tabula-extractor 0.7.2-java → 0.7.4-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +1 -0
  3. data/README.md +4 -8
  4. data/bin/tabula +3 -3
  5. data/lib/tabula.rb +9 -5
  6. data/lib/tabula/entities.rb +1 -0
  7. data/lib/tabula/entities/cell.rb +6 -4
  8. data/lib/tabula/entities/has_cells.rb +22 -78
  9. data/lib/tabula/entities/line.rb +52 -6
  10. data/lib/tabula/entities/page.rb +43 -50
  11. data/lib/tabula/entities/ruling.rb +83 -105
  12. data/lib/tabula/entities/spreadsheet.rb +74 -11
  13. data/lib/tabula/entities/table.rb +55 -37
  14. data/lib/tabula/entities/tabular.rb +42 -0
  15. data/lib/tabula/entities/text_chunk.rb +55 -52
  16. data/lib/tabula/entities/text_element.rb +129 -62
  17. data/lib/tabula/entities/zone_entity.rb +15 -6
  18. data/lib/tabula/extraction.rb +114 -49
  19. data/lib/tabula/line_segment_detector.rb +0 -5
  20. data/lib/tabula/table_extractor.rb +32 -37
  21. data/lib/tabula/version.rb +1 -1
  22. data/tabula-extractor.gemspec +2 -5
  23. metadata +13 -95
  24. data/ext/COPYING +0 -661
  25. data/ext/Makefile.OSX +0 -18
  26. data/ext/Makefile.defaults +0 -9
  27. data/ext/Makefile.linux32 +0 -11
  28. data/ext/Makefile.linux64 +0 -12
  29. data/ext/Makefile.mingw +0 -10
  30. data/ext/Makefile.mingw64 +0 -10
  31. data/ext/liblsd-linux32.so +0 -0
  32. data/ext/liblsd-linux64.so +0 -0
  33. data/ext/liblsd.def +0 -3
  34. data/ext/liblsd.dll +0 -0
  35. data/ext/liblsd.dylib +0 -0
  36. data/ext/liblsd64.dll +0 -0
  37. data/ext/lsd.c +0 -2270
  38. data/ext/lsd.h +0 -283
  39. data/test/data/47008204D_USA.page4.pdf +0 -0
  40. data/test/data/560015757GV_China.page1.pdf +0 -0
  41. data/test/data/ClinicalResearchDisclosureReport2012Q2.pdf +0 -0
  42. data/test/data/GSK_2012_Q4.page437.pdf +0 -0
  43. data/test/data/S2MNCEbirdisland.pdf +0 -0
  44. data/test/data/argentina_diputados_voting_record.pdf +0 -0
  45. data/test/data/bo_page24.pdf +0 -0
  46. data/test/data/campaign_donors.pdf +0 -0
  47. data/test/data/frx_2012_disclosure.pdf +0 -0
  48. data/test/data/frx_2012_disclosure.tsv +0 -88
  49. data/test/data/gre.pdf +0 -0
  50. data/test/data/no_tables.pdf +0 -0
  51. data/test/data/nyc_2013fiscalreporttables.pdf +0 -0
  52. data/test/data/puertos1.pdf +0 -0
  53. data/test/data/spanning_cells.csv +0 -21
  54. data/test/data/spanning_cells.pdf +0 -0
  55. data/test/data/strongschools.pdf +0 -0
  56. data/test/data/sydney_disclosure_contract.pdf +0 -0
  57. data/test/data/tabla_subsidios.pdf +0 -0
  58. data/test/data/vertical_rulings_bug.pdf +0 -0
  59. data/test/data/vietnam3.pdf +0 -0
  60. data/test/data/wc2012.pdf +0 -0
  61. data/test/heuristic-test-set/original/560015757GV_China.page1.pdf +0 -0
  62. data/test/heuristic-test-set/original/S2MNCEbirdisland.pdf +0 -0
  63. data/test/heuristic-test-set/original/bo_page24.pdf +0 -0
  64. data/test/heuristic-test-set/original/campaign_donors.pdf +0 -0
  65. data/test/heuristic-test-set/original/cs076pct.pdf +0 -0
  66. data/test/heuristic-test-set/spreadsheet/47008204D_USA.page4.pdf +0 -0
  67. data/test/heuristic-test-set/spreadsheet/GSK_2012_Q4.page437.pdf +0 -0
  68. data/test/heuristic-test-set/spreadsheet/strongschools.pdf +0 -0
  69. data/test/heuristic-test-set/spreadsheet/tabla_subsidios.pdf +0 -0
  70. data/test/heuristic.rb +0 -50
  71. data/test/test_bin_tabula.sh +0 -7
  72. data/test/tests.rb +0 -603
data/ext/Makefile.OSX DELETED
@@ -1,18 +0,0 @@
1
- include Makefile.defaults
2
-
3
-
4
- CFLAGS := -arch i386 -arch x86_64 -fPIC -O3 -g -Wall -Werror
5
-
6
- lib: lib$(NAME).$(VERSION).dylib
7
-
8
- lib$(NAME).$(VERSION).dylib: $(NAME).o
9
- $(CC) -arch i386 -arch x86_64 -dynamiclib -lm -o lib$(NAME).dylib $^
10
-
11
- clean:
12
- $(RM) *.o
13
-
14
- $(NAME)_test: lib$(NAME).$(VERSION).dylib
15
- $(CC) lsd_call_example.c -o $@ -L. -l$(NAME)
16
-
17
- test: $(NAME)_test
18
- LD_LIBRARY_PATH=. ./$(NAME)_test
@@ -1,9 +0,0 @@
1
- CFLAGS := -fPIC -O3 -g -Wall -Werror
2
- CC := gcc
3
- MAJOR := 1
4
- MINOR := 0
5
- NAME := lsd
6
- VERSION := $(MAJOR).$(MINOR)
7
-
8
- clean:
9
- $(RM) *.o *.so* *.dylib
data/ext/Makefile.linux32 DELETED
@@ -1,11 +0,0 @@
1
- include Makefile.defaults
2
-
3
- # link statically with musl-libc
4
- CC = /home/manuel/tabula-build/musl-32/bin/musl-gcc
5
- CFLAGS := -fPIC -Wall -Werror
6
-
7
- lib: lib$(NAME).$(VERSION).so
8
-
9
- lib$(NAME).$(VERSION).so: $(NAME).o
10
- $(CC) -shared -static -o lib$(NAME)-linux32.so $^
11
-
data/ext/Makefile.linux64 DELETED
@@ -1,12 +0,0 @@
1
- # to compile a x86_64 lib in an ubuntu i386 box
2
- include Makefile.defaults
3
-
4
- # link statically with musl-libc
5
- CC = /home/manuel/tabula-build/musl-64/bin/musl-gcc
6
- CFLAGS := -fPIC -Wall -Werror -m64
7
-
8
- lib: lib$(NAME).$(VERSION).so
9
-
10
- lib$(NAME).$(VERSION).so: $(NAME).o
11
- @LDEMULATION=elf_x86_64 $(CC) -m64 -shared -static -o lib$(NAME)-linux64.so $^
12
-
data/ext/Makefile.mingw DELETED
@@ -1,10 +0,0 @@
1
- include Makefile.defaults
2
-
3
- #CC = /usr/local/gcc-4.8.0-qt-4.8.4-for-mingw32/win32-gcc/bin/i586-mingw32-gcc
4
- CC = /usr/bin/i686-w64-mingw32-gcc-4.6
5
- CFLAGS := -Wall -Werror
6
-
7
- lib: lib$(NAME).$(VERSION).dll
8
-
9
- lib$(NAME).$(VERSION).dll: $(NAME).o
10
- $(CC) -shared -o lib$(NAME).dll liblsd.def $^
data/ext/Makefile.mingw64 DELETED
@@ -1,10 +0,0 @@
1
- include Makefile.defaults
2
-
3
- #CC = /usr/local/gcc-4.8.0-qt-4.8.4-for-mingw32/win32-gcc/bin/i586-mingw32-gcc
4
- CC = /usr/bin/x86_64-w64-mingw32-gcc
5
- CFLAGS := -Wall -Werror
6
-
7
- lib: lib$(NAME).$(VERSION).dll
8
-
9
- lib$(NAME).$(VERSION).dll: $(NAME).o
10
- $(CC) -shared -o lib$(NAME)64.dll liblsd.def $^
Binary file
Binary file
data/ext/liblsd.def DELETED
@@ -1,3 +0,0 @@
1
- EXPORTS
2
- lsd
3
- free_values
data/ext/liblsd.dll DELETED
Binary file
data/ext/liblsd.dylib DELETED
Binary file
data/ext/liblsd64.dll DELETED
Binary file
data/ext/lsd.c DELETED
@@ -1,2270 +0,0 @@
1
- /*----------------------------------------------------------------------------
2
-
3
- LSD - Line Segment Detector on digital images
4
-
5
- This code is part of the following publication and was subject
6
- to peer review:
7
-
8
- "LSD: a Line Segment Detector" by Rafael Grompone von Gioi,
9
- Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Randall,
10
- Image Processing On Line, 2012. DOI:10.5201/ipol.2012.gjmr-lsd
11
- http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
12
-
13
- Copyright (c) 2007-2011 rafael grompone von gioi <grompone@gmail.com>
14
-
15
- This program is free software: you can redistribute it and/or modify
16
- it under the terms of the GNU Affero General Public License as
17
- published by the Free Software Foundation, either version 3 of the
18
- License, or (at your option) any later version.
19
-
20
- This program is distributed in the hope that it will be useful,
21
- but WITHOUT ANY WARRANTY; without even the implied warranty of
22
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23
- GNU Affero General Public License for more details.
24
-
25
- You should have received a copy of the GNU Affero General Public License
26
- along with this program. If not, see <http://www.gnu.org/licenses/>.
27
-
28
- Additional permission under GNU GPL version 3 section 7
29
-
30
- If you modify this Program, or any covered work, by linking or
31
- combining it with Tabula (or a modified version of that library),
32
- containing parts covered by the terms of "MIT License", the
33
- licensors of this Program grant you additional permission to convey
34
- the resulting work. Corresponding Source for a non-source form of
35
- such a combination shall include the source code for the parts of
36
- Tabula used as well as that of the covered work.
37
-
38
-
39
- ----------------------------------------------------------------------------*/
40
-
41
- /*----------------------------------------------------------------------------*/
42
- /** @file lsd.c
43
- LSD module code
44
- @author rafael grompone von gioi <grompone@gmail.com>
45
- */
46
- /*----------------------------------------------------------------------------*/
47
-
48
- /*----------------------------------------------------------------------------*/
49
- /** @mainpage LSD code documentation
50
-
51
- This is an implementation of the Line Segment Detector described
52
- in the paper:
53
-
54
- "LSD: A Fast Line Segment Detector with a False Detection Control"
55
- by Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel,
56
- and Gregory Randall, IEEE Transactions on Pattern Analysis and
57
- Machine Intelligence, vol. 32, no. 4, pp. 722-732, April, 2010.
58
-
59
- and in more details in the CMLA Technical Report:
60
-
61
- "LSD: A Line Segment Detector, Technical Report",
62
- by Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel,
63
- Gregory Randall, CMLA, ENS Cachan, 2010.
64
-
65
- The version implemented here includes some further improvements
66
- described in the following publication, of which this code is part:
67
-
68
- "LSD: a Line Segment Detector" by Rafael Grompone von Gioi,
69
- Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Randall,
70
- Image Processing On Line, 2012. DOI:10.5201/ipol.2012.gjmr-lsd
71
- http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
72
-
73
- The module's main function is lsd().
74
-
75
- The source code is contained in two files: lsd.h and lsd.c.
76
-
77
- HISTORY:
78
- - version 1.6 - nov 2011:
79
- - changes in the interface,
80
- - max_grad parameter removed,
81
- - the factor 11 was added to the number of test
82
- to consider the different precision values
83
- tested,
84
- - a minor bug corrected in the gradient sorting
85
- code,
86
- - the algorithm now also returns p and log_nfa
87
- for each detection,
88
- - a minor bug was corrected in the image scaling,
89
- - the angle comparison in "isaligned" changed
90
- from < to <=,
91
- - "eps" variable renamed "log_eps",
92
- - "lsd_scale_region" interface was added,
93
- - minor changes to comments.
94
- - version 1.5 - dec 2010: Changes in 'refine', -W option added,
95
- and more comments added.
96
- - version 1.4 - jul 2010: lsd_scale interface added and doxygen doc.
97
- - version 1.3 - feb 2010: Multiple bug correction and improved code.
98
- - version 1.2 - dec 2009: First full Ansi C Language version.
99
- - version 1.1 - sep 2009: Systematic subsampling to scale 0.8 and
100
- correction to partially handle "angle problem".
101
- - version 1.0 - jan 2009: First complete Megawave2 and Ansi C Language
102
- version.
