tensor_stream 0.1.1 → 0.1.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/.rubocop.yml +74 -0
- data/README.md +4 -3
- data/lib/tensor_stream.rb +17 -18
- data/lib/tensor_stream/control_flow.rb +7 -4
- data/lib/tensor_stream/evaluator/evaluator.rb +1 -1
- data/lib/tensor_stream/evaluator/operation_helpers/random_gaussian.rb +6 -7
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +80 -91
- data/lib/tensor_stream/graph.rb +51 -18
- data/lib/tensor_stream/graph_keys.rb +2 -2
- data/lib/tensor_stream/helpers/op_helper.rb +31 -27
- data/lib/tensor_stream/math_gradients.rb +20 -23
- data/lib/tensor_stream/nn/nn_ops.rb +2 -2
- data/lib/tensor_stream/operation.rb +28 -45
- data/lib/tensor_stream/ops.rb +103 -103
- data/lib/tensor_stream/placeholder.rb +7 -4
- data/lib/tensor_stream/session.rb +20 -22
- data/lib/tensor_stream/tensor.rb +43 -101
- data/lib/tensor_stream/tensor_shape.rb +4 -3
- data/lib/tensor_stream/train/gradient_descent_optimizer.rb +5 -5
- data/lib/tensor_stream/train/saver.rb +13 -13
- data/lib/tensor_stream/trainer.rb +1 -1
- data/lib/tensor_stream/types.rb +14 -1
- data/lib/tensor_stream/variable.rb +8 -7
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/iris.rb +7 -7
- data/samples/linear_regression.rb +3 -3
- data/samples/raw_neural_net_sample.rb +6 -6
- data/tensor_stream.gemspec +1 -0
- metadata +17 -2
data/lib/tensor_stream/graph.rb
CHANGED
@@ -1,7 +1,8 @@
|
|
1
1
|
module TensorStream
|
2
|
+
# A class that defines a TensorStream graph
|
2
3
|
class Graph
|
3
4
|
attr_accessor :nodes, :collections, :eager_execution
|
4
|
-
|
5
|
+
|
5
6
|
def initialize
|
6
7
|
@eager_execution = false
|
7
8
|
@nodes = {}
|
@@ -25,7 +26,7 @@ module TensorStream
|
|
25
26
|
Thread.current[:tensor_stream_current_graph] = TensorStream::Graph.new
|
26
27
|
end
|
27
28
|
|
28
|
-
def get_collection(name,
|
29
|
+
def get_collection(name, _options = {})
|
29
30
|
@collections[name.to_sym]
|
30
31
|
end
|
31
32
|
|
@@ -35,15 +36,10 @@ module TensorStream
|
|
35
36
|
end
|
36
37
|
|
37
38
|
def add_node(node)
|
38
|
-
|
39
|
-
if @nodes[node.name]
|
40
|
-
node.name = uniqunify(node.name)
|
41
|
-
end
|
42
|
-
|
39
|
+
raise 'Placeholder cannot be used when eager_execution is enabled' if @eager_execution && node.is_a?(Placeholder)
|
40
|
+
node.name = uniqunify(node.name) if @nodes[node.name]
|
43
41
|
@nodes[node.name] = node
|
44
|
-
if @eager_execution
|
45
|
-
node.value = node.eval
|
46
|
-
end
|
42
|
+
node.value = node.eval if @eager_execution
|
47
43
|
end
|
48
44
|
|
49
45
|
def node_added?(name)
|
@@ -60,15 +56,15 @@ module TensorStream
|
|
60
56
|
end
|
61
57
|
|
62
58
|
def add_variable(node, options = {})
|
63
|
-
|
59
|
+
raise "duplicate variable detected #{node.name} and reuse=false in current scope" if @nodes[node.name] && !options[:reuse]
|
64
60
|
|
65
61
|
add_to_collection(GraphKeys::GLOBAL_VARIABLES, node)
|
66
62
|
|
67
63
|
add_node(node)
|
68
64
|
end
|
69
65
|
|
70
|
-
def control_dependencies(
|
71
|
-
|
66
|
+
def control_dependencies(_dependencies = [], &_block)
|
67
|
+
raise 'not implemented'
|
72
68
|
end
|
73
69
|
|
74
70
|
def enable_eager_execution
|
@@ -78,21 +74,58 @@ module TensorStream
|
|
78
74
|
def disable_eager_execution
|
79
75
|
@eager_execution = false
|
80
76
|
end
|
81
|
-
|
77
|
+
|
82
78
|
def executing_eagerly?
