tensor_stream 0.5.1 → 0.6.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +5 -5
- data/CHANGELOG.md +9 -0
- data/benchmark_ryzen_amd.txt +36 -0
- data/lib/tensor_stream/dynamic_stitch.rb +28 -0
- data/lib/tensor_stream/evaluator/base_evaluator.rb +32 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_div.cl +48 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/mod.cl +3 -0
- data/lib/tensor_stream/evaluator/opencl/kernels/squared_difference.cl +53 -0
- data/lib/tensor_stream/evaluator/opencl/opencl_buffer.rb +1 -2
- data/lib/tensor_stream/evaluator/opencl/opencl_evaluator.rb +44 -24
- data/lib/tensor_stream/evaluator/opencl/opencl_template_helper.rb +2 -0
- data/lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb +21 -11
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +165 -48
- data/lib/tensor_stream/graph_serializers/pbtext.rb +8 -0
- data/lib/tensor_stream/helpers/op_helper.rb +41 -4
- data/lib/tensor_stream/math_gradients.rb +64 -64
- data/lib/tensor_stream/nn/nn_ops.rb +6 -2
- data/lib/tensor_stream/operation.rb +17 -3
- data/lib/tensor_stream/ops.rb +47 -0
- data/lib/tensor_stream/session.rb +9 -1
- data/lib/tensor_stream/tensor.rb +15 -0
- data/lib/tensor_stream/utils.rb +5 -1
- data/lib/tensor_stream/version.rb +1 -1
- data/lib/tensor_stream.rb +1 -0
- data/samples/nearest_neighbor.rb +1 -1
- data/test_samples/raw_neural_net_sample.rb +6 -7
- metadata +8 -3
| @@ -16,22 +16,17 @@ module TensorStream | |
| 16 16 | 
             
                    node.consumers.include?(tensor.name) || node.equal?(tensor)
         | 
| 17 17 | 
             
                  end.compact + [wrt_dx.name]
         | 
| 18 18 |  | 
| 19 | 
            -
                  grad = i_op(: | 
| 19 | 
            +
                  grad = i_op(:fill, tf.shape(tensor), tf.constant(1, dtype: wrt_dx.data_type))
         | 
| 20 20 |  | 
| 21 | 
            -
                   | 
| 22 | 
            -
                  i_op(:truncate, result, tf.shape(wrt_dx))
         | 
| 21 | 
            +
                  _propagate(grad, tensor, wrt_dx, nodes_to_compute, options[:stop_gradients] || [] ) || i_op(:zeros_like, wrt_dx)
         | 
| 23 22 | 
             
                end
         | 
| 24 23 |  | 
| 25 24 | 
             
                def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = [])
         | 
| 26 | 
            -
                  return grad  | 
| 27 | 
            -
                  return  | 
| 28 | 
            -
                  return  | 
| 25 | 
            +
                  return grad if stop_tensor.equal?(tensor)
         | 
| 26 | 
            +
                  return nil if stop_gradients && _include?(stop_gradients, tensor)
         | 
| 27 | 
            +
                  return nil unless tensor.is_a?(Operation)
         | 
| 29 28 |  | 
| 30 | 
            -
                  computed_op =  | 
| 31 | 
            -
                                  _compute_derivative(tensor, _broadcast_transform(tensor, grad)[1])
         | 
| 32 | 
            -
                                else
         | 
| 33 | 
            -
                                  _compute_derivative(tensor, grad)
         | 
| 34 | 
            -
                                end
         | 
| 29 | 
            +
                  computed_op = _compute_derivative(tensor, grad)
         | 
| 35 30 |  | 
| 36 31 | 
             
                  if computed_op.is_a?(Array)
         | 
| 37 32 | 
             
                    partials = []
         | 
| @@ -43,9 +38,9 @@ module TensorStream | |
| 43 38 | 
             
                      end
         | 
| 44 39 | 
             
                    end
         | 
| 45 40 |  | 
| 46 | 
            -
                    partials.reduce(:+)
         | 
| 41 | 
            +
                    partials.compact.reduce(:+)
         | 
| 47 42 | 
             
                  else
         | 
| 48 | 
            -
                    return  | 
| 43 | 
            +
                    return nil if computed_op.nil?
         | 
| 49 44 | 
             
