tensor_stream 0.3.0 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
 - data/.circleci/config.yml +7 -7
 - data/CHANGELOG.md +13 -0
 - data/Dockerfile +25 -0
 - data/Rakefile +6 -0
 - data/benchmark/benchmark.rb +16 -57
 - data/benchmark_intel.txt +21 -0
 - data/benchmark_nvidia.txt +33 -0
 - data/lib/tensor_stream.rb +4 -173
 - data/lib/tensor_stream/debugging/debugging.rb +20 -0
 - data/lib/tensor_stream/evaluator/kernels/abs.cl +9 -5
 - data/lib/tensor_stream/evaluator/kernels/add.cl +2 -4
 - data/lib/tensor_stream/evaluator/kernels/argmax.cl +2 -9
 - data/lib/tensor_stream/evaluator/kernels/argmin.cl +2 -9
 - data/lib/tensor_stream/evaluator/kernels/cast.cl +3 -8
 - data/lib/tensor_stream/evaluator/kernels/cond.cl.erb +1 -1
 - data/lib/tensor_stream/evaluator/kernels/cos.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/div.cl.erb +2 -4
 - data/lib/tensor_stream/evaluator/kernels/exp.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/gemm.cl +8 -39
 - data/lib/tensor_stream/evaluator/kernels/log.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/log1p.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/max.cl +4 -49
 - data/lib/tensor_stream/evaluator/kernels/mul.cl +2 -4
 - data/lib/tensor_stream/evaluator/kernels/negate.cl +2 -9
 - data/lib/tensor_stream/evaluator/kernels/pow.cl +4 -88
 - data/lib/tensor_stream/evaluator/kernels/reciprocal.cl +2 -9
 - data/lib/tensor_stream/evaluator/kernels/round.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/sigmoid.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/sigmoid_grad.cl +6 -5
 - data/lib/tensor_stream/evaluator/kernels/sign.cl +12 -14
 - data/lib/tensor_stream/evaluator/kernels/sin.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/softmax.cl +26 -0
 - data/lib/tensor_stream/evaluator/kernels/softmax_grad.cl +46 -0
 - data/lib/tensor_stream/evaluator/kernels/sqrt.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/square.cl +2 -8
 - data/lib/tensor_stream/evaluator/kernels/sub.cl +2 -4
 - data/lib/tensor_stream/evaluator/kernels/tan.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/tanh.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/tanh_grad.cl +2 -1
 - data/lib/tensor_stream/evaluator/kernels/where.cl +2 -9
 - data/lib/tensor_stream/evaluator/opencl_evaluator.rb +108 -58
 - data/lib/tensor_stream/evaluator/opencl_template_helper.rb +40 -5
 - data/lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb +35 -0
 - data/lib/tensor_stream/evaluator/ruby_evaluator.rb +30 -9
 - data/lib/tensor_stream/graph_serializers/graphml.rb +1 -1
 - data/lib/tensor_stream/graph_serializers/pbtext.rb +4 -0
 - data/lib/tensor_stream/math_gradients.rb +6 -5
 - data/lib/tensor_stream/nn/nn_ops.rb +18 -2
 - data/lib/tensor_stream/ops.rb +237 -44
 - data/lib/tensor_stream/tensor.rb +16 -2
 - data/lib/tensor_stream/utils.rb +205 -0
 - data/lib/tensor_stream/variable.rb +2 -1
 - data/lib/tensor_stream/version.rb +1 -1
 - data/samples/error.graphml +2755 -0
 - data/{test_samples → samples}/iris.rb +18 -24
 - data/samples/logistic_regression.rb +0 -1
 - data/test_samples/raw_neural_net_sample.rb +80 -23
 - metadata +11 -3
 
| 
         @@ -1,18 +1,17 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            require "bundler/setup"
         
     | 
| 
       2 
2 
     | 
    
         
             
            require 'tensor_stream'
         
     | 
| 
       3 
     | 
    
         
            -
            require 'pry-byebug'
         
     | 
| 
       4 
3 
     | 
    
         | 
| 
       5 
4 
     | 
    
         
             
