tensor_stream 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +12 -0
  3. data/.rake_tasks~ +0 -0
  4. data/.rspec +2 -0
  5. data/.travis.yml +5 -0
  6. data/CODE_OF_CONDUCT.md +74 -0
  7. data/Gemfile +4 -0
  8. data/LICENSE.txt +21 -0
  9. data/README.md +123 -0
  10. data/Rakefile +6 -0
  11. data/bin/console +14 -0
  12. data/bin/setup +8 -0
  13. data/lib/tensor_stream.rb +138 -0
  14. data/lib/tensor_stream/control_flow.rb +23 -0
  15. data/lib/tensor_stream/evaluator/evaluator.rb +7 -0
  16. data/lib/tensor_stream/evaluator/operation_helpers/random_gaussian.rb +32 -0
  17. data/lib/tensor_stream/evaluator/ruby_evaluator.rb +749 -0
  18. data/lib/tensor_stream/graph.rb +98 -0
  19. data/lib/tensor_stream/graph_keys.rb +5 -0
  20. data/lib/tensor_stream/helpers/op_helper.rb +58 -0
  21. data/lib/tensor_stream/math_gradients.rb +161 -0
  22. data/lib/tensor_stream/monkey_patches/integer.rb +0 -0
  23. data/lib/tensor_stream/nn/nn_ops.rb +17 -0
  24. data/lib/tensor_stream/operation.rb +195 -0
  25. data/lib/tensor_stream/ops.rb +225 -0
  26. data/lib/tensor_stream/placeholder.rb +21 -0
  27. data/lib/tensor_stream/session.rb +66 -0
  28. data/lib/tensor_stream/tensor.rb +317 -0
  29. data/lib/tensor_stream/tensor_shape.rb +25 -0
  30. data/lib/tensor_stream/train/gradient_descent_optimizer.rb +23 -0
  31. data/lib/tensor_stream/train/saver.rb +61 -0
  32. data/lib/tensor_stream/trainer.rb +7 -0
  33. data/lib/tensor_stream/types.rb +17 -0
  34. data/lib/tensor_stream/variable.rb +52 -0
  35. data/lib/tensor_stream/version.rb +7 -0
  36. data/samples/iris.data +150 -0
  37. data/samples/iris.rb +117 -0
  38. data/samples/linear_regression.rb +55 -0
  39. data/samples/raw_neural_net_sample.rb +54 -0
  40. data/tensor_stream.gemspec +40 -0
  41. metadata +185 -0
@@ -0,0 +1,25 @@
1
+ module TensorStream
2
+ class TensorShape
3
+ attr_accessor :rank, :shape
4
+
5
+ def initialize(shape, rank)
6
+ @shape = shape
7
+ @rank = rank
8
+ end
9
+
10
+ def to_s
11
+ dimensions = @shape.collect do |r|
12
+ "Dimension(#{r})"
13
+ end.join(',')
14
+ "TensorShape([#{dimensions}])"
15
+ end
16
+
17
+ def [](index)
18
+ @shape[index]
19
+ end
20
+
21
+ def ndims
22
+ shape.size
23
+ end
24
+ end
25
+ end
@@ -0,0 +1,23 @@
1
+ module TensorStream
2
+ module Train
3
+ # High Level implementation of the gradient descent algorithm
4
+ class GradientDescentOptimizer
5
+ attr_accessor :learning_rate
6
+
7
+ def initialize(learning_rate, options = {})
8
+ @learning_rate = learning_rate
9
+ end
10
+
11
+ def minimize(cost)
12
+ trainable_vars = TensorStream::Graph.get_default_graph.
13
+ get_collection(GraphKeys::GLOBAL_VARIABLES).