103
-
104
- @author rafael grompone von gioi <grompone@gmail.com>
105
- */
106
- /*----------------------------------------------------------------------------*/
107
-
108
- #include <stdio.h>
109
- #include <stdlib.h>
110
- #include <math.h>
111
- #include <limits.h>
112
- #include <float.h>
113
- #include "lsd.h"
114
-
115
- /** ln(10) */
116
- #ifndef M_LN10
117
- #define M_LN10 2.30258509299404568402
118
- #endif /* !M_LN10 */
119
-
120
- /** PI */
121
- #ifndef M_PI
122
- #define M_PI 3.14159265358979323846
123
- #endif /* !M_PI */
124
-
125
- #ifndef FALSE
126
- #define FALSE 0
127
- #endif /* !FALSE */
128
-
129
- #ifndef TRUE
130
- #define TRUE 1
131
- #endif /* !TRUE */
132
-
133
- /** Label for pixels with undefined gradient. */
134
- #define NOTDEF -1024.0
135
-
136
- /** 3/2 pi */
137
- #define M_3_2_PI 4.71238898038
138
-
139
- /** 2 pi */
140
- #define M_2__PI 6.28318530718
141
-
142
- /** Label for pixels not used in yet. */
143
- #define NOTUSED 0
144
-
145
- /** Label for pixels already used in detection. */
146
- #define USED 1
147
-
148
- /*----------------------------------------------------------------------------*/
149
- /** Chained list of coordinates.
150
- */
151
- struct coorlist
152
- {
153
- int x,y;
154
- struct coorlist * next;
155
- };
156
-
157
- /*----------------------------------------------------------------------------*/
158
- /** A point (or pixel).
159
- */
160
- struct point {int x,y;};
161
-
162
-
163
- /*----------------------------------------------------------------------------*/
164
- /*------------------------- Miscellaneous functions --------------------------*/
165
- /*----------------------------------------------------------------------------*/
166
-
167
- /*----------------------------------------------------------------------------*/
168
- /** Fatal error, print a message to standard-error output and exit.
169
- */
170
- static void error(char * msg)
171
- {
172
- fprintf(stderr,"LSD Error: %s\n",msg);
173
- exit(EXIT_FAILURE);
174
- }
175
-
176
- /*----------------------------------------------------------------------------*/
177
- /** Doubles relative error factor
178
- */
179
- #define RELATIVE_ERROR_FACTOR 100.0
180
-
181
- /*----------------------------------------------------------------------------*/
182
- /** Compare doubles by relative error.
183
-
184
- The resulting rounding error after floating point computations
185
- depend on the specific operations done. The same number computed by
186
- different algorithms could present different rounding errors. For a
187
- useful comparison, an estimation of the relative rounding error
188
- should be considered and compared to a factor times EPS. The factor
189
- should be related to the cumulated rounding error in the chain of
190
- computation. Here, as a simplification, a fixed factor is used.
191
- */
192
- static int double_equal(float a, float b)
193
- {
194
- float abs_diff,aa,bb,abs_max;
195
-
196
- /* trivial case */
197
- if( a == b ) return TRUE;
198
-
199
- abs_diff = fabs(a-b);
200
- aa = fabs(a);
201
- bb = fabs(b);
202
- abs_max = aa > bb ? aa : bb;
203
-
204
- /* DBL_MIN is the smallest normalized number, thus, the smallest
205
- number whose relative error is bounded by DBL_EPSILON. For
206
- smaller numbers, the same quantization steps as for DBL_MIN
207
- are used. Then, for smaller numbers, a meaningful "relative"
208
- error should be computed by dividing the difference by DBL_MIN. */
209
- if( abs_max < DBL_MIN ) abs_max = DBL_MIN;
210
-
211
- /* equal if relative error <= factor x eps */
212
- return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
213
- }
214
-
215
- /*----------------------------------------------------------------------------*/
216
- /** Computes Euclidean distance between point (x1,y1) and point (x2,y2).
217
- */
218
- static float dist(float x1, float y1, float x2, float y2)
219
- {
220
- return sqrt( (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1) );
221
- }
222
-
223
-
224
- /*----------------------------------------------------------------------------*/
225
- /*----------------------- 'list of n-tuple' data type ------------------------*/
226
- /*----------------------------------------------------------------------------*/
227
-
228
- /*----------------------------------------------------------------------------*/
229
- /** 'list of n-tuple' data type
230
-
231
- The i-th component of the j-th n-tuple of an n-tuple list 'ntl'
232
- is accessed with:
233
-
234
- ntl->values[ i + j * ntl->dim ]
235
-
236
- The dimension of the n-tuple (n) is:
237
-
238
- ntl->dim
239
-
240
- The number of n-tuples in the list is:
241
-
242
- ntl->size
243
-
244
- The maximum number of n-tuples that can be stored in the
245
- list with the allocated memory at a given time is given by:
246
-
247
- ntl->max_size
248
- */
249
- typedef struct ntuple_list_s
250
- {
251
- unsigned int size;
252
- unsigned int max_size;
253
- unsigned int dim;
254
- float * values;
255
- } * ntuple_list;
256
-
257
- /*----------------------------------------------------------------------------*/
258
- /** Free memory used in n-tuple 'in'.
259
- */
260
- static void free_ntuple_list(ntuple_list in)
261
- {
262
- if( in == NULL || in->values == NULL )
263
- error("free_ntuple_list: invalid n-tuple input.");
264
- free( (void *) in->values );
265
- free( (void *) in );
266
- }
267
-
268
- /*----------------------------------------------------------------------------*/
269
- /** Create an n-tuple list and allocate memory for one element.
270
- @param dim the dimension (n) of the n-tuple.
271
- */
272
- static ntuple_list new_ntuple_list(unsigned int dim)
273
- {
274
- ntuple_list n_tuple;
275
-
276
- /* check parameters */
277
- if( dim == 0 ) error("new_ntuple_list: 'dim' must be positive.");
278
-
279
- /* get memory for list structure */
280
- n_tuple = (ntuple_list) malloc( sizeof(struct ntuple_list_s) );
281
- if( n_tuple == NULL ) error("not enough memory.");
282
-
283
- /* initialize list */
284
- n_tuple->size = 0;
285
- n_tuple->max_size = 1;
286
- n_tuple->dim = dim;
287
-
288
- /* get memory for tuples */
289
- n_tuple->values = (float *) malloc( dim*n_tuple->max_size * sizeof(float) );
290
- if( n_tuple->values == NULL ) error("not enough memory.");
291
-
292
- return n_tuple;
293
- }
294
-
295
- /*----------------------------------------------------------------------------*/
296
- /** Enlarge the allocated memory of an n-tuple list.
297
- */
298
- static void enlarge_ntuple_list(ntuple_list n_tuple)
299
- {
300
- /* check parameters */
301
- if( n_tuple == NULL || n_tuple->values == NULL || n_tuple->max_size == 0 )
302
- error("enlarge_ntuple_list: invalid n-tuple.");
303
-
304
- /* duplicate number of tuples */
305
- n_tuple->max_size *= 2;
306
-
307
- /* realloc memory */
308
- n_tuple->values = (float *) realloc( (void *) n_tuple->values,
309
- n_tuple->dim * n_tuple->max_size * sizeof(float) );
310
- if( n_tuple->values == NULL ) error("not enough memory.");
311
- }
312
-
313
- /*----------------------------------------------------------------------------*/
314
- /** Add a 7-tuple to an n-tuple list.
315
- */
316
- static void add_7tuple( ntuple_list out, float v1, float v2, float v3,
317
- float v4, float v5, float v6, float v7 )
318
- {
319
- /* check parameters */
320
- if( out == NULL ) error("add_7tuple: invalid n-tuple input.");
321
- if( out->dim != 7 ) error("add_7tuple: the n-tuple must be a 7-tuple.");
322
-
323
- /* if needed, alloc more tuples to 'out' */
324
- if( out->size == out->max_size ) enlarge_ntuple_list(out);
325
- if( out->values == NULL ) error("add_7tuple: invalid n-tuple input.");
326
-
327
- /* add new 7-tuple */
328
- out->values[ out->size * out->dim + 0 ] = v1;
329
- out->values[ out->size * out->dim + 1 ] = v2;
330
- out->values[ out->size * out->dim + 2 ] = v3;
331
- out->values[ out->size * out->dim + 3 ] = v4;
332
- out->values[ out->size * out->dim + 4 ] = v5;
333
- out->values[ out->size * out->dim + 5 ] = v6;
334
- out->values[ out->size * out->dim + 6 ] = v7;
335
-
336
- /* update number of tuples counter */
337
- out->size++;
338
- }
339
-
340
-
341
- /*----------------------------------------------------------------------------*/
342
- /*----------------------------- Image Data Types -----------------------------*/
343
- /*----------------------------------------------------------------------------*/
344
-
345
- /*----------------------------------------------------------------------------*/
346
- /** char image data type
347
-
348
- The pixel value at (x,y) is accessed by:
349
-
350
- image->data[ x + y * image->xsize ]
351
-
352
- with x and y integer.
353
- */
354
- typedef struct image_char_s
355
- {
356
- unsigned char * data;
357
- unsigned int xsize,ysize;
358
- } * image_char;
359
-
360
- /*----------------------------------------------------------------------------*/
361
- /** Free memory used in image_char 'i'.
362
- */
363
- static void free_image_char(image_char i)
364
- {
365
- if( i == NULL || i->data == NULL )
366
- error("free_image_char: invalid input image.");
367
- free( (void *) i->data );
368
- free( (void *) i );
369
- }
370
-
371
- /*----------------------------------------------------------------------------*/
372
- /** Create a new image_char of size 'xsize' times 'ysize'.
373
- */
374
- static image_char new_image_char(unsigned int xsize, unsigned int ysize)
375
- {
376
- image_char image;
377
-
378
- /* check parameters */
379
- if( xsize == 0 || ysize == 0 ) error("new_image_char: invalid image size.");
380
-
381
- /* get memory */
382
- image = (image_char) malloc( sizeof(struct image_char_s) );
383
- if( image == NULL ) error("not enough memory.");
384
- image->data = (unsigned char *) calloc( (size_t) (xsize*ysize),
385
- sizeof(unsigned char) );
386
- if( image->data == NULL ) error("not enough memory.");
387
-
388
- /* set image size */
389
- image->xsize = xsize;
390
- image->ysize = ysize;
391
-
392
- return image;
393
- }
394
-
395
- /*----------------------------------------------------------------------------*/
396
- /** Create a new image_char of size 'xsize' times 'ysize',
397
- initialized to the value 'fill_value'.
398
- */
399
- static image_char new_image_char_ini( unsigned int xsize, unsigned int ysize,
400
- unsigned char fill_value )
401
- {
402
- image_char image = new_image_char(xsize,ysize); /* create image */
403
- unsigned int N = xsize*ysize;
404
- unsigned int i;
405
-
406
- /* check parameters */
407
- if( image == NULL || image->data == NULL )
408
- error("new_image_char_ini: invalid image.");
409
-
410
- /* initialize */
411
- for(i=0; i<N; i++) image->data[i] = fill_value;
412
-
413
- return image;
414
- }
415
-
416
- /*----------------------------------------------------------------------------*/
417
- /** int image data type
418
-
419
- The pixel value at (x,y) is accessed by:
420
-
421
- image->data[ x + y * image->xsize ]
422
-
423
- with x and y integer.
424
- */
425
- typedef struct image_int_s
426
- {
427
- int * data;
428
- unsigned int xsize,ysize;
429
- } * image_int;
430
-
431
- /*----------------------------------------------------------------------------*/
432
- /** Create a new image_int of size 'xsize' times 'ysize'.
433
- */
434
- static image_int new_image_int(unsigned int xsize, unsigned int ysize)
435
- {
436
- image_int image;
437
-
438
- /* check parameters */
439
- if( xsize == 0 || ysize == 0 ) error("new_image_int: invalid image size.");
440
-
441
- /* get memory */
442
- image = (image_int) malloc( sizeof(struct image_int_s) );
443
- if( image == NULL ) error("not enough memory.");
444
- image->data = (int *) calloc( (size_t) (xsize*ysize), sizeof(int) );
445
- if( image->data == NULL ) error("not enough memory.");
446
-
447
- /* set image size */
448
- image->xsize = xsize;
449
- image->ysize = ysize;
450
-
451
- return image;
452
- }
453
-
454
- /*----------------------------------------------------------------------------*/
455
- /** Create a new image_int of size 'xsize' times 'ysize',
456
- initialized to the value 'fill_value'.
457
- */
458
- static image_int new_image_int_ini( unsigned int xsize, unsigned int ysize,
459
- int fill_value )
460
- {
461
- image_int image = new_image_int(xsize,ysize); /* create image */
462
- unsigned int N = xsize*ysize;
463
- unsigned int i;
464
-
465
- /* initialize */
466
- for(i=0; i<N; i++) image->data[i] = fill_value;
467
-
468
- return image;
469
- }
470
-
471
- /*----------------------------------------------------------------------------*/
472
- /** double image data type
473
-
474
- The pixel value at (x,y) is accessed by:
475
-
476
- image->data[ x + y * image->xsize ]
477
-
478
- with x and y integer.
