svmkit 0.6.0 → 0.6.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.rubocop.yml +4 -1
- data/HISTORY.md +5 -0
- data/lib/svmkit/decomposition/nmf.rb +2 -2
- data/lib/svmkit/linear_model/lasso.rb +23 -63
- data/lib/svmkit/linear_model/linear_regression.rb +10 -57
- data/lib/svmkit/linear_model/logistic_regression.rb +8 -63
- data/lib/svmkit/linear_model/ridge.rb +10 -60
- data/lib/svmkit/linear_model/sgd_linear_estimator.rb +89 -0
- data/lib/svmkit/linear_model/svc.rb +9 -62
- data/lib/svmkit/linear_model/svr.rb +8 -57
- data/lib/svmkit/tree/decision_tree_classifier.rb +6 -6
- data/lib/svmkit/tree/decision_tree_regressor.rb +1 -1
- data/lib/svmkit/version.rb +1 -1
- data/lib/svmkit.rb +1 -0
- metadata +3 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 1d52bf496a762b096a5f6dbeec278a1cae8079b53d6c91cc13c07dca7a799fde
|
4
|
+
data.tar.gz: e5ca2fed307b82e88dfe816691a4715d62a3187c1cad71421a48bea65037b19c
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 620370c119300f3f419550609444eba4aa34561a954e8ec26cf6a0d3522cd32cabf1f6875092de5ab0dd202ebf7b772c1d6d6421cd05d90cfeeeeadea3cd0565
|
7
|
+
data.tar.gz: a0d8b5a7b91c4a8e2ffb4312a8082096a2e4fbd411e37bd36752ac19a66f6b9accf22be15894d6a88421b7296bde90ead33b55604085d139e5faec64b97f0f55
|
data/.rubocop.yml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
inherit_from: .rubocop_todo.yml
|
2
2
|
|
3
3
|
AllCops:
|
4
|
-
TargetRubyVersion: 2.
|
4
|
+
TargetRubyVersion: 2.2
|
5
5
|
DisplayCopNames: true
|
6
6
|
DisplayStyleGuide: true
|
7
7
|
|
@@ -39,3 +39,6 @@ Naming/UncommunicativeMethodParamName:
|
|
39
39
|
|
40
40
|
Style/FormatStringToken:
|
41
41
|
Enabled: false
|
42
|
+
|
43
|
+
Style/NumericLiterals:
|
44
|
+
Enabled: false
|
data/HISTORY.md
CHANGED
@@ -1,3 +1,8 @@
|
|
1
|
+
# 0.6.1
|
2
|
+
- Add abstract class for linear estimator with stochastic gradient descent.
|
3
|
+
- Refactor linear estimators to use linear esitmator abstract class.
|
4
|
+
- Refactor decistion tree classes to avoid unneeded type conversion.
|
5
|
+
|
1
6
|
# 0.6.0
|
2
7
|
- Add class for Principal Component Analysis.
|
3
8
|
- Add class for Non-negative Matrix Factorization.
|
@@ -121,11 +121,11 @@ module SVMKit
|
|
121
121
|
# update
|
122
122
|
if update_comps
|
123
123
|
nume = coefficients.transpose.dot(x)
|
124
|
-
deno =
|
124
|
+
deno = coefficients.transpose.dot(coefficients).dot(@components) + @params[:eps]
|
125
125
|
@components *= (nume / deno)
|
126
126
|
end
|
127
127
|
nume = x.dot(@components.transpose)
|
128
|
-
deno =
|
128
|
+
deno = coefficients.dot(@components).dot(@components.transpose) + @params[:eps]
|
129
129
|
coefficients *= (nume / deno)
|
130
130
|
# normalize
|
131
131
|
norm = Numo::NMath.sqrt((@components**2).sum(1)) + @params[:eps]
|
@@ -1,9 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'svmkit/validation'
|
4
|
-
require 'svmkit/
|
4
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
5
|
require 'svmkit/base/regressor'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