                    _propagate(computed_op, tensor.inputs[0], stop_tensor, nodes_to_compute, stop_gradients)
         | 
| 50 45 | 
             
                  end
         | 
| 51 46 | 
             
                end
         | 
| @@ -57,66 +52,74 @@ module TensorStream | |
| 57 52 |  | 
| 58 53 | 
             
                    case node.operation
         | 
| 59 54 | 
             
                    when :add
         | 
| 60 | 
            -
                      return [grad, grad] if  | 
| 61 | 
            -
             | 
| 55 | 
            +
                      return [grad, grad] if shapes_fully_specified_and_equal(x, y)
         | 
| 62 56 | 
             
                      sx = tf.shape(x, name: 'add/shape_x')
         | 
| 63 57 | 
             
                      sy = tf.shape(y, name: 'add/shape_y')
         | 
| 64 58 | 
             
                      rx, ry = _broadcast_gradient_args(sx, sy)
         | 
| 65 | 
            -
                      keep_dims_x = tf.rank(x) == tf.rank(grad)
         | 
| 66 | 
            -
                      keep_dims_y = tf.rank(y) == tf.rank(grad)
         | 
| 67 59 |  | 
| 68 | 
            -
                      [tf.reduce_sum(grad, rx, name: 'add/reduce_sum_x', | 
| 69 | 
            -
             | 
| 60 | 
            +
                      [ tf.reshape(tf.reduce_sum(grad, rx, name: 'add/reduce_sum_x'),sx),
         | 
| 61 | 
            +
                        tf.reshape(tf.reduce_sum(grad, ry, name: 'add/reduce_sum_y'),sy) ]
         | 
| 70 62 | 
             
                    when :sub
         | 
| 71 | 
            -
                      return [grad, -grad] if  | 
| 63 | 
            +
                      return [grad, -grad] if shapes_fully_specified_and_equal(x, y)
         | 
| 72 64 |  | 
| 73 65 | 
             
                      sx = tf.shape(x, name: 'sub/shape_x')
         | 
| 74 66 | 
             
                      sy = tf.shape(y, name: 'sub/shape_y')
         | 
| 75 67 | 
             
                      rx, ry = _broadcast_gradient_args(sx, sy)
         | 
| 76 | 
            -
             | 
| 68 | 
            +
             | 
| 69 | 
            +
                      [ tf.reshape(tf.reduce_sum(grad, rx, name: 'add/reduce_sub_x'),sx),
         | 
| 70 | 
            +
                        -tf.reshape(tf.reduce_sum(grad, ry, name: 'add/reduce_sub_y'),sy) ]
         | 
| 77 71 | 
             
                    when :mul
         | 
| 78 72 | 
             
                      sx = tf.shape(x)
         | 
| 79 73 | 
             
                      sy = tf.shape(y)
         | 
| 80 74 | 
             
                      rx, ry = _broadcast_gradient_args(sx, sy)
         | 
| 81 75 |  | 
| 82 | 
            -
                      [ tf.reduce_sum(tf.mul(grad, y), rx),
         | 
| 83 | 
            -
                        tf.reduce_sum(tf.mul(x, grad), ry)]
         | 
| 76 | 
            +
                      [ tf.reshape(tf.reduce_sum(tf.mul(grad, y), rx), sx),
         | 
| 77 | 
            +
                        tf.reshape(tf.reduce_sum(tf.mul(x, grad), ry), sy)]
         | 
| 84 78 | 
             
