tensor_stream-opencl 0.1.3 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. checksums.yaml +4 -4
  2. data/Gemfile.lock +11 -4
  3. data/benchmark/benchmark.rb +91 -0
  4. data/benchmark_intel.txt +36 -0
  5. data/lib/tensor_stream/opencl/array_ops.rb +395 -0
  6. data/lib/tensor_stream/opencl/images_ops.rb +62 -0
  7. data/lib/tensor_stream/opencl/kernels/abs.cl +6 -8
  8. data/lib/tensor_stream/opencl/kernels/acos.cl +3 -4
  9. data/lib/tensor_stream/opencl/kernels/apply_adadelta.cl +2 -4
  10. data/lib/tensor_stream/opencl/kernels/apply_adagrad.cl +12 -0
  11. data/lib/tensor_stream/opencl/kernels/apply_adam.cl +2 -5
  12. data/lib/tensor_stream/opencl/kernels/apply_centered_rms_prop.cl +19 -0
  13. data/lib/tensor_stream/opencl/kernels/apply_gradient.cl +3 -4
  14. data/lib/tensor_stream/opencl/kernels/apply_momentum.cl +2 -4
  15. data/lib/tensor_stream/opencl/kernels/apply_rms_prop.cl +16 -0
  16. data/lib/tensor_stream/opencl/kernels/asin.cl +3 -4
  17. data/lib/tensor_stream/opencl/kernels/ceil.cl +3 -4
  18. data/lib/tensor_stream/opencl/kernels/concat.cl +21 -0
  19. data/lib/tensor_stream/opencl/kernels/cos.cl +3 -5
  20. data/lib/tensor_stream/opencl/kernels/exp.cl +3 -5
  21. data/lib/tensor_stream/opencl/kernels/floor.cl +3 -4
  22. data/lib/tensor_stream/opencl/kernels/log.cl +3 -4
  23. data/lib/tensor_stream/opencl/kernels/log1p.cl +3 -4
  24. data/lib/tensor_stream/opencl/kernels/negate.cl +3 -4
  25. data/lib/tensor_stream/opencl/kernels/reciprocal.cl +3 -4
  26. data/lib/tensor_stream/opencl/kernels/sigmoid.cl +3 -4
  27. data/lib/tensor_stream/opencl/kernels/sign.cl +7 -8
  28. data/lib/tensor_stream/opencl/kernels/sin.cl +3 -4
  29. data/lib/tensor_stream/opencl/kernels/split.cl +17 -0
  30. data/lib/tensor_stream/opencl/kernels/split_n.cl +18 -0
  31. data/lib/tensor_stream/opencl/kernels/sqrt.cl +3 -4
  32. data/lib/tensor_stream/opencl/kernels/square.cl +3 -4
  33. data/lib/tensor_stream/opencl/kernels/tan.cl +3 -4
  34. data/lib/tensor_stream/opencl/kernels/tanh.cl +3 -4
  35. data/lib/tensor_stream/opencl/kernels/tanh_grad.cl +3 -4
  36. data/lib/tensor_stream/opencl/kernels/unpack.cl +23 -0