            # This neural network will predict the species of an iris based on sepal and petal size
         
     | 
| 
       6 
5 
     | 
    
         
             
            # Dataset: http://en.wikipedia.org/wiki/Iris_flower_data_set
         
     | 
| 
       7 
     | 
    
         
            -
             
     | 
| 
      
 6 
     | 
    
         
            +
            tf = TensorStream
         
     | 
| 
       8 
7 
     | 
    
         
             
            rows = File.readlines(File.join("samples","iris.data")).map {|l| l.chomp.split(',') }
         
     | 
| 
       9 
8 
     | 
    
         | 
| 
       10 
9 
     | 
    
         
             
            rows.shuffle!
         
     | 
| 
       11 
10 
     | 
    
         | 
| 
       12 
11 
     | 
    
         
             
            label_encodings = {
         
     | 
| 
       13 
     | 
    
         
            -
               
     | 
| 
       14 
     | 
    
         
            -
               
     | 
| 
       15 
     | 
    
         
            -
               
     | 
| 
      
 12 
     | 
    
         
            +
              'Iris-setosa'     => [1, 0, 0],
         
     | 
| 
      
 13 
     | 
    
         
            +
              'Iris-versicolor' => [0, 1, 0],
         
     | 
| 
      
 14 
     | 
    
         
            +
              'Iris-virginica'  => [0, 0, 1]
         
     | 
| 
       16 
15 
     | 
    
         
             
            }
         
     | 
| 
       17 
16 
     | 
    
         | 
| 
       18 
17 
     | 
    
         
             
            x_data = rows.map {|row| row[0,4].map(&:to_f) }
         
     | 
| 
         @@ -40,7 +39,7 @@ y_test = y_data.slice(100, 50) 
     | 
|
| 
       40 
39 
     | 
    
         | 
| 
       41 
40 
     | 
    
         
             
            test_cases = []
         
     | 
| 
       42 
41 
     | 
    
         
             
            x_train.each_with_index do |x, index|
         
     | 
| 
       43 
     | 
    
         
            -
              test_cases << [x, y_train[index] 
     | 
| 
      
 42 
     | 
    
         
            +
              test_cases << [x, y_train[index]]
         
     | 
| 
       44 
43 
     | 
    
         
             
            end
         
     | 
| 
       45 
44 
     | 
    
         | 
| 
       46 
45 
     | 
    
         
             
            validation_cases = []
         
     | 
| 
         @@ -54,11 +53,10 @@ batch_size = 128 
     | 
|
| 
       54 
53 
     | 
    
         
             
            display_step = 100
         
     | 
| 
       55 
54 
     | 
    
         | 
| 
       56 
55 
     | 
    
         
             
            # Network Parameters
         
     | 
| 
       57 
     | 
    
         
            -
            n_hidden_1 =  
     | 
| 
       58 
     | 
    
         
            -
            n_hidden_2 = 32 # 2nd layer number of neurons
         
     | 
| 
      
 56 
     | 
    
         
            +
            n_hidden_1 = 4 # 1st layer number of neurons
         
     | 
| 
       59 
57 
     | 
    
         
             
            num_classes = 3 # MNIST total classes (0-9 digits)
         
     | 
| 
       60 
58 
     | 
    
         
             
            num_input = 4
         
     | 
| 
       61 
     | 
    
         
            -
            training_epochs =  
     | 
| 
      
 59 
     | 
    
         
            +
            training_epochs = 100
         
     | 
| 
       62 
60 
     | 
    
         | 
| 
       63 
61 
     | 
    
         
             
            tf = TensorStream
         
     | 
| 
       64 
62 
     | 
    
         | 
| 
         @@ -68,26 +66,20 @@ y = tf.placeholder("float", shape: [nil, num_classes], name: 'y') 
     | 
|
| 
       68 
66 
     | 
    
         | 
| 
       69 
67 
     | 
    
         
             
