tablestakes 0.8.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/README.md +218 -0
- data/capitals.sorted +50 -0
- data/capitals.txt +51 -0
- data/cities.txt +290 -0
- data/doc/Table.html +1174 -0
- data/doc/created.rid +2 -0
- data/doc/images/add.png +0 -0
- data/doc/images/arrow_up.png +0 -0
- data/doc/images/brick.png +0 -0
- data/doc/images/brick_link.png +0 -0
- data/doc/images/bug.png +0 -0
- data/doc/images/bullet_black.png +0 -0
- data/doc/images/bullet_toggle_minus.png +0 -0
- data/doc/images/bullet_toggle_plus.png +0 -0
- data/doc/images/date.png +0 -0
- data/doc/images/delete.png +0 -0
- data/doc/images/find.png +0 -0
- data/doc/images/loadingAnimation.gif +0 -0
- data/doc/images/macFFBgHack.png +0 -0
- data/doc/images/package.png +0 -0
- data/doc/images/page_green.png +0 -0
- data/doc/images/page_white_text.png +0 -0
- data/doc/images/page_white_width.png +0 -0
- data/doc/images/plugin.png +0 -0
- data/doc/images/ruby.png +0 -0
- data/doc/images/tag_blue.png +0 -0
- data/doc/images/tag_green.png +0 -0
- data/doc/images/transparent.png +0 -0
- data/doc/images/wrench.png +0 -0
- data/doc/images/wrench_orange.png +0 -0
- data/doc/images/zoom.png +0 -0
- data/doc/index.html +71 -0
- data/doc/js/darkfish.js +155 -0
- data/doc/js/jquery.js +18 -0
- data/doc/js/navigation.js +142 -0
- data/doc/js/search.js +94 -0
- data/doc/js/search_index.js +1 -0
- data/doc/js/searcher.js +228 -0
- data/doc/rdoc.css +595 -0
- data/doc/table_of_contents.html +88 -0
- data/lib/tablestakes.rb +407 -0
- data/spec/factories.rb +16 -0
- data/spec/spec_helper.rb +11 -0
- data/spec/table_spec.rb +179 -0
- data/test.tab +4 -0
- metadata +110 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: e42269b7b60a12332a7934b8511db2fc5c60cb59
|
4
|
+
data.tar.gz: d77bdc6de2bc013ba696eef36876e20e46b1d718
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 947e1aa780b245619afbba79907e1c7a16b135b93c519e596c9649874f2e689c8d6b8f30bd184b248a17ecfe8e7ed57ee10a120261e01a611fbf17c78f4c67b1
|
7
|
+
data.tar.gz: 54b58e9bfcaa18f8848a58d0c3fbc98d837e96c098a6633145b899f107ac744415584a41fcbc8ea3732d334d4801da5d09f37742fc9a10728d66c51dd31a4c20
|
data/README.md
ADDED
@@ -0,0 +1,218 @@
|
|
1
|
+
=========
|
2
|
+
Tablestakes
|
3
|
+
===========
|
4
|
+
|
5
|
+
[](http://badge.fury.io/rb/tablestakes)
|
6
|
+
|
7
|
+
Tablestakes is a gem for processing tabular data. It is for people who would rather not meddle with
|
8
|
+
a spreadsheet, or load their data into a SQL database. You get the instant gratification of being
|
9
|
+
able to read a tab-delimited file, with header values, and then do field counts, field modifications,
|
10
|
+
selections, joins, and sorts to your heart's content. Tablestakes operates only in memory, so it
|
11
|
+
is fast. Of course that also means that there are some size limitations -- very large tables
|
12
|
+
should be processed with another library.
|
13
|
+
|
14
|
+
Contents
|
15
|
+
--------
|
16
|
+
- [How to install](#how-to-install)
|
17
|
+
- [Philosophy and Conventions](#philosophy-and-conventions)
|
18
|
+
- [Loading and Writing Files](#loading-and-writing-files)
|
19
|
+
- [Selecting Data](#selecting-data)
|
20
|
+
- [Counting Data](#counting-data)
|
21
|
+
- [Updating Data](#updating-data)
|
22
|
+
- [Join, Union, and Intersect](#join-union-and-intersect)
|
23
|
+
- [Interacting with your Data](#interacting-with-your-data)
|
24
|
+
|
25
|
+
How to Install
|
26
|
+
--------------
|
27
|
+
|
28
|
+
Tablestakes also does well in the IRB interactive shell, you can make use of:
|
29
|
+
|
30
|
+
1. Install the gem
|
31
|
+
|
32
|
+
```shell
|
33
|
+
gem install tablestakes
|
34
|
+
```
|
35
|
+
|
36
|
+
2. Add the `tablestakes` gem to your ruby code
|
37
|
+
|
38
|
+
```ruby
|
39
|
+
require 'tablestakes'
|
40
|
+
```
|
41
|
+
|
42
|
+
Now you're ready to start slicing and dicing your data tables!
|
43
|
+
|
44
|
+
|
45
|
+
Philosophy and Conventions
|
46
|
+
--------------------------
|
47
|
+
|
48
|
+
Tablestakes is meant to be fast and easy for manipulating your data. It maintains ruby
|
49
|
+
conventions, like use of Enumerators, method chaining, and mostly non-destructive methods.
|
50
|
+
|
51
|
+
Tablestakes tables also maintain some conventions for simplicity:
|
52
|
+
|
53
|
+
* Table column names are always the values in the first row of your data file.
|
54
|
+
* Fields in the table are always strings (although you can treat them as numbers or dates
|
55
|
+
when needed).
|
56
|
+
* Methods only modify one dimension at a time. So, for instance, `Table#select` only selects
|
57
|
+
columns and `Table#where` only selects rows. Chain them together for the desired effect.
|
58
|
+
* Tables are ordered, both columns and rows, until modified.
|
59
|
+
|
60
|
+
|
61
|
+
Loading and Writing Files
|
62
|
+
-------------------------
|
63
|
+
Tables can be created from tab-delimited data files, using the Table constructor:
|
64
|
+
|
65
|
+
```ruby
|
66
|
+
cities = Table.new('cities.txt')
|
67
|
+
```
|
68
|
+
|
69
|
+
Tables can also be created from other tables (useful in saving sub-tables), they can be
|
70
|
+
created from an Array of rows (embedded Arrays), and the `Table#new` function also
|
71
|
+
creates a blank table when no parameters (or nil) are given.
|
72
|
+
|
73
|
+
Tables are saved as tab-delimited files using the `Table#write_file` method:
|
74
|
+
|
75
|
+
```ruby
|
76
|
+
cities.write_file('new-cities.txt')
|
77
|
+
```
|
78
|
+
|
79
|
+
Tables can also be sent to your favorite I/O channel using the `Table#to_s` function,
|
80
|
+
which creates a tab-delimited string.
|
81
|
+
|
82
|
+
|
83
|
+
Selecting Data
|
84
|
+
--------------
|
85
|
+
|
86
|
+
Selecting your data happens in two dimensions - rows and columns. First, you
|
87
|
+
can create an ordered Array of a row or column just by asking for it by header name.
|
88
|
+
|
89
|
+
```ruby
|
90
|
+
cities.column('State') # returns ["Texas", "Tennessee", "California", ...]
|
91
|
+
```
|
92
|
+
|
93
|
+
If you're uncertain of your header names, they are accessible as an Array via the
|
94
|
+
`Table#headers` method.
|
95
|
+
|
96
|
+
```ruby
|
97
|
+
cities.headers # returns ["2012 rank", "City", "State", ...]
|
98
|
+
```
|
99
|
+
|
100
|
+
Rows can be returned when a numeric index is known. To return the first data row:
|
101
|
+
|
102
|
+
```ruby
|
103
|
+
cities.row(0) # returns ["119", "Amarillo", "Texas", "195250", "190695", ...]