479
- */
480
- typedef struct image_double_s
481
- {
482
- float * data;
483
- unsigned int xsize,ysize;
484
- } * image_double;
485
-
486
- /*----------------------------------------------------------------------------*/
487
- /** Free memory used in image_double 'i'.
488
- */
489
- static void free_image_double(image_double i)
490
- {
491
- if( i == NULL || i->data == NULL )
492
- error("free_image_double: invalid input image.");
493
- free( (void *) i->data );
494
- free( (void *) i );
495
- }
496
-
497
- /*----------------------------------------------------------------------------*/
498
- /** Create a new image_double of size 'xsize' times 'ysize'.
499
- */
500
- static image_double new_image_double(unsigned int xsize, unsigned int ysize)
501
- {
502
- image_double image;
503
-
504
- /* check parameters */
505
- if( xsize == 0 || ysize == 0 ) error("new_image_double: invalid image size.");
506
-
507
- /* get memory */
508
- image = (image_double) malloc( sizeof(struct image_double_s) );
509
- if( image == NULL ) error("not enough memory.");
510
- image->data = (float *) calloc( (size_t) (xsize*ysize), sizeof(float) );
511
- if( image->data == NULL ) error("not enough memory.");
512
-
513
- /* set image size */
514
- image->xsize = xsize;
515
- image->ysize = ysize;
516
-
517
- return image;
518
- }
519
-
520
- /*----------------------------------------------------------------------------*/
521
- /** Create a new image_double of size 'xsize' times 'ysize'
522
- with the data pointed by 'data'.
523
- */
524
- static image_double new_image_double_ptr( unsigned int xsize,
525
- unsigned int ysize, float * data )
526
- {
527
- image_double image;
528
-
529
- /* check parameters */
530
- if( xsize == 0 || ysize == 0 )
531
- error("new_image_double_ptr: invalid image size.");
532
- if( data == NULL ) error("new_image_double_ptr: NULL data pointer.");
533
-
534
- /* get memory */
535
- image = (image_double) malloc( sizeof(struct image_double_s) );
536
- if( image == NULL ) error("not enough memory.");
537
-
538
- /* set image */
539
- image->xsize = xsize;
540
- image->ysize = ysize;
541
- image->data = data;
542
-
543
- return image;
544
- }
545
-
546
-
547
- /*----------------------------------------------------------------------------*/
548
- /*----------------------------- Gaussian filter ------------------------------*/
549
- /*----------------------------------------------------------------------------*/
550
-
551
- /*----------------------------------------------------------------------------*/
552
- /** Compute a Gaussian kernel of length 'kernel->dim',
553
- standard deviation 'sigma', and centered at value 'mean'.
554
-
555
- For example, if mean=0.5, the Gaussian will be centered
556
- in the middle point between values 'kernel->values[0]'
557
- and 'kernel->values[1]'.
558
- */
559
- static void gaussian_kernel(ntuple_list kernel, float sigma, float mean)
560
- {
561
- float sum = 0.0;
562
- float val;
563
- unsigned int i;
564
-
565
- /* check parameters */
566
- if( kernel == NULL || kernel->values == NULL )
567
- error("gaussian_kernel: invalid n-tuple 'kernel'.");
568
- if( sigma <= 0.0 ) error("gaussian_kernel: 'sigma' must be positive.");
569
-
570
- /* compute Gaussian kernel */
571
- if( kernel->max_size < 1 ) enlarge_ntuple_list(kernel);
572
- kernel->size = 1;
573
- for(i=0;i<kernel->dim;i++)
574
- {
575
- val = ( (float) i - mean ) / sigma;
576
- kernel->values[i] = exp( -0.5 * val * val );
577
- sum += kernel->values[i];
578
- }
579
-
580
- /* normalization */
581
- if( sum >= 0.0 ) for(i=0;i<kernel->dim;i++) kernel->values[i] /= sum;
582
- }
583
-
584
- /*----------------------------------------------------------------------------*/
585
- /** Scale the input image 'in' by a factor 'scale' by Gaussian sub-sampling.
586
-
587
- For example, scale=0.8 will give a result at 80% of the original size.
588
-
589
- The image is convolved with a Gaussian kernel
590
- @f[
591
- G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}
592
- @f]
593
- before the sub-sampling to prevent aliasing.
594
-
595
- The standard deviation sigma given by:
596
- - sigma = sigma_scale / scale, if scale < 1.0
597
- - sigma = sigma_scale, if scale >= 1.0
598
-
599
- To be able to sub-sample at non-integer steps, some interpolation
600
- is needed. In this implementation, the interpolation is done by
601
- the Gaussian kernel, so both operations (filtering and sampling)
602
- are done at the same time. The Gaussian kernel is computed
603
- centered on the coordinates of the required sample. In this way,
604
- when applied, it gives directly the result of convolving the image
605
- with the kernel and interpolated to that particular position.
606
-
607
- A fast algorithm is done using the separability of the Gaussian
608
- kernel. Applying the 2D Gaussian kernel is equivalent to applying
609
- first a horizontal 1D Gaussian kernel and then a vertical 1D
610
- Gaussian kernel (or the other way round). The reason is that
611
- @f[
612
- G(x,y) = G(x) * G(y)
613
- @f]
614
- where
615
- @f[
616
- G(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}.
617
- @f]
618
- The algorithm first applies a combined Gaussian kernel and sampling
619
- in the x axis, and then the combined Gaussian kernel and sampling
620
- in the y axis.
621
- */
622
- static image_double gaussian_sampler( image_double in, float scale,
623
- float sigma_scale )
624
- {
625
- image_double aux,out;
626
- ntuple_list kernel;
627
- unsigned int N,M,h,n,x,y,i;
628
- int xc,yc,j,double_x_size,double_y_size;
629
- float sigma,xx,yy,sum,prec;
630
-
631
- /* check parameters */
632
- if( in == NULL || in->data == NULL || in->xsize == 0 || in->ysize == 0 )
633
- error("gaussian_sampler: invalid image.");
634
- if( scale <= 0.0 ) error("gaussian_sampler: 'scale' must be positive.");
635
- if( sigma_scale <= 0.0 )
636
- error("gaussian_sampler: 'sigma_scale' must be positive.");
637
-
638
- /* compute new image size and get memory for images */
639
- if( in->xsize * scale > (float) UINT_MAX ||
640
- in->ysize * scale > (float) UINT_MAX )
641
- error("gaussian_sampler: the output image size exceeds the handled size.");
642
- N = (unsigned int) ceil( in->xsize * scale );
643
- M = (unsigned int) ceil( in->ysize * scale );
644
- aux = new_image_double(N,in->ysize);
645
- out = new_image_double(N,M);
646
-
647
- /* sigma, kernel size and memory for the kernel */
648
- sigma = scale < 1.0 ? sigma_scale / scale : sigma_scale;
649
- /*
650
- The size of the kernel is selected to guarantee that the
651
- the first discarded term is at least 10^prec times smaller
652
- than the central value. For that, h should be larger than x, with
653
- e^(-x^2/2sigma^2) = 1/10^prec.
654
- Then,
655
- x = sigma * sqrt( 2 * prec * ln(10) ).
656
- */
657
- prec = 3.0;
658
- h = (unsigned int) ceil( sigma * sqrt( 2.0 * prec * log(10.0) ) );
659
- n = 1+2*h; /* kernel size */
660
- kernel = new_ntuple_list(n);
661
-
662
- /* auxiliary double image size variables */
663
- double_x_size = (int) (2 * in->xsize);
664
- double_y_size = (int) (2 * in->ysize);
665
-
666
- /* First subsampling: x axis */
667
- for(x=0;x<aux->xsize;x++)
668
- {
669
- /*
670
- x is the coordinate in the new image.
671
- xx is the corresponding x-value in the original size image.
672
- xc is the integer value, the pixel coordinate of xx.
673
- */
674
- xx = (float) x / scale;
675
- /* coordinate (0.0,0.0) is in the center of pixel (0,0),
676
- so the pixel with xc=0 get the values of xx from -0.5 to 0.5 */
677
- xc = (int) floor( xx + 0.5 );
678
- gaussian_kernel( kernel, sigma, (float) h + xx - (float) xc );
679
- /* the kernel must be computed for each x because the fine
680
- offset xx-xc is different in each case */
681
-
682
- for(y=0;y<aux->ysize;y++)
683
- {
684
- sum = 0.0;
685
- for(i=0;i<kernel->dim;i++)
686
- {
687
- j = xc - h + i;
688
-
689
- /* symmetry boundary condition */
690
- while( j < 0 ) j += double_x_size;
691
- while( j >= double_x_size ) j -= double_x_size;
692
- if( j >= (int) in->xsize ) j = double_x_size-1-j;
693
-
694
- sum += in->data[ j + y * in->xsize ] * kernel->values[i];
695
- }
696
- aux->data[ x + y * aux->xsize ] = sum;
697
- }
698
- }
699
-
700
- /* Second subsampling: y axis */
701
- for(y=0;y<out->ysize;y++)
702
- {
703
- /*
704
- y is the coordinate in the new image.
705
- yy is the corresponding x-value in the original size image.
706
- yc is the integer value, the pixel coordinate of xx.
707
- */
708
- yy = (float) y / scale;
709
- /* coordinate (0.0,0.0) is in the center of pixel (0,0),
710
- so the pixel with yc=0 get the values of yy from -0.5 to 0.5 */
711
- yc = (int) floor( yy + 0.5 );
712
- gaussian_kernel( kernel, sigma, (float) h + yy - (float) yc );
713
- /* the kernel must be computed for each y because the fine
714
- offset yy-yc is different in each case */
715
-
716
- for(x=0;x<out->xsize;x++)
717
- {
718
- sum = 0.0;
719
- for(i=0;i<kernel->dim;i++)
720
- {
721
- j = yc - h + i;
722
-
723
- /* symmetry boundary condition */
724
- while( j < 0 ) j += double_y_size;
725
- while( j >= double_y_size ) j -= double_y_size;
726
- if( j >= (int) in->ysize ) j = double_y_size-1-j;
727
-
728
- sum += aux->data[ x + j * aux->xsize ] * kernel->values[i];
729
- }
730
- out->data[ x + y * out->xsize ] = sum;
731
- }
732
- }
733
-
734
- /* free memory */
735
- free_ntuple_list(kernel);
736
- free_image_double(aux);
737
-
738
- return out;
739
- }
740
-
741
-
742
- /*----------------------------------------------------------------------------*/
743
- /*--------------------------------- Gradient ---------------------------------*/
744
- /*----------------------------------------------------------------------------*/
745
-
746
- /*----------------------------------------------------------------------------*/
747
- /** Computes the direction of the level line of 'in' at each point.
748
-
749
- The result is:
750
- - an image_double with the angle at each pixel, or NOTDEF if not defined.
751
- - the image_double 'modgrad' (a pointer is passed as argument)
752
- with the gradient magnitude at each point.
753
- - a list of pixels 'list_p' roughly ordered by decreasing
754
- gradient magnitude. (The order is made by classifying points
755
- into bins by gradient magnitude. The parameters 'n_bins' and
756
- 'max_grad' specify the number of bins and the gradient modulus
757
- at the highest bin. The pixels in the list would be in
758
- decreasing gradient magnitude, up to a precision of the size of
759
- the bins.)
760
- - a pointer 'mem_p' to the memory used by 'list_p' to be able to
761
- free the memory when it is not used anymore.