                    when :div
         | 
| 85 79 | 
             
                      sx = i_op(:shape, x)
         | 
| 86 80 | 
             
                      sy = i_op(:shape, y)
         | 
| 87 81 | 
             
                      rx, ry = _broadcast_gradient_args(sx, sy)
         | 
| 88 82 |  | 
| 89 | 
            -
                      [ | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 83 | 
            +
                      [
         | 
| 84 | 
            +
                        tf.reshape(tf.reduce_sum(tf.div(grad, y), rx), sx),
         | 
| 85 | 
            +
                        tf.reshape(tf.reduce_sum(grad * tf.div(tf.div(-x, y), y),
         | 
| 86 | 
            +
                                              ry), sy)]
         | 
| 87 | 
            +
                    when :mod
         | 
| 88 | 
            +
                      sx = tf.shape(x)
         | 
| 89 | 
            +
                      sy = tf.shape(y)
         | 
| 90 | 
            +
                      rx, ry = _broadcast_gradient_args(sx, sy)
         | 
| 91 | 
            +
                      floor_xy = tf.floor_div(x, y)
         | 
| 92 | 
            +
                      gx = tf.reshape(tf.reduce_sum(grad, rx), sx)
         | 
| 93 | 
            +
                      gy = tf.reshape(tf.reduce_sum(grad * tf.negative(floor_xy), ry), sy)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                      [gx, gy]
         | 
| 96 | 
            +
                    when :squared_difference
         | 
| 97 | 
            +
                      sx = i_op(:shape, x)
         | 
| 98 | 
            +
                      sy = i_op(:shape, y)
         | 
| 99 | 
            +
                      rx, ry = _broadcast_gradient_args(sx, sy)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                      x_grad = tf.mul(2.0, grad) * (x - y)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                      [ tf.reshape(tf.reduce_sum(x_grad, rx), sx),
         | 
| 104 | 
            +
                        tf.reshape(-tf.reduce_sum(x_grad, ry), sy)]
         | 
| 92 105 | 
             
                    when :matmul
         | 
| 93 106 | 
             
                      t_a = node.options[:transpose_a]
         | 
| 94 107 | 
             
                      t_b = node.options[:transpose_b]
         | 
| 95 108 |  | 
| 96 | 
            -
                      s0 =  tf.shape(x)
         | 
| 97 | 
            -
                      s1 =  tf.shape(y)
         | 
| 98 | 
            -
             | 
| 99 | 
            -
                      identity_0 = tf.ones([ s0[0], s1[1] ], dtype: x.data_type, name: 'matmul/identity0')
         | 
| 100 | 
            -
                      identity_1 = tf.ones([ s0[0], s1[1] ], dtype: y.data_type, name: 'matmul/identity1')
         | 
| 101 | 
            -
             | 
| 102 | 
            -
                      grad_a, grad_b = nil
         | 
| 103 109 | 
             
                      if !t_a && !t_b
         | 
| 104 | 
            -
                        grad_a = tf.matmul( | 
| 105 | 
            -
                        grad_b = tf.matmul(x,  | 
| 110 | 
            +
                        grad_a = tf.matmul(grad, y, transpose_b: true)
         | 
| 111 | 
            +
                        grad_b = tf.matmul(x, grad, transpose_a: true)
         | 
| 106 112 | 
             
                      elsif !ta && tb
         | 
| 107 | 
            -
                        grad_a = tf.matmul( | 
| 108 | 
            -
                        grad_b = tf.matmul( | 
| 113 | 
            +
                        grad_a = tf.matmul(grad, y)
         | 
| 114 | 
            +
                        grad_b = tf.matmul(grad, x, transpose_a: true)
         | 
| 109 115 | 
             
                      elsif t_a && !t_b
         | 
| 110 | 
            -
                        grad_a = tf.matmul(y,  | 
| 111 | 
            -
                        grad_b = tf.matmul(x,  | 
| 116 | 
            +
                        grad_a = tf.matmul(y, grad, transpose_b: true)
         | 
| 117 | 
            +
                        grad_b = tf.matmul(x, grad)
         | 
| 112 118 | 
             
                      elsif t_a && t_b
         | 
| 113 | 
            -
                        grad_a = tf.matmul(y,  | 
| 114 | 
            -
                        grad_b = tf.matmul( | 
| 119 | 
            +
                        grad_a = tf.matmul(y, grad, transpose_a: true, transpose_b: true)
         | 
| 120 | 
            +
                        grad_b = tf.matmul(grad, x, transpose_a: true, transpose_b: true)
         | 
| 115 121 | 
             
                      end
         | 
| 116 122 |  | 
| 117 | 
            -
                      grad_a = i_op(:mul, grad, grad_a, name: 'matmul/grad_a_norm_mul_da')
         | 
| 118 | 
            -
                      grad_b = i_op(:mul, grad, grad_b, name: 'matmul/grad_b_norm_mul_db')
         | 
| 119 | 
            -
             | 
| 120 123 | 
             