  37. data/lib/tensor_stream/opencl/nn_ops.rb +111 -26
  38. data/lib/tensor_stream/opencl/opencl_buffer.rb +9 -0
  39. data/lib/tensor_stream/opencl/opencl_evaluator.rb +129 -172
  40. data/lib/tensor_stream/opencl/version.rb +1 -1
  41. data/samples/iris.data +150 -0
  42. data/samples/iris.rb +110 -0
  43. data/samples/mnist_data.rb +65 -0
  44. data/samples/multigpu.rb +73 -0
  45. data/samples/nearest_neighbor.rb +56 -0
  46. data/samples/rnn.rb +108 -0
  47. data/tensor_stream-opencl.gemspec +4 -1
  48. metadata +62 -3
@@ -1,5 +1,5 @@
1
1
  module TensorStream
2
2
  module Opencl
3
- VERSION = "0.1.3"
3
+ VERSION = "0.2.0"
4
4
  end
5
5
  end
data/samples/iris.data ADDED
@@ -0,0 +1,150 @@
1
+ 5.1,3.5,1.4,0.2,Iris-setosa
2
+ 4.9,3.0,1.4,0.2,Iris-setosa
3
+ 4.7,3.2,1.3,0.2,Iris-setosa
4
+ 4.6,3.1,1.5,0.2,Iris-setosa
5
+ 5.0,3.6,1.4,0.2,Iris-setosa
6
+ 5.4,3.9,1.7,0.4,Iris-setosa
7
+ 4.6,3.4,1.4,0.3,Iris-setosa
8
+ 5.0,3.4,1.5,0.2,Iris-setosa
9
+ 4.4,2.9,1.4,0.2,Iris-setosa
10
+ 4.9,3.1,1.5,0.1,Iris-setosa
11
+ 5.4,3.7,1.5,0.2,Iris-setosa
12
+ 4.8,3.4,1.6,0.2,Iris-setosa
13
+ 4.8,3.0,1.4,0.1,Iris-setosa
14
+ 4.3,3.0,1.1,0.1,Iris-setosa
15
+ 5.8,4.0,1.2,0.2,Iris-setosa
16
+ 5.7,4.4,1.5,0.4,Iris-setosa
17
+ 5.4,3.9,1.3,0.4,Iris-setosa
18
+ 5.1,3.5,1.4,0.3,Iris-setosa
19
+ 5.7,3.8,1.7,0.3,Iris-setosa
20
+ 5.1,3.8,1.5,0.3,Iris-setosa
21
+ 5.4,3.4,1.7,0.2,Iris-setosa
22
+ 5.1,3.7,1.5,0.4,Iris-setosa
23
+ 4.6,3.6,1.0,0.2,Iris-setosa
24
+ 5.1,3.3,1.7,0.5,Iris-setosa
25
+ 4.8,3.4,1.9,0.2,Iris-setosa
26
+ 5.0,3.0,1.6,0.2,Iris-setosa
27
+ 5.0,3.4,1.6,0.4,Iris-setosa
28
+ 5.2,3.5,1.5,0.2,Iris-setosa
29
+ 5.2,3.4,1.4,0.2,Iris-setosa
30
+ 4.7,3.2,1.6,0.2,Iris-setosa
31
+ 4.8,3.1,1.6,0.2,Iris-setosa
32
+ 5.4,3.4,1.5,0.4,Iris-setosa
33
+ 5.2,4.1,1.5,0.1,Iris-setosa
34
+ 5.5,4.2,1.4,0.2,Iris-setosa
35
+ 4.9,3.1,1.5,0.1,Iris-setosa
36
+ 5.0,3.2,1.2,0.2,Iris-setosa
37
+ 5.5,3.5,1.3,0.2,Iris-setosa
38
+ 4.9,3.1,1.5,0.1,Iris-setosa
39
+ 4.4,3.0,1.3,0.2,Iris-setosa
40
+ 5.1,3.4,1.5,0.2,Iris-setosa
41
+ 5.0,3.5,1.3,0.3,Iris-setosa
42
+ 4.5,2.3,1.3,0.3,Iris-setosa
43
+ 4.4,3.2,1.3,0.2,Iris-setosa
44
+ 5.0,3.5,1.6,0.6,Iris-setosa
45