            # Store layers weight & bias
         
     | 
| 
       70 
68 
     | 
    
         
             
            weights = {
         
     | 
| 
       71 
     | 
    
         
            -
             
     | 
| 
       72 
     | 
    
         
            -
             
     | 
| 
       73 
     | 
    
         
            -
                out: tf.variable(tf.random_normal([n_hidden_2, num_classes]), name: 'out')
         
     | 
| 
      
 69 
     | 
    
         
            +
              h1: tf.variable(tf.random_normal([num_input, n_hidden_1]), name: 'h1'),
         
     | 
| 
      
 70 
     | 
    
         
            +
              out: tf.variable(tf.random_normal([num_classes, num_classes]), name: 'out')
         
     | 
| 
       74 
71 
     | 
    
         
             
            }
         
     | 
| 
       75 
72 
     | 
    
         | 
| 
       76 
73 
     | 
    
         
             
            biases = {
         
     | 
| 
       77 
     | 
    
         
            -
             
     | 
| 
       78 
     | 
    
         
            -
             
     | 
| 
       79 
     | 
    
         
            -
                out: tf.variable(tf.random_normal([num_classes]), name: 'b_out')
         
     | 
| 
      
 74 
     | 
    
         
            +
              b1: tf.variable(tf.random_normal([n_hidden_1]), name: 'b1'),
         
     | 
| 
      
 75 
     | 
    
         
            +
              out: tf.variable(tf.random_normal([num_classes]), name: 'b_out')
         
     | 
| 
       80 
76 
     | 
    
         
             
            }
         
     | 
| 
       81 
77 
     | 
    
         | 
| 
       82 
     | 
    
         
            -
             
     | 
| 
       83 
78 
     | 
    
         
             
            # Create model
         
     | 
| 
       84 
79 
     | 
    
         
             
            def neural_net(x, weights, biases)
         
     | 
| 
       85 
     | 
    
         
            -
                 
     | 
| 
       86 
     | 
    
         
            -
                layer_1 =  TensorStream.add(TensorStream.matmul(x, weights[:h1]), biases[:b1], name: 'layer1_add')
         
     | 
| 
       87 
     | 
    
         
            -
                # Hidden fully connected layer with 256 neurons
         
     | 
| 
       88 
     | 
    
         
            -
                layer_2 = TensorStream.add(TensorStream.matmul(layer_1, weights[:h2]), biases[:b2], name: 'layer2_add')
         
     | 
| 
      
 80 
     | 
    
         
            +
                layer_1 = TensorStream.tanh(TensorStream.add(TensorStream.matmul(x, weights[:h1]), biases[:b1], name: 'layer1_add'))
         
     | 
| 
       89 
81 
     | 
    
         
             
                # Output fully connected layer with a neuron for each class
         
     | 
| 
       90 
     | 
    
         
            -
                TensorStream.matmul( 
     | 
| 
      
 82 
     | 
    
         
            +
                TensorStream.sigmoid(TensorStream.matmul(layer_1, weights[:out]) + biases[:out])
         
     | 
| 
       91 
83 
     | 
    
         
             
            end
         
     | 
| 
       92 
84 
     | 
    
         | 
| 
       93 
85 
     | 
    
         
             
            # Construct model
         
     | 
| 
         @@ -105,11 +97,13 @@ TensorStream.session do |sess| 
     | 
|
| 
       105 
97 
     | 
    
         
             
              sess.run(init)
         
     | 
| 
       106 
98 
     | 
    
         
             
              puts "Testing the untrained network..."
         
     | 
| 
       107 
99 
     | 
    
         
             
              loss = sess.run(cost, feed_dict: { x => x_train, y => y_train })
         
     | 
| 
       108 
     | 
    
         
            -
              puts  
     | 
| 
      
 100 
     | 
    
         
            +
              puts loss
         
     | 
| 
       109 
101 
     | 
    
         
             
              puts "loss before training"
         
     | 
| 
       110 
102 
     | 
    
         
             