762
- */
763
- static image_double ll_angle( image_double in, float threshold,
764
- struct coorlist ** list_p, void ** mem_p,
765
- image_double * modgrad, unsigned int n_bins )
766
- {
767
- image_double g;
768
- unsigned int n,p,x,y,adr,i;
769
- float com1,com2,gx,gy,norm,norm2;
770
- /* the rest of the variables are used for pseudo-ordering
771
- the gradient magnitude values */
772
- int list_count = 0;
773
- struct coorlist * list;
774
- struct coorlist ** range_l_s; /* array of pointers to start of bin list */
775
- struct coorlist ** range_l_e; /* array of pointers to end of bin list */
776
- struct coorlist * start;
777
- struct coorlist * end;
778
- float max_grad = 0.0;
779
-
780
- /* check parameters */
781
- if( in == NULL || in->data == NULL || in->xsize == 0 || in->ysize == 0 )
782
- error("ll_angle: invalid image.");
783
- if( threshold < 0.0 ) error("ll_angle: 'threshold' must be positive.");
784
- if( list_p == NULL ) error("ll_angle: NULL pointer 'list_p'.");
785
- if( mem_p == NULL ) error("ll_angle: NULL pointer 'mem_p'.");
786
- if( modgrad == NULL ) error("ll_angle: NULL pointer 'modgrad'.");
787
- if( n_bins == 0 ) error("ll_angle: 'n_bins' must be positive.");
788
-
789
- /* image size shortcuts */
790
- n = in->ysize;
791
- p = in->xsize;
792
-
793
- /* allocate output image */
794
- g = new_image_double(in->xsize,in->ysize);
795
-
796
- /* get memory for the image of gradient modulus */
797
- *modgrad = new_image_double(in->xsize,in->ysize);
798
-
799
- /* get memory for "ordered" list of pixels */
800
- list = (struct coorlist *) calloc( (size_t) (n*p), sizeof(struct coorlist) );
801
- *mem_p = (void *) list;
802
- range_l_s = (struct coorlist **) calloc( (size_t) n_bins,
803
- sizeof(struct coorlist *) );
804
- range_l_e = (struct coorlist **) calloc( (size_t) n_bins,
805
- sizeof(struct coorlist *) );
806
- if( list == NULL || range_l_s == NULL || range_l_e == NULL )
807
- error("not enough memory.");
808
- for(i=0;i<n_bins;i++) range_l_s[i] = range_l_e[i] = NULL;
809
-
810
- /* 'undefined' on the down and right boundaries */
811
- for(x=0;x<p;x++) g->data[(n-1)*p+x] = NOTDEF;
812
- for(y=0;y<n;y++) g->data[p*y+p-1] = NOTDEF;
813
-
814
- /* compute gradient on the remaining pixels */
815
- for(x=0;x<p-1;x++)
816
- for(y=0;y<n-1;y++)
817
- {
818
- adr = y*p+x;
819
-
820
- /*
821
- Norm 2 computation using 2x2 pixel window:
822
- A B
823
- C D
824
- and
825
- com1 = D-A, com2 = B-C.
826
- Then
827
- gx = B+D - (A+C) horizontal difference
828
- gy = C+D - (A+B) vertical difference
829
- com1 and com2 are just to avoid 2 additions.
830
- */
831
- // fprintf(stderr, "pixelvalue %d: %f\n", adr, in->data[adr]);
832
- com1 = in->data[adr+p+1] - in->data[adr];
833
- com2 = in->data[adr+1] - in->data[adr+p];
834
-
835
- gx = com1+com2; /* gradient x component */
836
- gy = com1-com2; /* gradient y component */
837
- norm2 = gx*gx+gy*gy;
838
- norm = sqrt( norm2 / 4.0 ); /* gradient norm */
839
-
840
- (*modgrad)->data[adr] = norm; /* store gradient norm */
841
-
842
- if( norm <= threshold ) /* norm too small, gradient no defined */
843
- g->data[adr] = NOTDEF; /* gradient angle not defined */
844
- else
845
- {
846
- /* gradient angle computation */
847
- g->data[adr] = atan2(gx,-gy);
848
-
849
- /* look for the maximum of the gradient */
850
- if( norm > max_grad ) max_grad = norm;
851
- }
852
- }
853
-
854
- /* compute histogram of gradient values */
855
- for(x=0;x<p-1;x++)
856
- for(y=0;y<n-1;y++)
857
- {
858
- norm = (*modgrad)->data[y*p+x];
859
-
860
- /* store the point in the right bin according to its norm */
861
- i = (unsigned int) (norm * (float) n_bins / max_grad);
862
- if( i >= n_bins ) i = n_bins-1;
863
- if( range_l_e[i] == NULL )
864
- range_l_s[i] = range_l_e[i] = list+list_count++;
865
- else
866
- {
867
- range_l_e[i]->next = list+list_count;
868
- range_l_e[i] = list+list_count++;
869
- }
870
- range_l_e[i]->x = (int) x;
871
- range_l_e[i]->y = (int) y;
872
- range_l_e[i]->next = NULL;
873
- }
874
-
875
- /* Make the list of pixels (almost) ordered by norm value.
876
- It starts by the larger bin, so the list starts by the
877
- pixels with the highest gradient value. Pixels would be ordered
878
- by norm value, up to a precision given by max_grad/n_bins.
879
- */
880
- for(i=n_bins-1; i>0 && range_l_s[i]==NULL; i--);
881
- start = range_l_s[i];
882
- end = range_l_e[i];
883
- if( start != NULL )
884
- while(i>0)
885
- {
886
- --i;
887
- if( range_l_s[i] != NULL )
888
- {
889
- end->next = range_l_s[i];
890
- end = range_l_e[i];
891
- }
892
- }
893
- *list_p = start;
894
-
895
- /* free memory */
896
- free( (void *) range_l_s );
897
- free( (void *) range_l_e );
898
-
899
- return g;
900
- }
901
-
902
- /*----------------------------------------------------------------------------*/
903
- /** Is point (x,y) aligned to angle theta, up to precision 'prec'?
904
- */
905
- static int isaligned( int x, int y, image_double angles, float theta,
906
- float prec )
907
- {
908
- float a;
909
-
910
- /* check parameters */
911
- if( angles == NULL || angles->data == NULL )
912
- error("isaligned: invalid image 'angles'.");
913
- if( x < 0 || y < 0 || x >= (int) angles->xsize || y >= (int) angles->ysize )
914
- error("isaligned: (x,y) out of the image.");
915
- if( prec < 0.0 ) error("isaligned: 'prec' must be positive.");
916
-
917
- /* angle at pixel (x,y) */
918
- a = angles->data[ x + y * angles->xsize ];
919
-
920
- /* pixels whose level-line angle is not defined
921
- are considered as NON-aligned */
922
- if( a == NOTDEF ) return FALSE; /* there is no need to call the function
923
- 'double_equal' here because there is
924
- no risk of problems related to the
925
- comparison doubles, we are only
926
- interested in the exact NOTDEF value */
927
-
928
- /* it is assumed that 'theta' and 'a' are in the range [-pi,pi] */
929
- theta -= a;
930
- if( theta < 0.0 ) theta = -theta;
931
- if( theta > M_3_2_PI )
932
- {
933
- theta -= M_2__PI;
934
- if( theta < 0.0 ) theta = -theta;
935
- }
936
-
937
- return theta <= prec;
938
- }
939
-
940
- /*----------------------------------------------------------------------------*/
941
- /** Absolute value angle difference.
942
- */
943
- static double angle_diff(float a, float b)
944
- {
945
- a -= b;
946
- while( a <= -M_PI ) a += M_2__PI;
947
- while( a > M_PI ) a -= M_2__PI;
948
- if( a < 0.0 ) a = -a;
949
- return a;
950
- }
951
-
952
- /*----------------------------------------------------------------------------*/
953
- /** Signed angle difference.
954
- */
955
- static double angle_diff_signed(float a, float b)
956
- {
957
- a -= b;
958
- while( a <= -M_PI ) a += M_2__PI;
959
- while( a > M_PI ) a -= M_2__PI;
960
- return a;
961
- }
962
-
963
-
964
- /*----------------------------------------------------------------------------*/
965
- /*----------------------------- NFA computation ------------------------------*/
966
- /*----------------------------------------------------------------------------*/
967
-
968
- /*----------------------------------------------------------------------------*/
969
- /** Computes the natural logarithm of the absolute value of
970
- the gamma function of x using the Lanczos approximation.
971
- See http://www.rskey.org/gamma.htm
972
-
973
- The formula used is
974
- @f[
975
- \Gamma(x) = \frac{ \sum_{n=0}^{N} q_n x^n }{ \Pi_{n=0}^{N} (x+n) }
976
- (x+5.5)^{x+0.5} e^{-(x+5.5)}
977
- @f]
978
- so
979
- @f[
980
- \log\Gamma(x) = \log\left( \sum_{n=0}^{N} q_n x^n \right)
981
- + (x+0.5) \log(x+5.5) - (x+5.5) - \sum_{n=0}^{N} \log(x+n)
982
- @f]
983
- and
984
- q0 = 75122.6331530,
985
- q1 = 80916.6278952,
986
- q2 = 36308.2951477,
987
- q3 = 8687.24529705,
988
- q4 = 1168.92649479,
989
- q5 = 83.8676043424,
990
- q6 = 2.50662827511.
991
- */
992
- static double log_gamma_lanczos(float x)
993
- {
994
- static float q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
995
- 8687.24529705, 1168.92649479, 83.8676043424,
996
- 2.50662827511 };
997
- float a = (x+0.5) * log(x+5.5) - (x+5.5);
998
- float b = 0.0;
999
- int n;
1000
-
1001
- for(n=0;n<7;n++)
1002
- {
1003
- a -= log( x + (float) n );
1004
- b += q[n] * pow( x, (float) n );
1005
- }
1006
- return a + log(b);
1007
- }
1008
-
1009
- /*----------------------------------------------------------------------------*/
1010
- /** Computes the natural logarithm of the absolute value of
1011
- the gamma function of x using Windschitl method.
1012
- See http://www.rskey.org/gamma.htm
1013
-
1014
- The formula used is
1015
- @f[
1016
- \Gamma(x) = \sqrt{\frac{2\pi}{x}} \left( \frac{x}{e}
1017
- \sqrt{ x\sinh(1/x) + \frac{1}{810x^6} } \right)^x
1018
- @f]
1019
- so
1020
- @f[
1021
- \log\Gamma(x) = 0.5\log(2\pi) + (x-0.5)\log(x) - x
1022
- + 0.5x\log\left( x\sinh(1/x) + \frac{1}{810x^6} \right).
1023
- @f]
1024
- This formula is a good approximation when x > 15.
1025
- */
1026
- static double log_gamma_windschitl(float x)
1027
- {
1028
- return 0.918938533204673 + (x-0.5)*log(x) - x
1029
- + 0.5*x*log( x*sinh(1/x) + 1/(810.0*pow(x,6.0)) );
1030
- }
1031
-
1032
- /*----------------------------------------------------------------------------*/
1033
- /** Computes the natural logarithm of the absolute value of
1034
- the gamma function of x. When x>15 use log_gamma_windschitl(),
1035
- otherwise use log_gamma_lanczos().
1036
- */
1037
- #define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
1038
-
1039
- /*----------------------------------------------------------------------------*/
1040
- /** Size of the table to store already computed inverse values.
1041
- */
1042
- #define TABSIZE 100000
1043
-
1044
- /*----------------------------------------------------------------------------*/
1045
- /** Computes -log10(NFA).
1046
-
1047
- NFA stands for Number of False Alarms:
1048
- @f[
1049
- \mathrm{NFA} = NT \cdot B(n,k,p)
1050
- @f]
1051
-
1052
- - NT - number of tests
1053
- - B(n,k,p) - tail of binomial distribution with parameters n,k and p:
1054
- @f[
1055
- B(n,k,p) = \sum_{j=k}^n
1056
- \left(\begin{array}{c}n\\j\end{array}\right)
1057
- p^{j} (1-p)^{n-j}
1058
- @f]
1059
-
1060
- The value -log10(NFA) is equivalent but more intuitive than NFA:
1061
- - -1 corresponds to 10 mean false alarms
1062
- - 0 corresponds to 1 mean false alarm
1063
- - 1 corresponds to 0.1 mean false alarms
1064
- - 2 corresponds to 0.01 mean false alarms
1065
- - ...
1066
-
1067
- Used this way, the bigger the value, better the detection,
1068
- and a logarithmic scale is used.
1069
-
1070
- @param n,k,p binomial parameters.
1071
- @param logNT logarithm of Number of Tests
1072
-
1073
- The computation is based in the gamma function by the following
1074
- relation:
1075
- @f[
1076
- \left(\begin{array}{c}n\\k\end{array}\right)
1077
- = \frac{ \Gamma(n+1) }{ \Gamma(k+1) \cdot \Gamma(n-k+1) }.
1078
- @f]
1079
- We use efficient algorithms to compute the logarithm of
1080
- the gamma function.
1081
-
1082
- To make the computation faster, not all the sum is computed, part
1083
- of the terms are neglected based on a bound to the error obtained
1084
- (an error of 10% in the result is accepted).
1085
- */
1086
- static double nfa(int n, int k, float p, float logNT)
1087
- {
1088
- static float inv[TABSIZE]; /* table to keep computed inverse values */
1089
- float tolerance = 0.1; /* an error of 10% in the result is accepted */
1090
- float log1term,term,bin_term,mult_term,bin_tail,err,p_term;
1091
- int i;
1092
-
1093
- /* check parameters */
1094
- if( n<0 || k<0 || k>n || p<=0.0 || p>=1.0 )
1095
- error("nfa: wrong n, k or p values.");
1096
-
1097
- /* trivial cases */
1098
- if( n==0 || k==0 ) return -logNT;
1099
- if( n==k ) return -logNT - (float) n * log10(p);
1100
-
1101
- /* probability term */
1102
- p_term = p / (1.0-p);
1103
-
1104
- /* compute the first term of the series */
1105
- /*
1106
- binomial_tail(n,k,p) = sum_{i=k}^n bincoef(n,i) * p^i * (1-p)^{n-i}
1107
- where bincoef(n,i) are the binomial coefficients.