+ 5.1,3.8,1.9,0.4,Iris-setosa
46
+ 4.8,3.0,1.4,0.3,Iris-setosa
47
+ 5.1,3.8,1.6,0.2,Iris-setosa
48
+ 4.6,3.2,1.4,0.2,Iris-setosa
49
+ 5.3,3.7,1.5,0.2,Iris-setosa
50
+ 5.0,3.3,1.4,0.2,Iris-setosa
51
+ 7.0,3.2,4.7,1.4,Iris-versicolor
52
+ 6.4,3.2,4.5,1.5,Iris-versicolor
53
+ 6.9,3.1,4.9,1.5,Iris-versicolor
54
+ 5.5,2.3,4.0,1.3,Iris-versicolor
55
+ 6.5,2.8,4.6,1.5,Iris-versicolor
56
+ 5.7,2.8,4.5,1.3,Iris-versicolor
57
+ 6.3,3.3,4.7,1.6,Iris-versicolor
58
+ 4.9,2.4,3.3,1.0,Iris-versicolor
59
+ 6.6,2.9,4.6,1.3,Iris-versicolor
60
+ 5.2,2.7,3.9,1.4,Iris-versicolor
61
+ 5.0,2.0,3.5,1.0,Iris-versicolor
62
+ 5.9,3.0,4.2,1.5,Iris-versicolor
63
+ 6.0,2.2,4.0,1.0,Iris-versicolor
64
+ 6.1,2.9,4.7,1.4,Iris-versicolor
65
+ 5.6,2.9,3.6,1.3,Iris-versicolor
66
+ 6.7,3.1,4.4,1.4,Iris-versicolor
67
+ 5.6,3.0,4.5,1.5,Iris-versicolor
68
+ 5.8,2.7,4.1,1.0,Iris-versicolor
69
+ 6.2,2.2,4.5,1.5,Iris-versicolor
70
+ 5.6,2.5,3.9,1.1,Iris-versicolor
71
+ 5.9,3.2,4.8,1.8,Iris-versicolor
72
+ 6.1,2.8,4.0,1.3,Iris-versicolor
73
+ 6.3,2.5,4.9,1.5,Iris-versicolor
74
+ 6.1,2.8,4.7,1.2,Iris-versicolor
75
+ 6.4,2.9,4.3,1.3,Iris-versicolor
76
+ 6.6,3.0,4.4,1.4,Iris-versicolor
77
+ 6.8,2.8,4.8,1.4,Iris-versicolor
78
+ 6.7,3.0,5.0,1.7,Iris-versicolor
79
+ 6.0,2.9,4.5,1.5,Iris-versicolor
80
+ 5.7,2.6,3.5,1.0,Iris-versicolor
81
+ 5.5,2.4,3.8,1.1,Iris-versicolor
82
+ 5.5,2.4,3.7,1.0,Iris-versicolor
83
+ 5.8,2.7,3.9,1.2,Iris-versicolor
84
+ 6.0,2.7,5.1,1.6,Iris-versicolor
85
+ 5.4,3.0,4.5,1.5,Iris-versicolor
86
+ 6.0,3.4,4.5,1.6,Iris-versicolor
87
+ 6.7,3.1,4.7,1.5,Iris-versicolor
88
+ 6.3,2.3,4.4,1.3,Iris-versicolor
89
+ 5.6,3.0,4.1,1.3,Iris-versicolor
90
+ 5.5,2.5,4.0,1.3,Iris-versicolor
91
+ 5.5,2.6,4.4,1.2,Iris-versicolor
92
+ 6.1,3.0,4.6,1.4,Iris-versicolor
93
+ 5.8,2.6,4.0,1.2,Iris-versicolor
94
+ 5.0,2.3,3.3,1.0,Iris-versicolor
95
+ 5.6,2.7,4.2,1.3,Iris-versicolor
96
+ 5.7,3.0,4.2,1.2,Iris-versicolor
97
+ 5.7,2.9,4.2,1.3,Iris-versicolor
98
+ 6.2,2.9,4.3,1.3,Iris-versicolor
99
+ 5.1,2.5,3.0,1.1,Iris-versicolor
100
+ 5.7,2.8,4.1,1.3,Iris-versicolor
101
+ 6.3,3.3,6.0,2.5,Iris-virginica
102
+ 5.8,2.7,5.1,1.9,Iris-virginica
103
+ 7.1,3.0,5.9,2.1,Iris-virginica
104