                      [grad_a, grad_b]
         | 
| 121 124 | 
             
                    when :sin
         | 
| 122 125 | 
             
                      grad * tf.cos(x)
         | 
| @@ -153,7 +156,7 @@ module TensorStream | |
| 153 156 | 
             
                      -grad
         | 
| 154 157 | 
             
                    when :exp
         | 
| 155 158 | 
             
                      grad * node
         | 
| 156 | 
            -
                    when :identity
         | 
| 159 | 
            +
                    when :identity, :print
         | 
| 157 160 | 
             
                      grad
         | 
| 158 161 | 
             
                    when :sum
         | 
| 159 162 | 
             
                      _sum_grad(x, y, grad)
         | 
| @@ -175,7 +178,7 @@ module TensorStream | |
| 175 178 | 
             
                      y_cond = i_op(:cond, i_op(:zeros_like, x), i_op(:ones_like, x), pred: node.options[:pred])
         | 
| 176 179 | 
             
                      [x_cond * grad, y_cond * grad]
         | 
| 177 180 | 
             
                    when :mean
         | 
| 178 | 
            -
                      sum_grad | 
| 181 | 
            +
                      sum_grad  = _sum_grad(x, y, grad)[0]
         | 
| 179 182 | 
             
                      input_shape = tf.shape(x)
         | 
| 180 183 | 
             
                      output_shape = tf.shape(node)
         | 
| 181 184 | 
             
                      factor = _safe_shape_div(tf.reduce_prod(input_shape), tf.reduce_prod(output_shape))
         | 
| @@ -186,6 +189,10 @@ module TensorStream | |
| 186 189 | 
             
                      i_op(:sigmoid_grad, x, grad)
         | 
| 187 190 | 
             
                    when :softmax
         | 
| 188 191 | 
             
                      i_op(:softmax_grad, x, grad)
         | 
| 192 | 
            +
                    when :softmax_cross_entropy_with_logits_v2
         | 
| 193 | 
            +
                      # -grad * tf.reciprocal(i_op(:softmax, x))
         | 
| 194 | 
            +
                      [i_op(:softmax_cross_entropy_with_logits_v2_grad, x, y, grad), nil]
         | 
| 195 | 
            +
                      # i_op(:softmax_grad, x, -grad * tf.reciprocal(i_op(:softmax, x)))
         | 
| 189 196 | 
             
                    when :floor, :ceil
         | 
| 190 197 | 
             
                      # non differentiable
         | 
| 191 198 | 
             
                      nil
         | 
| @@ -202,7 +209,8 @@ module TensorStream | |
| 202 209 | 
             
                end
         | 
| 203 210 |  | 
| 204 211 | 
             
                def self._broadcast_gradient_args(input_a, input_b)
         | 
| 205 | 
            -
                   | 
| 212 | 
            +
                  res = _op(:broadcast_gradient_args, input_a, input_b)
         | 
| 213 | 
            +
                  [res[0], res[1]]
         | 
| 206 214 | 
             
                end
         | 
| 207 215 |  | 
| 208 216 | 
             
                def self._broadcast_transform(input_a, input_b)
         | 
| @@ -210,11 +218,18 @@ module TensorStream | |
| 210 218 | 
             
                end
         | 
| 211 219 |  | 
| 212 220 | 
             
                def self._safe_shape_div(x, y)
         | 
| 213 | 
            -
                  x  | 
| 221 | 
            +
                  _op(:floor_div, x , tf.maximum(y, 1))
         | 
| 214 222 | 
             