              (0..training_epochs).each do |epoch|
         
     | 
| 
       111 
     | 
    
         
            -
                 
     | 
| 
       112 
     | 
    
         
            -
             
     | 
| 
      
 103 
     | 
    
         
            +
                x_train.zip(y_train).each do |t_x, t_y|
         
     | 
| 
      
 104 
     | 
    
         
            +
                  sess.run(optimizer, feed_dict: { x => [t_x], y => [t_y] })
         
     | 
| 
      
 105 
     | 
    
         
            +
                  loss = sess.run(cost, feed_dict: { x => [t_x], y => [t_y] })
         
     | 
| 
      
 106 
     | 
    
         
            +
                end
         
     | 
| 
       113 
107 
     | 
    
         
             
                puts "loss #{loss}"
         
     | 
| 
       114 
108 
     | 
    
         
             
              end
         
     | 
| 
       115 
109 
     | 
    
         
             
              loss = sess.run(cost, feed_dict: { x => x_train, y => y_train })
         
     | 
| 
         @@ -1,7 +1,26 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            """ Neural Network.
         
     | 
| 
      
 2 
     | 
    
         
            +
             
     | 
| 
      
 3 
     | 
    
         
            +
            A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
         
     | 
| 
      
 4 
     | 
    
         
            +
            implementation with TensorFlow. This example is using the MNIST database
         
     | 
| 
      
 5 
     | 
    
         
            +
            of handwritten digits (http://yann.lecun.com/exdb/mnist/).
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            Links:
         
     | 
| 
      
 8 
     | 
    
         
            +
                [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
         
     | 
| 
      
 9 
     | 
    
         
            +
             
     | 
| 
      
 10 
     | 
    
         
            +
            Author: Aymeric Damien
         
     | 
| 
      
 11 
     | 
    
         
            +
            Project: https://github.com/aymericdamien/TensorFlow-Examples/
         
     | 
| 
      
 12 
     | 
    
         
            +
            """
         
     | 
| 
       1 
13 
     | 
    
         
             
            require "bundler/setup"
         
     | 
| 
       2 
14 
     | 
    
         
             
            require 'tensor_stream'
         
     | 
| 
      
 15 
     | 
    
         
            +
            require 'mnist-learn'
         
     | 
| 
      
 16 
     | 
    
         
            +
            require 'tensor_stream/evaluator/opencl_evaluator'
         
     | 
| 
       3 
17 
     | 
    
         
             
            require 'pry-byebug'
         
     | 
| 
       4 
18 
     | 
    
         | 
| 
      
 19 
     | 
    
         
            +
            tf = TensorStream
         
     | 
| 
      
 20 
     | 
    
         
            +
            # Import MNIST data
         
     | 
| 
      
 21 
     | 
    
         
            +
            mnist = Mnist.read_data_sets('/tmp/data', one_hot: true)
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
            # Parameters
         
     | 
| 
       5 
24 
     | 
    
         
             
            learning_rate = 0.1
         
     | 
| 
       6 
25 
     | 
    
         
             
            num_steps = 500
         
     | 
| 
       7 
26 
     | 
    
         
             
            batch_size = 128
         
     | 
| 
         @@ -13,42 +32,80 @@ n_hidden_2 = 256 # 2nd layer number of neurons 
     | 
|
| 
       13 
32 
     | 
    
         
             
            num_input = 784 # MNIST data input (img shape: 28*28)
         
     | 
| 
       14 
33 
     | 
    
         
             
            num_classes = 10 # MNIST total classes (0-9 digits)
         
     | 
| 
       15 
34 
     | 
    
         | 
| 
       16 
     | 
    
         
            -
            tf = TensorStream
         
     | 
| 
       17 
     | 
    
         
            -
             
     | 
| 
       18 
35 
     | 
    
         
             