+ 6.3,2.9,5.6,1.8,Iris-virginica
105
+ 6.5,3.0,5.8,2.2,Iris-virginica
106
+ 7.6,3.0,6.6,2.1,Iris-virginica
107
+ 4.9,2.5,4.5,1.7,Iris-virginica
108
+ 7.3,2.9,6.3,1.8,Iris-virginica
109
+ 6.7,2.5,5.8,1.8,Iris-virginica
110
+ 7.2,3.6,6.1,2.5,Iris-virginica
111
+ 6.5,3.2,5.1,2.0,Iris-virginica
112
+ 6.4,2.7,5.3,1.9,Iris-virginica
113
+ 6.8,3.0,5.5,2.1,Iris-virginica
114
+ 5.7,2.5,5.0,2.0,Iris-virginica
115
+ 5.8,2.8,5.1,2.4,Iris-virginica
116
+ 6.4,3.2,5.3,2.3,Iris-virginica
117
+ 6.5,3.0,5.5,1.8,Iris-virginica
118
+ 7.7,3.8,6.7,2.2,Iris-virginica
119
+ 7.7,2.6,6.9,2.3,Iris-virginica
120
+ 6.0,2.2,5.0,1.5,Iris-virginica
121
+ 6.9,3.2,5.7,2.3,Iris-virginica
122
+ 5.6,2.8,4.9,2.0,Iris-virginica
123
+ 7.7,2.8,6.7,2.0,Iris-virginica
124
+ 6.3,2.7,4.9,1.8,Iris-virginica
125
+ 6.7,3.3,5.7,2.1,Iris-virginica
126
+ 7.2,3.2,6.0,1.8,Iris-virginica
127
+ 6.2,2.8,4.8,1.8,Iris-virginica
128
+ 6.1,3.0,4.9,1.8,Iris-virginica
129
+ 6.4,2.8,5.6,2.1,Iris-virginica
130
+ 7.2,3.0,5.8,1.6,Iris-virginica
131
+ 7.4,2.8,6.1,1.9,Iris-virginica
132
+ 7.9,3.8,6.4,2.0,Iris-virginica
133
+ 6.4,2.8,5.6,2.2,Iris-virginica
134
+ 6.3,2.8,5.1,1.5,Iris-virginica
135
+ 6.1,2.6,5.6,1.4,Iris-virginica
136
+ 7.7,3.0,6.1,2.3,Iris-virginica
137
+ 6.3,3.4,5.6,2.4,Iris-virginica
138
+ 6.4,3.1,5.5,1.8,Iris-virginica
139
+ 6.0,3.0,4.8,1.8,Iris-virginica
140
+ 6.9,3.1,5.4,2.1,Iris-virginica
141
+ 6.7,3.1,5.6,2.4,Iris-virginica
142
+ 6.9,3.1,5.1,2.3,Iris-virginica
143
+ 5.8,2.7,5.1,1.9,Iris-virginica
144
+ 6.8,3.2,5.9,2.3,Iris-virginica
145
+ 6.7,3.3,5.7,2.5,Iris-virginica
146
+ 6.7,3.0,5.2,2.3,Iris-virginica
147
+ 6.3,2.5,5.0,1.9,Iris-virginica
148
+ 6.5,3.0,5.2,2.0,Iris-virginica
149
+ 6.2,3.4,5.4,2.3,Iris-virginica
150
+ 5.9,3.0,5.1,1.8,Iris-virginica
data/samples/iris.rb ADDED
@@ -0,0 +1,110 @@
1
+ require "bundler/setup"
2
+ require 'tensor_stream'
3
+ require 'tensor_stream/opencl'
4
+
5
+ # This neural network will predict the species of an iris based on sepal and petal size
6
+ # Dataset: http://en.wikipedia.org/wiki/Iris_flower_data_set
7
+ tf = TensorStream
8
+ rows = File.readlines(File.join("samples","iris.data")).map {|l| l.chomp.split(',') }
9
+
10
+ rows.shuffle!