14
+ select(&:trainable)
15
+
16
+ derivatives = TensorStream.gradients(cost, trainable_vars)
17
+ trainable_vars.each_with_index.collect do |var, index|
18
+ var.assign_sub(derivatives[index] * @learning_rate)
19
+ end
20
+ end
21
+ end
22
+ end
23
+ end
@@ -0,0 +1,61 @@
1
+ require 'json'
2
+
3
+ module TensorStream
4
+ module Train
5
+ class Saver
6
+ def save(session, outputfile,
7
+ global_step: nil,
8
+ latest_filename: nil,
9
+ meta_graph_suffix: 'meta',
10
+ write_meta_graph: true,
11
+ write_state: true,
12
+ strip_default_attrs: false)
13
+ vars = TensorStream::Graph.get_default_graph.get_collection(GraphKeys::GLOBAL_VARIABLES)
14
+
15
+ variables = {}
16
+ graph = {}
17
+ gs = eval_global_step(session, global_step)
18
+ output_dump = {
19
+ variables: variables,
20
+ graph: graph,
21
+ global_step: gs
22
+ }
23
+
24
+ vars.each do |variable|
25
+ variables[variable.name] = variable.value
26
+ end
27
+
28
+ basename = File.basename(outputfile)
29
+ path = File.dirname(outputfile)
30
+
31
+ new_filename = File.join(path, [basename, gs].compact.join('-'))
32
+ File.write(new_filename, output_dump.to_json)
33
+
34
+ path
35
+ end
36
+
37
+ def restore(session, inputfile)
38
+ input_dump = JSON.parse(File.read(inputfile))
39
+
40
+ vars = TensorStream::Graph.get_default_graph.get_collection(GraphKeys::GLOBAL_VARIABLES)
41
+ vars.each do |variable|
42
+ variable.value = input_dump["variables"][variable.name]
43
+ end
44
+ end
45
+
46
+ private
47
+
48
+ def eval_global_step(session, global_step)
49
+ return nil if global_step.nil?
50
+
51
+ if (global_step.is_a?(Tensor))
52
+ session.last_session_context(global_step.name)
53
+ elsif (global_step.is_a?(String) || global_step.is_a?(Symbol))
54
+ session.last_session_context(global_step)
55
+ else
56
+ global_step.to_i
57
+ end
58
+ end
59
+ end
60
+ end
61
+ end
@@ -0,0 +1,7 @@
1
+ require 'tensor_stream/train/gradient_descent_optimizer'
2
+ require 'tensor_stream/train/saver'
3
+
4
+ module TensorStream
5
+ module Train
6
+ end
7
+ end
@@ -0,0 +1,17 @@
1
+ require 'ostruct'
2
+
3
+ module TensorStream
4
+ module Types
5
+ def self.int16
6
+ :int16
7
+ end
8
+
9
+ def self.float32
10
+ :float32
11
+ end
12
+
13
+ def self.int32
14
+ :int32
15
+ end
16
+ end
17
+ end
@@ -0,0 +1,52 @@
1
+ module TensorStream
2
+ class Variable < Tensor
3
+ attr_accessor :trainable
4
+ def initialize(data_type, rank, shape, options = {})