            # tf Graph input
         
     | 
| 
       19 
     | 
    
         
            -
            X = tf.placeholder( 
     | 
| 
       20 
     | 
    
         
            -
            Y = tf.placeholder( 
     | 
| 
      
 36 
     | 
    
         
            +
            X = tf.placeholder(:float64, shape: [nil, num_input])
         
     | 
| 
      
 37 
     | 
    
         
            +
            Y = tf.placeholder(:float64, shape: [nil, num_classes])
         
     | 
| 
       21 
38 
     | 
    
         | 
| 
       22 
39 
     | 
    
         
             
            # Store layers weight & bias
         
     | 
| 
       23 
     | 
    
         
            -
             
     | 
| 
       24 
     | 
    
         
            -
                h1 
     | 
| 
       25 
     | 
    
         
            -
                h2 
     | 
| 
       26 
     | 
    
         
            -
                out 
     | 
| 
      
 40 
     | 
    
         
            +
            weights = {
         
     | 
| 
      
 41 
     | 
    
         
            +
                'h1' => tf.variable(tf.random_normal([num_input, n_hidden_1]), dtype: :float64),
         
     | 
| 
      
 42 
     | 
    
         
            +
                'h2' => tf.variable(tf.random_normal([n_hidden_1, n_hidden_2]), dtype: :float64),
         
     | 
| 
      
 43 
     | 
    
         
            +
                'out' => tf.variable(tf.random_normal([n_hidden_2, num_classes]), dtype: :float64)
         
     | 
| 
       27 
44 
     | 
    
         
             
            }
         
     | 
| 
       28 
45 
     | 
    
         | 
| 
       29 
     | 
    
         
            -
             
     | 
| 
       30 
     | 
    
         
            -
                b1 
     | 
| 
       31 
     | 
    
         
            -
                b2 
     | 
| 
       32 
     | 
    
         
            -
                out 
     | 
| 
      
 46 
     | 
    
         
            +
            biases = {
         
     | 
| 
      
 47 
     | 
    
         
            +
                'b1' => tf.variable(tf.random_normal([n_hidden_1]), dtype: :float64),
         
     | 
| 
      
 48 
     | 
    
         
            +
                'b2' => tf.variable(tf.random_normal([n_hidden_2]), dtype: :float64),
         
     | 
| 
      
 49 
     | 
    
         
            +
                'out' => tf.variable(tf.random_normal([num_classes]), dtype: :float64)
         
     | 
| 
       33 
50 
     | 
    
         
             
            }
         
     | 
| 
       34 
51 
     | 
    
         | 
| 
       35 
52 
     | 
    
         | 
| 
       36 
53 
     | 
    
         
             
            # Create model
         
     | 
| 
       37 
     | 
    
         
            -
            def neural_net(x)
         
     | 
| 
      
 54 
     | 
    
         
            +
            def neural_net(x, weights, biases)
         
     | 
| 
      
 55 
     | 
    
         
            +
                tf = TensorStream
         
     | 
| 
       38 
56 
     | 
    
         
             
                # Hidden fully connected layer with 256 neurons
         
     | 
| 
       39 
     | 
    
         
            -
                layer_1 = 
     | 
| 
      
 57 
     | 
    
         
            +
                layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
         
     | 
| 
       40 
58 
     | 
    
         
             
                # Hidden fully connected layer with 256 neurons
         
     | 
| 
       41 
     | 
    
         
            -
                layer_2 =  
     | 
| 
      
 59 
     | 
    
         
            +
                layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
         
     | 
| 
       42 
60 
     | 
    
         
             
                # Output fully connected layer with a neuron for each class
         
     | 
| 
       43 
     | 
    
         
            -
                 
     | 
| 
       44 
     | 
    
         
            -
            end
         
     | 
| 
       45 
     | 
    
         
            -
             
     | 
| 
       46 
     | 
    
         
            -
            def softmax(logits)
         
     | 
| 
       47 
     | 
    
         
            -
              TensorStream.exp(logits) / TensorStream.reduce_sum(TensorStream.exp(logits))
         
     | 
| 
      
 61 
     | 
    
         
            +
                tf.matmul(layer_2, weights['out']) + biases['out']
         
     | 
| 
       48 
62 
     | 
    
         
             
            end
         
     | 
| 
       49 
63 
     | 
    
         | 
| 
       50 
64 
     | 
    
         
             