11
+
12
+ label_encodings = {
13
+ 'Iris-setosa' => [1, 0, 0],
14
+ 'Iris-versicolor' => [0, 1, 0],
15
+ 'Iris-virginica' => [0, 0, 1]
16
+ }
17
+
18
+ x_data = rows.map {|row| row[0,4].map(&:to_f) }
19
+ y_data = rows.map {|row| label_encodings[row[4]] }
20
+
21
+ # Normalize data values before feeding into network
22
+ normalize = -> (val, high, low) { (val - low) / (high - low) } # maps input to float between 0 and 1
23
+
24
+ columns = (0..3).map do |i|
25
+ x_data.map {|row| row[i] }
26
+ end
27
+
28
+ x_data.map! do |row|
29
+ row.map.with_index do |val, j|
30
+ max, min = columns[j].max, columns[j].min
31
+ normalize.call(val, max, min)
32
+ end
33
+ end
34
+
35
+ x_train = x_data.slice(0, 100)
36
+ y_train = y_data.slice(0, 100)
37
+
38
+ x_test = x_data.slice(100, 50)
39
+ y_test = y_data.slice(100, 50)
40
+
41
+ test_cases = []
42
+ x_train.each_with_index do |x, index|
43
+ test_cases << [x, y_train[index]]
44
+ end
45
+
46
+ validation_cases = []
47
+ x_test.each_with_index do |x, index|
48
+ validation_cases << [x, y_test[index]]
49
+ end
50
+
51
+
52
+
53
+ def init_weights(shape)
54
+ # Weight initialization
55
+ weights = TensorStream.random_normal(shape, stddev: 0.1)
56
+ TensorStream.variable(weights)
57
+ end
58
+
59
+ def forwardprop(x, w_1, w_2)
60
+ # Forward-propagation.
61
+ # IMPORTANT: yhat is not softmax since TensorFlow's softmax_cross_entropy_with_logits() does that internally.
62
+ h = TensorStream.nn.sigmoid(TensorStream.matmul(x, w_1)) # The \sigma function
63
+ TensorStream.matmul(h, w_2) # The \varphi function
64
+ end
65
+
66
+ x_size = x_train[0].size
67
+ y_size = y_train[0].size
68
+ h_size = 256
69
+ X = tf.placeholder(:float32, shape: [nil, x_size])
70
+ y = tf.placeholder(:float32, shape: [nil, y_size])
71
+
72
+ # Weight initializations
73
+ w_1 = init_weights([x_size, h_size])
74
+ w_2 = init_weights([h_size, y_size])
75
+
76
+ # Forward propagation
77
+ yhat = forwardprop(X, w_1, w_2)
78
+ predict = tf.argmax(yhat, 1)
79
+
80
+ # Backward propagation
81
+ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: yhat))
82
+
83
+ updates = TensorStream::Train::GradientDescentOptimizer.new(0.01).minimize(cost)
84
+ # updates = TensorStream::Train::MomentumOptimizer.new(0.01, 0.5, use_nesterov: true).minimize(cost)
85
+ # updates = TensorStream::Train::RMSPropOptimizer.new(0.01).minimize(cost)
86
+
87
+ # Run SGD
88
+ sess = tf.session
89
+ init = tf.global_variables_initializer
90
+ sess.run(init)
91
+ loss = sess.run(cost, feed_dict: { X => x_test, y => y_test })
92
+ puts "loss test data set #{loss}"
93
+ loss = sess.run(cost, feed_dict: { X => x_train, y => y_train })
94
+ puts "Testing the untrained network..."