|
83
79
|
@eager_execution
|
84
80
|
end
|
85
81
|
|
82
|
+
def get_operation_counter
|
83
|
+
@op_counter ||= 0
|
84
|
+
|
85
|
+
name = @op_counter.zero? ? '' : "_#{@op_counter}"
|
86
|
+
|
87
|
+
@op_counter += 1
|
88
|
+
|
89
|
+
name
|
90
|
+
end
|
91
|
+
|
92
|
+
def get_placeholder_counter
|
93
|
+
@placeholder_counter ||= 0
|
94
|
+
@placeholder_counter += 1
|
95
|
+
|
96
|
+
return '' if @placeholder_counter == 1
|
97
|
+
"_#{@placeholder_counter}"
|
98
|
+
end
|
99
|
+
|
100
|
+
def get_var_counter
|
101
|
+
@var_counter ||= 0
|
102
|
+
@var_counter += 1
|
103
|
+
|
104
|
+
return '' if @var_counter == 1
|
105
|
+
"_#{@var_counter}"
|
106
|
+
end
|
107
|
+
|
108
|
+
def get_const_counter
|
109
|
+
@const_counter ||= 0
|
110
|
+
|
111
|
+
name = @const_counter.zero? ? '' : "_#{@const_counter}"
|
112
|
+
|
113
|
+
@const_counter += 1
|
114
|
+
name
|
115
|
+
end
|
116
|
+
|
86
117
|
protected
|
87
118
|
|
88
119
|
def uniqunify(name)
|
89
120
|
counter = 0
|
90
121
|
new_name = name
|
91
|
-
|
92
|
-
counter +=1
|
122
|
+
Kernel.loop do
|
123
|
+
counter += 1
|
93
124
|
new_name = "#{name}_#{counter}"
|
94
|
-
|
125
|
+
|
126
|
+
break unless @nodes.key?(new_name)
|
127
|
+
end
|
95
128
|
new_name
|
96
129
|
end
|
97
130
|
end
|
98
|
-
end
|
131
|
+
end
|
@@ -1,12 +1,13 @@
|
|
1
1
|
module TensorStream
|
2
|
+
# module that contains helper functions useful for ops
|
2
3
|
module OpHelper
|
3
|
-
def op(code,
|
4
|
-
Operation.new(code.to_sym,
|
4
|
+
def op(code, t_a, t_b = nil, options = {})
|
5
|
+
Operation.new(code.to_sym, t_a, t_b, options)
|
5
6
|
end
|
6
7
|
|
7
8
|
# same as op but with a marker that it was internal generated
|
8
|
-
def i_op(code,
|
9
|
-
Operation.new(code.to_sym,
|
9
|
+
def i_op(code, t_a, t_b = nil, options = {})
|
10
|
+
Operation.new(code.to_sym, t_a, t_b, options.merge(internal: true))
|
10
11
|
end
|
11
12
|
|
12
13
|
def cons(value, options = {})
|
@@ -17,13 +18,13 @@ module TensorStream
|
|
17
18
|
TensorStream.constant(value, options.merge(internal: true))
|
18
19
|
end
|
19
20
|
|
20
|
-
def shape_eval(input)
|
21
|
-
return [] unless input.