|
104
|
+
```
|
105
|
+
|
106
|
+
Table columns can be selected specifically with the `Table#select` method:
|
107
|
+
|
108
|
+
```ruby
|
109
|
+
cities.select("City", "State", "2010 Census") # returns a table with only those columns
|
110
|
+
```
|
111
|
+
|
112
|
+
In order to select rows, use `Table#where`, which allows you to select rows given a ruby
|
113
|
+
statement to be evaluated against a given value in a column. For instance:
|
114
|
+
|
115
|
+
```ruby
|
116
|
+
cities.where("State", "=~ /^N.*/") # returns a sub-table of cities in states that begin with 'N'
|
117
|
+
```
|
118
|
+
|
119
|
+
Use single quotes when comparing your column value to a string. Also, note that all
|
120
|
+
numeric data is stored as a string value unless explicitly converted by your selection
|
121
|
+
statement.
|
122
|
+
|
123
|
+
|
124
|
+
Counting Data
|
125
|
+
-------------
|
126
|
+
|
127
|
+
One reason to manipulate tables quickly in memory is to get counts for histograms,
|
128
|
+
pie charts, and other data analysis representations. Tablestakes gives you simple methods
|
129
|
+
for counting.
|
130
|
+
|
131
|
+
```ruby
|
132
|
+
cities.size # returns the number of rows in the cities table
|
133
|
+
cities.length # same as cities.size
|
134
|
+
cities.count # same as cities.size
|
135
|
+
cities.count('State', 'New York') # returns the number of entries that have State=='New York'
|
136
|
+
```
|
137
|
+
|
138
|
+
If you want to know the frequency of certain values in your data
|
139
|
+
set, there are a couple of methods for selecting the most and
|
140
|
+
least frequent items.
|
141
|
+
|
142
|
+
```ruby
|
143
|
+
cities.top("State") # returns the state with the most cities listed
|
144
|
+
cities.top("State", 5) # returns the 5 most frequent states
|
145
|
+
cities.bottom("State", 5) # returns the 5 least frequent states
|
146
|
+
```
|
147
|
+
|
148
|
+
Additionally, you can create a separate Table object that tallies on a given column
|
149
|
+
|
150
|
+
```ruby
|
151
|
+
cities.tally('State') # returns a Table of States and the number of times they appear
|
152
|
+
puts cities.tally('State').to_s # print a table of the frequency that states appear
|
153
|
+
```
|
154
|
+
|
155
|
+
|
156
|
+
Updating Data
|
157
|
+
-------------
|
158
|
+
|
159
|
+
Sometimes data in a table needs to be cleaned up and modified.
|
160
|
+
the `Table#sub` method provides a way to eliminate common garbage from
|
161
|
+
your data such as stray characters.
|
162
|
+
|
163
|
+
```ruby
|
164
|
+
cities.sub("2012 land area", /.*sq mi/, '') # deletes 'sq mi' from the 2012 land area field
|
165
|
+
```
|
166
|
+
|
167
|
+
`Table#sub` takes a regular expression and a substitute string, which
|
168
|
+
gives some flexibility in how data is updated. Note that this is
|
169
|
+
a method which modifies the table object.
|
170
|
+
|
171
|
+
Join, Union, and Intersect
|
172
|
+
--------------------------
|
173
|
+
|
174
|
+
Once your tables are read into memory, it is useful to join them
|
175
|
+
with other tables or find the common elements. Tablestakes
|
176
|
+
provides a simple join function as follows
|
177
|
+
|
178
|
+
```ruby
|
179
|
+
capitals.join(cities, "Capital", "City") # create a table which only contains highly populated Capital cities
|
180
|
+
```
|
181
|
+
|
182
|
+
You may also need to quickly compare the elements of one column
|
183
|
+
in a table with the elements in another table. `Table#union` and `Table#intersect`
|
184
|
+
are for that situation.
|
185
|
+
|
186
|
+
```ruby
|
187
|
+
capitals.union(cities, "Capitals", "Cities") # returns an array of all cities in both tables
|
188
|
+
capitals.intersect(cities, "Capitals", "Cities") # returns an array of only the cities in both tables
|
189
|
+
```
|
190
|
+
|
191
|
+
Interacting with your Data
|
192
|
+
--------------------------
|
193
|
+
|
194
|
+
Typically, you can accomplish your goals with chained queries of the datatable. Here
|
195
|
+
are some examples:
|
196
|
+
|
197
|
+
1. Find all of the cities in New York
|
198
|
+
|
199
|
+
```ruby
|
200
|
+
ny_cities = cities.where("State", "== 'New York'")
|
201
|
+
```
|
202
|
+
|
203
|
+
2. Find all of the capitals which are not in the set of most populated cities
|
204
|
+
|
205
|
+
```ruby
|
206
|
+
small_caps = capitals.column("Capital") - capitals.join(cities, 'Capital', 'City').column('Capital')
|
207
|
+
```
|
208
|
+
|
209
|
+
3. Read a file, select the columns and rows you want, and write the subtable as a tab-delimited
|
210
|
+
file.
|
211
|
+
|
212
|
+
```ruby
|
213
|
+
Table.new('cities.txt').select('City','State','2012 estimate').where('2012 estimate', ".to_i > 1000000").write_file('big_cities.txt')
|
214
|
+
```
|
215
|
+
|
216
|
+
Some methods, such as `Table#row` and `Table#column` return Arrays, and of course these are
|
217
|
+
readily modified using their own native methods.
|
218
|
+
|
data/capitals.sorted
ADDED
@@ -0,0 +1,50 @@
|
|
1
|
+
Albany
|
2
|
+
Annapolis
|
3
|
+
Atlanta
|
4
|
+
Augusta
|
5
|
+
Austin
|
6
|
+
Baton Rouge
|
7
|
+
Bismarck
|
8
|
+
Boise
|
9
|
+
Boston
|
10
|
+
Carson City
|
11
|
+
Charleston
|
12
|
+
Cheyenne
|
13
|
+
Columbia
|
14
|
+
Columbus
|
15
|
+
Concord
|
16
|
+
Denver
|
17
|
+
Des Moines
|
18
|
+
Dover
|
19
|
+
Frankfort
|
20
|
+
Harrisburg
|
21
|
+
Hartford
|
22
|
+
Helena
|
23
|
+
Honolulu
|
24
|
+
Indianapolis
|
25
|
+
Jackson
|
26
|
+
Jefferson City
|
27
|
+
Juneau
|
28
|
+
Lansing
|
29
|
+
Lincoln
|
30
|
+
Little Rock
|
31
|
+
Madison
|
32
|
+
Montgomery
|
33
|
+
Montpelier
|
34
|
+
Nashville
|
35
|
+
Oklahoma City
|
36
|
+
Olympia