6
|
|
8
7
|
module SVMKit
|
9
8
|
module LinearModel
|
@@ -19,8 +18,7 @@ module SVMKit
|
|
19
18
|
# *Reference*
|
20
19
|
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
21
20
|
# - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
|
22
|
-
class Lasso
|
23
|
-
include Base::BaseEstimator
|
21
|
+
class Lasso < SGDLinearEstimator
|
24
22
|
include Base::Regressor
|
25
23
|
include Validation
|
26
24
|
|
@@ -40,29 +38,19 @@ module SVMKit
|
|
40
38
|
#
|
41
39
|
# @param reg_param [Float] The regularization parameter.
|
42
40
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
41
|
+
# @param bias_scale [Float] The scale of the bias term.
|
43
42
|
# @param max_iter [Integer] The maximum number of iterations.
|
44
43
|
# @param batch_size [Integer] The size of the mini batches.
|
45
44
|
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
46
45
|
# If nil is given, Nadam is used.
|
47
46
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
48
|
-
def initialize(reg_param: 1.0, fit_bias: false, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
49
|
-
check_params_float(reg_param: reg_param)
|
47
|
+
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
48
|
+
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
|
50
49
|
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
51
50
|
check_params_boolean(fit_bias: fit_bias)
|
52
51
|
check_params_type_or_nil(Integer, random_seed: random_seed)
|
53
52
|
check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
54
|
-
|
55
|
-
@params[:reg_param] = reg_param
|
56
|
-
@params[:fit_bias] = fit_bias
|
57
|
-
@params[:max_iter] = max_iter
|
58
|
-
@params[:batch_size] = batch_size
|
59
|
-
@params[:optimizer] = optimizer
|
60
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
61
|
-
@params[:random_seed] = random_seed
|
62
|
-
@params[:random_seed] ||= srand
|
63
|
-
@weight_vec = nil
|
64
|
-
@bias_term = nil
|
65
|
-
@rng = Random.new(@params[:random_seed])
|
53
|
+
super
|
66
54
|
end
|
67
55
|
|
68
56
|
# Fit the model with given training data.
|
@@ -76,14 +64,14 @@ module SVMKit
|
|
76
64
|
check_sample_tvalue_size(x, y)
|
77
65
|
|
78
66
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
79
|
-
|
67
|
+
n_features = x.shape[1]
|
80
68
|
|
81
69
|
if n_outputs > 1
|
82
70
|
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
83
71
|
@bias_term = Numo::DFloat.zeros(n_outputs)
|
84
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] =
|
72
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
85
73
|
else
|
86
|
-
@weight_vec, @bias_term =
|
74
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
87
75
|
end
|
88
76
|
|
89
77
|
self
|
@@ -119,60 +107,32 @@ module SVMKit
|
|
119
107
|
|
120
108
|
private
|
121
109
|
|
122
|
-
def
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
left_weight_vec = Numo::DFloat.zeros(n_features)
|
130
|
-
right_weight_vec = Numo::DFloat.zeros(n_features)
|
131
|
-
left_optimizer = @params[:optimizer].dup
|
132
|
-
right_optimizer = @params[:optimizer].dup
|
133
|
-
# Start optimization.
|
134
|
-
@params[:max_iter].times do |_t|
|
135
|
-
# Random sampling.
|
136
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
137
|
-
rand_ids.concat(subset_ids)
|
138
|
-
data = samples[subset_ids, true]
|
139
|
-
values = y[subset_ids]
|
140
|
-
# Calculate gradients for loss function.
|
141
|
-
loss_grad = loss_gradient(data, values, weight_vec)
|
142
|
-
next if loss_grad.ne(0.0).count.zero?
|
143
|
-
# Update weight.
|
144
|
-
left_weight_vec = round_weight(left_optimizer.call(left_weight_vec, left_weight_gradient(loss_grad, data)))
|
145
|
-
right_weight_vec = round_weight(right_optimizer.call(right_weight_vec, right_weight_gradient(loss_grad, data)))
|
146
|
-
weight_vec = left_weight_vec - right_weight_vec
|
147
|
-
end
|
148
|
-
split_weight_vec_bias(weight_vec)
|
110
|
+
def partial_fit(x, y)
|
111
|
+
n_features = @params[:fit_bias] ? x.shape[1] + 1 : x.shape[1]
|
112
|
+
@left_weight = Numo::DFloat.zeros(n_features)
|
113
|
+
@right_weight = Numo::DFloat.zeros(n_features)
|
114
|
+
@left_optimizer = @params[:optimizer].dup
|
115
|
+
@right_optimizer = @params[:optimizer].dup
|
116
|
+
super
|
149
117
|
end
|
150
118
|
|
151
|
-
def
|
119
|
+
def calc_loss_gradient(x, y, weight)
|
152
120
|
2.0 * (x.dot(weight) - y)
|
153
121
|
end
|
154
122
|
|
155
|
-
def
|
156
|
-
|
123
|
+
def calc_new_weight(_optimizer, x, _weight, loss_gradient)
|
124
|
+
@left_weight = round_weight(@left_optimizer.call(@left_weight, calc_weight_gradient(loss_gradient, x)))
|
125
|
+
@right_weight = round_weight(@right_optimizer.call(@right_weight, calc_weight_gradient(-loss_gradient, x)))
|
126
|
+
@left_weight - @right_weight
|
157
127
|
end
|
158
128
|
|
159
|
-
def
|
160
|
-
((@params[:reg_param]
|
129
|
+
def calc_weight_gradient(loss_gradient, data)
|
130
|
+
((@params[:reg_param] + loss_gradient).expand_dims(1) * data).mean(0)
|
161
131
|
end
|
162
132
|
|
163
133
|
def round_weight(weight)
|
164
134
|
0.5 * (weight + weight.abs)
|
165
135
|
end
|
166
|
-
|
167
|
-
def expand_feature(x)
|
168
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
|
169
|
-
end
|
170
|
-
|
171
|
-
def split_weight_vec_bias(weight_vec)
|
172
|
-
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
|
173
|
-
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
|
174
|
-
[weights, bias]
|
175
|
-
end
|
176
136
|
end
|
177
137
|
end
|
178
138
|
end
|
@@ -1,9 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'svmkit/validation'
|
4
|
-
require 'svmkit/
|
4
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
5
|
require 'svmkit/base/regressor'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