|
21
|
+
def shape_eval(input, output_type = :int32)
|
22
|
+
return [] unless input.is_a?(Array)
|
22
23
|
arr = []
|
23
24
|
arr_ptr = input
|
24
25
|
|
25
26
|
Kernel.loop do
|
26
|
-
arr << arr_ptr.size
|
27
|
+
arr << (TensorStream::Ops::FLOATING_POINT_TYPES.include?(output_type) ? arr_ptr.size.to_f : arr_ptr.size)
|
27
28
|
arr_ptr = arr_ptr[0]
|
28
29
|
|
29
30
|
break unless arr_ptr.is_a?(Array)
|
@@ -32,27 +33,30 @@ module TensorStream
|
|
32
33
|
arr
|
33
34
|
end
|
34
35
|
|
35
|
-
|
36
|
-
|
37
|
-
rank+=1 if dtype == :array
|
36
|
+
def dtype_eval(rank, value)
|
37
|
+
dtype = Tensor.detect_type(value[0])
|
38
38
|
|
39
|
-
|
40
|
-
end
|
39
|
+
rank += 1 if dtype == :array
|
41
40
|
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
41
|
+
[dtype, rank, value[0], value.size]
|
42
|
+
end
|
43
|
+
|
44
|
+
def val_to_dtype(value)
|
45
|
+
if value.is_a?(String)
|
46
|
+
:string
|
47
|
+
elsif value.is_a?(Float)
|
48
|
+
:float32
|
49
|
+
elsif value.is_a?(Integer)
|
50
|
+
:int32
|
51
|
+
elsif value.is_a?(Array)
|
52
|
+
:array
|
53
|
+
else
|
54
|
+
:float32
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
def fp_type?(type)
|
59
|
+
TensorStream::Ops::FLOATING_POINT_TYPES.include?(type)
|
60
|
+
end
|
57
61
|
end
|
58
62
|
end
|
@@ -3,19 +3,19 @@ module TensorStream
|
|
3
3
|
class MathGradients
|
4
4
|
extend TensorStream::OpHelper
|
5
5
|
|
6
|
-
def self.derivative(tensor,
|
7
|
-
gradient_program_name = "_grad_#{tensor.name}_#{
|
6
|
+
def self.derivative(tensor, wrt_dx, options = {})
|
7
|
+
gradient_program_name = "_grad_#{tensor.name}_#{wrt_dx.name}"
|
8
8
|
return options[:graph].get_node(gradient_program_name) if options[:graph] && options[:graph].node_added?(gradient_program_name)
|
9
9
|
|
10
10
|
constant_options = { dtype: options[:dtype] }
|
11
11
|
constant_options_1 = { dtype: options[:dtype] || tensor.data_type }
|
12
12
|
|
13
|
-
return i_op(:ones_like,
|
13
|
+
return i_op(:ones_like, wrt_dx, constant_options_1) if tensor.equal?(wrt_dx)
|
14
14
|
return i_cons(0, constant_options) if options[:stop_gradients] && _include?(options[:stop_gradients], tensor)
|
15
15
|
|
16
16
|
if tensor.is_a?(Operation)
|
17
|
-
grad = derivative(tensor.items[0],
|
18
|
-
grad2 = derivative(tensor.items[1],
|
17
|
+
grad = derivative(tensor.items[0], wrt_dx, options) if tensor.items[0]
|
18
|
+
grad2 = derivative(tensor.items[1], wrt_dx, options) if tensor.items[1]
|
19
19
|
|
20
20
|
case tensor.operation
|
21
21
|
when :max
|
@@ -51,11 +51,11 @@ module TensorStream
|
|
51
51
|
when :cos
|
52
52
|
-i_op(:sin, tensor.items[0]) * grad
|
53
53
|
when :add
|
54
|
-
grad_with_broadcast(tensor,
|
54
|
+
grad_with_broadcast(tensor, wrt_dx, ->(a, b) { i_op(:add, a, b, name: 'grad_sum') }, options)