|
37
|
+
Phoenix
|
38
|
+
Pierre
|
39
|
+
Providence
|
40
|
+
Raleigh
|
41
|
+
Richmond
|
42
|
+
Sacramento
|
43
|
+
Saint Paul
|
44
|
+
Salem
|
45
|
+
Salt Lake City
|
46
|
+
Santa Fe
|
47
|
+
Springfield
|
48
|
+
Tallahassee
|
49
|
+
Topeka
|
50
|
+
Trenton
|
data/capitals.txt
ADDED
@@ -0,0 +1,51 @@
|
|
1
|
+
State Capital
|
2
|
+
Alabama Montgomery
|
3
|
+
Alaska Juneau
|
4
|
+
Arizona Phoenix
|
5
|
+
Arkansas Little Rock
|
6
|
+
California Sacramento
|
7
|
+
Colorado Denver
|
8
|
+
Connecticut Hartford
|
9
|
+
Delaware Dover
|
10
|
+
Florida Tallahassee
|
11
|
+
Georgia Atlanta
|
12
|
+
Hawaii Honolulu
|
13
|
+
Idaho Boise
|
14
|
+
Illinois Springfield
|
15
|
+
Indiana Indianapolis
|
16
|
+
Iowa Des Moines
|
17
|
+
Kansas Topeka
|
18
|
+
Kentucky Frankfort
|
19
|
+
Louisiana Baton Rouge
|
20
|
+
Maine Augusta
|
21
|
+
Maryland Annapolis
|
22
|
+
Massachusetts Boston
|
23
|
+
Michigan Lansing
|
24
|
+
Minnesota Saint Paul
|
25
|
+
Mississippi Jackson
|
26
|
+
Missouri Jefferson City
|
27
|
+
Montana Helena
|
28
|
+
Nebraska Lincoln
|
29
|
+
Nevada Carson City
|
30
|
+
New Hampshire Concord
|
31
|
+
New Jersey Trenton
|
32
|
+
New Mexico Santa Fe
|
33
|
+
New York Albany
|
34
|
+
North Carolina Raleigh
|
35
|
+
North Dakota Bismarck
|
36
|
+
Ohio Columbus
|
37
|
+
Oklahoma Oklahoma City
|
38
|
+
Oregon Salem
|
39
|
+
Pennsylvania Harrisburg
|
40
|
+
Rhode Island Providence
|
41
|
+
South Carolina Columbia
|
42
|
+
South Dakota Pierre
|
43
|
+
Tennessee Nashville
|
44
|
+
Texas Austin
|
45
|
+
Utah Salt Lake City
|
46
|
+
Vermont Montpelier
|
47
|
+
Virginia Richmond
|
48
|
+
Washington Olympia
|
49
|
+
West Virginia Charleston
|
50
|
+
Wisconsin Madison
|
51
|
+
Wyoming Cheyenne
|
data/cities.txt
ADDED
@@ -0,0 +1,290 @@
|
|
1
|
+
2012 rank City State 2012 estimate 2010 Census Change 2012 land area 2012 population density ANSI Location
|
2
|
+
119 Amarillo Texas 195250 190695 2.39% 99.476 sq mi 1,917 per sq mi 2409694 35.1978 N 101.8287 W
|
3
|
+
128 Knoxville Tennessee 182200 178874 1.86% 98.521 sq mi 1,816 per sq mi 2404842 35.9709 N 83.9465 W
|
4
|
+
35 Sacramento California 475516 466488 1.94% 97.915 sq mi 4,764 per sq mi 2411751 38.5666 N 121.4686 W
|
5
|
+
179 Clarksville Tennessee 142519 132929 7.21% 97.603 sq mi 1,362 per sq mi 2404061 36.5664 N 87.3452 W
|
6
|
+
30 Milwaukee Wisconsin 598916 594833 0.69% 96.122 sq mi 6,188 per sq mi 1583724 43.0633 N 87.9667 W
|
7
|
+
50 Arlington Texas 375600 365438 2.78% 95.882 sq mi 3,811 per sq mi 2409731 32.7007 N 97.1247 W
|
8
|
+
151 Lancaster California 159055 156633 1.55% 94.276 sq mi 1,661 per sq mi 2411620 34.6936 N 118.1753 W
|
9
|
+
264 Norwalk California 106278 105549 0.69% 9.707 sq mi 10,873 per sq mi 2411281 33.9069 N 118.0834 W
|
10
|
+
233 El Monte California 115111 113475 1.44% 9.562 sq mi 11,867 per sq mi 2410413 34.0746 N 118.0291 W
|
11
|
+
239 Inglewood California 111182 109673 1.38% 9.068 sq mi 12,095 per sq mi 2410106 33.9561 N 118.3443 W
|
12
|
+
72 Lincoln Nebraska 265404 258379 2.72% 89.114 sq mi 2,899 per sq mi 2395713 40.8090 N 96.6804 W
|
13
|
+
200 Waco Texas 127018 124805 1.77% 88.964 sq mi 1,403 per sq mi 2412162 31.5601 N 97.1860 W
|
14
|
+
81 Laredo Texas 244731 236091 3.66% 88.908 sq mi 2,655 per sq mi 2411626 27.5477 N 99.4869 W
|
15
|
+
216 Denton Texas 121123 113383 6.83% 87.952 sq mi 1,289 per sq mi 2410323 33.2151 N 97.1417 W
|
16
|
+
22 Seattle Washington 634535 608660 4.25% 83.943 sq mi 7,251 per sq mi 2411856 47.6205 N 122.3509 W
|
17
|
+
224 Beaumont Texas 118228 118296 0.06% 82.801 sq mi 1,429 per sq mi 2409806 30.0843 N 94.1458 W
|
18
|
+
146 Springfield Missouri 162191 159498 1.69% 81.720 sq mi 1,952 per sq mi 2395942 37.1942 N 93.2913 W
|
19
|
+
59 Riverside California 313673 303871 3.23% 81.140 sq mi 3,745 per sq mi 2410965 33.9381 N 117.3932 W
|
20
|
+
26 Baltimore Maryland 621342 620961 0.06% 80.944 sq mi 7,672 per sq mi 1702381 39.3002 N 76.6105 W
|
21
|
+
104 Des Moines Iowa 206688 203433 1.60% 80.869 sq mi 2,516 per sq mi 2394522 41.5739 N 93.6167 W
|
22
|
+
67 Toledo Ohio 284012 287208 1.11% 80.692 sq mi 3,559 per sq mi 1086537 41.6641 N 83.5819 W
|
23
|
+
174 Paterson New Jersey 145219 146199 0.67% 8.428 sq mi 17,346 per sq mi 885343 40.9147 N 74.1628 W
|
24
|
+
99 Boise Idaho 212303 205671 3.22% 79.364 sq mi 2,592 per sq mi 2409876 43.5985 N 116.2311 W
|
25
|
+
65 Cincinnati Ohio 296550 296943 0.13% 77.942 sq mi 3,810 per sq mi 1086201 39.1399 N 84.5064 W
|
26
|
+
48 Cleveland Ohio 390928 396815 1.48% 77.697 sq mi 5,107 per sq mi 1085963 41.4781 N 81.6795 W
|
27
|
+
226 Independence Missouri 117270 116830 0.38% 77.567 sq mi 1,506 per sq mi 2395422 39.0853 N 94.3513 W
|
28
|
+
96 Fremont California 221986 214089 3.69% 77.459 sq mi 2,764 per sq mi 2410545 37.4944 N 121.9411 W
|
29
|
+
90 Baton Rouge Louisiana 230058 229493 0.25% 76.947 sq mi 2,982 per sq mi 2403821 30.4485 N 91.1259 W
|
30
|
+
82 Madison Wisconsin 240323 233209 3.05% 76.789 sq mi 3,037 per sq mi 1583625 43.0878 N 89.4301 W
|
31
|
+
285 Las Cruces New Mexico 101047 97618 3.51% 76.29 sq mi 1,279 per sq mi 32.3197 N 106.7653 W
|
32
|
+
12 Jacksonville Florida 836507 821784 1.79% 747.003 sq mi 1,120 per sq mi 2404783 30.3370 N 81.6613 W
|
33
|
+
133 Overland Park Kansas 178919 173372 3.20% 74.841 sq mi 2,317 per sq mi 485639 38.8890 N 94.6906 W
|
34
|
+
217 Victorville California 120336 115903 3.82% 73.178 sq mi 1,584 per sq mi 2412156 34.5277 N 117.3536 W
|
35
|
+
149 Sioux Falls South Dakota 159908 153888 3.91% 72.964 sq mi 2,109 per sq mi 1267566 43.5383 N 96.7320 W
|
36
|
+