5
+ @data_type = data_type
6
+ @rank = rank
7
+ @shape = TensorShape.new(shape, rank)
8
+ @value = nil
9
+ @source = set_source(caller_locations)
10
+ @graph = options[:graph] || TensorStream.get_default_graph
11
+ @name = options[:name] || build_name
12
+ if options[:initializer]
13
+ @initalizer_tensor = options[:initializer]
14
+ end
15
+ @trainable = options.fetch(:trainable, true)
16
+ @graph.add_variable(self, options)
17
+ end
18
+
19
+ def initializer
20
+ @initalizer_tensor.shape = @shape
21
+ assign(@initalizer_tensor)
22
+ end
23
+
24
+ def assign(value)
25
+ Operation.new(:assign, self, value)
26
+ end
27
+
28
+ def read_value
29
+ @value
30
+ end
31
+
32
+ def assign_add(value)
33
+ Operation.new(:assign_add, self, value)
34
+ end
35
+
36
+ def to_math(tensor, name_only = false, max_depth = 99)
37
+ @name
38
+ end
39
+
40
+ def assign_sub(value)
41
+ Operation.new(:assign_sub, self, value)
42
+ end
43
+
44
+ def self.variables_initializer(collection)
45
+ TensorStream.group(TensorStream.get_default_graph.get_collection(collection).map(&:initializer))
46
+ end
47
+
48
+ def self.global_variables_initializer
49
+ variables_initializer(TensorStream::GraphKeys::GLOBAL_VARIABLES)
50
+ end
51
+ end
52
+ end
@@ -0,0 +1,7 @@
1
+ module TensorStream
2
+ VERSION = '0.1.0'
3
+
4
+ def self.version
5
+ VERSION
6
+ end
7
+ end
data/samples/iris.data ADDED
@@ -0,0 +1,150 @@
1
+ 5.1,3.5,1.4,0.2,Iris-setosa
2
+ 4.9,3.0,1.4,0.2,Iris-setosa
3
+ 4.7,3.2,1.3,0.2,Iris-setosa
4
+ 4.6,3.1,1.5,0.2,Iris-setosa
5
+ 5.0,3.6,1.4,0.2,Iris-setosa
6
+ 5.4,3.9,1.7,0.4,Iris-setosa
7
+ 4.6,3.4,1.4,0.3,Iris-setosa
8
+ 5.0,3.4,1.5,0.2,Iris-setosa
9
+ 4.4,2.9,1.4,0.2,Iris-setosa
10
+ 4.9,3.1,1.5,0.1,Iris-setosa
11
+ 5.4,3.7,1.5,0.2,Iris-setosa
12
+ 4.8,3.4,1.6,0.2,Iris-setosa
13
+ 4.8,3.0,1.4,0.1,Iris-setosa
14
+ 4.3,3.0,1.1,0.1,Iris-setosa
15
+ 5.8,4.0,1.2,0.2,Iris-setosa
16
+ 5.7,4.4,1.5,0.4,Iris-setosa
17
+ 5.4,3.9,1.3,0.4,Iris-setosa
18
+ 5.1,3.5,1.4,0.3,Iris-setosa
19
+ 5.7,3.8,1.7,0.3,Iris-setosa
20
+ 5.1,3.8,1.5,0.3,Iris-setosa
21
+ 5.4,3.4,1.7,0.2,Iris-setosa
22
+ 5.1,3.7,1.5,0.4,Iris-setosa
23
+ 4.6,3.6,1.0,0.2,Iris-setosa
24
+ 5.1,3.3,1.7,0.5,Iris-setosa
25
+ 4.8,3.4,1.9,0.2,Iris-setosa
26
+ 5.0,3.0,1.6,0.2,Iris-setosa
27
+ 5.0,3.4,1.6,0.4,Iris-setosa
28
+ 5.2,3.5,1.5,0.2,Iris-setosa
29
+ 5.2,3.4,1.4,0.2,Iris-setosa
30
+ 4.7,3.2,1.6,0.2,Iris-setosa