1108
- But
1109
- bincoef(n,k) = gamma(n+1) / ( gamma(k+1) * gamma(n-k+1) ).
1110
- We use this to compute the first term. Actually the log of it.
1111
- */
1112
- log1term = log_gamma( (float) n + 1.0 ) - log_gamma( (float) k + 1.0 )
1113
- - log_gamma( (float) (n-k) + 1.0 )
1114
- + (float) k * log(p) + (float) (n-k) * log(1.0-p);
1115
- term = exp(log1term);
1116
-
1117
- /* in some cases no more computations are needed */
1118
- if( double_equal(term,0.0) ) /* the first term is almost zero */
1119
- {
1120
- if( (float) k > (float) n * p ) /* at begin or end of the tail? */
1121
- return -log1term / M_LN10 - logNT; /* end: use just the first term */
1122
- else
1123
- return -logNT; /* begin: the tail is roughly 1 */
1124
- }
1125
-
1126
- /* compute more terms if needed */
1127
- bin_tail = term;
1128
- for(i=k+1;i<=n;i++)
1129
- {
1130
- /*
1131
- As
1132
- term_i = bincoef(n,i) * p^i * (1-p)^(n-i)
1133
- and
1134
- bincoef(n,i)/bincoef(n,i-1) = n-1+1 / i,
1135
- then,
1136
- term_i / term_i-1 = (n-i+1)/i * p/(1-p)
1137
- and
1138
- term_i = term_i-1 * (n-i+1)/i * p/(1-p).
1139
- 1/i is stored in a table as they are computed,
1140
- because divisions are expensive.
1141
- p/(1-p) is computed only once and stored in 'p_term'.
1142
- */
1143
- bin_term = (float) (n-i+1) * ( i<TABSIZE ?
1144
- ( inv[i]!=0.0 ? inv[i] : ( inv[i] = 1.0 / (float) i ) ) :
1145
- 1.0 / (float) i );
1146
-
1147
- mult_term = bin_term * p_term;
1148
- term *= mult_term;
1149
- bin_tail += term;
1150
- if(bin_term<1.0)
1151
- {
1152
- /* When bin_term<1 then mult_term_j<mult_term_i for j>i.
1153
- Then, the error on the binomial tail when truncated at
1154
- the i term can be bounded by a geometric series of form
1155
- term_i * sum mult_term_i^j. */
1156
- err = term * ( ( 1.0 - pow( mult_term, (float) (n-i+1) ) ) /
1157
- (1.0-mult_term) - 1.0 );
1158
-
1159
- /* One wants an error at most of tolerance*final_result, or:
1160
- tolerance * abs(-log10(bin_tail)-logNT).
1161
- Now, the error that can be accepted on bin_tail is
1162
- given by tolerance*final_result divided by the derivative
1163
- of -log10(x) when x=bin_tail. that is:
1164
- tolerance * abs(-log10(bin_tail)-logNT) / (1/bin_tail)
1165
- Finally, we truncate the tail if the error is less than:
1166
- tolerance * abs(-log10(bin_tail)-logNT) * bin_tail */
1167
- if( err < tolerance * fabs(-log10(bin_tail)-logNT) * bin_tail ) break;
1168
- }
1169
- }
1170
- return -log10(bin_tail) - logNT;
1171
- }
1172
-
1173
-
1174
- /*----------------------------------------------------------------------------*/
1175
- /*--------------------------- Rectangle structure ----------------------------*/
1176
- /*----------------------------------------------------------------------------*/
1177
-
1178
- /*----------------------------------------------------------------------------*/
1179
- /** Rectangle structure: line segment with width.
1180
- */
1181
- struct rect
1182
- {
1183
- float x1,y1,x2,y2; /* first and second point of the line segment */
1184
- float width; /* rectangle width */
1185
- float x,y; /* center of the rectangle */
1186
- float theta; /* angle */
1187
- float dx,dy; /* (dx,dy) is vector oriented as the line segment */
1188
- float prec; /* tolerance angle */
1189
- float p; /* probability of a point with angle within 'prec' */
1190
- };
1191
-
1192
- /*----------------------------------------------------------------------------*/
1193
- /** Copy one rectangle structure to another.
1194
- */
1195
- static void rect_copy(struct rect * in, struct rect * out)
1196
- {
1197
- /* check parameters */
1198
- if( in == NULL || out == NULL ) error("rect_copy: invalid 'in' or 'out'.");
1199
-
1200
- /* copy values */
1201
- out->x1 = in->x1;
1202
- out->y1 = in->y1;
1203
- out->x2 = in->x2;
1204
- out->y2 = in->y2;
1205
- out->width = in->width;
1206
- out->x = in->x;
1207
- out->y = in->y;
1208
- out->theta = in->theta;
1209
- out->dx = in->dx;
1210
- out->dy = in->dy;
1211
- out->prec = in->prec;
1212
- out->p = in->p;
1213
- }
1214
-
1215
- /*----------------------------------------------------------------------------*/
1216
- /** Rectangle points iterator.
1217
-
1218
- The integer coordinates of pixels inside a rectangle are
1219
- iteratively explored. This structure keep track of the process and
1220
- functions ri_ini(), ri_inc(), ri_end(), and ri_del() are used in
1221
- the process. An example of how to use the iterator is as follows:
1222
- \code
1223
-
1224
- struct rect * rec = XXX; // some rectangle
1225
- rect_iter * i;
1226
- for( i=ri_ini(rec); !ri_end(i); ri_inc(i) )
1227
- {
1228
- // your code, using 'i->x' and 'i->y' as coordinates
1229
- }
1230
- ri_del(i); // delete iterator
1231
-
1232
- \endcode
1233
- The pixels are explored 'column' by 'column', where we call
1234
- 'column' a set of pixels with the same x value that are inside the
1235
- rectangle. The following is an schematic representation of a
1236
- rectangle, the 'column' being explored is marked by colons, and
1237
- the current pixel being explored is 'x,y'.
1238
- \verbatim
1239
-
1240
- vx[1],vy[1]
1241
- * *
1242
- * *
1243
- * *
1244
- * ye
1245
- * : *
1246
- vx[0],vy[0] : *
1247
- * : *
1248
- * x,y *
1249
- * : *
1250
- * : vx[2],vy[2]
1251
- * : *
1252
- y ys *
1253
- ^ * *
1254
- | * *
1255
- | * *
1256
- +---> x vx[3],vy[3]
1257
-
1258
- \endverbatim
1259
- The first 'column' to be explored is the one with the smaller x
1260
- value. Each 'column' is explored starting from the pixel of the
1261
- 'column' (inside the rectangle) with the smallest y value.
1262
-
1263
- The four corners of the rectangle are stored in order that rotates
1264
- around the corners at the arrays 'vx[]' and 'vy[]'. The first
1265
- point is always the one with smaller x value.
1266
-
1267
- 'x' and 'y' are the coordinates of the pixel being explored. 'ys'
1268
- and 'ye' are the start and end values of the current column being
1269
- explored. So, 'ys' < 'ye'.
1270
- */
1271
- typedef struct
1272
- {
1273
- float vx[4]; /* rectangle's corner X coordinates in circular order */
1274
- float vy[4]; /* rectangle's corner Y coordinates in circular order */
1275
- float ys,ye; /* start and end Y values of current 'column' */
1276
- int x,y; /* coordinates of currently explored pixel */
1277
- } rect_iter;
1278
-
1279
- /*----------------------------------------------------------------------------*/
1280
- /** Interpolate y value corresponding to 'x' value given, in
1281
- the line 'x1,y1' to 'x2,y2'; if 'x1=x2' return the smaller
1282
- of 'y1' and 'y2'.
1283
-
1284
- The following restrictions are required:
1285
- - x1 <= x2
1286
- - x1 <= x
1287
- - x <= x2
1288
- */
1289
- static double inter_low(float x, float x1, float y1, float x2, float y2)
1290
- {
1291
- /* check parameters */
1292
- if( x1 > x2 || x < x1 || x > x2 )
1293
- error("inter_low: unsuitable input, 'x1>x2' or 'x<x1' or 'x>x2'.");
1294
-
1295
- /* interpolation */
1296
- if( double_equal(x1,x2) && y1<y2 ) return y1;
1297
- if( double_equal(x1,x2) && y1>y2 ) return y2;
1298
- return y1 + (x-x1) * (y2-y1) / (x2-x1);
1299
- }
1300
-
1301
- /*----------------------------------------------------------------------------*/
1302
- /** Interpolate y value corresponding to 'x' value given, in
1303
- the line 'x1,y1' to 'x2,y2'; if 'x1=x2' return the larger
1304
- of 'y1' and 'y2'.
1305
-
1306
- The following restrictions are required:
1307
- - x1 <= x2
1308
- - x1 <= x
1309
- - x <= x2
1310
- */
1311
- static double inter_hi(float x, float x1, float y1, float x2, float y2)
1312
- {
1313
- /* check parameters */
1314
- if( x1 > x2 || x < x1 || x > x2 )
1315
- error("inter_hi: unsuitable input, 'x1>x2' or 'x<x1' or 'x>x2'.");
1316
-
1317
- /* interpolation */
1318
- if( double_equal(x1,x2) && y1<y2 ) return y2;
1319
- if( double_equal(x1,x2) && y1>y2 ) return y1;
1320
- return y1 + (x-x1) * (y2-y1) / (x2-x1);
1321
- }
1322
-
1323
- /*----------------------------------------------------------------------------*/
1324
- /** Free memory used by a rectangle iterator.
1325
- */
1326
- static void ri_del(rect_iter * iter)
1327
- {
1328
- if( iter == NULL ) error("ri_del: NULL iterator.");
1329
- free( (void *) iter );
1330
- }
1331
-
1332
- /*----------------------------------------------------------------------------*/
1333
- /** Check if the iterator finished the full iteration.
1334
-
1335
- See details in \ref rect_iter
1336
- */
1337
- static int ri_end(rect_iter * i)
1338
- {
1339
- /* check input */
1340
- if( i == NULL ) error("ri_end: NULL iterator.");
1341
-
1342
- /* if the current x value is larger than the largest
1343
- x value in the rectangle (vx[2]), we know the full
1344
- exploration of the rectangle is finished. */
1345
- return (float)(i->x) > i->vx[2];
1346
- }
1347
-
1348
- /*----------------------------------------------------------------------------*/
1349
- /** Increment a rectangle iterator.
1350
-
1351
- See details in \ref rect_iter
1352
- */
1353
- static void ri_inc(rect_iter * i)
1354
- {
1355
- /* check input */
1356
- if( i == NULL ) error("ri_inc: NULL iterator.");
1357
-
1358
- /* if not at end of exploration,
1359
- increase y value for next pixel in the 'column' */
1360
- if( !ri_end(i) ) i->y++;
1361
-
1362
- /* if the end of the current 'column' is reached,
1363
- and it is not the end of exploration,
1364
- advance to the next 'column' */
1365
- while( (float) (i->y) > i->ye && !ri_end(i) )
1366
- {
1367
- /* increase x, next 'column' */
1368
- i->x++;
1369
-
1370
- /* if end of exploration, return */
1371
- if( ri_end(i) ) return;
1372
-
1373
- /* update lower y limit (start) for the new 'column'.
1374
-
1375
- We need to interpolate the y value that corresponds to the
1376
- lower side of the rectangle. The first thing is to decide if
1377
- the corresponding side is
1378
-
1379
- vx[0],vy[0] to vx[3],vy[3] or
1380
- vx[3],vy[3] to vx[2],vy[2]
1381
-
1382
- Then, the side is interpolated for the x value of the
1383
- 'column'. But, if the side is vertical (as it could happen if
1384
- the rectangle is vertical and we are dealing with the first
1385
- or last 'columns') then we pick the lower value of the side
1386
- by using 'inter_low'.
1387
- */
1388
- if( (float) i->x < i->vx[3] )
1389
- i->ys = inter_low((float)i->x,i->vx[0],i->vy[0],i->vx[3],i->vy[3]);
1390
- else
1391
- i->ys = inter_low((float)i->x,i->vx[3],i->vy[3],i->vx[2],i->vy[2]);
1392
-
1393
- /* update upper y limit (end) for the new 'column'.
1394
-
1395
- We need to interpolate the y value that corresponds to the
1396
- upper side of the rectangle. The first thing is to decide if
1397
- the corresponding side is
1398
-
1399
- vx[0],vy[0] to vx[1],vy[1] or
1400
- vx[1],vy[1] to vx[2],vy[2]
1401
-
1402
- Then, the side is interpolated for the x value of the
1403
- 'column'. But, if the side is vertical (as it could happen if
1404
- the rectangle is vertical and we are dealing with the first
1405
- or last 'columns') then we pick the lower value of the side
1406
- by using 'inter_low'.