270 Wichita Falls Texas 104552 104553 0.00% 72.140 sq mi 1,449 per sq mi 2412261 33.9067 N 98.5259 W
|
37
|
+
129 Grand Prairie Texas 181824 175396 3.66% 72.105 sq mi 2,433 per sq mi 2410632 32.6842 N 97.0210 W
|
38
|
+
219 Midland Texas 119385 111147 7.41% 72.071 sq mi 1,542 per sq mi 2411096 32.0299 N 102.1097 W
|
39
|
+
70 Plano Texas 272068 259841 4.71% 71.581 sq mi 3,630 per sq mi 2411437 33.0508 N 96.7479 W
|
40
|
+
197 Cedar Rapids Iowa 128119 126326 1.42% 70.799 sq mi 1,784 per sq mi 467567 41.9670 N 91.6778 W
|
41
|
+
274 Daly City California 103690 101123 2.54% 7.664 sq mi 13,195 per sq mi 2410291 37.7009 deg N 122.4650 W
|
42
|
+
130 Newport News Virginia 180726 180719 0.00% 68.714 sq mi 2,630 per sq mi 1498555 37.0760 N 76.5217 W
|
43
|
+
97 Gilbert Arizona 221140 208453 6.09% 67.963 sq mi 3,067 per sq mi 2412682 33.3102 N 111.7422 W
|
44
|
+
93 Irving Texas 225427 216290 4.22% 67.017 sq mi 3,227 per sq mi 2410117 32.8577 N 96.9700 W
|
45
|
+
91 Irvine California 229985 212375 8.29% 66.106 sq mi 3,213 per sq mi 2410116 33.6784 N 117.7713 W
|
46
|
+
272 Palm Bay Florida 104124 103190 0.91% 65.702 sq mi 1,571 per sq mi 2404463 27.9856 N 80.6626 W
|
47
|
+
80 Chandler Arizona 245628 236123 4.03% 64.413 sq mi 3,666 per sq mi 2409433 33.2829 N 111.8549 W
|
48
|
+
236 Columbia Missouri 113225 108500 4.35% 63.077 sq mi 1,720 per sq mi 2393605 38.9479 N 92.3261 W
|
49
|
+
284 Davenport Iowa 101363 99685 1.68% 62.948 sq mi 1,584 per sq mi 2394467 41.5541 N 90.6040 W
|
50
|
+
177 McKinney Texas 143223 131117 9.23% 62.209 sq mi 2,108 per sq mi 2411064 33.2012 N 96.6680 W
|
51
|
+
164 Joliet Illinois 148268 147433 0.57% 62.114 sq mi 2,374 per sq mi 2395477 41.5181 N 88.1584 W
|
52
|
+
114 Akron Ohio 198549 199110 0.28% 62.033 sq mi 3,210 per sq mi 1086993 41.0805 N 81.5214 W
|
53
|
+
58 St. Louis Missouri 318172 319294 0.35% 61.909 sq mi 5,157 per sq mi 767557 38.6357 N 90.2446 W
|
54
|
+
196 Frisco Texas 128176 116989 9.56% 61.804 sq mi 1,893 per sq mi 2410549 33.1510 N 96.8193 W
|
55
|
+
78 St. Petersburg Florida 246541 244769 0.72% 61.742 sq mi 3,964 per sq mi 2405401 27.7620 N 82.6441 W
|
56
|
+
64 Stockton California 297984 291707 2.15% 61.670 sq mi 4,730 per sq mi 2411987 37.9763 N 121.3133 W
|
57
|
+
277 Broken Arrow Oklahoma 102019 98850 3.21% 61.571 sq mi 1,605 per sq mi 2409914 36.0365 N 95.7810 W
|
58
|
+
203 Gainesville Florida 126047 124354 1.36% 61.305 sq mi 2,028 per sq mi 2403676 29.6788 N 82.3459 W
|
59
|
+
160 Rockford Illinois 150843 152871 1.33% 61.081 sq mi 2,503 per sq mi 2396405 42.2634 N 89.0628 W
|
60
|
+
24 Washington District of Columbia 632323 601723 5.09% 61.048 sq mi 9,856 per sq mi 2390665 38.9041 N 77.0171 W
|
61
|
+
29 Oklahoma City Oklahoma 599199 579999 3.31% 606.410 sq mi 956 per sq mi 2411311 35.4671 N 97.5137 W
|
62
|
+
54 Honolulu Hawaii 345610 337256 2.48% 60.521 sq mi 5,573 per sq mi 2630783 21.3259 N 157.8453 W
|
63
|
+
198 Topeka Kansas 127939 127473 0.37% 60.168 sq mi 2,119 per sq mi 485655 39.0362 N 95.6948 W
|
64
|
+
263 Cambridge Massachusetts 106471 105162 1.24% 6.385 sq mi 16,469 per sq mi 619396 42.3760 N 71.1183 W
|
65
|
+
4 Houston Texas 2160821 2100263 2.88% 599.589 sq mi 3,501 per sq mi 2410796 29.7805 N 95.3863 W
|
66
|
+
87 Glendale Arizona 232143 226721 2.39% 59.976 sq mi 3,780 per sq mi 2410596 33.5331 N 112.1899 W
|
67
|
+
102 Richmond Virginia 210309 204214 2.98% 59.805 sq mi 3,415 per sq mi 1789073 37.5314 N 77.4760 W
|
68
|
+
193 Olathe Kansas 130045 125872 3.32% 59.661 sq mi 2,110 per sq mi 485633 38.8843 N 94.8188 W
|
69
|
+
227 Springfield Illinois 117126 116250 0.75% 59.480 sq mi 1,954 per sq mi 2395940 39.7639 N 89.6708 W
|
70
|
+
103 Spokane Washington 209525 208916 0.29% 59.247 sq mi 3,526 per sq mi 2411956 47.6736 N 117.4166 W
|
71
|
+
98 San Bernardino California 213295 209924 1.61% 59.201 sq mi 3,546 per sq mi 2411777 34.1393 N 117.2953 W
|
72
|
+
86 Garland Texas 233564 226876 2.95% 57.085 sq mi 3,974 per sq mi 2410572 32.9098 N 96.6304 W
|
73
|
+
45 Oakland California 400740 390724 2.56% 55.786 sq mi 7,004 per sq mi 2411292 37.7699 N 122.2256 W
|
74
|
+
181 Dayton Ohio 141359 141527 0.12% 55.652 sq mi 2,543 per sq mi 1086666 39.7774 N 84.1996 W
|
75
|
+
61 Pittsburgh Pennsylvania 306211 305704 0.17% 55.367 sq mi 5,521 per sq mi 1214818 40.4398 N 79.9766 W
|
76
|
+
234 Murfreesboro Tennessee 114038 108755 4.86% 55.346 sq mi 1,965 per sq mi 2404342 35.8522 N 86.4161 W
|
77
|
+
279 West Palm Beach Florida 101903 99919 1.99% 55.293 sq mi 1,807 per sq mi 2405713 26.7483 N 80.1266 W
|
78
|
+
195 Thousand Oaks California 128412 126683 1.36% 55.031 sq mi 2,302 per sq mi 2412065 34.1933 N 118.8742 W
|
79
|
+
249 Rochester Minnesota 108992 106769 2.08% 54.586 sq mi 1,956 per sq mi 2396395 44.0154 N 92.4772 W
|
80
|
+
171 Cary North Carolina 145693 135234 7.73% 54.345 sq mi 2,488 per sq mi 2406229 35.7821 N 78.8141 W
|
81
|
+
163 Fort Collins Colorado 148612 143986 3.21% 54.277 sq mi 2,653 per sq mi 2410526 40.5482 N 105.0648 W
|
82
|
+
79 Norfolk Virginia 245782 242803 1.23% 54.120 sq mi 4,486 per sq mi 1498557 36.9230 N 76.2446 W
|
83
|
+
47 Minneapolis Minnesota 392880 382578 2.69% 53.973 sq mi 7,088 per sq mi 2395345 44.9633 N 93.2683 W
|
84
|
+
260 High Point North Carolina 106586 104371 2.12% 53.803 sq mi 1,940 per sq mi 2404696 35.9855 N 79.9902 W
|
85
|
+
254 Pueblo Colorado 107772 106595 1.10% 53.641 sq mi 1,987 per sq mi 2411501 38.2731 N 104.6124 W
|
86
|
+
187 Killeen Texas 134654 127921 5.26% 53.580 sq mi 2,387 per sq mi 2411542 31.0777 N 97.7320 W
|
87
|
+
132 Santa Clarita California 179013 176320 1.53% 52.716 sq mi 3,345 per sq mi 2411819 34.4049 N 118.5047 W