6
|
|
8
7
|
module SVMKit
|
9
8
|
module LinearModel
|
@@ -16,8 +15,7 @@ module SVMKit
|
|
16
15
|
# estimator.fit(training_samples, traininig_values)
|
17
16
|
# results = estimator.predict(testing_samples)
|
18
17
|
#
|
19
|
-
class LinearRegression
|
20
|
-
include Base::BaseEstimator
|
18
|
+
class LinearRegression < SGDLinearEstimator
|
21
19
|
include Base::Regressor
|
22
20
|
include Validation
|
23
21
|
|
@@ -36,27 +34,20 @@ module SVMKit
|
|
36
34
|
# Create a new ordinary least square linear regressor.
|
37
35
|
#
|
38
36
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
37
|
+
# @param bias_scale [Float] The scale of the bias term.
|
39
38
|
# @param max_iter [Integer] The maximum number of iterations.
|
40
39
|
# @param batch_size [Integer] The size of the mini batches.
|
41
40
|
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
42
41
|
# If nil is given, Nadam is used.
|
43
42
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
44
|
-
def initialize(fit_bias: false, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
43
|
+
def initialize(fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
44
|
+
check_params_float(bias_scale: bias_scale)
|
45
45
|
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
46
46
|
check_params_boolean(fit_bias: fit_bias)
|
47
47
|
check_params_type_or_nil(Integer, random_seed: random_seed)
|
48
48
|
check_params_positive(max_iter: max_iter, batch_size: batch_size)
|
49
|
-
|
50
|
-
|
51
|
-
@params[:max_iter] = max_iter
|
52
|
-
@params[:batch_size] = batch_size
|
53
|
-
@params[:optimizer] = optimizer
|
54
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
55
|
-
@params[:random_seed] = random_seed
|
56
|
-
@params[:random_seed] ||= srand
|
57
|
-
@weight_vec = nil
|
58
|
-
@bias_term = nil
|
59
|
-
@rng = Random.new(@params[:random_seed])
|
49
|
+
super(reg_param: 0.0, fit_bias: fit_bias, bias_scale: bias_scale,
|
50
|
+
max_iter: max_iter, batch_size: batch_size, optimizer: optimizer, random_seed: random_seed)
|
60
51
|
end
|
61
52
|
|
62
53
|
# Fit the model with given training data.
|
@@ -75,9 +66,9 @@ module SVMKit
|
|
75
66
|
if n_outputs > 1
|
76
67
|
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
77
68
|
@bias_term = Numo::DFloat.zeros(n_outputs)
|
78
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] =
|
69
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
79
70
|
else
|
80
|
-
@weight_vec, @bias_term =
|
71
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
81
72
|
end
|
82
73
|
|
83
74
|
self
|
@@ -113,47 +104,9 @@ module SVMKit
|
|
113
104
|
|
114
105
|
private
|
115
106
|
|
116
|
-
def
|
117
|
-
# Expand feature vectors for bias term.
|
118
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
119
|
-
# Initialize some variables.
|
120
|
-
n_samples, n_features = samples.shape
|
121
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
122
|
-
weight_vec = Numo::DFloat.zeros(n_features)
|
123
|
-
optimizer = @params[:optimizer].dup
|
124
|
-
# Start optimization.
|
125
|
-
@params[:max_iter].times do |_t|
|
126
|
-
# Random sampling.
|
127
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
128
|
-
rand_ids.concat(subset_ids)
|
129
|
-
data = samples[subset_ids, true]
|
130
|
-
values = y[subset_ids]
|
131
|
-
# Calculate gradients for loss function.
|
132
|
-
loss_grad = loss_gradient(data, values, weight_vec)
|
133
|
-
next if loss_grad.ne(0.0).count.zero?
|
134
|
-
# Update weight.
|
135
|
-
weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
|
136
|
-
end
|
137
|
-
split_weight_vec_bias(weight_vec)
|
138
|
-
end
|
139
|
-
|
140
|
-
def loss_gradient(x, y, weight)
|
107
|
+
def calc_loss_gradient(x, y, weight)
|
141
108
|
2.0 * (x.dot(weight) - y)
|
142
109
|
end
|
143
|
-
|
144
|
-
def weight_gradient(loss_grad, data, _weight)
|
145
|
-
(loss_grad.expand_dims(1) * data).mean(0)
|
146
|
-
end
|
147
|
-
|
148
|
-
def expand_feature(x)
|
149
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
|
150
|
-
end
|
151
|
-
|
152
|
-
def split_weight_vec_bias(weight_vec)
|
153
|
-
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
|
154
|
-
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
|
155
|
-
[weights, bias]
|
156
|
-
end
|
157
110
|
end
|
158
111
|
end
|
159
112
|
end
|
@@ -1,9 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'svmkit/validation'
|
4
|
-
require 'svmkit/
|
4
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
5
|
require 'svmkit/base/classifier'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
6
|
|
8
7
|
module SVMKit
|
9
8
|
module LinearModel
|
@@ -19,8 +18,7 @@ module SVMKit
|
|
19
18
|
#
|
20
19
|
# *Reference*
|
21
20
|
# - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
22
|
-
class LogisticRegression
|
23
|
-
include Base::BaseEstimator
|
21
|
+
class LogisticRegression < SGDLinearEstimator
|
24
22
|
include Base::Classifier
|
25
23
|
include Validation
|
26
24
|
|
@@ -58,20 +56,8 @@ module SVMKit
|
|
58
56
|
check_params_boolean(fit_bias: fit_bias)
|
59
57
|
check_params_type_or_nil(Integer, random_seed: random_seed)
|
60
58
|
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
61
|
-
|
62
|
-
@params[:reg_param] = reg_param
|
63
|
-
@params[:fit_bias] = fit_bias
|
64
|
-
@params[:bias_scale] = bias_scale
|
65
|
-
@params[:max_iter] = max_iter
|
66
|
-
@params[:batch_size] = batch_size
|
67
|
-
@params[:optimizer] = optimizer
|
68
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
69
|
-
@params[:random_seed] = random_seed
|
70
|
-
@params[:random_seed] ||= srand
|
71
|
-
@weight_vec = nil
|
72
|
-
@bias_term = nil
|
59
|
+
super
|
73
60
|
@classes = nil
|
74
|
-
@rng = Random.new(@params[:random_seed])