31
+ 4.8,3.1,1.6,0.2,Iris-setosa
32
+ 5.4,3.4,1.5,0.4,Iris-setosa
33
+ 5.2,4.1,1.5,0.1,Iris-setosa
34
+ 5.5,4.2,1.4,0.2,Iris-setosa
35
+ 4.9,3.1,1.5,0.1,Iris-setosa
36
+ 5.0,3.2,1.2,0.2,Iris-setosa
37
+ 5.5,3.5,1.3,0.2,Iris-setosa
38
+ 4.9,3.1,1.5,0.1,Iris-setosa
39
+ 4.4,3.0,1.3,0.2,Iris-setosa
40
+ 5.1,3.4,1.5,0.2,Iris-setosa
41
+ 5.0,3.5,1.3,0.3,Iris-setosa
42
+ 4.5,2.3,1.3,0.3,Iris-setosa
43
+ 4.4,3.2,1.3,0.2,Iris-setosa
44
+ 5.0,3.5,1.6,0.6,Iris-setosa
45
+ 5.1,3.8,1.9,0.4,Iris-setosa
46
+ 4.8,3.0,1.4,0.3,Iris-setosa
47
+ 5.1,3.8,1.6,0.2,Iris-setosa
48
+ 4.6,3.2,1.4,0.2,Iris-setosa
49
+ 5.3,3.7,1.5,0.2,Iris-setosa
50
+ 5.0,3.3,1.4,0.2,Iris-setosa
51
+ 7.0,3.2,4.7,1.4,Iris-versicolor
52
+ 6.4,3.2,4.5,1.5,Iris-versicolor
53
+ 6.9,3.1,4.9,1.5,Iris-versicolor
54
+ 5.5,2.3,4.0,1.3,Iris-versicolor
55
+ 6.5,2.8,4.6,1.5,Iris-versicolor
56
+ 5.7,2.8,4.5,1.3,Iris-versicolor
57
+ 6.3,3.3,4.7,1.6,Iris-versicolor
58
+ 4.9,2.4,3.3,1.0,Iris-versicolor
59
+ 6.6,2.9,4.6,1.3,Iris-versicolor
60
+ 5.2,2.7,3.9,1.4,Iris-versicolor
61
+ 5.0,2.0,3.5,1.0,Iris-versicolor
62
+ 5.9,3.0,4.2,1.5,Iris-versicolor
63
+ 6.0,2.2,4.0,1.0,Iris-versicolor
64
+ 6.1,2.9,4.7,1.4,Iris-versicolor
65
+ 5.6,2.9,3.6,1.3,Iris-versicolor
66
+ 6.7,3.1,4.4,1.4,Iris-versicolor
67
+ 5.6,3.0,4.5,1.5,Iris-versicolor
68
+ 5.8,2.7,4.1,1.0,Iris-versicolor
69
+ 6.2,2.2,4.5,1.5,Iris-versicolor
70
+ 5.6,2.5,3.9,1.1,Iris-versicolor
71
+ 5.9,3.2,4.8,1.8,Iris-versicolor
72
+ 6.1,2.8,4.0,1.3,Iris-versicolor
73
+ 6.3,2.5,4.9,1.5,Iris-versicolor
74
+ 6.1,2.8,4.7,1.2,Iris-versicolor
75
+ 6.4,2.9,4.3,1.3,Iris-versicolor
76
+ 6.6,3.0,4.4,1.4,Iris-versicolor
77
+ 6.8,2.8,4.8,1.4,Iris-versicolor
78
+ 6.7,3.0,5.0,1.7,Iris-versicolor
79
+ 6.0,2.9,4.5,1.5,Iris-versicolor
80
+ 5.7,2.6,3.5,1.0,Iris-versicolor
81
+ 5.5,2.4,3.8,1.1,Iris-versicolor
82
+ 5.5,2.4,3.7,1.0,Iris-versicolor
83
+ 5.8,2.7,3.9,1.2,Iris-versicolor
84
+ 6.0,2.7,5.1,1.6,Iris-versicolor
85
+ 5.4,3.0,4.5,1.5,Iris-versicolor
86
+ 6.0,3.4,4.5,1.6,Iris-versicolor
87
+ 6.7,3.1,4.7,1.5,Iris-versicolor
88
+ 6.3,2.3,4.4,1.3,Iris-versicolor
89
+ 5.6,3.0,4.1,1.3,Iris-versicolor
90
+ 5.5,2.5,4.0,1.3,Iris-versicolor
91
+ 5.5,2.6,4.4,1.2,Iris-versicolor
92
+ 6.1,3.0,4.6,1.4,Iris-versicolor
93
+ 5.8,2.6,4.0,1.2,Iris-versicolor
94
+ 5.0,2.3,3.3,1.0,Iris-versicolor
95
+ 5.6,2.7,4.2,1.3,Iris-versicolor
96
+ 5.7,3.0,4.2,1.2,Iris-versicolor
97