95
+ puts loss
96
+ start_time = Time.now
97
+ (0..100).each do |epoch|
98
+ x_train.size.times do |i|
99
+ sess.run(updates, feed_dict: {X => [x_train[i]], y => [y_train[i]]})
100
+ end
101
+
102
+ loss = sess.run(cost, feed_dict: { X => x_train, y => y_train })
103
+ puts "epoch: #{epoch}, loss #{loss}"
104
+ end
105
+
106
+ loss = sess.run(cost, feed_dict: { X => x_train, y => y_train })
107
+ puts "loss after training #{loss}"
108
+ loss = sess.run(cost, feed_dict: { X => x_test, y => y_test })
109
+ puts "loss test data set #{loss}"
110
+ puts("time elapsed ", Time.now.to_i - start_time.to_i)
@@ -0,0 +1,65 @@
1
+ # A ruby port of the example code discussed by Martin Gorner in
2
+ # "TensorFlow and Deep Learning without a PhD, Part 1 (Google Cloud Next '17)""
3
+ #
4
+ # https://www.youtube.com/watch?v=u4alGiomYP4
5
+ #
6
+ # Requirements:
7
+ # mnist-learn gem
8
+ # opencl_ruby_ffi gem
9
+ require "bundler/setup"
10
+ require 'tensor_stream'
11
+ require 'mnist-learn'
12
+
13
+ # Enable OpenCL hardware accelerated computation, not using OpenCL can be very slow
14
+ # require 'tensor_stream/opencl'
15
+
16
+ tf = TensorStream
17
+
18
+ # Import MNIST data
19
+ puts "downloading minst data"
20
+ mnist = Mnist.read_data_sets('/tmp/data', one_hot: true)
21
+ puts "downloading finished"
22
+
23
+ x = tf.placeholder(:float32, shape: [nil, 784])
24
+ w = tf.variable(tf.zeros([784, 10]))
25
+ b = tf.variable(tf.zeros([10]))
26
+
27
+
28
+
29
+ # model
30
+ y = tf.nn.softmax(tf.matmul(tf.reshape(x, [-1, 784]), w) + b)
31
+
32
+ y_ = tf.placeholder(:float32, shape: [nil, 10])
33
+
34
+ # loss function
35
+ cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
36
+
37
+ is_correct = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
38
+ accuracy = tf.reduce_mean(tf.cast(is_correct, :float32))
39
+
40
+ optimizer = TensorStream::Train::AdamOptimizer.new
41
+ train_step = optimizer.minimize(cross_entropy)
42
+
43
+ sess = tf.session
44
+ init = tf.global_variables_initializer
45
+ sess.run(init)
46
+
47
+ (0...1000).each do |i|
48
+ # load batch of images and correct answers
49
+ batch_x, batch_y = mnist.train.next_batch(100)
50
+ train_data = { x => batch_x, y_ => batch_y }
51
+
52
+ # train
53
+ sess.run(train_step, feed_dict: train_data)
54
+ if (i % 10 == 0)
55
+ # success? add code to print it
56
+ a, c = sess.run([accuracy, cross_entropy], feed_dict: train_data)
57
+ puts "#{i} train accuracy #{a}, error #{c}"
58
+
59
+ # success on test data?
60
+ test_data = { x => mnist.test.images, y_ => mnist.test.labels }
61
+ a, c = sess.run([accuracy, cross_entropy], feed_dict: test_data)
62
+ puts " test accuracy #{a}, error #{c}"
63
+ end
64
+ end
65
+
@@ -0,0 +1,73 @@
1
+ require "bundler/setup"
2
+ require 'tensor_stream'
3
+ require 'tensor_stream/opencl'
4
+ require 'pry-byebug'
5
+
6
+ ts = TensorStream
7
+
8
+ n = 10
9
+ DIMEN = 1024
10
+
11
+ A = ts.random_uniform([DIMEN, DIMEN]).eval
12
+ B = ts.random_uniform([DIMEN, DIMEN]).eval
13
+
14
+
15
+ # Create a graph to store results
16
+ c1 = []
17
+ c2 = []
18
+ a = nil
19
+ b = nil
20
+
21
+ def matpow(m, n)
22
+ return m if n < 1
23