|
75
61
|
end
|
76
62
|
|
77
63
|
# Fit the model with given training data.
|
@@ -86,21 +72,19 @@ module SVMKit
|
|
86
72
|
|
87
73
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
88
74
|
n_classes = @classes.size
|
89
|
-
|
75
|
+
n_features = x.shape[1]
|
90
76
|
|
91
77
|
if n_classes > 2
|
92
78
|
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
93
79
|
@bias_term = Numo::DFloat.zeros(n_classes)
|
94
80
|
n_classes.times do |n|
|
95
81
|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
96
|
-
|
97
|
-
@weight_vec[n, true] = weight
|
98
|
-
@bias_term[n] = bias
|
82
|
+
@weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
99
83
|
end
|
100
84
|
else
|
101
85
|
negative_label = y.to_a.uniq.min
|
102
86
|
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
103
|
-
@weight_vec, @bias_term =
|
87
|
+
@weight_vec, @bias_term = partial_fit(x, bin_y)
|
104
88
|
end
|
105
89
|
|
106
90
|
self
|
@@ -169,47 +153,8 @@ module SVMKit
|
|
169
153
|
|
170
154
|
private
|
171
155
|
|
172
|
-
def
|
173
|
-
|
174
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
175
|
-
# Initialize some variables.
|
176
|
-
n_samples, n_features = samples.shape
|
177
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
178
|
-
weight_vec = Numo::DFloat.zeros(n_features)
|
179
|
-
optimizer = @params[:optimizer].dup
|
180
|
-
# Start optimization.
|
181
|
-
@params[:max_iter].times do |_t|
|
182
|
-
# random sampling
|
183
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
184
|
-
rand_ids.concat(subset_ids)
|
185
|
-
data = samples[subset_ids, true]
|
186
|
-
labels = y[subset_ids]
|
187
|
-
# calculate gradient for loss function.
|
188
|
-
loss_grad = loss_gradient(data, labels, weight_vec)
|
189
|
-
# update weight.
|
190
|
-
weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
|
191
|
-
end
|
192
|
-
split_weight_vec_bias(weight_vec)
|
193
|
-
end
|
194
|
-
|
195
|
-
def loss_gradient(x, y, weight)
|
196
|
-
z = x.dot(weight)
|
197
|
-
grad = y / (Numo::NMath.exp(-y * z) + 1.0) - y
|
198
|
-
grad
|
199
|
-
end
|
200
|
-
|
201
|
-
def weight_gradient(loss_grad, x, weight)
|
202
|
-
x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight
|
203
|
-
end
|
204
|
-
|
205
|
-
def expand_feature(x)
|
206
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]])
|
207
|
-
end
|
208
|
-
|
209
|
-
def split_weight_vec_bias(weight_vec)
|
210
|
-
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
|
211
|
-
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
|
212
|
-
[weights, bias]
|
156
|
+
def calc_loss_gradient(x, y, weight)
|
157
|
+
y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y
|
213
158
|
end
|
214
159
|
end
|
215
160
|
end
|
@@ -1,9 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'svmkit/validation'
|
4
|
-
require 'svmkit/
|
4
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
5
|
require 'svmkit/base/regressor'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
6
|
|
8
7
|
module SVMKit
|
9
8
|
module LinearModel
|
@@ -16,8 +15,7 @@ module SVMKit
|
|
16
15
|
# estimator.fit(training_samples, traininig_values)
|
17
16
|
# results = estimator.predict(testing_samples)
|
18
17
|
#
|
19
|
-
class Ridge
|
20
|
-
include Base::BaseEstimator
|
18
|
+
class Ridge < SGDLinearEstimator
|
21
19
|
include Base::Regressor
|
22
20
|
include Validation
|
23
21
|
|
@@ -37,29 +35,19 @@ module SVMKit
|
|
37
35
|
#
|
38
36
|
# @param reg_param [Float] The regularization parameter.
|
39
37
|
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
38
|
+
# @param bias_scale [Float] The scale of the bias term.
|
40
39
|
# @param max_iter [Integer] The maximum number of iterations.
|
41
40
|
# @param batch_size [Integer] The size of the mini batches.
|
42
41
|
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
43
42
|
# If nil is given, Nadam is used.
|
44
43
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
45
|
-
def initialize(reg_param: 1.0, fit_bias: false, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
46
|
-
check_params_float(reg_param: reg_param)
|
44
|
+
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
45
|
+
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
|
47
46
|
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
48
47
|
check_params_boolean(fit_bias: fit_bias)
|
49
48
|
check_params_type_or_nil(Integer, random_seed: random_seed)
|
50
49
|
check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
|
51
|
-
|
52
|
-
@params[:reg_param] = reg_param
|
53
|
-
@params[:fit_bias] = fit_bias
|
54
|
-
@params[:max_iter] = max_iter
|
55
|
-
@params[:batch_size] = batch_size
|
56
|
-
@params[:optimizer] = optimizer
|
57
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
58
|
-
@params[:random_seed] = random_seed
|
59
|
-
@params[:random_seed] ||= srand
|
60
|
-
@weight_vec = nil
|
61
|
-
@bias_term = nil
|
62
|
-
@rng = Random.new(@params[:random_seed])