+ 5.7,2.9,4.2,1.3,Iris-versicolor
98
+ 6.2,2.9,4.3,1.3,Iris-versicolor
99
+ 5.1,2.5,3.0,1.1,Iris-versicolor
100
+ 5.7,2.8,4.1,1.3,Iris-versicolor
101
+ 6.3,3.3,6.0,2.5,Iris-virginica
102
+ 5.8,2.7,5.1,1.9,Iris-virginica
103
+ 7.1,3.0,5.9,2.1,Iris-virginica
104
+ 6.3,2.9,5.6,1.8,Iris-virginica
105
+ 6.5,3.0,5.8,2.2,Iris-virginica
106
+ 7.6,3.0,6.6,2.1,Iris-virginica
107
+ 4.9,2.5,4.5,1.7,Iris-virginica
108
+ 7.3,2.9,6.3,1.8,Iris-virginica
109
+ 6.7,2.5,5.8,1.8,Iris-virginica
110
+ 7.2,3.6,6.1,2.5,Iris-virginica
111
+ 6.5,3.2,5.1,2.0,Iris-virginica
112
+ 6.4,2.7,5.3,1.9,Iris-virginica
113
+ 6.8,3.0,5.5,2.1,Iris-virginica
114
+ 5.7,2.5,5.0,2.0,Iris-virginica
115
+ 5.8,2.8,5.1,2.4,Iris-virginica
116
+ 6.4,3.2,5.3,2.3,Iris-virginica
117
+ 6.5,3.0,5.5,1.8,Iris-virginica
118
+ 7.7,3.8,6.7,2.2,Iris-virginica
119
+ 7.7,2.6,6.9,2.3,Iris-virginica
120
+ 6.0,2.2,5.0,1.5,Iris-virginica
121
+ 6.9,3.2,5.7,2.3,Iris-virginica
122
+ 5.6,2.8,4.9,2.0,Iris-virginica
123
+ 7.7,2.8,6.7,2.0,Iris-virginica
124
+ 6.3,2.7,4.9,1.8,Iris-virginica
125
+ 6.7,3.3,5.7,2.1,Iris-virginica
126
+ 7.2,3.2,6.0,1.8,Iris-virginica
127
+ 6.2,2.8,4.8,1.8,Iris-virginica
128
+ 6.1,3.0,4.9,1.8,Iris-virginica
129
+ 6.4,2.8,5.6,2.1,Iris-virginica
130
+ 7.2,3.0,5.8,1.6,Iris-virginica
131
+ 7.4,2.8,6.1,1.9,Iris-virginica
132
+ 7.9,3.8,6.4,2.0,Iris-virginica
133
+ 6.4,2.8,5.6,2.2,Iris-virginica
134
+ 6.3,2.8,5.1,1.5,Iris-virginica
135
+ 6.1,2.6,5.6,1.4,Iris-virginica
136
+ 7.7,3.0,6.1,2.3,Iris-virginica
137
+ 6.3,3.4,5.6,2.4,Iris-virginica
138
+ 6.4,3.1,5.5,1.8,Iris-virginica
139
+ 6.0,3.0,4.8,1.8,Iris-virginica
140
+ 6.9,3.1,5.4,2.1,Iris-virginica
141
+ 6.7,3.1,5.6,2.4,Iris-virginica
142
+ 6.9,3.1,5.1,2.3,Iris-virginica
143
+ 5.8,2.7,5.1,1.9,Iris-virginica
144
+ 6.8,3.2,5.9,2.3,Iris-virginica
145
+ 6.7,3.3,5.7,2.5,Iris-virginica
146
+ 6.7,3.0,5.2,2.3,Iris-virginica
147
+ 6.3,2.5,5.0,1.9,Iris-virginica
148
+ 6.5,3.0,5.2,2.0,Iris-virginica
149
+ 6.2,3.4,5.4,2.3,Iris-virginica
150
+ 5.9,3.0,5.1,1.8,Iris-virginica
data/samples/iris.rb ADDED
@@ -0,0 +1,117 @@
1
+ require "bundler/setup"
2
+ require 'tensor_stream'
3
+ require 'pry-byebug'
4
+
5
+ # This neural network will predict the species of an iris based on sepal and petal size
6
+ # Dataset: http://en.wikipedia.org/wiki/Iris_flower_data_set
7
+
8
+ rows = File.readlines(File.join("samples","iris.data")).map {|l| l.chomp.split(',') }
9
+
10
+ rows.shuffle!