                end
         | 
| 215 223 |  | 
| 216 224 | 
             
                def self._sum_grad(x, y, grad)
         | 
| 217 | 
            -
                   | 
| 225 | 
            +
                  input_shape = _op(:shape, x)
         | 
| 226 | 
            +
                  output_shape_kept_dims = tf.reduced_shape(input_shape, y)
         | 
| 227 | 
            +
                  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
         | 
| 228 | 
            +
                  new_grad = _op(:reshape, grad, output_shape_kept_dims)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                  grad = _op(:cond, _op(:fill, input_shape, grad) , _op(:tile, new_grad, tile_scaling), pred: _op(:rank, grad) == 0 )
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                  [grad, nil ]
         | 
| 218 233 | 
             
                end
         | 
| 219 234 |  | 
| 220 235 | 
             
                def self._op_supports_broadcast?(node)
         | 
| @@ -233,20 +248,5 @@ module TensorStream | |
| 233 248 | 
             
                  arr.each { |a| return true if a.equal?(obj) }
         | 
| 234 249 | 
             
                  false
         | 
| 235 250 | 
             
                end
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                def self._shapes_fully_specified_and_equal(x, y)
         | 
| 238 | 
            -
                 return false if !_shape_full_specified(x) || !_shape_full_specified(y)
         | 
| 239 | 
            -
                 return false if x.shape.shape != y.shape.shape
         | 
| 240 | 
            -
                 
         | 
| 241 | 
            -
                 true
         | 
| 242 | 
            -
                end
         | 
| 243 | 
            -
             | 
| 244 | 
            -
                def self._shape_full_specified(tensor)
         | 
| 245 | 
            -
                  return false if tensor.shape.nil?
         | 
| 246 | 
            -
                  return false if tensor.shape.shape.nil?
         | 
| 247 | 
            -
             | 
| 248 | 
            -
                  tensor.shape.shape.each { |s| return false if s.nil? }
         | 
| 249 | 
            -
                  true
         | 
| 250 | 
            -
                end
         | 
| 251 251 | 
             
              end
         | 
| 252 252 | 
             
            end
         | 
| @@ -15,12 +15,16 @@ module TensorStream | |
| 15 15 | 
             
                end
         | 
| 16 16 |  | 
| 17 17 | 
             
                def self.softmax_cross_entropy_with_logits(labels: nil, logits: nil, name: nil)
         | 
| 18 | 
            -
                   | 
| 18 | 
            +
                  softmax_cross_entropy_with_logits_v2(labels, logits, name)
         | 
| 19 | 
            +
                end
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                def self.softmax_cross_entropy_with_logits_v2(labels: nil, logits: nil, name: nil)
         | 
| 22 | 
            +
                  TensorStream.name_scope(name, default: 'softmax_cross_entropy_with_logits', values: [logits, labels]) do
         | 
| 19 23 | 
             
                    tf = TensorStream
         | 
| 20 24 | 
             
                    logits = tf.convert_to_tensor(logits, name: 'logits')
         | 
| 21 25 | 
             
                    labels = tf.convert_to_tensor(labels, name: 'labels')
         | 
| 22 26 | 
             
                    labels = tf.cast(labels, logits.dtype)
         | 
| 23 | 
            -
                    softmax_logits =  | 
| 27 | 
            +
                    softmax_logits = _op(:softmax_cross_entropy_with_logits_v2, logits, labels)
         | 
| 24 28 | 
             
                    tf.reduce_sum(softmax_logits, tf.rank(logits) - 1)
         | 
| 25 29 | 
             
                  end
         | 
| 26 30 | 
             
                end
         | 
| @@ -69,10 +69,12 @@ module TensorStream | |
| 69 69 |  | 
| 70 70 | 
             
                def set_data_type(passed_data_type)
         | 
| 71 71 | 
             
                  case operation
         | 
| 72 | 
            +
                  when :fill
         | 
| 73 | 
            +
                    @inputs[1].data_type
         | 
| 72 74 | 
             
                  when :greater, :less, :equal, :not_equal, :greater_equal, :less_equal, :logical_and
         | 
| 73 75 | 
             