            # Construct model
         
     | 
| 
       51 
     | 
    
         
            -
            logits = neural_net(X)
         
     | 
| 
       52 
     | 
    
         
            -
            prediction = softmax(logits)
         
     | 
| 
      
 65 
     | 
    
         
            +
            logits = neural_net(X, weights, biases)
         
     | 
| 
      
 66 
     | 
    
         
            +
            prediction = tf.nn.softmax(logits)
         
     | 
| 
      
 67 
     | 
    
         
            +
             
     | 
| 
      
 68 
     | 
    
         
            +
            # Define loss and optimizer
         
     | 
| 
      
 69 
     | 
    
         
            +
            loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
         
     | 
| 
      
 70 
     | 
    
         
            +
                logits: logits, labels: Y))
         
     | 
| 
      
 71 
     | 
    
         
            +
             
     | 
| 
      
 72 
     | 
    
         
            +
            optimizer = TensorStream::Train::GradientDescentOptimizer.new(learning_rate)
         
     | 
| 
      
 73 
     | 
    
         
            +
            train_op = optimizer.minimize(loss_op)
         
     | 
| 
      
 74 
     | 
    
         
            +
             
     | 
| 
      
 75 
     | 
    
         
            +
            # Evaluate model
         
     | 
| 
      
 76 
     | 
    
         
            +
            correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
         
     | 
| 
      
 77 
     | 
    
         
            +
            accuracy = tf.reduce_mean(tf.cast(correct_pred, :float32))
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
            # tf.add_check_numerics_ops
         
     | 
| 
      
 80 
     | 
    
         
            +
             
     | 
| 
      
 81 
     | 
    
         
            +
            # Initialize the variables (i.e. assign their default value)
         
     | 
| 
      
 82 
     | 
    
         
            +
            init = tf.global_variables_initializer
         
     | 
| 
      
 83 
     | 
    
         
            +
             
     | 
| 
      
 84 
     | 
    
         
            +
            # Start training
         
     | 
| 
      
 85 
     | 
    
         
            +
            tf.session(:opencl_evaluator) do |sess|
         
     | 
| 
      
 86 
     | 
    
         
            +
                # Run the initializer
         
     | 
| 
      
 87 
     | 
    
         
            +
                sess.run(init)
         
     | 
| 
      
 88 
     | 
    
         
            +
             
     | 
| 
      
 89 
     | 
    
         
            +
                (1..num_steps+1).each do |step|
         
     | 
| 
      
 90 
     | 
    
         
            +
                    
         
     | 
| 
      
 91 
     | 
    
         
            +
                    batch_x, batch_y = mnist.train.next_batch(batch_size)
         
     | 
| 
      
 92 
     | 
    
         
            +
                    # Run optimization op (backprop)
         
     | 
| 
      
 93 
     | 
    
         
            +
                    puts "...."
         
     | 
| 
      
 94 
     | 
    
         
            +
                    sess.run(train_op, feed_dict: { X => batch_x, Y => batch_y })
         
     | 
| 
      
 95 
     | 
    
         
            +
                    puts "----"
         
     | 
| 
      
 96 
     | 
    
         
            +
                    if step % display_step == 0 || step == 1
         
     | 
| 
      
 97 
     | 
    
         
            +
                    # Calculate batch loss and accuracy
         
     | 
| 
      
 98 
     | 
    
         
            +
                    loss, acc = sess.run([loss_op, accuracy], feed_dict: { X => batch_x, Y => batch_y})
         
     | 
| 
      
 99 
     | 
    
         
            +
                    print("Step " + str(step) + ", Minibatch Loss= " + \
         
     | 
| 
      
 100 
     | 
    
         
            +
                            "{:.4f}".format(loss) + ", Training Accuracy= " + \
         
     | 
| 
      
 101 
     | 
    
         
            +
                            "{:.3f}".format(acc))
         
     | 
| 
      
 102 
     | 
    
         
            +
                    end
         
     | 
| 
      
 103 
     | 
    
         
            +
                end
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
                print("Optimization Finished!")
         