|
55
55
|
when :sub
|
56
|
-
grad_with_broadcast(tensor,
|
56
|
+
grad_with_broadcast(tensor, wrt_dx, ->(a, b) { i_op(:sub, a, b, name: 'grad_sub') }, options)
|
57
57
|
when :pow
|
58
|
-
gx = _ds(tensor.items[1])*(
|
58
|
+
gx = _ds(tensor.items[1]) * (_ds(tensor.items[0])**(_ds(tensor.items[1]) - 1)) * grad
|
59
59
|
|
60
60
|
log_x = i_op(:where, i_op(:log, tensor.items[0], nil, name: 'log_pow_grad'), i_op(:zeros_like, tensor.items[0]), pred: tensor.items[0] > 0)
|
61
61
|
gy = _ds(tensor.items[0])**_ds(tensor.items[1]) * log_x * grad2
|
@@ -74,18 +74,15 @@ module TensorStream
|
|
74
74
|
input_size = i_op(:reduce_prod, i_op(:shape, tensor.items[0]))
|
75
75
|
output_size = i_op(:reduce_prod, i_op(:shape, tensor))
|
76
76
|
factor = input_size / output_size
|
77
|
-
|
77
|
+
|
78
78
|
(grad / i_op(:cast, factor, data_type: grad.dtype))
|
79
79
|
when :reduce_sum
|
80
80
|
grad
|
81
81
|
when :stop_gradient
|
82
82
|
return i_cons(0, constant_options)
|
83
83
|
when :matmul
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
derivative_a = derivative(tensor.items[0], dx)
|
88
|
-
derivative_b = derivative(tensor.items[1], dx)
|
84
|
+
derivative_a = derivative(tensor.items[0], wrt_dx)
|
85
|
+
derivative_b = derivative(tensor.items[1], wrt_dx)
|
89
86
|
|
90
87
|
s0 = i_op(:shape, tensor.items[0])
|
91
88
|
s1 = i_op(:shape, tensor.items[1])
|
@@ -94,13 +91,13 @@ module TensorStream
|
|
94
91
|
identity_1 = i_op(:ones, [s0[0], s1[1]], nil, data_type: tensor.items[1].data_type)
|
95
92
|
|
96
93
|
matmul_da = i_op(:matmul, identity_0, tensor.items[1], transpose_b: true,
|
97
|
-
|
98
|
-
|
94
|
+
pad_zeros: true,
|
95
|
+
name: 'matrix_dx')
|
99
96
|
matmul_db = i_op(:matmul, tensor.items[0], identity_1, transpose_a: true,
|
100
|
-
|
101
|
-
|
97
|
+
pad_zeros: true,
|
98
|
+
name: 'matrix_dy')
|
102
99
|
|
103
|
-
zero_vect = i_op(:zeros_like,
|
100
|
+
zero_vect = i_op(:zeros_like, wrt_dx, nil, name: 'zero_vect')
|
104
101
|
|
105
102
|
# matmul_db = op(:transpose, matmul_db, nil).first
|
106
103
|
|
@@ -143,9 +140,9 @@ module TensorStream
|
|
143
140
|
end
|
144
141
|
end
|
145
142
|
|
146
|
-
def self.grad_with_broadcast(tensor,
|
147
|
-
grad = derivative(tensor.items[0],
|
148
|
-
grad2 = derivative(tensor.items[1],
|
143
|
+
def self.grad_with_broadcast(tensor, wrt_dx, func, options)
|
144
|
+
grad = derivative(tensor.items[0], wrt_dx, options)
|
145
|
+
grad2 = derivative(tensor.items[1], wrt_dx, options)
|
149
146
|
elements1 = i_op(:reduce_prod, i_op(:shape, tensor.items[0]), data_type: :float32)
|
150
147
|
elements2 = i_op(:reduce_prod, i_op(:shape, tensor.items[1]), data_type: :float32)
|
151
148
|
multiplier = elements1 / elements2
|
@@ -157,4 +154,4 @@ module TensorStream