                    :boolean
         | 
| 74 76 | 
             
                  when :shape, :rank
         | 
| 75 | 
            -
                    :int32
         | 
| 77 | 
            +
                    options[:out_type] || :int32
         | 
| 76 78 | 
             
                  when :random_normal, :random_uniform, :glorot_uniform
         | 
| 77 79 | 
             
                    passed_data_type || :float32
         | 
| 78 80 | 
             
                  when :index
         | 
| @@ -282,13 +284,25 @@ module TensorStream | |
| 282 284 | 
             
                def propagate_consumer(consumer)
         | 
| 283 285 | 
             
                  super
         | 
| 284 286 | 
             
                  @inputs.compact.each do |input|
         | 
| 285 | 
            -
                    input. | 
| 287 | 
            +
                    if input.is_a?(Array)
         | 
| 288 | 
            +
                      input.flatten.compact.each do |t|
         | 
| 289 | 
            +
                        t.send(:propagate_consumer, consumer) if t.is_a?(Tensor)
         | 
| 290 | 
            +
                      end
         | 
| 291 | 
            +
                    else
         | 
| 292 | 
            +
                      input.send(:propagate_consumer, consumer) if input.name != name
         | 
| 293 | 
            +
                    end
         | 
| 286 294 | 
             
                  end
         | 
| 287 295 | 
             
                end
         | 
| 288 296 |  | 
| 289 297 | 
             
                def propagate_outputs
         | 
| 290 298 | 
             
                  @inputs.compact.each do |input|
         | 
| 291 | 
            -
                    input. | 
| 299 | 
            +
                    if input.is_a?(Array)
         | 
| 300 | 
            +
                      input.flatten.compact.each do |t|
         | 
| 301 | 
            +
                        t.send(:setup_output, self) if t.is_a?(Tensor)
         | 
| 302 | 
            +
                      end
         | 
| 303 | 
            +
                    else
         | 
| 304 | 
            +
                      input.send(:setup_output, self) if input.is_a?(Tensor) && (input.name != self.name)
         | 
| 305 | 
            +
                    end
         | 
| 292 306 | 
             
                  end
         | 
| 293 307 | 
             
                end
         | 
| 294 308 |  | 
    
        data/lib/tensor_stream/ops.rb
    CHANGED
    
    | @@ -89,6 +89,9 @@ module TensorStream | |
| 89 89 | 
             
                ##
         | 
| 90 90 | 
             
                # This operation returns a 1-D integer tensor representing the shape of input
         | 
| 91 91 | 
             
                def shape(input, name: nil, out_type: :int32)
         | 
| 92 | 
            +
                  return constant(shape_eval(input, out_type), dtype: out_type, name: name) if input.is_a?(Array)
         | 
| 93 | 
            +
                  return constant(input.shape.shape, dtype: out_type, name: "Shape/#{input.name}") if shape_full_specified(input)
         | 
| 94 | 
            +
             | 
| 92 95 | 
             
                  _op(:shape, input, nil, name: name, out_type: out_type)
         | 
| 93 96 | 
             
                end
         | 
| 94 97 |  | 
| @@ -287,6 +290,24 @@ module TensorStream | |
| 287 290 | 
             
                  _op(:sub, input_a, input_b, name: name)
         | 
| 288 291 | 
             
                end
         | 
| 289 292 |  | 
| 293 | 
            +
                ##
         | 
| 294 | 
            +
                # Returns element-wise remainder of division.
         | 
| 295 | 
            +
                def mod(input_a, input_b, name: nil)
         | 
| 296 | 
            +
                  input_a, input_b = check_data_types(input_a, input_b)
         | 
| 297 | 
            +
                  _op(:mod, input_a, input_b, name: name)
         | 
| 298 | 
            +
                end
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                ##
         | 
| 301 | 
            +
                # Returns element-wise integer divistion.
         | 
| 302 | 
            +
                def floor_div(input_a, input_b, name: nil)
         | 
| 303 | 
            +
                  input_a, input_b = check_data_types(input_a, input_b)
         | 
| 304 | 
            +
                  _op(:floor_div, input_a, input_b, name: name)
         | 
| 305 | 
            +
                end
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def range(start, limit, delta = 1, dtype: nil, name: 'range')
         | 
| 308 | 
            +
                  _op(:range, start, limit, delta, data_type: dtype, name: name)
         | 
| 309 | 
            +
                end
         | 
| 310 | 
            +
             | 
| 290 311 | 
             