|
88
|
+
6 Phoenix Arizona 1488750 1445632 2.98% 516.704 sq mi 2,798 per sq mi 2411414 33.5722 N 112.0880 W
|
89
|
+
66 Saint Paul Minnesota 290770 285068 2.00% 51.979 sq mi 5,484 per sq mi 2396511 44.9489 N 93.1039 W
|
90
|
+
243 Wilmington North Carolina 109922 106476 3.24% 51.493 sq mi 2,068 per sq mi 2405754 34.2092 N 77.8858 W
|
91
|
+
185 Hampton Virginia 136836 137436 0.44% 51.413 sq mi 2,673 per sq mi 1498554 37.0480 N 76.2971 W
|
92
|
+
113 Moreno Valley California 199552 193365 3.20% 51.275 sq mi 3,771 per sq mi 2411159 33.9233 N 117.2057 W
|
93
|
+
36 Long Beach California 467892 462257 1.22% 50.293 sq mi 9,191 per sq mi 2410866 33.8091 N 118.1553 W
|
94
|
+
143 Ontario California 167211 163924 2.01% 49.941 sq mi 3,282 per sq mi 2411323 34.0395 N 117.6088 W
|
95
|
+
55 Anaheim California 343248 336265 2.08% 49.835 sq mi 6,748 per sq mi 2409704 33.8555 N 117.7601 W
|
96
|
+
108 Tacoma Washington 202010 198397 1.82% 49.721 sq mi 3,990 per sq mi 2412025 47.2522 N 122.4598 W
|
97
|
+
76 Chula Vista California 252422 243916 3.49% 49.631 sq mi 4,915 per sq mi 2409461 32.6277 N 117.0152 W
|
98
|
+
214 Lafayette Louisiana 122761 120623 1.77% 49.231 sq mi 2,450 per sq mi 2404854 30.2116 N 92.0314 W
|
99
|
+
245 Fargo North Dakota 109779 105549 4.01% 48.821 sq mi 2,162 per sq mi 1036030 46.8652 N 96.8290 W
|
100
|
+
186 McAllen Texas 134719 129877 3.73% 48.344 sq mi 2,687 per sq mi 2411057 26.2185 N 98.2461 W
|
101
|
+
21 Boston Massachusetts 636479 617594 3.06% 48.277 sq mi 12,793 per sq mi 619463 42.3320 N 71.0202 W
|
102
|
+
230 Peoria Illinois 115687 115007 0.59% 48.007 sq mi 2,396 per sq mi 2396178 40.7523 N 89.6171 W
|
103
|
+
25 Nashville Tennessee 624496 601222 3.87% 475.126 sq mi 1,265 per sq mi 2405092 36.1718 N 86.7850 W
|
104
|
+
155 Salem Oregon 157429 154637 1.81% 47.896 sq mi 3,229 per sq mi 2411764 44.9237 N 123.0231 W
|
105
|
+
2 Los Angeles California 3857799 3792621 1.72% 468.670 sq mi 8,092 per sq mi 2410877 34.0194 N 118.4108 W
|
106
|
+
7 San Antonio Texas 1382951 1327407 4.18% 460.933 sq mi 2,880 per sq mi 2411774 29.4724 N 98.5251 W
|
107
|
+
14 San Francisco California 825863 805235 2.56% 46.873 sq mi 17,179 per sq mi 2411786 37.7751 N 122.4193 W
|
108
|
+
145 Vancouver Washington 165489 161791 2.29% 46.456 sq mi 3,483 per sq mi 2412146 45.6372 N 122.5965 W
|
109
|
+
178 Mesquite Texas 143195 139824 2.41% 46.021 sq mi 3,038 per sq mi 2411090 32.7639 N 96.5924 W
|
110
|
+
268 Green Bay Wisconsin 104868 104057 0.78% 45.467 sq mi 2,289 per sq mi 1583309 44.5207 N 87.9842 W
|
111
|
+
162 Hayward California 149392 144186 3.61% 45.323 sq mi 3,181 per sq mi 2410724 37.6281 N 122.1063 W
|
112
|
+
112 Aurora Illinois 199932 197899 1.03% 44.936 sq mi 4,404 per sq mi 2394031 41.7635 N 88.2901 W
|
113
|
+
123 Grand Rapids Michigan 190411 188040 1.26% 44.395 sq mi 4,236 per sq mi 1626373 42.9612 N 85.6556 W
|
114
|
+
218 Evansville Indiana 120235 117429 2.39% 44.153 sq mi 2,660 per sq mi 2394710 37.9877 N 87.5347 W
|
115
|
+
154 Eugene Oregon 157986 156185 1.15% 43.723 sq mi 3,572 per sq mi 2410460 44.0567 N 123.1162 W
|
116
|
+
258 Billings Montana 106954 104170 2.67% 43.413 sq mi 2,399 per sq mi 2409849 45.7895 N 108.5499 W
|
117
|
+
172 Lakewood Colorado 145516 142980 1.77% 42.880 sq mi 3,334 per sq mi 2411614 39.6989 N 105.1176 W
|
118
|
+
159 Pasadena Texas 152272 149043 2.17% 42.762 sq mi 3,485 per sq mi 2411380 29.6583 N 95.1505 W
|
119
|
+
110 Fontana California 201812 196069 2.93% 42.432 sq mi 4,621 per sq mi 2410517 34.1088 N 117.4627 W
|
120
|
+
152 Elk Grove California 159038 153015 3.94% 42.190 sq mi 3,627 per sq mi 2410425 38.4144 N 121.3849 W
|
121
|
+
265 Odessa Texas 106102 99940 6.17% 41.955 sq mi 2,382 per sq mi 2411303 31.8804 N 102.3434 W
|
122
|
+
229 Provo Utah 115919 112488 3.05% 41.673 sq mi 2,699 per sq mi 2411499 40.2453 N 111.6448 W
|
123
|
+
204 Simi Valley California 125793 124237 1.25% 41.480 sq mi 2,995 per sq mi 2411904 34.2669 N 118.7485 W
|
124
|
+
287 South Bend Indiana 100800 101168 0.36% 41.458 sq mi 2,440 per sq mi 2395913 41.6769 N 86.2690 W
|
125
|
+
141 Santa Rosa California 170685 167815 1.71% 41.294 sq mi 4,064 per sq mi 2411827 38.4468 N 122.7061 W
|
126
|
+
137 Oceanside California 171293 167086 2.52% 41.235 sq mi 4,052 per sq mi 2411301 33.2246 N 117.3062 W
|
127
|
+
73 Buffalo New York 259384 261310 0.74% 40.384 sq mi 6,471 per sq mi 978764 42.8925 N 78.8597 W
|
128
|
+
144 Tempe Arizona 166842 161719 3.17% 39.929 sq mi 4,050 per sq mi 2412045 33.3884 N 111.9318 W
|
129
|
+
140 Rancho Cucamonga California 170746 165269 3.31% 39.851 sq mi 4,147 per sq mi 2411514 34.1233 N 117.5642 W
|
130
|
+
153 Corona California 158391 152374 3.95% 38.825 sq mi 3,925 per sq mi 2410232 33.8624 N 117.5639 W
|
131
|
+
176 Naperville Illinois 143684 141853 1.29% 38.769 sq mi 3,659 per sq mi 2395147 41.7492 N 88.1620 W
|
132
|
+
247 Carlsbad California 109318 105328 3.79% 37.722 sq mi 2,792 per sq mi 2409984 33.1239 N 117.2828 W
|
133
|
+
208 Stamford Connecticut 125109 122643 2.01% 37.639 sq mi 3,258 per sq mi 2378291 41.0799 N 73.5460 W
|
134
|
+
256 Fairfield California 107684 105321 2.24% 37.390 sq mi 2,817 per sq mi 2410474 38.2568 N 122.0397 W
|
135
|
+
127 Worcester Massachusetts 182669 181045 0.90% 37.371 sq mi 4,845 per sq mi 619493 42.2695 N 71.8078 W
|
136
|
+
242 Elgin Illinois 109927 108188 1.61% 37.163 sq mi 2,911 per sq mi 2394641 42.0396 N 88.3217 W
|
137
|
+
13 Indianapolis Indiana 834852 820445 1.76% 361.433 sq mi 2,270 per sq mi 2395424 39.7767 N 86.1459 W
|
138
|
+
106 Modesto California 203547 201165 1.18% 36.867 sq mi 5,456 per sq mi 2411130 37.6609 N 120.9891 W