1407
- */
1408
- if( (float)i->x < i->vx[1] )
1409
- i->ye = inter_hi((float)i->x,i->vx[0],i->vy[0],i->vx[1],i->vy[1]);
1410
- else
1411
- i->ye = inter_hi((float)i->x,i->vx[1],i->vy[1],i->vx[2],i->vy[2]);
1412
-
1413
- /* new y */
1414
- i->y = (int) ceil(i->ys);
1415
- }
1416
- }
1417
-
1418
- /*----------------------------------------------------------------------------*/
1419
- /** Create and initialize a rectangle iterator.
1420
-
1421
- See details in \ref rect_iter
1422
- */
1423
- static rect_iter * ri_ini(struct rect * r)
1424
- {
1425
- float vx[4],vy[4];
1426
- int n,offset;
1427
- rect_iter * i;
1428
-
1429
- /* check parameters */
1430
- if( r == NULL ) error("ri_ini: invalid rectangle.");
1431
-
1432
- /* get memory */
1433
- i = (rect_iter *) malloc(sizeof(rect_iter));
1434
- if( i == NULL ) error("ri_ini: Not enough memory.");
1435
-
1436
- /* build list of rectangle corners ordered
1437
- in a circular way around the rectangle */
1438
- vx[0] = r->x1 - r->dy * r->width / 2.0;
1439
- vy[0] = r->y1 + r->dx * r->width / 2.0;
1440
- vx[1] = r->x2 - r->dy * r->width / 2.0;
1441
- vy[1] = r->y2 + r->dx * r->width / 2.0;
1442
- vx[2] = r->x2 + r->dy * r->width / 2.0;
1443
- vy[2] = r->y2 - r->dx * r->width / 2.0;
1444
- vx[3] = r->x1 + r->dy * r->width / 2.0;
1445
- vy[3] = r->y1 - r->dx * r->width / 2.0;
1446
-
1447
- /* compute rotation of index of corners needed so that the first
1448
- point has the smaller x.
1449
-
1450
- if one side is vertical, thus two corners have the same smaller x
1451
- value, the one with the largest y value is selected as the first.
1452
- */
1453
- if( r->x1 < r->x2 && r->y1 <= r->y2 ) offset = 0;
1454
- else if( r->x1 >= r->x2 && r->y1 < r->y2 ) offset = 1;
1455
- else if( r->x1 > r->x2 && r->y1 >= r->y2 ) offset = 2;
1456
- else offset = 3;
1457
-
1458
- /* apply rotation of index. */
1459
- for(n=0; n<4; n++)
1460
- {
1461
- i->vx[n] = vx[(offset+n)%4];
1462
- i->vy[n] = vy[(offset+n)%4];
1463
- }
1464
-
1465
- /* Set an initial condition.
1466
-
1467
- The values are set to values that will cause 'ri_inc' (that will
1468
- be called immediately) to initialize correctly the first 'column'
1469
- and compute the limits 'ys' and 'ye'.
1470
-
1471
- 'y' is set to the integer value of vy[0], the starting corner.
1472
-
1473
- 'ys' and 'ye' are set to very small values, so 'ri_inc' will
1474
- notice that it needs to start a new 'column'.
1475
-
1476
- The smallest integer coordinate inside of the rectangle is
1477
- 'ceil(vx[0])'. The current 'x' value is set to that value minus
1478
- one, so 'ri_inc' (that will increase x by one) will advance to
1479
- the first 'column'.
1480
- */
1481
- i->x = (int) ceil(i->vx[0]) - 1;
1482
- i->y = (int) ceil(i->vy[0]);
1483
- i->ys = i->ye = -DBL_MAX;
1484
-
1485
- /* advance to the first pixel */
1486
- ri_inc(i);
1487
-
1488
- return i;
1489
- }
1490
-
1491
- /*----------------------------------------------------------------------------*/
1492
- /** Compute a rectangle's NFA value.
1493
- */
1494
- static float rect_nfa(struct rect * rec, image_double angles, float logNT)
1495
- {
1496
- rect_iter * i;
1497
- int pts = 0;
1498
- int alg = 0;
1499
-
1500
- /* check parameters */
1501
- if( rec == NULL ) error("rect_nfa: invalid rectangle.");
1502
- if( angles == NULL ) error("rect_nfa: invalid 'angles'.");
1503
-
1504
- /* compute the total number of pixels and of aligned points in 'rec' */
1505
- for(i=ri_ini(rec); !ri_end(i); ri_inc(i)) /* rectangle iterator */
1506
- if( i->x >= 0 && i->y >= 0 &&
1507
- i->x < (int) angles->xsize && i->y < (int) angles->ysize )
1508
- {
1509
- ++pts; /* total number of pixels counter */
1510
- if( isaligned(i->x, i->y, angles, rec->theta, rec->prec) )
1511
- ++alg; /* aligned points counter */
1512
- }
1513
- ri_del(i); /* delete iterator */
1514
-
1515
- return nfa(pts,alg,rec->p,logNT); /* compute NFA value */
1516
- }
1517
-
1518
-
1519
- /*----------------------------------------------------------------------------*/
1520
- /*---------------------------------- Regions ---------------------------------*/
1521
- /*----------------------------------------------------------------------------*/
1522
-
1523
- /*----------------------------------------------------------------------------*/
1524
- /** Compute region's angle as the principal inertia axis of the region.
1525
-
1526
- The following is the region inertia matrix A:
1527
- @f[
1528
-
1529
- A = \left(\begin{array}{cc}
1530
- Ixx & Ixy \\
1531
- Ixy & Iyy \\
1532
- \end{array}\right)
1533
-
1534
- @f]
1535
- where
1536
-
1537
- Ixx = sum_i G(i).(y_i - cx)^2
1538
-
1539
- Iyy = sum_i G(i).(x_i - cy)^2
1540
-
1541
- Ixy = - sum_i G(i).(x_i - cx).(y_i - cy)
1542
-
1543
- and
1544
- - G(i) is the gradient norm at pixel i, used as pixel's weight.
1545
- - x_i and y_i are the coordinates of pixel i.
1546
- - cx and cy are the coordinates of the center of th region.
1547
-
1548
- lambda1 and lambda2 are the eigenvalues of matrix A,
1549
- with lambda1 >= lambda2. They are found by solving the
1550
- characteristic polynomial:
1551
-
1552
- det( lambda I - A) = 0
1553
-
1554
- that gives:
1555
-
1556
- lambda1 = ( Ixx + Iyy + sqrt( (Ixx-Iyy)^2 + 4.0*Ixy*Ixy) ) / 2
1557
-
1558
- lambda2 = ( Ixx + Iyy - sqrt( (Ixx-Iyy)^2 + 4.0*Ixy*Ixy) ) / 2
1559
-
1560
- To get the line segment direction we want to get the angle the
1561
- eigenvector associated to the smallest eigenvalue. We have
1562
- to solve for a,b in:
1563
-
1564
- a.Ixx + b.Ixy = a.lambda2
1565
-
1566
- a.Ixy + b.Iyy = b.lambda2
1567
-
1568
- We want the angle theta = atan(b/a). It can be computed with
1569
- any of the two equations:
1570
-
1571
- theta = atan( (lambda2-Ixx) / Ixy )
1572
-
1573
- or
1574
-
1575
- theta = atan( Ixy / (lambda2-Iyy) )
1576
-
1577
- When |Ixx| > |Iyy| we use the first, otherwise the second (just to
1578
- get better numeric precision).
1579
- */
1580
- static float get_theta( struct point * reg, int reg_size, float x, float y,
1581
- image_double modgrad, float reg_angle, float prec )
1582
- {
1583
- float lambda,theta,weight;
1584
- float Ixx = 0.0;
1585
- float Iyy = 0.0;
1586
- float Ixy = 0.0;
1587
- int i;
1588
-
1589
- /* check parameters */
1590
- if( reg == NULL ) error("get_theta: invalid region.");
1591
- if( reg_size <= 1 ) error("get_theta: region size <= 1.");
1592
- if( modgrad == NULL || modgrad->data == NULL )
1593
- error("get_theta: invalid 'modgrad'.");
1594
- if( prec < 0.0 ) error("get_theta: 'prec' must be positive.");
1595
-
1596
- /* compute inertia matrix */
1597
- for(i=0; i<reg_size; i++)
1598
- {
1599
- weight = modgrad->data[ reg[i].x + reg[i].y * modgrad->xsize ];
1600
- Ixx += ( (float) reg[i].y - y ) * ( (float) reg[i].y - y ) * weight;
1601
- Iyy += ( (float) reg[i].x - x ) * ( (float) reg[i].x - x ) * weight;
1602
- Ixy -= ( (float) reg[i].x - x ) * ( (float) reg[i].y - y ) * weight;
1603
- }
1604
- if( double_equal(Ixx,0.0) && double_equal(Iyy,0.0) && double_equal(Ixy,0.0) )
1605
- error("get_theta: null inertia matrix.");
1606
-
1607
- /* compute smallest eigenvalue */
1608
- lambda = 0.5 * ( Ixx + Iyy - sqrt( (Ixx-Iyy)*(Ixx-Iyy) + 4.0*Ixy*Ixy ) );
1609
-
1610
- /* compute angle */
1611
- theta = fabs(Ixx)>fabs(Iyy) ? atan2(lambda-Ixx,Ixy) : atan2(Ixy,lambda-Iyy);
1612
-
1613
- /* The previous procedure doesn't cares about orientation,
1614
- so it could be wrong by 180 degrees. Here is corrected if necessary. */
1615
- if( angle_diff(theta,reg_angle) > prec ) theta += M_PI;
1616
-
1617
- return theta;
1618
- }
1619
-
1620
- /*----------------------------------------------------------------------------*/
1621
- /** Computes a rectangle that covers a region of points.
1622
- */
1623
- static void region2rect( struct point * reg, int reg_size,
1624
- image_double modgrad, float reg_angle,
1625
- float prec, float p, struct rect * rec )
1626
- {
1627
- float x,y,dx,dy,l,w,theta,weight,sum,l_min,l_max,w_min,w_max;
1628
- int i;
1629
-
1630
- /* check parameters */
1631
- if( reg == NULL ) error("region2rect: invalid region.");
1632
- if( reg_size <= 1 ) error("region2rect: region size <= 1.");
1633
- if( modgrad == NULL || modgrad->data == NULL )
1634
- error("region2rect: invalid image 'modgrad'.");
1635
- if( rec == NULL ) error("region2rect: invalid 'rec'.");
1636
-
1637
- /* center of the region:
1638
-
1639
- It is computed as the weighted sum of the coordinates
1640
- of all the pixels in the region. The norm of the gradient
1641
- is used as the weight of a pixel. The sum is as follows:
1642
- cx = \sum_i G(i).x_i
1643
- cy = \sum_i G(i).y_i
1644
- where G(i) is the norm of the gradient of pixel i
1645
- and x_i,y_i are its coordinates.
1646
- */
1647
- x = y = sum = 0.0;
1648
- for(i=0; i<reg_size; i++)
1649
- {
1650
- weight = modgrad->data[ reg[i].x + reg[i].y * modgrad->xsize ];
1651
- x += (float) reg[i].x * weight;
1652
- y += (float) reg[i].y * weight;
1653
- sum += weight;
1654
- }
1655
- if( sum <= 0.0 ) error("region2rect: weights sum equal to zero.");
1656
- x /= sum;
1657
- y /= sum;
1658
-
1659
- /* theta */
1660
- theta = get_theta(reg,reg_size,x,y,modgrad,reg_angle,prec);
1661
-
1662
- /* length and width:
1663
-
1664
- 'l' and 'w' are computed as the distance from the center of the
1665
- region to pixel i, projected along the rectangle axis (dx,dy) and
1666
- to the orthogonal axis (-dy,dx), respectively.
1667
-
1668
- The length of the rectangle goes from l_min to l_max, where l_min
1669
- and l_max are the minimum and maximum values of l in the region.
1670
- Analogously, the width is selected from w_min to w_max, where
1671
- w_min and w_max are the minimum and maximum of w for the pixels
1672
- in the region.