|
50
|
+
super
|
63
51
|
end
|
64
52
|
|
65
53
|
# Fit the model with given training data.
|
@@ -73,14 +61,14 @@ module SVMKit
|
|
73
61
|
check_sample_tvalue_size(x, y)
|
74
62
|
|
75
63
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
76
|
-
|
64
|
+
n_features = x.shape[1]
|
77
65
|
|
78
66
|
if n_outputs > 1
|
79
67
|
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
80
68
|
@bias_term = Numo::DFloat.zeros(n_outputs)
|
81
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] =
|
69
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
82
70
|
else
|
83
|
-
@weight_vec, @bias_term =
|
71
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
84
72
|
end
|
85
73
|
|
86
74
|
self
|
@@ -116,47 +104,9 @@ module SVMKit
|
|
116
104
|
|
117
105
|
private
|
118
106
|
|
119
|
-
def
|
120
|
-
# Expand feature vectors for bias term.
|
121
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
122
|
-
# Initialize some variables.
|
123
|
-
n_samples, n_features = samples.shape
|
124
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
125
|
-
weight_vec = Numo::DFloat.zeros(n_features)
|
126
|
-
optimizer = @params[:optimizer].dup
|
127
|
-
# Start optimization.
|
128
|
-
@params[:max_iter].times do |_t|
|
129
|
-
# Random sampling.
|
130
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
131
|
-
rand_ids.concat(subset_ids)
|
132
|
-
data = samples[subset_ids, true]
|
133
|
-
values = y[subset_ids]
|
134
|
-
# Calculate gradients for loss function.
|
135
|
-
loss_grad = loss_gradient(data, values, weight_vec)
|
136
|
-
next if loss_grad.ne(0.0).count.zero?
|
137
|
-
# Update weight.
|
138
|
-
weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
|
139
|
-
end
|
140
|
-
split_weight_vec_bias(weight_vec)
|
141
|
-
end
|
142
|
-
|
143
|
-
def loss_gradient(x, y, weight)
|
107
|
+
def calc_loss_gradient(x, y, weight)
|
144
108
|
2.0 * (x.dot(weight) - y)
|
145
109
|
end
|
146
|
-
|
147
|
-
def weight_gradient(loss_grad, data, weight)
|
148
|
-
(loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param] * weight
|
149
|
-
end
|
150
|
-
|
151
|
-
def expand_feature(x)
|
152
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
|
153
|
-
end
|
154
|
-
|
155
|
-
def split_weight_vec_bias(weight_vec)
|
156
|
-
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
|
157
|
-
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
|
158
|
-
[weights, bias]
|
159
|
-
end
|
160
110
|
end
|
161
111
|
end
|
162
112
|
end
|
@@ -0,0 +1,89 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'svmkit/base/base_estimator'
|
4
|
+
require 'svmkit/optimizer/nadam'
|
5
|
+
|
6
|
+
module SVMKit
|
7
|
+
module LinearModel
|
8
|
+
# SGDLinearEstimator is an abstract class for implementation of linear estimator
|
9
|
+
# with mini-batch stochastic gradient descent optimization.
|
10
|
+
# This class is used for internal process.
|
11
|
+
class SGDLinearEstimator
|
12
|
+
include Base::BaseEstimator
|
13
|
+
|
14
|
+
# Initialize a linear estimator.
|
15
|
+
#
|
16
|
+
# @param reg_param [Float] The regularization parameter.
|
17
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
18
|
+
# @param bias_scale [Float] The scale of the bias term.
|
19
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
20
|
+
# @param batch_size [Integer] The size of the mini batches.
|
21
|
+
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
22
|
+
# If nil is given, Nadam is used.
|
23
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
24
|
+
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
25
|
+
max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
26
|
+
@params = {}
|
27
|
+
@params[:reg_param] = reg_param
|
28
|
+
@params[:fit_bias] = fit_bias
|
29
|
+
@params[:bias_scale] = bias_scale
|
30
|
+
@params[:max_iter] = max_iter
|
31
|
+
@params[:batch_size] = batch_size
|
32
|
+
@params[:optimizer] = optimizer
|
33
|
+
@params[:optimizer] ||= Optimizer::Nadam.new
|
34
|
+
@params[:random_seed] = random_seed
|
35
|
+
@params[:random_seed] ||= srand
|
36
|
+
@weight_vec = nil
|
37
|
+
@bias_term = nil
|
38
|
+
@rng = Random.new(@params[:random_seed])
|
39
|
+
end
|
40
|
+
|
41
|
+
private
|
42
|
+
|
43
|
+
def partial_fit(x, y)
|
44
|
+
# Expand feature vectors for bias term.
|
45
|
+
samples = @params[:fit_bias] ? expand_feature(x) : x
|
46
|
+
# Initialize some variables.
|
47
|
+
n_samples, n_features = samples.shape
|
48
|
+
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
49
|
+
weight = Numo::DFloat.zeros(n_features)
|
50
|
+
optimizer = @params[:optimizer].dup
|
51
|
+
# Optimization.
|
52
|
+
@params[:max_iter].times do |_t|
|
53
|
+
# Random sampling
|
54
|
+
subset_ids = rand_ids.shift(@params[:batch_size])
|
55
|
+
rand_ids.concat(subset_ids)
|
56
|
+
sub_samples = samples[subset_ids, true]
|
57
|
+
sub_targets = y[subset_ids]
|
58
|
+
# Update weight.
|
59
|
+
loss_gradient = calc_loss_gradient(sub_samples, sub_targets, weight)
|
60
|
+
next if loss_gradient.ne(0.0).count.zero?