|
139
|
+
165 Escondido California 147575 143911 2.55% 36.813 sq mi 3,909 per sq mi 2410455 33.1336 N 117.0732 W
|
140
|
+
192 Sterling Heights Michigan 130410 129699 0.55% 36.505 sq mi 3,553 per sq mi 1627126 42.5812 N 83.0303 W
|
141
|
+
206 Carrollton Texas 125409 119097 5.30% 36.296 sq mi 3,281 per sq mi 2409992 32.9884 N 96.8998 W
|
142
|
+
199 Visalia California 127081 124442 2.12% 36.246 sq mi 3,433 per sq mi 2412160 36.3272 N 119.3234 W
|
143
|
+
211 Roseville California 124519 118788 4.82% 36.222 sq mi 3,279 per sq mi 2411000 38.7657 N 121.3032 W
|
144
|
+
235 Lansing Michigan 113996 114297 0.26% 36.049 sq mi 3,171 per sq mi 1626588 42.7098 N 84.5562 W
|
145
|
+
44 Miami Florida 413892 399457 3.61% 35.871 sq mi 11,539 per sq mi 2404247 25.7752 N 80.2086 W
|
146
|
+
101 Rochester New York 210532 210565 0.02% 35.781 sq mi 5,885 per sq mi 979426 43.1699 N 77.6169 W
|
147
|
+
189 West Valley City Utah 132434 129480 2.28% 35.556 sq mi 3,642 per sq mi 2412231 40.6885 N 112.0118 W
|
148
|
+
246 Arvada Colorado 109745 106433 3.11% 35.142 sq mi 3,029 per sq mi 2409737 39.8097 N 105.1066 W
|
149
|
+
92 Chesapeake Virginia 228417 222209 2.79% 340.800 sq mi 652 per sq mi 1498558 36.6794 N 76.3018 W
|
150
|
+
9 Dallas Texas 1241162 1197816 3.62% 340.519 sq mi 3,518 per sq mi 2410288 32.7757 N 96.7967 W
|
151
|
+
212 Thornton Colorado 124140 118772 4.52% 34.843 sq mi 3,409 per sq mi 2412064 39.9180 N 104.9454 W
|
152
|
+
139 Fort Lauderdale Florida 170747 165521 3.16% 34.765 sq mi 4,761 per sq mi 2403640 26.1413 N 80.1439 W
|
153
|
+
188 Warren Michigan 134141 134056 0.06% 34.381 sq mi 3,899 per sq mi 1627213 42.4929 N 83.0250 W
|
154
|
+
261 Round Rock Texas 106573 99887 6.69% 34.113 sq mi 2,928 per sq mi 2411005 30.5237 N 97.6674 W
|
155
|
+
16 Fort Worth Texas 777992 741206 4.96% 339.819 sq mi 2,181 per sq mi 2410531 32.7795 N 97.3463 W
|
156
|
+
259 Murrieta California 106810 103466 3.23% 33.577 sq mi 3,081 per sq mi 2411199 33.5719 N 117.1907 W
|
157
|
+
269 Everett Washington 104655 103019 1.59% 33.447 sq mi 3,080 per sq mi 2410469 48.0033 N 122.1742 W
|
158
|
+
288 Flint Michigan 100515 102434 1.87% 33.416 sq mi 3,065 per sq mi 1626285 43.0244 N 83.6920 W
|
159
|
+
148 Pembroke Pines Florida 160306 154019 4.08% 33.124 sq mi 4,672 per sq mi 2404502 26.0212 N 80.3404 W
|
160
|
+
241 Manchester New Hampshire 110209 109565 0.59% 33.101 sq mi 3,310 per sq mi 873658 42.9847 N 71.4439 W
|
161
|
+
27 Louisville Kentucky 605110 597337 1.30% 325.248 sq mi 1,837 per sq mi 1967434 38.1781 N 85.6667 W
|
162
|
+
8 San Diego California 1338348 1307402 2.37% 325.188 sq mi 4,020 per sq mi 2411782 32.8153 N 117.1350 W
|
163
|
+
253 West Jordan Utah 108383 103712 4.50% 32.457 sq mi 3,195 per sq mi 2412222 40.6023 N 112.0010 W
|
164
|
+
20 Memphis Tennessee 655155 646889 1.28% 315.055 sq mi 2,053 per sq mi 2405068 35.1035 N 89.9785 W
|
165
|
+
37 Kansas City Missouri 464310 459787 0.98% 314.950 sq mi 1,460 per sq mi 2395492 39.1252 N 94.5511 W
|
166
|
+
202 Bellevue Washington 126439 122363 3.33% 31.968 sq mi 3,828 per sq mi 2409821 47.5978 N 122.1565 W
|
167
|
+
158 Springfield Massachusetts 153552 153060 0.32% 31.865 sq mi 4,803 per sq mi 619388 42.1155 N 72.5400 W
|
168
|
+
248 Westminster Colorado 109169 106114 2.88% 31.550 sq mi 3,363 per sq mi 2412237 39.8822 N 105.0644 W
|
169
|
+
1 New York New York 8336697 8175133 1.98% 302.643 sq mi 27,012 per sq mi 2395220 40.6643 N 73.9385 W
|
170
|
+
117 Augusta Georgia 197872 195844 1.04% 302.474 sq mi 647 per sq mi 2405078 33.3655 N 82.0734 W
|
171
|
+
225 Vallejo California 117796 115942 1.60% 30.671 sq mi 3,780 per sq mi 2412142 38.1079 N 122.2639 W
|
172
|
+
210 Concord California 124711 122067 2.17% 30.546 sq mi 3,996 per sq mi 2410214 37.9722 N 122.0016 W
|
173
|
+
122 Glendale California 194478 191719 1.44% 30.453 sq mi 6,295 per sq mi 2410597 34.1814 N 118.2458 W
|
174
|
+
267 Temecula California 105208 100097 5.11% 30.151 sq mi 3,320 per sq mi 2412044 33.5019 N 117.1246 W
|
175
|
+
262 Richmond California 106516 103701 2.71% 30.068 sq mi 3,449 per sq mi 2410939 37.9530 N 122.3594 W
|
176
|
+
11 Austin Texas 842592 790390 6.60% 297.896 sq mi 2,653 per sq mi 2409761 30.3072 N 97.7560 W
|
177
|
+
17 Charlotte North Carolina 775202 731424 5.99% 297.678 sq mi 2,457 per sq mi 2404032 35.2087 N 80.8307 W
|
178
|
+
194 Miramar Florida 128729 122041 5.48% 29.521 sq mi 4,134 per sq mi 2404275 25.9770 N 80.3358 W
|
179
|
+
62 Lexington Kentucky 305489 295803 3.27% 283.649 sq mi 1,043 per sq mi 2405089 38.0402 N 84.4584 W
|
180
|
+
273 Centennial Colorado 103743 100377 3.35% 28.722 sq mi 3,495 per sq mi 2409422 39.5906 N 104.8691 W
|
181
|
+
213 Kent Washington 122999 92411 33.10% 28.625 sq mi 3,228 per sq mi 2410185 47.3853 N 122.2169 W
|
182
|
+
275 Richardson Texas 103297 99223 4.11% 28.564 sq mi 3,474 per sq mi 2410933 32.9723 N 96.7081 W
|
183
|
+
244 Waterbury Connecticut 109915 110366 0.41% 28.519 sq mi 3,870 per sq mi 2378294 41.5585 N 73.0367 W
|
184
|
+
266 Antioch California 105508 102372 3.06% 28.349 sq mi 3,611 per sq mi 2409715 37.9775 N 121.7976 W
|
185
|
+
228 Ann Arbor Michigan 116121 113934 1.92% 27.830 sq mi 4,094 per sq mi 1625837 42.2756 N 83.7313 W
|
186
|
+
173 Hollywood Florida 145236 140768 3.17% 27.366 sq mi 5,144 per sq mi 2404719 26.0311 N 80.1646 W
|
187
|
+
57 Santa Ana California 330920 324528 1.97% 27.270 sq mi 11,901 per sq mi 2411814 33.7365 N 117.8826 W
|
188
|
+
111 Oxnard California 201555 197899 1.85% 26.894 sq mi 7,358 per sq mi 2411347 34.2023 N 119.2046 W
|
189
|
+