+ TensorStream.matmul(m, matpow(m, n-1))
24
+ end
25
+
26
+ ts.device('/device:GPU:0') do
27
+ a = ts.placeholder(:float32, shape: [DIMEN, DIMEN])
28
+ b = ts.placeholder(:float32, shape: [DIMEN, DIMEN])
29
+ # Compute A^n and B^n and store results in c1
30
+ c1 << matpow(a, n)
31
+ c1 << matpow(b, n)
32
+ end
33
+
34
+ sum = ts.device('/device:GPU:0') do
35
+ ts.add_n(c1)
36
+ end
37
+
38
+ t1_1 = Time.now.to_i
39
+ t2_1 = nil
40
+
41
+ ts.session(log_device_placement: true) do |sess|
42
+ sess.run(sum, feed_dict: { a => A, b => B})
43
+ t2_1 = Time.now.to_i
44
+ end
45
+
46
+ # Multi GPU computing
47
+ # GPU:0 computes A^n
48
+ ts.device('/device:GPU:1') do
49
+ a = ts.placeholder(:float32, shape: [DIMEN, DIMEN])
50
+ c2 << matpow(a, n)
51
+ end
52
+
53
+ # GPU:1 computes B^n
54
+ ts.device('/device:GPU:1') do
55
+ b = ts.placeholder(:float32, shape: [DIMEN, DIMEN])
56
+ c2 << matpow(b, n)
57
+ end
58
+
59
+ ts.device('/device:GPU:1') do
60
+ sum = ts.add_n(c2) #Addition of all elements in c2, i.e. A^n + B^n
61
+ end
62
+
63
+ t1_2 = Time.now.to_i
64
+ t2_2 = nil
65
+ ts.session(log_device_placement:true) do |sess|
66
+ # Run the op.
67
+ sess.run(sum, feed_dict: {a => A, b => B})
68
+ t2_2 = Time.now.to_i
69
+ end
70
+
71
+
72
+ print("Single GPU computation time: " + (t2_1-t1_1).to_s)
73
+ print("Multi GPU computation time: " + (t2_2-t1_2).to_s)
@@ -0,0 +1,56 @@
1
+ '''
2
+ A nearest neighbor learning algorithm example using TensorFlow library.
3
+ This example is using the MNIST database of handwritten digits
4
+ (http://yann.lecun.com/exdb/mnist/)
5
+
6
+ Author: Aymeric Damien
7
+ Project: https://github.com/aymericdamien/TensorFlow-Examples/
8
+
9
+ Make sure to install the mnist-learn gem !!
10
+ '''
11
+ require "bundler/setup"
12
+ require 'tensor_stream'
13
+ require 'mnist-learn'
14
+ require 'tensor_stream/opencl'
15
+
16
+ tf = TensorStream
17
+
18
+ # Import MNIST data
19
+ mnist = Mnist.read_data_sets('/tmp/data', one_hot: true)
20
+
21
+ # In this example, we limit mnist data
22
+ Xtr, Ytr = mnist.train.next_batch(5000) # 5000 for training (nn candidates)
23
+ Xte, Yte = mnist.test.next_batch(200) # 200 for testing
24
+
25
+ # tf Graph Input
26
+ xtr = tf.placeholder(:float, shape: [nil, 784])
27
+ xte = tf.placeholder(:float, shape: [784])
28
+
29
+ # Nearest Neighbor calculation using L1 Distance
30
+ # Calculate L1 Distance
31
+ distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))), 1)
32
+ # Prediction: Get min distance index (Nearest neighbor)
33
+ pred = tf.argmin(distance, 0)
34
+
35
+ accuracy = 0.0
36
+
37
+ # Initialize the variables (i.e. assign their default value)
38
+ init = tf.global_variables_initializer()
39
+
40
+ # Start training
41
+ tf.session do |sess|
42
+ # Run the initializer
43
+ sess.run(init)
44
+ Xte.size.times do |i|
45
+ # Get nearest neighbor
46
+ nn_index = sess.run(pred, feed_dict: {xtr => Xtr, xte => Xte[i]})
47
+ print("Test ", i, "Prediction: ",Ytr[nn_index].max, \
48
+ "True Class: ", Yte[i].max, "\n")
49
+ if Ytr[nn_index].max == Yte[i].max
50
+ accuracy += 1.0/ Xte.size
51
+ end
52
+ end
53
+
54
+ print("Done!")
55
+ print("Accuracy:", accuracy)
56
+ end