     | 
| 
       53 
106 
     | 
    
         | 
| 
       54 
     | 
    
         
            -
             
     | 
| 
      
 107 
     | 
    
         
            +
                # Calculate accuracy for MNIST test images
         
     | 
| 
      
 108 
     | 
    
         
            +
                print("Testing Accuracy:", \
         
     | 
| 
      
 109 
     | 
    
         
            +
                    sess.run(accuracy, feed_dict: {  X => mnist.test.images,
         
     | 
| 
      
 110 
     | 
    
         
            +
                                                    Y => mnist.test.labels}))
         
     | 
| 
      
 111 
     | 
    
         
            +
            end
         
     | 
    
        metadata
    CHANGED
    
    | 
         @@ -1,14 +1,14 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            --- !ruby/object:Gem::Specification
         
     | 
| 
       2 
2 
     | 
    
         
             
            name: tensor_stream
         
     | 
| 
       3 
3 
     | 
    
         
             
            version: !ruby/object:Gem::Version
         
     | 
| 
       4 
     | 
    
         
            -
              version: 0. 
     | 
| 
      
 4 
     | 
    
         
            +
              version: 0.4.0
         
     | 
| 
       5 
5 
     | 
    
         
             
            platform: ruby
         
     | 
| 
       6 
6 
     | 
    
         
             
            authors:
         
     | 
| 
       7 
7 
     | 
    
         
             
            - Joseph Emmanuel Dayo
         
     | 
| 
       8 
8 
     | 
    
         
             
            autorequire: 
         
     | 
| 
       9 
9 
     | 
    
         
             
            bindir: exe
         
     | 
| 
       10 
10 
     | 
    
         
             
            cert_chain: []
         
     | 
| 
       11 
     | 
    
         
            -
            date: 2018-06- 
     | 
| 
      
 11 
     | 
    
         
            +
            date: 2018-06-17 00:00:00.000000000 Z
         
     | 
| 
       12 
12 
     | 
    
         
             
            dependencies:
         
     | 
| 
       13 
13 
     | 
    
         
             
            - !ruby/object:Gem::Dependency
         
     | 
| 
       14 
14 
     | 
    
         
             
              name: bundler
         
     | 
| 
         @@ -238,15 +238,19 @@ files: 
     | 
|
| 
       238 
238 
     | 
    
         
             
            - ".travis.yml"
         
     | 
| 
       239 
239 
     | 
    
         
             
            - CHANGELOG.md
         
     | 
| 
       240 
240 
     | 
    
         
             
            - CODE_OF_CONDUCT.md
         
     | 
| 
      
 241 
     | 
    
         
            +
            - Dockerfile
         
     | 
| 
       241 
242 
     | 
    
         
             
            - Gemfile
         
     | 
| 
       242 
243 
     | 
    
         
             
            - LICENSE.txt
         
     | 
| 
       243 
244 
     | 
    
         
             
            - README.md
         
     | 
| 
       244 
245 
     | 
    
         
             
            - Rakefile
         
     | 
| 
       245 
246 
     | 
    
         
             
            - benchmark/benchmark.rb
         
     | 
| 
      
 247 
     | 
    
         
            +
            - benchmark_intel.txt
         
     | 
| 
      
 248 
     | 
    
         
            +
            - benchmark_nvidia.txt
         
     | 
| 
       246 
249 
     | 
    
         
             
            - bin/console
         
     | 
| 
       247 
250 
     | 
    
         
             
            - bin/setup
         
     | 
| 
       248 
251 
     | 
    
         
             