121 Huntington Beach California 194708 189992 2.48% 26.748 sq mi 7,103 per sq mi 2410811 33.6906 N 118.0093 W
|
190
|
+
19 El Paso Texas 672538 649121 3.61% 255.235 sq mi 2,543 per sq mi 2410414 31.8484 N 106.4270 W
|
191
|
+
251 Clearwater Florida 108732 107685 0.97% 25.562 sq mi 4,213 per sq mi 2404067 27.9795 N 82.7663 W
|
192
|
+
175 Syracuse New York 144170 145170 0.69% 25.043 sq mi 5,797 per sq mi 979539 43.0410 N 76.1436 W
|
193
|
+
39 Virginia Beach Virginia 447021 437994 2.06% 249.016 sq mi 1,759 per sq mi 1498559 36.7793 N 76.0240 W
|
194
|
+
182 Orange California 139419 136416 2.20% 24.797 sq mi 5,501 per sq mi 2411325 33.8048 N 117.8249 W
|
195
|
+
68 Newark New Jersey 277727 277140 0.21% 24.187 sq mi 11,458 per sq mi 885317 40.7242 N 74.1726 W
|
196
|
+
276 Pompano Beach Florida 102984 99845 3.14% 24.002 sq mi 4,160 per sq mi 2404547 26.2426 N 80.1290 W
|
197
|
+
207 Coral Springs Florida 125287 121096 3.46% 23.792 sq mi 5,090 per sq mi 2404127 26.2708 N 80.2593 W
|
198
|
+
250 Gresham Oregon 108956 105594 3.18% 23.201 sq mi 4,551 per sq mi 2410663 45.5023 N 122.4416 W
|
199
|
+
157 Salinas California 154484 150441 2.69% 23.179 sq mi 6,490 per sq mi 2411768 36.6902 N 121.6337 W
|
200
|
+
3 Chicago Illinois 2714856 2695598 0.71% 227.635 sq mi 11,842 per sq mi 428803 41.8376 N 87.6818 W
|
201
|
+
33 Tucson Arizona 524295 520116 0.80% 226.709 sq mi 2,294 per sq mi 2412104 32.1543 N 110.8711 W
|
202
|
+
184 Pasadena California 138547 137122 1.04% 22.970 sq mi 5,970 per sq mi 2411379 34.1606 N 118.1396 W
|
203
|
+
161 Pomona California 150812 149058 1.18% 22.952 sq mi 6,494 per sq mi 2411454 34.0586 N 117.7613 W
|
204
|
+
282 Santa Maria California 101459 99553 1.91% 22.756 sq mi 4,375 per sq mi 2411824 34.9332 N 120.4438 W
|
205
|
+
183 Fullerton California 138574 135161 2.53% 22.353 sq mi 6,047 per sq mi 2410556 33.8857 N 117.9280 W
|
206
|
+
281 Rialto California 101740 99171 2.59% 22.351 sq mi 4,437 per sq mi 2410931 34.1118 N 117.3883 W
|
207
|
+
15 Columbus Ohio 809798 787033 2.89% 217.169 sq mi 3,624 per sq mi 1086101 39.9848 N 82.9850 W
|
208
|
+
116 Columbus Georgia 198413 189885 4.49% 216.385 sq mi 878 per sq mi 2404111 32.5102 N 84.8749 W
|
209
|
+
170 Sunnyvale California 146197 140081 4.37% 21.987 sq mi 6,371 per sq mi 2412009 37.3858 N 122.0263 W
|
210
|
+
255 Ventura California 107734 106433 1.22% 21.655 sq mi 4,915 per sq mi 2411779 34.2681 N 119.2550 W
|
211
|
+
88 Hialeah Florida 231941 224669 3.24% 21.450 sq mi 10,474 per sq mi 2404689 25.8699 N 80.3029 W
|
212
|
+
126 Huntsville Alabama 183739 180105 2.02% 209.054 sq mi 862 per sq mi 2404746 34.7843 N 86.5390 W
|
213
|
+
167 Torrance California 147027 145438 1.09% 20.478 sq mi 7,102 per sq mi 2412087 33.8350 N 118.3414 W
|
214
|
+
46 Tulsa Oklahoma 393987 391906 0.53% 196.754 sq mi 1,992 per sq mi 2412110 36.1279 N 95.9023 W
|
215
|
+
41 Colorado Springs Colorado 431834 416427 3.70% 194.540 sq mi 2,141 per sq mi 2410198 38.8673 N 104.7607 W
|
216
|
+
285 Erie Pennsylvania 101047 101786 0.73% 19.081 sq mi 5,334 per sq mi 1215209 42.1166 N 80.0735 W
|
217
|
+
32 Albuquerque New Mexico 555417 545852 1.75% 187.730 sq mi 2,908 per sq mi 2409678 35.1056 N 106.6474 W
|
218
|
+
94 Scottsdale Arizona 223514 217385 2.82% 183.920 sq mi 1,182 per sq mi 2411845 33.6687 N 111.8237 W
|
219
|
+
191 New Haven Connecticut 130741 129779 0.74% 18.679 sq mi 6,948 per sq mi 2378285 41.3108 N 72.9250 W
|
220
|
+
220 Santa Clara California 119311 116468 2.44% 18.407 sq mi 6,327 per sq mi 2411816 37.3646 N 121.9679 W
|
221
|
+
134 Providence Rhode Island 178432 178042 0.22% 18.400 sq mi 9,676 per sq mi 1220076 41.8231 N 71.4188 W
|
222
|
+
240 Miami Gardens Florida 110754 107167 3.35% 18.231 sq mi 5,878 per sq mi 2404249 25.9489 N 80.2436 W
|
223
|
+
115 Yonkers New York 198449 195976 1.26% 18.012 sq mi 10,880 per sq mi 979660 40.9459 N 73.8674 W
|
224
|
+
231 Norman Oklahoma 115562 110925 4.18% 178.763 sq mi 621 per sq mi 2411267 35.2406 N 97.3453 W
|
225
|
+
10 San Jose California 982765 945942 3.89% 176.526 sq mi 5,359 per sq mi 2411790 37.2969 N 121.8193 W
|
226
|
+
150 Peoria Arizona 159789 154065 3.72% 174.404 sq mi 883 per sq mi 2411401 33.7877 N 112.3111 W
|
227
|
+
136 Garden Grove California 174389 170883 2.05% 17.941 sq mi 9,525 per sq mi 2410568 33.7788 N 117.9605 W
|
228
|
+
222 Allentown Pennsylvania 118974 118032 0.80% 17.546 sq mi 6,727 per sq mi 1215372 40.5940 N 75.4782 W
|
229
|
+
209 Hartford Connecticut 124893 124775 0.09% 17.381 sq mi 7,179 per sq mi 2378277 41.7660 N 72.6833 W
|
230
|
+
271 Burbank California 104391 103340 1.02% 17.341 sq mi 5,959 per sq mi 2409939 34.1890 N 118.3249 W
|
231
|
+
51 New Orleans Louisiana 369250 343829 7.39% 169.423 sq mi 2,029 per sq mi 545142 30.0686 N 89.9390 W
|
232
|
+
60 Corpus Christi Texas 312195 305215 2.29% 160.612 sq mi 1,900 per sq mi 2410234 27.7543 N 97.1734 W
|
233
|
+
257 West Covina California 107440 106098 1.26% 16.041 sq mi 6,614 per sq mi 2412219 34.0559 N 117.9099 W
|
234
|
+
105 Montgomery Alabama 205293 205764 0.23% 159.565 sq mi 1,290 per sq mi 2404289 32.3463 N 86.2686 W
|
235
|
+
49 Wichita Kansas 385577 382368 0.84% 159.295 sq mi 2,400 per sq mi 485662 37.6907 N 97.3427 W
|
236
|
+
56 Aurora Colorado 339030 325078 4.29% 154.100 sq mi 2,110 per sq mi 2409731 39.7082 N 104.8235 W
|
237
|
+
23 Denver Colorado 634265 600158 5.68% 153.000 sq mi 3,923 per sq mi 2410324 39.7618 N 104.8806 W
|
238
|
+
168 Bridgeport Connecticut 146425 144229 1.52% 15.974 sq mi 9,029 per sq mi 2378269 41.1874 N 73.1957 W
|
239
|
+
238 Costa Mesa California 111918 109960 1.78% 15.654 sq mi 7,025 per sq mi 2410239 33.6659 N 117.9123 W