|
61
|
+
weight = calc_new_weight(optimizer, sub_samples, weight, loss_gradient)
|
62
|
+
end
|
63
|
+
split_weight(weight)
|
64
|
+
end
|
65
|
+
|
66
|
+
def calc_loss_gradient(_x, _y, _weight)
|
67
|
+
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
68
|
+
end
|
69
|
+
|
70
|
+
def calc_new_weight(optimizer, x, weight, loss_gradient)
|
71
|
+
weight_gradient = x.transpose.dot(loss_gradient) / @params[:batch_size] + @params[:reg_param] * weight
|
72
|
+
optimizer.call(weight, weight_gradient)
|
73
|
+
end
|
74
|
+
|
75
|
+
def expand_feature(x)
|
76
|
+
n_samples = x.shape[0]
|
77
|
+
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
78
|
+
end
|
79
|
+
|
80
|
+
def split_weight(weight)
|
81
|
+
if @params[:fit_bias]
|
82
|
+
[weight[0...-1], weight[-1]]
|
83
|
+
else
|
84
|
+
[weight, 0.0]
|
85
|
+
end
|
86
|
+
end
|
87
|
+
end
|
88
|
+
end
|
89
|
+
end
|
@@ -1,9 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'svmkit/validation'
|
4
|
-
require 'svmkit/
|
4
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
5
|
require 'svmkit/base/classifier'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
6
|
require 'svmkit/probabilistic_output'
|
8
7
|
|
9
8
|
module SVMKit
|
@@ -21,8 +20,7 @@ module SVMKit
|
|
21
20
|
#
|
22
21
|
# *Reference*
|
23
22
|
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
24
|
-
class SVC
|
25
|
-
include Base::BaseEstimator
|
23
|
+
class SVC < SGDLinearEstimator
|
26
24
|
include Base::Classifier
|
27
25
|
include Validation
|
28
26
|
|
@@ -60,22 +58,11 @@ module SVMKit
|
|
60
58
|
check_params_boolean(fit_bias: fit_bias, probability: probability)
|
61
59
|
check_params_type_or_nil(Integer, random_seed: random_seed)
|
62
60
|
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
63
|
-
|
64
|
-
|
65
|
-
@params[:fit_bias] = fit_bias
|
66
|
-
@params[:bias_scale] = bias_scale
|
67
|
-
@params[:max_iter] = max_iter
|
68
|
-
@params[:batch_size] = batch_size
|
61
|
+
super(reg_param: reg_param, fit_bias: fit_bias, bias_scale: bias_scale,
|
62
|
+
max_iter: max_iter, batch_size: batch_size, optimizer: optimizer, random_seed: random_seed)
|
69
63
|
@params[:probability] = probability
|
70
|
-
@params[:optimizer] = optimizer
|
71
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
72
|
-
@params[:random_seed] = random_seed
|
73
|
-
@params[:random_seed] ||= srand
|
74
|
-
@weight_vec = nil
|
75
|
-
@bias_term = nil
|
76
64
|
@prob_param = nil
|
77
65
|
@classes = nil
|
78
|
-
@rng = Random.new(@params[:random_seed])
|
79
66
|
end
|
80
67
|
|
81
68
|
# Fit the model with given training data.
|
@@ -90,7 +77,7 @@ module SVMKit
|
|
90
77
|
|
91
78
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
92
79
|
n_classes = @classes.size
|
93
|
-
|
80
|
+
n_features = x.shape[1]
|
94
81
|
|
95
82
|
if n_classes > 2
|
96
83
|
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
@@ -98,11 +85,9 @@ module SVMKit
|
|
98
85
|
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
99
86
|
n_classes.times do |n|
|
100
87
|
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
101
|
-
|
102
|
-
@weight_vec[n, true] = weight
|
103
|
-
@bias_term[n] = bias
|
88
|
+
@weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
104
89
|
@prob_param[n, true] = if @params[:probability]
|
105
|
-
SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(
|
90
|
+
SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec[n, true].transpose) + @bias_term[n], bin_y)
|
106
91
|
else
|
107
92
|
Numo::DFloat[1, 0]
|
108
93
|
end
|
@@ -110,7 +95,7 @@ module SVMKit
|
|
110
95
|
else
|
111
96
|
negative_label = y.to_a.uniq.min
|
112
97
|
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
113
|
-
@weight_vec, @bias_term =
|
98
|
+
@weight_vec, @bias_term = partial_fit(x, bin_y)
|
114
99
|
@prob_param = if @params[:probability]
|
115
100
|
SVMKit::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose) + @bias_term, bin_y)