|
|
157
154
|
false
|
158
155
|
end
|
159
156
|
end
|
160
|
-
end
|
157
|
+
end
|
@@ -1,7 +1,7 @@
|
|
1
1
|
module TensorStream
|
2
2
|
# High level machine learning functions
|
3
3
|
class NN
|
4
|
-
def self.softmax(logits,
|
4
|
+
def self.softmax(logits, _options = {})
|
5
5
|
TensorStream.exp(logits) / TensorStream.reduce_sum(TensorStream.exp(logits))
|
6
6
|
end
|
7
7
|
|
@@ -14,4 +14,4 @@ module TensorStream
|
|
14
14
|
def self.nn
|
15
15
|
TensorStream::NN
|
16
16
|
end
|
17
|
-
end
|
17
|
+
end
|
@@ -1,35 +1,32 @@
|
|
1
1
|
module TensorStream
|
2
|
+
# TensorStream class that defines an operation
|
2
3
|
class Operation < Tensor
|
3
4
|
attr_accessor :name, :operation, :items, :rank, :options
|
4
5
|
|
5
|
-
def initialize(operation,
|
6
|
+
def initialize(operation, input_a, input_b, options = {})
|
7
|
+
@graph = options[:graph] || TensorStream.get_default_graph
|
8
|
+
|
6
9
|
@operation = operation
|
7
10
|
@rank = options[:rank] || 0
|
8
11
|
@name = options[:name] || set_name
|
9
12
|
@internal = options[:internal]
|
10
13
|
@given_name = @name
|
11
|
-
@source =
|
14
|
+
@source = format_source(caller_locations)
|
12
15
|
|
13
|
-
@graph = options[:graph] || TensorStream.get_default_graph
|
14
16
|
@options = options
|
15
17
|
|
16
|
-
|
17
|
-
@items = [a, b].map { |i| options[:preserve_params_type] ? i : auto_wrap(i) }
|
18
|
+
@items = [input_a, input_b].map { |i| options[:preserve_params_type] ? i : auto_wrap(i) }
|
18
19
|
@data_type = set_data_type(options[:data_type])
|
19
20
|
|
20
|
-
if options[:shape]
|
21
|
-
|
22
|
-
end
|
21
|
+
@shape = TensorShape.new(options[:shape], options[:shape].size || 0) if options[:shape]
|
22
|
+
|
23
23
|
@graph.add_node(self)
|
24
24
|
end
|
25
|
+
|
25
26
|
def to_s
|
26
27
|
@name
|
27
28
|
end
|
28
29
|
|
29
|
-
def self.reset_counters
|
30
|
-
@@op_counter = 0
|
31
|
-
end
|
32
|
-
|
33
30
|
def to_h
|
34
31
|
{
|
35
32
|
op: operation,
|
@@ -38,18 +35,18 @@ module TensorStream
|
|
38
35
|
}
|
39
36
|
end
|
40
37
|
|
41
|
-
def self.empty_matrix?(
|
42
|
-
if
|
43
|
-
|
44
|
-
if item.
|
45
|
-
return false
|
46
|
-
|
47
|
-
return false
|
38
|
+
def self.empty_matrix?(input)
|
39
|
+
if input.is_a?(Array)
|
40
|
+
input.each do |item|
|
41
|
+
if item.is_a?(Array)
|
42
|
+
return false unless empty_matrix?(item)
|
43
|
+
elsif item != 0 || item != 0.0
|
44
|
+
return false
|
48
45
|
end
|
49
46
|
end
|
50
47
|
end
|
51
48
|
|
52
|
-
|
49
|
+
true
|
53
50
|
end
|
54
51
|
|
55
52
|
def set_data_type(passed_data_type)
|
@@ -64,7 +61,7 @@ module TensorStream
|
|
64
61
|
end
|
65
62
|
|
66
63
|
def to_math(name_only = false, max_depth = 99)
|
67
|
-
return @name if max_depth
|
64
|
+
return @name if max_depth.zero?