|
240
|
+
169 Alexandria Virginia 146294 139966 4.52% 15.027 sq mi 9,314 per sq mi 1498415 38.8183 N 77.0820 W
|
241
|
+
100 Birmingham Alabama 212038 212237 0.09% 146.067 sq mi 1,453 per sq mi 2403868 33.5274 N 86.7990 W
|
242
|
+
107 Fayetteville North Carolina 202103 200564 0.77% 145.845 sq mi 1,375 per sq mi 2403604 35.0851 N 78.9803 W
|
243
|
+
42 Raleigh North Carolina 423179 403892 4.78% 142.903 sq mi 2,826 per sq mi 2404590 35.8302 N 78.6414 W
|
244
|
+
52 Bakersfield California 358597 347483 3.20% 142.164 sq mi 2,444 per sq mi 2409774 35.3212 N 119.0183 W
|
245
|
+
75 Jersey City New Jersey 254441 247597 2.76% 14.794 sq mi 16,737 per sq mi 885264 40.7114 N 74.0648 W
|
246
|
+
283 El Cajon California 101435 99478 1.97% 14.433 sq mi 6,892 per sq mi 2410406 32.8017 N 116.9605 W
|
247
|
+
120 Mobile Alabama 194822 195111 0.15% 139.109 sq mi 1,403 per sq mi 2404278 30.6684 N 88.1002 W
|
248
|
+
18 Detroit Michigan 701475 713777 1.72% 138.750 sq mi 5,144 per sq mi 1626181 42.3830 N 83.1022 W
|
249
|
+
138 Chattanooga Tennessee 171279 167674 2.15% 137.152 sq mi 1,223 per sq mi 2404035 35.0665 N 85.2471 W
|
250
|
+
38 Mesa Arizona 452084 439041 2.97% 136.452 sq mi 3,218 per sq mi 2411087 33.4019 N 111.7174 W
|
251
|
+
31 Las Vegas Nevada 596424 583756 2.17% 135.815 sq mi 4,298 per sq mi 2411630 36.2277 N 115.2640 W
|
252
|
+
5 Philadelphia Pennsylvania 1547607 1526006 1.42% 134.101 sq mi 11,379 per sq mi 1215531 40.0094 N 75.1333 W
|
253
|
+
28 Portland Oregon 603106 583776 3.31% 133.427 sq mi 4,375 per sq mi 2411471 45.5370 N 122.6500 W
|
254
|
+
40 Atlanta Georgia 443775 420003 5.66% 133.152 sq mi 3,154 per sq mi 2403126 33.7629 N 84.4227 W
|
255
|
+
85 Winston�Salem North Carolina 234349 229617 2.06% 132.449 sq mi 1,734 per sq mi 2405771 36.1033 N 80.2606 W
|
256
|
+
131 Brownsville Texas 180097 175023 2.90% 132.330 sq mi 1,323 per sq mi 2409924 26.0183 N 97.4538 W
|
257
|
+
190 Columbia South Carolina 131686 129272 1.87% 132.213 sq mi 978 per sq mi 2404107 34.0298 N 80.8966 W
|
258
|
+
252 Lowell Massachusetts 108522 106519 1.88% 13.583 sq mi 7,842 per sq mi 618227 42.6389 N 71.3221 W
|
259
|
+
43 Omaha Nebraska 421570 408958 3.08% 127.088 sq mi 3,218 per sq mi 2396064 41.2647 N 96.0419 W
|
260
|
+
69 Greensboro North Carolina 277080 269666 2.75% 126.515 sq mi 2,131 per sq mi 2403745 36.0965 N 79.8271 W
|
261
|
+
166 Kansas City Kansas 147268 145786 1.02% 124.810 sq mi 1,168 per sq mi 485601 39.1225 N 94.7418 W
|
262
|
+
84 Lubbock Texas 236065 229573 2.83% 122.410 sq mi 1,875 per sq mi 2410892 33.5665 N 101.8867 W
|
263
|
+
237 Downey California 112873 111772 0.99% 12.408 sq mi 9,008 per sq mi 2410352 33.9382 N 118.1309 W
|
264
|
+
201 Elizabeth New Jersey 126458 124969 1.19% 12.319 sq mi 10,144 per sq mi 885205 40.6663 N 74.1935 W
|
265
|
+
118 Little Rock Arkansas 196537 193524 1.56% 119.200 sq mi 1,624 per sq mi 2404939 34.7254 N 92.3586 W
|
266
|
+
221 Athens Georgia 118999 115452 3.07% 116.355 sq mi 992 per sq mi 2407405 33.9496 N 83.3701 W
|
267
|
+
142 Port St. Lucie Florida 168716 164603 2.50% 113.953 sq mi 1,444 per sq mi 2404558 27.2810 N 80.3838 W
|
268
|
+
53 Tampa Florida 347645 335709 3.56% 113.409 sq mi 3,077 per sq mi 2405568 27.9701 N 82.4797 W
|
269
|
+
34 Fresno California 505882 494665 2.27% 111.957 sq mi 4,418 per sq mi 2410546 36.7827 N 119.7945 W
|
270
|
+
124 Salt Lake City Utah 189314 186440 1.54% 111.110 sq mi 1,678 per sq mi 2411771 40.7785 N 111.9314 W
|
271
|
+
135 Jackson Mississippi 175437 173514 1.11% 111.046 sq mi 1,563 per sq mi 2404779 32.3158 N 90.2128 W
|
272
|
+
74 Fort Wayne Indiana 254555 253691 0.34% 110.618 sq mi 2,293 per sq mi 2394798 41.0882 N 85.1439 W
|
273
|
+
205 Charleston South Carolina 125583 120083 4.58% 108.979 sq mi 1,102 per sq mi 2404030 32.8179 N 79.9589 W
|
274
|
+
71 Henderson Nevada 265679 257729 3.08% 107.732 sq mi 2,392 per sq mi 2410741 36.0122 N 115.0375 W
|
275
|
+
83 Durham North Carolina 239358 228330 4.83% 107.370 sq mi 2,127 per sq mi 2403521 35.9810 N 78.9056 W
|
276
|
+
223 Abilene Texas 118887 117063 1.56% 106.793 sq mi 1,096 per sq mi 2409657 32.4545 N 99.7381 W
|
277
|
+
156 Palmdale California 155650 152750 1.90% 105.961 sq mi 1,442 per sq mi 2411359 34.5913 N 118.1090 W
|
278
|
+
215 Surprise Arizona 121287 117517 3.21% 105.747 sq mi 1,111 per sq mi 2412016 33.6706 N 112.4527 W
|
279
|
+
147 Cape Coral Florida 161248 154305 4.50% 105.673 sq mi 1,460 per sq mi 2403990 26.6431 N 81.9973 W
|
280
|
+
109 Shreveport Louisiana 201867 199311 1.28% 105.375 sq mi 1,891 per sq mi 2405463 32.4670 N 93.7927 W
|
281
|
+
180 Savannah Georgia 142022 136286 4.21% 103.151 sq mi 1,321 per sq mi 2405429 32.0025 N 81.1536 W
|
282
|
+
89 Reno Nevada 231027 225221 2.58% 103.009 sq mi 2,186 per sq mi 2410923 39.4745 N 119.7765 W
|
283
|
+
77 Orlando Florida 249562 238300 4.73% 102.395 sq mi 2,327 per sq mi 2404443 28.4159 N 81.2988 W
|
284
|
+
95 North Las Vegas Nevada 223491 216961 3.01% 101.345 sq mi 2,141 per sq mi 2411273 36.2830 N 115.0893 W
|
285
|
+
125 Tallahassee Florida 186971 181376 3.08% 100.247 sq mi 1,809 per sq mi 2405563 30.4551 N 84.2534 W
|
286
|
+
232 Berkeley California 115403 112580 2.51% 10.470 sq mi 10,752 per sq mi 2409837 37.8667 N 122.2991 W
|
287
|
+
63 Anchorage Alaska 298610 291826 2.32% 1,704.683 sq mi 171 per sq mi 2419025 61.2176 N 149.8953 W
|
288
|
+
278 North Charleston South Carolina 101989 97471 4.64% 32.8853 N 80.0169 W
|
289
|
+
280 Boulder Colorado 101808 97385 4.54% 40.0175 N 105.2797 W
|
290
|
+
289 Kenosha Wisconsin 100150 99218 0.94% 42.5822 N 87.8456 W
|