|
116
101
|
else
|
@@ -188,50 +173,12 @@ module SVMKit
|
|
188
173
|
|
189
174
|
private
|
190
175
|
|
191
|
-
def
|
192
|
-
# Expand feature vectors for bias term.
|
193
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
194
|
-
# Initialize some variables.
|
195
|
-
n_samples, n_features = samples.shape
|
196
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
197
|
-
weight_vec = Numo::DFloat.zeros(n_features)
|
198
|
-
optimizer = @params[:optimizer].dup
|
199
|
-
# Start optimization.
|
200
|
-
@params[:max_iter].times do |_t|
|
201
|
-
# random sampling.
|
202
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
203
|
-
rand_ids.concat(subset_ids)
|
204
|
-
data = samples[subset_ids, true]
|
205
|
-
labels = y[subset_ids]
|
206
|
-
# calculate gradient for loss function.
|
207
|
-
loss_grad = loss_gradient(data, labels, weight_vec)
|
208
|
-
next if loss_grad.ne(0.0).count.zero?
|
209
|
-
# update weight.
|
210
|
-
weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
|
211
|
-
end
|
212
|
-
split_weight_vec_bias(weight_vec)
|
213
|
-
end
|
214
|
-
|
215
|
-
def loss_gradient(x, y, weight)
|
176
|
+
def calc_loss_gradient(x, y, weight)
|
216
177
|
target_ids = (x.dot(weight) * y).lt(1.0).where
|
217
178
|
grad = Numo::DFloat.zeros(@params[:batch_size])
|
218
179
|
grad[target_ids] = -y[target_ids]
|
219
180
|
grad
|
220
181
|
end
|
221
|
-
|
222
|
-
def weight_gradient(loss_grad, x, weight)
|
223
|
-
x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight
|
224
|
-
end
|
225
|
-
|
226
|
-
def expand_feature(x)
|
227
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]])
|
228
|
-
end
|
229
|
-
|
230
|
-
def split_weight_vec_bias(weight_vec)
|
231
|
-
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
|
232
|
-
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
|
233
|
-
[weights, bias]
|
234
|
-
end
|
235
182
|
end
|
236
183
|
end
|
237
184
|
end
|
@@ -1,9 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
require 'svmkit/validation'
|
4
|
-
require 'svmkit/
|
4
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
5
5
|
require 'svmkit/base/regressor'
|
6
|
-
require 'svmkit/optimizer/nadam'
|
7
6
|
|
8
7
|
module SVMKit
|
9
8
|
module LinearModel
|
@@ -18,8 +17,7 @@ module SVMKit
|
|
18
17
|
#
|
19
18
|
# *Reference*
|
20
19
|
# 1. S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
21
|
-
class SVR
|
22
|
-
include Base::BaseEstimator
|
20
|
+
class SVR < SGDLinearEstimator
|
23
21
|
include Base::Regressor
|
24
22
|
include Validation
|
25
23
|
|
@@ -54,20 +52,9 @@ module SVMKit
|
|
54
52
|
check_params_type_or_nil(Integer, random_seed: random_seed)
|
55
53
|
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
|
56
54
|
max_iter: max_iter, batch_size: batch_size)
|
57
|
-
|
58
|
-
|
59
|
-
@params[:fit_bias] = fit_bias
|
60
|
-
@params[:bias_scale] = bias_scale
|
55
|
+
super(reg_param: reg_param, fit_bias: fit_bias, bias_scale: bias_scale,
|
56
|
+
max_iter: max_iter, batch_size: batch_size, optimizer: optimizer, random_seed: random_seed)
|
61
57
|
@params[:epsilon] = epsilon
|
62
|
-
@params[:max_iter] = max_iter
|
63
|
-
@params[:batch_size] = batch_size
|
64
|
-
@params[:optimizer] = optimizer
|
65
|
-
@params[:optimizer] ||= Optimizer::Nadam.new
|
66
|
-
@params[:random_seed] = random_seed
|
67
|
-
@params[:random_seed] ||= srand
|
68
|
-
@weight_vec = nil
|
69
|
-
@bias_term = nil
|
70
|
-
@rng = Random.new(@params[:random_seed])
|
71
58
|
end
|
72
59
|
|
73
60
|
# Fit the model with given training data.
|
@@ -81,14 +68,14 @@ module SVMKit
|
|
81
68
|
check_sample_tvalue_size(x, y)
|
82
69
|
|
83
70
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
84
|
-
|
71
|
+
n_features = x.shape[1]
|
85
72
|
|
86
73
|
if n_outputs > 1
|
87
74
|
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
88
75
|
@bias_term = Numo::DFloat.zeros(n_outputs)
|
89
|
-
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] =
|
76
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
90
77
|
else
|
91
|
-
@weight_vec, @bias_term =
|
78
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
92
79
|
end
|
93
80
|
|
94
81
|
self
|
@@ -124,49 +111,13 @@ module SVMKit
|
|
124
111
|
|
125
112
|
private
|
126
113
|
|
127
|
-
def
|
128
|
-
# Expand feature vectors for bias term.
|
129
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
130
|
-
# Initialize some variables.
|
131
|
-
n_samples, n_features = samples.shape
|
132
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
133
|
-
weight_vec = Numo::DFloat.zeros(n_features)