|
68
65
|
|
69
66
|
sub_item = auto_math(items[0], name_only, max_depth - 1)
|
70
67
|
|
@@ -78,15 +75,15 @@ module TensorStream
|
|
78
75
|
when :slice
|
79
76
|
"#{sub_item}[#{auto_math(items[1], name_only, max_depth - 1)}]"
|
80
77
|
when :assign_sub
|
81
|
-
"(#{items[0] ? items[0].name :
|
78
|
+
"(#{items[0] ? items[0].name : 'self'} -= #{auto_math(items[1], name_only)})"
|
82
79
|
when :assign_add
|
83
|
-
"(#{items[0] ? items[0].name :
|
80
|
+
"(#{items[0] ? items[0].name : 'self'} += #{auto_math(items[1], name_only)})"
|
84
81
|
when :assign
|
85
|
-
"(#{items[0] ? items[0].name :
|
82
|
+
"(#{items[0] ? items[0].name : 'self'} = #{auto_math(items[1], name_only)})"
|
86
83
|
when :sin, :cos, :tanh
|
87
84
|
"#{operation}(#{sub_item})"
|
88
85
|
when :add
|
89
|
-
|
86
|
+
"(#{sub_item} + #{auto_math(items[1], name_only, max_depth - 1)})"
|
90
87
|
when :sub
|
91
88
|
"(#{sub_item} - #{auto_math(items[1], name_only, max_depth - 1)})"
|
92
89
|
when :pow
|
@@ -126,7 +123,7 @@ module TensorStream
|
|
126
123
|
when :ones_like
|
127
124
|
"ones_like(#{sub_item})"
|
128
125
|
when :flow_group
|
129
|
-
"flow_group(#{items.collect { |i| auto_math(i)}.join(',')})"
|
126
|
+
"flow_group(#{items.collect { |i| auto_math(i) }.join(',')})"
|
130
127
|
when :zeros
|
131
128
|
"zeros(#{sub_item})"
|
132
129
|
when :reshape
|
@@ -158,38 +155,24 @@ module TensorStream
|
|
158
155
|
when :zeros_like
|
159
156
|
"zeros_like(#{sub_item})"
|
160
157
|
when :where
|
161
|
-
"where(#{auto_math(options[:pred]
|
158
|
+
"where(#{auto_math(options[:pred], name_only, max_depth - 1)},#{auto_math(items[0])},#{auto_math(items[1])})"
|
162
159
|
when :max
|
163
160
|
"max(#{auto_math(sub_item)},#{auto_math(items[1])})"
|
164
161
|
when :cast
|
165
162
|
"cast(#{auto_math(sub_item)}, #{data_type})"
|
166
163
|
else
|
167
|
-
|
164
|
+
raise "math form for #{operation}"
|
168
165
|
end
|
169
166
|
end
|
170
167
|
|
171
168
|
def run
|
172
|
-
|
169
|
+
eval
|
173
170
|
end
|
174
171
|
|
175
172
|
private
|
176
173
|
|
177
|
-
def self.operation_counter
|
178
|
-
@@op_counter ||= 0
|
179
|
-
|
180
|
-
name = if @@op_counter == 0
|
181
|
-
""
|
182
|
-
else
|
183
|
-
"_#{@@op_counter}"
|
184
|
-
end
|
185
|
-
|
186
|
-
@@op_counter += 1
|
187
|
-
|
188
|
-
name
|
189
|
-
end
|
190
|
-
|
191
174
|
def set_name
|
192
|
-
"#{@operation}#{
|
175
|
+
"#{@operation}#{graph.get_operation_counter}:#{@rank}"
|
193
176
|
end
|
194
177
|
end
|
195
|
-
end
|
178
|
+
end
|