                ##
         | 
| 291 312 | 
             
                # Returns x - y element-wise.
         | 
| 292 313 | 
             
                #
         | 
| @@ -476,6 +497,19 @@ module TensorStream | |
| 476 497 | 
             
                  _op(:exp, input, nil, name: name)
         | 
| 477 498 | 
             
                end
         | 
| 478 499 |  | 
| 500 | 
            +
                ##
         | 
| 501 | 
            +
                # Creates a tensor filled with a scalar value.
         | 
| 502 | 
            +
                #
         | 
| 503 | 
            +
                # This operation creates a tensor of shape dims and fills it with value.
         | 
| 504 | 
            +
                #
         | 
| 505 | 
            +
                # For example:
         | 
| 506 | 
            +
                # Output tensor has shape [2, 3].
         | 
| 507 | 
            +
                # fill([2, 3], 9) => [[9, 9, 9]
         | 
| 508 | 
            +
                 #                    [9, 9, 9]]
         | 
| 509 | 
            +
                def fill(dims, value, name: nil)
         | 
| 510 | 
            +
                  _op(:fill, dims, value, name: name)
         | 
| 511 | 
            +
                end
         | 
| 512 | 
            +
             | 
| 479 513 | 
             
                ##
         | 
| 480 514 | 
             
                # Computes sigmoid of x element-wise.
         | 
| 481 515 | 
             
                def sigmoid(input, name: nil)
         | 
| @@ -512,5 +546,18 @@ module TensorStream | |
| 512 546 | 
             
                def check_numerics(tensor, message, name: nil)
         | 
| 513 547 | 
             
                  _op(:check_numerics, tensor, nil, message: message, name: name)
         | 
| 514 548 | 
             
                end
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                def size(tensor, name: nil, out_type: :int32)
         | 
| 551 | 
            +
                  _op(:size, tensor, name: name, out_type: out_type)
         | 
| 552 | 
            +
                end
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                def squared_difference(input_a, input_b, name: nil)
         | 
| 555 | 
            +
                  _op(:squared_difference, input_a, input_b, name: name)
         | 
| 556 | 
            +
                end
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                def broadcast_gradient_args(shape_a, shape_b, name: nil)
         | 
| 559 | 
            +
                  op_result = _op(:broadcast_gradient_args, shape_a, shape_b, name: name)
         | 
| 560 | 
            +
                  [op_result[0], op_result[1]]
         | 
| 561 | 
            +
                end
         | 
| 515 562 | 
             
              end
         | 
| 516 563 | 
             
            end
         | 
| @@ -71,7 +71,7 @@ module TensorStream | |
| 71 71 | 
             
                  end
         | 
| 72 72 | 
             
                  result = args.collect do |e|
         | 
| 73 73 | 
             
                    value = delegate_to_evaluator(e, context, {})
         | 
| 74 | 
            -
                    value | 
| 74 | 
            +
                    recursive_eval(value)
         | 
| 75 75 | 
             
                  end
         | 
| 76 76 | 
             
                  result.size == 1 ? result.first : result
         | 
| 77 77 | 
             
                end
         | 
| @@ -122,6 +122,14 @@ module TensorStream | |
| 122 122 |  | 
| 123 123 | 
             
                protected
         | 
| 124 124 |  | 
| 125 | 
            +
                def recursive_eval(value, depth = 2)
         | 
| 126 | 
            +
                  if value.is_a?(Array) && depth > 0
         | 
| 127 | 
            +
                    value.collect { |v| recursive_eval(v, depth - 1) }
         | 
| 128 | 
            +
                  else
         | 
| 129 | 
            +
                    value.respond_to?(:to_ruby) ? value.to_ruby : value
         | 
| 130 | 
            +
                  end
         | 
| 131 | 
            +
                end
         | 
| 132 | 
            +
             | 
| 125 133 | 
             
                def assign_evaluator(tensor)
         | 
| 126 134 | 
             
                  device = @evaluator_classes.map do |klass|
         | 
| 127 135 | 
             
                    next nil if tensor.is_a?(Operation) && !klass.ops.include?(tensor.operation.to_sym)
         | 
    
