, limit, delta = 1, dtype: nil, name: 'range')
|
308
|
+
_op(:range, start, limit, delta, data_type: dtype, name: name)
|
309
|
+
end
|
310
|
+
|
290
311
|
##
|
291
312
|
# Returns x - y element-wise.
|
292
313
|
#
|
@@ -476,6 +497,19 @@ module TensorStream
|
|
476
497
|
_op(:exp, input, nil, name: name)
|
477
498
|
end
|
478
499
|
|
500
|
+
##
|
501
|
+
# Creates a tensor filled with a scalar value.
|
502
|
+
#
|
503
|
+
# This operation creates a tensor of shape dims and fills it with value.
|
504
|
+
#
|
505
|
+
# For example:
|
506
|
+
# Output tensor has shape [2, 3].
|
507
|
+
# fill([2, 3], 9) => [[9, 9, 9]
|
508
|
+
# [9, 9, 9]]
|
509
|
+
def fill(dims, value, name: nil)
|
510
|
+
_op(:fill, dims, value, name: name)
|
511
|
+
end
|
512
|
+
|
479
513
|
##
|
480
514
|
# Computes sigmoid of x element-wise.
|
481
515
|
def sigmoid(input, name: nil)
|
@@ -512,5 +546,18 @@ module TensorStream
|
|
512
546
|
def check_numerics(tensor, message, name: nil)
|
513
547
|
_op(:check_numerics, tensor, nil, message: message, name: name)
|
514
548
|
end
|
549
|
+
|
550
|
+
def size(tensor, name: nil, out_type: :int32)
|
551
|
+
_op(:size, tensor, name: name, out_type: out_type)
|
552
|
+
end
|
553
|
+
|
554
|
+
def squared_difference(input_a, input_b, name: nil)
|
555
|
+
_op(:squared_difference, input_a, input_b, name: name)
|
556
|
+
end
|
557
|
+
|
558
|
+
def broadcast_gradient_args(shape_a, shape_b, name: nil)
|
559
|
+
op_result = _op(:broadcast_gradient_args, shape_a, shape_b, name: name)
|
560
|
+
[op_result[0], op_result[1]]
|
561
|
+
end
|
515
562
|
end
|
516
563
|
end
|
@@ -71,7 +71,7 @@ module TensorStream
|
|
71
71
|
end
|
72
72
|
result = args.collect do |e|
|
73
73
|
value = delegate_to_evaluator(e, context, {})
|
74
|
-
value
|
74
|
+
recursive_eval(value)
|
75
75
|
end
|
76
76
|
result.size == 1 ? result.first : result
|
77
77
|
end
|
@@ -122,6 +122,14 @@ module TensorStream
|
|
122
122
|
|
123
123
|
protected
|
124
124
|
|
125
|
+
def recursive_eval(value, depth = 2)
|
126
|
+
if value.is_a?(Array) && depth > 0
|
127
|
+
value.collect { |v| recursive_eval(v, depth - 1) }
|
128
|
+
else
|
129
|
+
value.respond_to?(:to_ruby) ? value.to_ruby : value
|
130
|
+
end
|
131
|
+
end
|
132
|
+
|
125
133
|
def assign_evaluator(tensor)
|
126
134
|
device = @evaluator_classes.map do |klass|
|
127
135
|
next nil if tensor.is_a?(Operation) && !klass.ops.include?(tensor.operation.to_sym)
|
data/lib/tensor_stream/tensor.rb
CHANGED
@@ -87,6 +87,19 @@ module TensorStream
|
|
87
87
|
_op(:negate, self, nil)
|
88
88
|
end
|
89
89
|
|
90
|
+
def %(other)
|
91
|
+
_a, other = TensorStream.check_data_types(self, other)
|
92
|
+
_op(:mod, self, TensorStream.convert_to_tensor(other, dtype: data_type))
|
93
|
+
end
|
94
|
+
|
95
|
+
def floor
|
96
|
+
TensorStream.floor(self)
|
97
|
+
end
|
98
|
+
|
99
|
+
def ceil
|
100
|
+
TensorStream.ceil(self)
|
101
|
+
end
|
102
|
+
|
90
103
|
def ==(other)
|
91
104
|
_a, other = TensorStream.check_data_types(self, other)
|
92
105
|
_op(:equal, self, other)
|
@@ -199,6 +212,8 @@ module TensorStream
|
|
199
212
|
:int32
|
200
213
|
elsif value.is_a?(Array)
|
201
214
|
return detect_type(value[0])
|
215
|
+
elsif value.is_a?(Tensor)
|
216
|
+
value.data_type
|
202
217
|
else
|
203
218
|
:float32
|
204
219
|
end
|
data/lib/tensor_stream/utils.rb
CHANGED
@@ -141,6 +141,10 @@ module TensorStream
|
|
141
141
|
TensorStream::ControlFlow.new(:group, inputs, nil, name: name)
|
142
142
|
end
|
143
143
|
|
144
|
+
def dynamic_stitch(indices, data, name: nil)
|
145
|
+
TensorStream::DynamicStitch.new(:dynamic_stitch, [indices, data], name: name)
|
146
|
+
end
|
147
|
+
|
144
148
|
def get_variable(name, dtype: nil, shape: nil, initializer: nil, trainable: true, collections: nil)
|
145
149
|
TensorStream::Variable.new(dtype || :float32, nil, shape, collections: collections, name: name, initializer: initializer, trainable: trainable)
|
146
150
|
end
|
@@ -204,7 +208,7 @@ module TensorStream
|
|
204
208
|
input_a = convert_to_tensor(input_a)
|
205
209
|
input_b = convert_to_tensor(input_b)
|
206
210
|
end
|
207
|
-
|
211
|
+
|
208
212
|
if norm_dtype(input_a.data_type) != norm_dtype(input_b.data_type)
|
209
213
|
raise "Value Error: Tensor conversion requested dtype #{input_a.data_type} for tensor type #{input_b.data_type}"
|
210
214
|
end
|
data/lib/tensor_stream.rb
CHANGED
@@ -16,6 +16,7 @@ require 'tensor_stream/variable'
|
|
16
16
|
require 'tensor_stream/operation'
|
17
17
|
require 'tensor_stream/placeholder'
|
18
18
|
require 'tensor_stream/control_flow'
|
19
|
+
require 'tensor_stream/dynamic_stitch'
|
19
20
|
require 'tensor_stream/trainer'
|
20
21
|
require 'tensor_stream/nn/nn_ops'
|
21
22
|
require 'tensor_stream/evaluator/evaluator'
|