|
134
|
-
optimizer = @params[:optimizer].dup
|
135
|
-
# Start optimization.
|
136
|
-
@params[:max_iter].times do |_t|
|
137
|
-
# random sampling
|
138
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
139
|
-
rand_ids.concat(subset_ids)
|
140
|
-
data = samples[subset_ids, true]
|
141
|
-
values = y[subset_ids]
|
142
|
-
# update the weight vector.
|
143
|
-
loss_grad = loss_gradient(data, values, weight_vec)
|
144
|
-
weight_vec = optimizer.call(weight_vec, weight_gradient(loss_grad, data, weight_vec))
|
145
|
-
end
|
146
|
-
split_weight_vec_bias(weight_vec)
|
147
|
-
end
|
148
|
-
|
149
|
-
def loss_gradient(x, y, weight)
|
114
|
+
def calc_loss_gradient(x, y, weight)
|
150
115
|
z = x.dot(weight)
|
151
116
|
grad = Numo::DFloat.zeros(@params[:batch_size])
|
152
117
|
grad[(z - y).gt(@params[:epsilon]).where] = 1
|
153
118
|
grad[(y - z).gt(@params[:epsilon]).where] = -1
|
154
119
|
grad
|
155
120
|
end
|
156
|
-
|
157
|
-
def weight_gradient(loss_grad, x, weight)
|
158
|
-
x.transpose.dot(loss_grad) / @params[:batch_size] + @params[:reg_param] * weight
|
159
|
-
end
|
160
|
-
|
161
|
-
def expand_feature(x)
|
162
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1]) * @params[:bias_scale]])
|
163
|
-
end
|
164
|
-
|
165
|
-
def split_weight_vec_bias(weight_vec)
|
166
|
-
weights = @params[:fit_bias] ? weight_vec[0...-1] : weight_vec
|
167
|
-
bias = @params[:fit_bias] ? weight_vec[-1] : 0.0
|
168
|
-
[weights, bias]
|
169
|
-
end
|
170
121
|
end
|
171
122
|
end
|
172
123
|
end
|
@@ -213,7 +213,7 @@ module SVMKit
|
|
213
213
|
end
|
214
214
|
|
215
215
|
def put_leaf(node, y)
|
216
|
-
node.probs = Numo::DFloat
|
216
|
+
node.probs = Numo::DFloat.cast(@classes.map { |c| y.eq(c).count_true }) / node.n_samples
|
217
217
|
node.leaf = true
|
218
218
|
node.leaf_id = @n_leaves
|
219
219
|
@n_leaves += 1
|
@@ -234,18 +234,18 @@ module SVMKit
|
|
234
234
|
end
|
235
235
|
|
236
236
|
def splited_ids(features, threshold)
|
237
|
-
[features.le(threshold).where
|
237
|
+
[features.le(threshold).where, features.gt(threshold).where]
|
238
238
|
end
|
239
239
|
|
240
240
|
def gain(labels, labels_left, labels_right)
|
241
|
-
prob_left = labels_left.size
|
242
|
-
prob_right = labels_right.size
|
241
|
+
prob_left = labels_left.size.fdiv(labels.size)
|
242
|
+
prob_right = labels_right.size.fdiv(labels.size)
|
243
243
|
impurity(labels) - prob_left * impurity(labels_left) - prob_right * impurity(labels_right)
|
244
244
|
end
|
245
245
|
|
246
246
|
def impurity(labels)
|
247
|
-
|
248
|
-
send(@criterion,
|
247
|
+
cls = labels.to_a.uniq.sort
|
248
|
+
cls.size == 1 ? 0.0 : send(@criterion, Numo::DFloat[*(cls.map { |c| labels.eq(c).count_true.fdiv(labels.size) })])
|
249
249
|
end
|
250
250
|
|
251
251
|
def gini(posterior_probs)
|
@@ -208,7 +208,7 @@ module SVMKit
|
|
208
208
|
end
|
209
209
|
|
210
210
|
def splited_ids(features, threshold)
|
211
|
-
[features.le(threshold).where
|
211
|
+
[features.le(threshold).where, features.gt(threshold).where]
|
212
212
|
end
|
213
213
|
|
214
214
|
def gain(values, values_left, values_right)
|
data/lib/svmkit/version.rb
CHANGED
data/lib/svmkit.rb
CHANGED
@@ -19,6 +19,7 @@ require 'svmkit/optimizer/rmsprop'
|
|
19
19
|
require 'svmkit/optimizer/nadam'
|
20
20
|
require 'svmkit/optimizer/yellow_fin'
|
21
21
|
require 'svmkit/kernel_approximation/rbf'
|
22
|
+
require 'svmkit/linear_model/sgd_linear_estimator'
|
22
23
|
require 'svmkit/linear_model/svc'
|
23
24
|
require 'svmkit/linear_model/svr'
|
24
25
|
require 'svmkit/linear_model/logistic_regression'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: svmkit
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.6.
|
4
|
+
version: 0.6.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-
|
11
|
+
date: 2018-09-10 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -140,6 +140,7 @@ files:
|
|
140
140
|
- lib/svmkit/linear_model/linear_regression.rb
|
141
141
|
- lib/svmkit/linear_model/logistic_regression.rb
|
142
142
|
- lib/svmkit/linear_model/ridge.rb
|
143
|
+
- lib/svmkit/linear_model/sgd_linear_estimator.rb
|
143
144
|
- lib/svmkit/linear_model/svc.rb
|
144
145
|
- lib/svmkit/linear_model/svr.rb
|
145
146
|
- lib/svmkit/model_selection/cross_validation.rb
|