        data/lib/tensor_stream/tensor.rb
    CHANGED
    
    | @@ -87,6 +87,19 @@ module TensorStream | |
| 87 87 | 
             
                  _op(:negate, self, nil)
         | 
| 88 88 | 
             
                end
         | 
| 89 89 |  | 
| 90 | 
            +
                def %(other)
         | 
| 91 | 
            +
                  _a, other = TensorStream.check_data_types(self, other)
         | 
| 92 | 
            +
                  _op(:mod, self, TensorStream.convert_to_tensor(other, dtype: data_type))
         | 
| 93 | 
            +
                end
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def floor
         | 
| 96 | 
            +
                  TensorStream.floor(self)
         | 
| 97 | 
            +
                end
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                def ceil
         | 
| 100 | 
            +
                  TensorStream.ceil(self)
         | 
| 101 | 
            +
                end
         | 
| 102 | 
            +
             | 
| 90 103 | 
             
                def ==(other)
         | 
| 91 104 | 
             
                  _a, other = TensorStream.check_data_types(self, other)
         | 
| 92 105 | 
             
                  _op(:equal, self, other)
         | 
| @@ -199,6 +212,8 @@ module TensorStream | |
| 199 212 | 
             
                    :int32
         | 
| 200 213 | 
             
                  elsif value.is_a?(Array)
         | 
| 201 214 | 
             
                    return detect_type(value[0])
         | 
| 215 | 
            +
                  elsif value.is_a?(Tensor)
         | 
| 216 | 
            +
                    value.data_type
         | 
| 202 217 | 
             
                  else
         | 
| 203 218 | 
             
                    :float32
         | 
| 204 219 | 
             
                  end
         | 
    
        data/lib/tensor_stream/utils.rb
    CHANGED
    
    | @@ -141,6 +141,10 @@ module TensorStream | |
| 141 141 | 
             
                  TensorStream::ControlFlow.new(:group, inputs, nil, name: name)
         | 
| 142 142 | 
             
                end
         | 
| 143 143 |  | 
| 144 | 
            +
                def dynamic_stitch(indices, data, name: nil)
         | 
| 145 | 
            +
                  TensorStream::DynamicStitch.new(:dynamic_stitch, [indices, data], name: name)
         | 
| 146 | 
            +
                end
         | 
| 147 | 
            +
             | 
| 144 148 | 
             
                def get_variable(name, dtype: nil, shape: nil, initializer: nil, trainable: true, collections: nil)
         | 
| 145 149 | 
             
                  TensorStream::Variable.new(dtype || :float32, nil, shape, collections: collections, name: name, initializer: initializer, trainable: trainable)
         | 
| 146 150 | 
             
                end
         | 
| @@ -204,7 +208,7 @@ module TensorStream | |
| 204 208 | 
             
                    input_a = convert_to_tensor(input_a)
         | 
| 205 209 | 
             
                    input_b = convert_to_tensor(input_b)
         | 
| 206 210 | 
             
                  end
         | 
| 207 | 
            -
             | 
| 211 | 
            +
                  
         | 
| 208 212 | 
             
                  if norm_dtype(input_a.data_type) != norm_dtype(input_b.data_type)
         | 
| 209 213 | 
             
                    raise "Value Error: Tensor conversion requested dtype #{input_a.data_type} for tensor type #{input_b.data_type}" 
         | 
| 210 214 | 
             
                  end
         | 
    
        data/lib/tensor_stream.rb
    CHANGED
    
    | @@ -16,6 +16,7 @@ require 'tensor_stream/variable' | |
| 16 16 | 
             
            require 'tensor_stream/operation'
         | 
| 17 17 | 
             
            require 'tensor_stream/placeholder'
         | 
| 18 18 | 
             
            require 'tensor_stream/control_flow'
         | 
| 19 | 
            +
            require 'tensor_stream/dynamic_stitch'
         | 
| 19 20 | 
             
            require 'tensor_stream/trainer'
         | 
| 20 21 | 
             
            require 'tensor_stream/nn/nn_ops'
         | 
| 21 22 | 
             
            require 'tensor_stream/evaluator/evaluator'
         |