11
+
12
+ label_encodings = {
13
+ "Iris-setosa" => [1, 0, 0],
14
+ "Iris-versicolor" => [0, 1, 0],
15
+ "Iris-virginica" => [0, 0 ,1]
16
+ }
17
+
18
+ x_data = rows.map {|row| row[0,4].map(&:to_f) }
19
+ y_data = rows.map {|row| label_encodings[row[4]] }
20
+
21
+ # Normalize data values before feeding into network
22
+ normalize = -> (val, high, low) { (val - low) / (high - low) } # maps input to float between 0 and 1
23
+
24
+ columns = (0..3).map do |i|
25
+ x_data.map {|row| row[i] }
26
+ end
27
+
28
+ x_data.map! do |row|
29
+ row.map.with_index do |val, j|
30
+ max, min = columns[j].max, columns[j].min
31
+ normalize.(val, max, min)
32
+ end
33
+ end
34
+
35
+ x_train = x_data.slice(0, 100)
36
+ y_train = y_data.slice(0, 100)
37
+
38
+ x_test = x_data.slice(100, 50)
39
+ y_test = y_data.slice(100, 50)
40
+
41
+ test_cases = []
42
+ x_train.each_with_index do |x, index|
43
+ test_cases << [x, y_train[index] ]
44
+ end
45
+
46
+ validation_cases = []
47
+ x_test.each_with_index do |x, index|
48
+ validation_cases << [x, y_test[index] ]
49
+ end
50
+
51
+ learning_rate = 0.1
52
+ num_steps = 500
53
+ batch_size = 128
54
+ display_step = 100
55
+
56
+ # Network Parameters
57
+ n_hidden_1 = 32 # 1st layer number of neurons
58
+ n_hidden_2 = 32 # 2nd layer number of neurons
59
+ num_classes = 3 # MNIST total classes (0-9 digits)
60
+ num_input = 4
61
+ training_epochs = 10
62
+
63
+ tf = TensorStream
64
+
65
+ # tf Graph input
66
+ x = tf.placeholder("float", shape: [nil, num_input], name: 'x')
67
+ y = tf.placeholder("float", shape: [nil, num_classes], name: 'y')
68
+
69
+ # Store layers weight & bias
70
+ weights = {
71
+ h1: tf.Variable(tf.random_normal([num_input, n_hidden_1]), name: 'h1'),
72
+ h2: tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name: 'h2'),
73
+ out: tf.Variable(tf.random_normal([n_hidden_2, num_classes]), name: 'out')
74
+ }
75
+
76
+ biases = {
77
+ b1: tf.Variable(tf.random_normal([n_hidden_1]), name: 'b1'),
78
+ b2: tf.Variable(tf.random_normal([n_hidden_2]), name: 'b2'),
79
+ out: tf.Variable(tf.random_normal([num_classes]), name: 'b_out')
80
+ }
81
+
82
+
83
+ # Create model
84
+ def neural_net(x, weights, biases)
85
+ # Hidden fully connected layer with 256 neurons
86
+ layer_1 = TensorStream.add(TensorStream.matmul(x, weights[:h1]), biases[:b1] , name: 'layer1_add')
87
+ # Hidden fully connected layer with 256 neurons
88
+ layer_2 = TensorStream.add(TensorStream.matmul(layer_1, weights[:h2]), biases[:b2], name: 'layer2_add')
89
+ # Output fully connected layer with a neuron for each class
90
+ TensorStream.matmul(layer_2, weights[:out]) + biases[:out]
91
+ end
92
+
93
+ # Construct model
94
+ logits = neural_net(x, weights, biases)
95
+
96
+ # Mean squared error
97
+ cost = TensorStream.reduce_sum(TensorStream.pow(logits - y, 2)) / ( 2 * y_train.size)
98
+ optimizer = TensorStream::Train::GradientDescentOptimizer.new(learning_rate).minimize(cost)
99
+
100
+ # Initialize the variables (i.e. assign their default value)
101
+ init = TensorStream.global_variables_initializer()
102
+
103
+ TensorStream.Session do |sess|
104
+ puts "init vars"
105
+ sess.run(init)
106
+ puts "Testing the untrained network..."
107
+ loss = sess.run(cost, feed_dict: { x => x_train, y => y_train })
108
+ puts sess.run(loss)
109
+ puts "loss before training"
110
+ (0..training_epochs).each do |epoch|
111
+ sess.run(optimizer, feed_dict: { x => x_train, y => y_train })
112
+ loss = sess.run(cost, feed_dict: { x => x_train, y => y_train })
113
+ puts "loss #{loss}"
114
+ end
115
+ loss = sess.run(cost, feed_dict: { x => x_train, y => y_train })
116
+ puts "loss after training #{loss}"
117
+ end