1673
- */
1674
- dx = cos(theta);
1675
- dy = sin(theta);
1676
- l_min = l_max = w_min = w_max = 0.0;
1677
- for(i=0; i<reg_size; i++)
1678
- {
1679
- l = ( (float) reg[i].x - x) * dx + ( (float) reg[i].y - y) * dy;
1680
- w = -( (float) reg[i].x - x) * dy + ( (float) reg[i].y - y) * dx;
1681
-
1682
- if( l > l_max ) l_max = l;
1683
- if( l < l_min ) l_min = l;
1684
- if( w > w_max ) w_max = w;
1685
- if( w < w_min ) w_min = w;
1686
- }
1687
-
1688
- /* store values */
1689
- rec->x1 = x + l_min * dx;
1690
- rec->y1 = y + l_min * dy;
1691
- rec->x2 = x + l_max * dx;
1692
- rec->y2 = y + l_max * dy;
1693
- rec->width = w_max - w_min;
1694
- rec->x = x;
1695
- rec->y = y;
1696
- rec->theta = theta;
1697
- rec->dx = dx;
1698
- rec->dy = dy;
1699
- rec->prec = prec;
1700
- rec->p = p;
1701
-
1702
- /* we impose a minimal width of one pixel
1703
-
1704
- A sharp horizontal or vertical step would produce a perfectly
1705
- horizontal or vertical region. The width computed would be
1706
- zero. But that corresponds to a one pixels width transition in
1707
- the image.
1708
- */
1709
- if( rec->width < 1.0 ) rec->width = 1.0;
1710
- }
1711
-
1712
- /*----------------------------------------------------------------------------*/
1713
- /** Build a region of pixels that share the same angle, up to a
1714
- tolerance 'prec', starting at point (x,y).
1715
- */
1716
- static void region_grow( int x, int y, image_double angles, struct point * reg,
1717
- int * reg_size, float * reg_angle, image_char used,
1718
- float prec )
1719
- {
1720
- float sumdx,sumdy;
1721
- int xx,yy,i;
1722
-
1723
- /* check parameters */
1724
- if( x < 0 || y < 0 || x >= (int) angles->xsize || y >= (int) angles->ysize )
1725
- error("region_grow: (x,y) out of the image.");
1726
- if( angles == NULL || angles->data == NULL )
1727
- error("region_grow: invalid image 'angles'.");
1728
- if( reg == NULL ) error("region_grow: invalid 'reg'.");
1729
- if( reg_size == NULL ) error("region_grow: invalid pointer 'reg_size'.");
1730
- if( reg_angle == NULL ) error("region_grow: invalid pointer 'reg_angle'.");
1731
- if( used == NULL || used->data == NULL )
1732
- error("region_grow: invalid image 'used'.");
1733
-
1734
- /* first point of the region */
1735
- *reg_size = 1;
1736
- reg[0].x = x;
1737
- reg[0].y = y;
1738
- *reg_angle = angles->data[x+y*angles->xsize]; /* region's angle */
1739
- sumdx = cos(*reg_angle);
1740
- sumdy = sin(*reg_angle);
1741
- used->data[x+y*used->xsize] = USED;
1742
-
1743
- /* try neighbors as new region points */
1744
- for(i=0; i<*reg_size; i++)
1745
- for(xx=reg[i].x-1; xx<=reg[i].x+1; xx++)
1746
- for(yy=reg[i].y-1; yy<=reg[i].y+1; yy++)
1747
- if( xx>=0 && yy>=0 && xx<(int)used->xsize && yy<(int)used->ysize &&
1748
- used->data[xx+yy*used->xsize] != USED &&
1749
- isaligned(xx,yy,angles,*reg_angle,prec) )
1750
- {
1751
- /* add point */
1752
- used->data[xx+yy*used->xsize] = USED;
1753
- reg[*reg_size].x = xx;
1754
- reg[*reg_size].y = yy;
1755
- ++(*reg_size);
1756
-
1757
- /* update region's angle */
1758
- sumdx += cos( angles->data[xx+yy*angles->xsize] );
1759
- sumdy += sin( angles->data[xx+yy*angles->xsize] );
1760
- *reg_angle = atan2(sumdy,sumdx);
1761
- }
1762
- }
1763
-
1764
- /*----------------------------------------------------------------------------*/
1765
- /** Try some rectangles variations to improve NFA value. Only if the
1766
- rectangle is not meaningful (i.e., log_nfa <= log_eps).
1767
- */
1768
- static float rect_improve( struct rect * rec, image_double angles,
1769
- float logNT, float log_eps )
1770
- {
1771
- struct rect r;
1772
- float log_nfa,log_nfa_new;
1773
- float delta = 0.5;
1774
- float delta_2 = delta / 2.0;
1775
- int n;
1776
-
1777
- log_nfa = rect_nfa(rec,angles,logNT);
1778
-
1779
- if( log_nfa > log_eps ) return log_nfa;
1780
-
1781
- /* try finer precisions */
1782
- rect_copy(rec,&r);
1783
- for(n=0; n<5; n++)
1784
- {
1785
- r.p /= 2.0;
1786
- r.prec = r.p * M_PI;
1787
- log_nfa_new = rect_nfa(&r,angles,logNT);
1788
- if( log_nfa_new > log_nfa )
1789
- {
1790
- log_nfa = log_nfa_new;
1791
- rect_copy(&r,rec);
1792
- }
1793
- }
1794
-
1795
- if( log_nfa > log_eps ) return log_nfa;
1796
-
1797
- /* try to reduce width */
1798
- rect_copy(rec,&r);
1799
- for(n=0; n<5; n++)
1800
- {
1801
- if( (r.width - delta) >= 0.5 )
1802
- {
1803
- r.width -= delta;
1804
- log_nfa_new = rect_nfa(&r,angles,logNT);
1805
- if( log_nfa_new > log_nfa )
1806
- {
1807
- rect_copy(&r,rec);
1808
- log_nfa = log_nfa_new;
1809
- }
1810
- }
1811
- }
1812
-
1813
- if( log_nfa > log_eps ) return log_nfa;
1814
-
1815
- /* try to reduce one side of the rectangle */
1816
- rect_copy(rec,&r);
1817
- for(n=0; n<5; n++)
1818
- {
1819
- if( (r.width - delta) >= 0.5 )
1820
- {
1821
- r.x1 += -r.dy * delta_2;
1822
- r.y1 += r.dx * delta_2;
1823
- r.x2 += -r.dy * delta_2;
1824
- r.y2 += r.dx * delta_2;
1825
- r.width -= delta;
1826
- log_nfa_new = rect_nfa(&r,angles,logNT);
1827
- if( log_nfa_new > log_nfa )
1828
- {
1829
- rect_copy(&r,rec);
1830
- log_nfa = log_nfa_new;
1831
- }
1832
- }
1833
- }
1834
-
1835
- if( log_nfa > log_eps ) return log_nfa;
1836
-
1837
- /* try to reduce the other side of the rectangle */
1838
- rect_copy(rec,&r);
1839
- for(n=0; n<5; n++)
1840
- {
1841
- if( (r.width - delta) >= 0.5 )
1842
- {
1843
- r.x1 -= -r.dy * delta_2;
1844
- r.y1 -= r.dx * delta_2;
1845
- r.x2 -= -r.dy * delta_2;
1846
- r.y2 -= r.dx * delta_2;
1847
- r.width -= delta;
1848
- log_nfa_new = rect_nfa(&r,angles,logNT);
1849
- if( log_nfa_new > log_nfa )
1850
- {
1851
- rect_copy(&r,rec);
1852
- log_nfa = log_nfa_new;
1853
- }
1854
- }
1855
- }
1856
-
1857
- if( log_nfa > log_eps ) return log_nfa;
1858
-
1859
- /* try even finer precisions */
1860
- rect_copy(rec,&r);
1861
- for(n=0; n<5; n++)
1862
- {
1863
- r.p /= 2.0;
1864
- r.prec = r.p * M_PI;
1865
- log_nfa_new = rect_nfa(&r,angles,logNT);
1866
- if( log_nfa_new > log_nfa )
1867
- {
1868
- log_nfa = log_nfa_new;
1869
- rect_copy(&r,rec);
1870
- }
1871
- }
1872
-
1873
- return log_nfa;
1874
- }
1875
-
1876
- /*----------------------------------------------------------------------------*/
1877
- /** Reduce the region size, by elimination the points far from the
1878
- starting point, until that leads to rectangle with the right
1879
- density of region points or to discard the region if too small.
1880
- */
1881
- static int reduce_region_radius( struct point * reg, int * reg_size,
1882
- image_double modgrad, float reg_angle,
1883
- float prec, float p, struct rect * rec,
1884
- image_char used, image_double angles,
1885
- float density_th )
1886
- {
1887
- float density,rad1,rad2,rad,xc,yc;
1888
- int i;
1889
-
1890
- /* check parameters */
1891
- if( reg == NULL ) error("reduce_region_radius: invalid pointer 'reg'.");
1892
- if( reg_size == NULL )
1893
- error("reduce_region_radius: invalid pointer 'reg_size'.");
1894
- if( prec < 0.0 ) error("reduce_region_radius: 'prec' must be positive.");
1895
- if( rec == NULL ) error("reduce_region_radius: invalid pointer 'rec'.");
1896
- if( used == NULL || used->data == NULL )
1897
- error("reduce_region_radius: invalid image 'used'.");
1898
- if( angles == NULL || angles->data == NULL )
1899
- error("reduce_region_radius: invalid image 'angles'.");
1900
-
1901
- /* compute region points density */
1902
- density = (float) *reg_size /
1903
- ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );
1904
-
1905
- /* if the density criterion is satisfied there is nothing to do */
1906
- if( density >= density_th ) return TRUE;
1907
-
1908
- /* compute region's radius */
1909
- xc = (float) reg[0].x;
1910
- yc = (float) reg[0].y;
1911
- rad1 = dist( xc, yc, rec->x1, rec->y1 );
1912
- rad2 = dist( xc, yc, rec->x2, rec->y2 );
1913
- rad = rad1 > rad2 ? rad1 : rad2;
1914
-
1915
- /* while the density criterion is not satisfied, remove farther pixels */
1916
- while( density < density_th )
1917
- {
1918
- rad *= 0.75; /* reduce region's radius to 75% of its value */
1919
-
1920
- /* remove points from the region and update 'used' map */
1921
- for(i=0; i<*reg_size; i++)
1922
- if( dist( xc, yc, (float) reg[i].x, (float) reg[i].y ) > rad )
1923
- {
1924
- /* point not kept, mark it as NOTUSED */
1925
- used->data[ reg[i].x + reg[i].y * used->xsize ] = NOTUSED;
1926
- /* remove point from the region */
1927
- reg[i].x = reg[*reg_size-1].x; /* if i==*reg_size-1 copy itself */
1928
- reg[i].y = reg[*reg_size-1].y;
1929
- --(*reg_size);
1930
- --i; /* to avoid skipping one point */
1931
- }
1932
-
1933
- /* reject if the region is too small.
1934
- 2 is the minimal region size for 'region2rect' to work. */
1935
- if( *reg_size < 2 ) return FALSE;
1936
-
1937
- /* re-compute rectangle */
1938
- region2rect(reg,*reg_size,modgrad,reg_angle,prec,p,rec);
1939
-
1940
- /* re-compute region points density */
1941
- density = (float) *reg_size /
1942
- ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );
1943
- }
1944
-
1945
- /* if this point is reached, the density criterion is satisfied */
1946
- return TRUE;
1947
- }
1948
-
1949
- /*----------------------------------------------------------------------------*/
1950
- /** Refine a rectangle.
1951
-
1952
- For that, an estimation of the angle tolerance is performed by the
1953
- standard deviation of the angle at points near the region's
1954
- starting point. Then, a new region is grown starting from the same
1955
- point, but using the estimated angle tolerance. If this fails to
1956
- produce a rectangle with the right density of region points,
1957
- 'reduce_region_radius' is called to try to satisfy this condition.