            - lib/tensor_stream.rb
         
     | 
| 
       249 
252 
     | 
    
         
             
            - lib/tensor_stream/control_flow.rb
         
     | 
| 
      
 253 
     | 
    
         
            +
            - lib/tensor_stream/debugging/debugging.rb
         
     | 
| 
       250 
254 
     | 
    
         
             
            - lib/tensor_stream/device.rb
         
     | 
| 
       251 
255 
     | 
    
         
             
            - lib/tensor_stream/evaluator/buffer.rb
         
     | 
| 
       252 
256 
     | 
    
         
             
            - lib/tensor_stream/evaluator/evaluator.rb
         
     | 
| 
         @@ -274,6 +278,8 @@ files: 
     | 
|
| 
       274 
278 
     | 
    
         
             
            - lib/tensor_stream/evaluator/kernels/sigmoid_grad.cl
         
     | 
| 
       275 
279 
     | 
    
         
             
            - lib/tensor_stream/evaluator/kernels/sign.cl
         
     | 
| 
       276 
280 
     | 
    
         
             
            - lib/tensor_stream/evaluator/kernels/sin.cl
         
     | 
| 
      
 281 
     | 
    
         
            +
            - lib/tensor_stream/evaluator/kernels/softmax.cl
         
     | 
| 
      
 282 
     | 
    
         
            +
            - lib/tensor_stream/evaluator/kernels/softmax_grad.cl
         
     | 
| 
       277 
283 
     | 
    
         
             
            - lib/tensor_stream/evaluator/kernels/sqrt.cl
         
     | 
| 
       278 
284 
     | 
    
         
             
            - lib/tensor_stream/evaluator/kernels/square.cl
         
     | 
| 
       279 
285 
     | 
    
         
             
            - lib/tensor_stream/evaluator/kernels/sub.cl
         
     | 
| 
         @@ -309,17 +315,19 @@ files: 
     | 
|
| 
       309 
315 
     | 
    
         
             
            - lib/tensor_stream/train/saver.rb
         
     | 
| 
       310 
316 
     | 
    
         
             
            - lib/tensor_stream/trainer.rb
         
     | 
| 
       311 
317 
     | 
    
         
             
            - lib/tensor_stream/types.rb
         
     | 
| 
      
 318 
     | 
    
         
            +
            - lib/tensor_stream/utils.rb
         
     | 
| 
       312 
319 
     | 
    
         
             
            - lib/tensor_stream/variable.rb
         
     | 
| 
       313 
320 
     | 
    
         
             
            - lib/tensor_stream/version.rb
         
     | 
| 
      
 321 
     | 
    
         
            +
            - samples/error.graphml
         
     | 
| 
       314 
322 
     | 
    
         
             
            - samples/gradient_sample.graphml
         
     | 
| 
       315 
323 
     | 
    
         
             
            - samples/iris.data
         
     | 
| 
      
 324 
     | 
    
         
            +
            - samples/iris.rb
         
     | 
| 
       316 
325 
     | 
    
         
             
            - samples/linear_regression.rb
         
     | 
| 
       317 
326 
     | 
    
         
             
            - samples/logistic_regression.rb
         
     | 
| 
       318 
327 
     | 
    
         
             
            - samples/nearest_neighbor.rb
         
     | 
| 
       319 
328 
     | 
    
         
             
            - tensor_stream.gemspec
         
     | 
| 
       320 
329 
     | 
    
         
             
            - test_samples/error.graphml
         
     | 
| 
       321 
330 
     | 
    
         
             
            - test_samples/gradient_sample.graphml
         
     | 
| 
       322 
     | 
    
         
            -
            - test_samples/iris.rb
         
     | 
| 
       323 
331 
     | 
    
         
             
            - test_samples/raw_neural_net_sample.rb
         
     | 
| 
       324 
332 
     | 
    
         
             
            - test_samples/test.py
         
     | 
| 
       325 
333 
     | 
    
         
             
            - test_samples/test2.py
         
     |