1958
- */
1959
- static int refine( struct point * reg, int * reg_size, image_double modgrad,
1960
- float reg_angle, float prec, float p, struct rect * rec,
1961
- image_char used, image_double angles, float density_th )
1962
- {
1963
- float angle,ang_d,mean_angle,tau,density,xc,yc,ang_c,sum,s_sum;
1964
- int i,n;
1965
-
1966
- /* check parameters */
1967
- if( reg == NULL ) error("refine: invalid pointer 'reg'.");
1968
- if( reg_size == NULL ) error("refine: invalid pointer 'reg_size'.");
1969
- if( prec < 0.0 ) error("refine: 'prec' must be positive.");
1970
- if( rec == NULL ) error("refine: invalid pointer 'rec'.");
1971
- if( used == NULL || used->data == NULL )
1972
- error("refine: invalid image 'used'.");
1973
- if( angles == NULL || angles->data == NULL )
1974
- error("refine: invalid image 'angles'.");
1975
-
1976
- /* compute region points density */
1977
- density = (float) *reg_size /
1978
- ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );
1979
-
1980
- /* if the density criterion is satisfied there is nothing to do */
1981
- if( density >= density_th ) return TRUE;
1982
-
1983
- /*------ First try: reduce angle tolerance ------*/
1984
-
1985
- /* compute the new mean angle and tolerance */
1986
- xc = (float) reg[0].x;
1987
- yc = (float) reg[0].y;
1988
- ang_c = angles->data[ reg[0].x + reg[0].y * angles->xsize ];
1989
- sum = s_sum = 0.0;
1990
- n = 0;
1991
- for(i=0; i<*reg_size; i++)
1992
- {
1993
- used->data[ reg[i].x + reg[i].y * used->xsize ] = NOTUSED;
1994
- if( dist( xc, yc, (float) reg[i].x, (float) reg[i].y ) < rec->width )
1995
- {
1996
- angle = angles->data[ reg[i].x + reg[i].y * angles->xsize ];
1997
- ang_d = angle_diff_signed(angle,ang_c);
1998
- sum += ang_d;
1999
- s_sum += ang_d * ang_d;
2000
- ++n;
2001
- }
2002
- }
2003
- mean_angle = sum / (float) n;
2004
- tau = 2.0 * sqrt( (s_sum - 2.0 * mean_angle * sum) / (float) n
2005
- + mean_angle*mean_angle ); /* 2 * standard deviation */
2006
-
2007
- /* find a new region from the same starting point and new angle tolerance */
2008
- region_grow(reg[0].x,reg[0].y,angles,reg,reg_size,&reg_angle,used,tau);
2009
-
2010
- /* if the region is too small, reject */
2011
- if( *reg_size < 2 ) return FALSE;
2012
-
2013
- /* re-compute rectangle */
2014
- region2rect(reg,*reg_size,modgrad,reg_angle,prec,p,rec);
2015
-
2016
- /* re-compute region points density */
2017
- density = (float) *reg_size /
2018
- ( dist(rec->x1,rec->y1,rec->x2,rec->y2) * rec->width );
2019
-
2020
- /*------ Second try: reduce region radius ------*/
2021
- if( density < density_th )
2022
- return reduce_region_radius( reg, reg_size, modgrad, reg_angle, prec, p,
2023
- rec, used, angles, density_th );
2024
-
2025
- /* if this point is reached, the density criterion is satisfied */
2026
- return TRUE;
2027
- }
2028
-
2029
-
2030
- /*----------------------------------------------------------------------------*/
2031
- /*-------------------------- Line Segment Detector ---------------------------*/
2032
- /*----------------------------------------------------------------------------*/
2033
-
2034
- /*----------------------------------------------------------------------------*/
2035
- /** LSD full interface.
2036
- */
2037
- float * LineSegmentDetection( int * n_out,
2038
- float * img, int X, int Y,
2039
- float scale, float sigma_scale, float quant,
2040
- float ang_th, float log_eps, float density_th,
2041
- int n_bins,
2042
- int ** reg_img, int * reg_x, int * reg_y )
2043
- {
2044
- image_double image;
2045
- ntuple_list out = new_ntuple_list(7);
2046
- float * return_value;
2047
- image_double scaled_image,angles,modgrad;
2048
- image_char used;
2049
- image_int region = NULL;
2050
- struct coorlist * list_p;
2051
- void * mem_p;
2052
- struct rect rec;
2053
- struct point * reg;
2054
- int reg_size,min_reg_size,i;
2055
- unsigned int xsize,ysize;
2056
- float rho,reg_angle,prec,p,log_nfa,logNT;
2057
- int ls_count = 0; /* line segments are numbered 1,2,3,... */
2058
-
2059
-
2060
- /* check parameters */
2061
- if( img == NULL || X <= 0 || Y <= 0 ) error("invalid image input.");
2062
- if( scale <= 0.0 ) error("'scale' value must be positive.");
2063
- if( sigma_scale <= 0.0 ) error("'sigma_scale' value must be positive.");
2064
- if( quant < 0.0 ) error("'quant' value must be positive.");
2065
- if( ang_th <= 0.0 || ang_th >= 180.0 )
2066
- error("'ang_th' value must be in the range (0,180).");
2067
- if( density_th < 0.0 || density_th > 1.0 )
2068
- error("'density_th' value must be in the range [0,1].");
2069
- if( n_bins <= 0 ) error("'n_bins' value must be positive.");
2070
-
2071
-
2072
- /* angle tolerance */
2073
- prec = M_PI * ang_th / 180.0;
2074
- p = ang_th / 180.0;
2075
- rho = quant / sin(prec); /* gradient magnitude threshold */
2076
-
2077
-
2078
- /* load and scale image (if necessary) and compute angle at each pixel */
2079
- image = new_image_double_ptr( (unsigned int) X, (unsigned int) Y, img );
2080
- if( scale != 1.0 )
2081
- {
2082
- scaled_image = gaussian_sampler( image, scale, sigma_scale );
2083
- angles = ll_angle( scaled_image, rho, &list_p, &mem_p,
2084
- &modgrad, (unsigned int) n_bins );
2085
- free_image_double(scaled_image);
2086
- }
2087
- else
2088
- angles = ll_angle( image, rho, &list_p, &mem_p, &modgrad,
2089
- (unsigned int) n_bins );
2090
- xsize = angles->xsize;
2091
- ysize = angles->ysize;
2092
-
2093
- /* Number of Tests - NT
2094
-
2095
- The theoretical number of tests is Np.(XY)^(5/2)
2096
- where X and Y are number of columns and rows of the image.
2097
- Np corresponds to the number of angle precisions considered.
2098
- As the procedure 'rect_improve' tests 5 times to halve the
2099
- angle precision, and 5 more times after improving other factors,
2100
- 11 different precision values are potentially tested. Thus,
2101
- the number of tests is
2102
- 11 * (X*Y)^(5/2)
2103
- whose logarithm value is
2104
- log10(11) + 5/2 * (log10(X) + log10(Y)).
2105
- */
2106
- logNT = 5.0 * ( log10( (float) xsize ) + log10( (float) ysize ) ) / 2.0
2107
- + log10(11.0);
2108
- min_reg_size = (int) (-logNT/log10(p)); /* minimal number of points in region
2109
- that can give a meaningful event */
2110
-
2111
-
2112
- /* initialize some structures */
2113
- if( reg_img != NULL && reg_x != NULL && reg_y != NULL ) /* save region data */
2114
- region = new_image_int_ini(angles->xsize,angles->ysize,0);
2115
- used = new_image_char_ini(xsize,ysize,NOTUSED);
2116
- reg = (struct point *) calloc( (size_t) (xsize*ysize), sizeof(struct point) );
2117
- if( reg == NULL ) error("not enough memory!");
2118
-
2119
-
2120
- /* search for line segments */
2121
- for(; list_p != NULL; list_p = list_p->next )
2122
- if( used->data[ list_p->x + list_p->y * used->xsize ] == NOTUSED &&
2123
- angles->data[ list_p->x + list_p->y * angles->xsize ] != NOTDEF )
2124
- /* there is no risk of double comparison problems here
2125
- because we are only interested in the exact NOTDEF value */
2126
- {
2127
- /* find the region of connected point and ~equal angle */
2128
- region_grow( list_p->x, list_p->y, angles, reg, &reg_size,
2129
- &reg_angle, used, prec );
2130
-
2131
- /* reject small regions */
2132
- if( reg_size < min_reg_size ) continue;
2133
-
2134
- /* construct rectangular approximation for the region */
2135
- region2rect(reg,reg_size,modgrad,reg_angle,prec,p,&rec);
2136
-
2137
- /* Check if the rectangle exceeds the minimal density of
2138
- region points. If not, try to improve the region.
2139
- The rectangle will be rejected if the final one does
2140
- not fulfill the minimal density condition.
2141
- This is an addition to the original LSD algorithm published in
2142
- "LSD: A Fast Line Segment Detector with a False Detection Control"
2143
- by R. Grompone von Gioi, J. Jakubowicz, J.M. Morel, and G. Randall.
2144
- The original algorithm is obtained with density_th = 0.0.
2145
- */
2146
- if( !refine( reg, &reg_size, modgrad, reg_angle,
2147
- prec, p, &rec, used, angles, density_th ) ) continue;
2148
-
2149
- /* compute NFA value */
2150
- log_nfa = rect_improve(&rec,angles,logNT,log_eps);
2151
- if( log_nfa <= log_eps ) continue;
2152
-
2153
- /* A New Line Segment was found! */
2154
- ++ls_count; /* increase line segment counter */
2155
-
2156
- /*
2157
- The gradient was computed with a 2x2 mask, its value corresponds to
2158
- points with an offset of (0.5,0.5), that should be added to output.
2159
- The coordinates origin is at the center of pixel (0,0).
2160
- */
2161
- rec.x1 += 0.5; rec.y1 += 0.5;
2162
- rec.x2 += 0.5; rec.y2 += 0.5;
2163
-
2164
- /* scale the result values if a subsampling was performed */
2165
- if( scale != 1.0 )
2166
- {
2167
- rec.x1 /= scale; rec.y1 /= scale;
2168
- rec.x2 /= scale; rec.y2 /= scale;
2169
- rec.width /= scale;
2170
- }
2171
-
2172
- /* add line segment found to output */
2173
- add_7tuple( out, rec.x1, rec.y1, rec.x2, rec.y2,
2174
- rec.width, rec.p, log_nfa );
2175
-
2176
- /* add region number to 'region' image if needed */
2177
- if( region != NULL )
2178
- for(i=0; i<reg_size; i++)
2179
- region->data[ reg[i].x + reg[i].y * region->xsize ] = ls_count;
2180
- }
2181
-
2182
-
2183
- /* free memory */
2184
- free( (void *) image ); /* only the double_image structure should be freed,
2185
- the data pointer was provided to this functions
2186
- and should not be destroyed. */
2187
- free_image_double(angles);
2188
- free_image_double(modgrad);
2189
- free_image_char(used);
2190
- free( (void *) reg );
2191
- free( (void *) mem_p );
2192
-
2193
- /* return the result */
2194
- if( reg_img != NULL && reg_x != NULL && reg_y != NULL )
2195
- {
2196
- if( region == NULL ) error("'region' should be a valid image.");
2197
- *reg_img = region->data;
2198
- if( region->xsize > (unsigned int) INT_MAX ||
2199
- region->xsize > (unsigned int) INT_MAX )
2200
- error("region image to big to fit in INT sizes.");
2201
- *reg_x = (int) (region->xsize);
2202
- *reg_y = (int) (region->ysize);
2203
-
2204
- /* free the 'region' structure.
2205
- we cannot use the function 'free_image_int' because we need to keep
2206
- the memory with the image data to be returned by this function. */
2207
- free( (void *) region );
2208
- }
2209
- if( out->size > (unsigned int) INT_MAX )
2210
- error("too many detections to fit in an INT.");
2211
- *n_out = (int) (out->size);
2212
-
2213
- return_value = out->values;
2214
- free( (void *) out ); /* only the 'ntuple_list' structure must be freed,
2215
- but the 'values' pointer must be keep to return
2216
- as a result. */
2217
-
2218
- return return_value;
2219
- }
2220
-
2221
- /*----------------------------------------------------------------------------*/
2222
- /** LSD Simple Interface with Scale and Region output.
2223
- */
2224
- float * lsd_scale_region( int * n_out,
2225
- float * img, int X, int Y, float scale,
2226
- int ** reg_img, int * reg_x, int * reg_y )
2227
- {
2228
- /* LSD parameters */
2229
- float sigma_scale = 0.6; /* Sigma for Gaussian filter is computed as
2230
- sigma = sigma_scale/scale. */
2231
- float quant = 2.0; /* Bound to the quantization error on the
2232
- gradient norm. */
2233
- float ang_th = 22.5; /* Gradient angle tolerance in degrees. */
2234
- float log_eps = 0.0; /* Detection threshold: -log10(NFA) > log_eps */
2235
- float density_th = 0.7; /* Minimal density of region points in rectangle. */
2236
- int n_bins = 1024; /* Number of bins in pseudo-ordering of gradient
2237
- modulus. */
2238
-
2239
- return LineSegmentDetection( n_out, img, X, Y, scale, sigma_scale, quant,
2240
- ang_th, log_eps, density_th, n_bins,
2241
- reg_img, reg_x, reg_y );
2242
- }
2243
-
2244
- /*----------------------------------------------------------------------------*/
2245
- /** LSD Simple Interface with Scale.
2246
- */
2247
- float * lsd_scale(int * n_out, float * img, int X, int Y, float scale)
2248
- {
2249
- return lsd_scale_region(n_out,img,X,Y,scale,NULL,NULL,NULL);
2250
- }
2251
-
2252
- /*----------------------------------------------------------------------------*/
2253
- /** LSD Simple Interface.
2254
- */
2255
- float * lsd(int * n_out, float * img, int X, int Y)
2256
- {
2257
- /* LSD parameters */
2258
- float scale = 0.8; /* Scale the image by Gaussian filter to 'scale'. */
2259
-
2260
- return lsd_scale(n_out,img,X,Y,scale);
2261
-
2262
-
2263
- }
2264
- /*----------------------------------------------------------------------------*/
2265
-
2266
- /***** added by manuel aristaran ****/
2267
-
2268
- void free_values(float * p) {
2269
- free((void *) p);
2270
- }