stockor 0.3.0 → 0.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +3 -0
- data/.rubocop.yml +15 -0
- data/Gemfile +3 -1
- data/Gemfile.lock +97 -193
- data/client/skr/Extension.coffee +8 -4
- data/client/skr/api.js +21 -0
- data/client/skr/api.scss +148 -0
- data/client/skr/api/Components/AddressForm.cjsx +47 -0
- data/client/skr/api/Components/Base.coffee +7 -0
- data/client/skr/api/Components/SaleHistory.cjsx +32 -0
- data/client/skr/api/Components/SingleItemCart.cjsx +30 -0
- data/client/skr/api/Models/Base.coffee +10 -0
- data/client/skr/api/Models/Cart.coffee +40 -0
- data/client/skr/api/Models/Sale.coffee +43 -0
- data/client/skr/api/Models/SalesHistory.coffee +17 -0
- data/client/skr/api/Models/Sku.coffee +16 -0
- data/client/skr/api/SingleItemCheckout.cjsx +99 -0
- data/client/skr/api/namespace.js +6 -0
- data/client/skr/api/onReady.coffee +23 -0
- data/client/skr/components/CreditCardForm.cjsx +35 -0
- data/client/skr/components/CustomerFinder.cjsx +0 -3
- data/client/skr/components/InvoiceFinder.cjsx +1 -0
- data/client/skr/components/LatexSnippets.cjsx +65 -0
- data/client/skr/components/LocationChooser.cjsx +5 -1
- data/client/skr/components/PrintButton.cjsx +33 -0
- data/client/skr/components/PrintFormChooser.cjsx +10 -10
- data/client/skr/components/SalesOrderFinder.cjsx +2 -1
- data/client/skr/components/SystemSettings.cjsx +69 -9
- data/client/skr/components/address/index.js +1 -0
- data/client/skr/models/Address.coffee +3 -0
- data/client/skr/models/CreditCard.coffee +49 -0
- data/client/skr/models/CreditCardGateway.coffee +27 -0
- data/client/skr/models/Invoice.coffee +13 -5
- data/client/skr/models/Location.coffee +6 -4
- data/client/skr/models/Payment.coffee +33 -13
- data/client/skr/models/SalesOrder.coffee +7 -3
- data/client/skr/models/SequentialId.coffee +17 -0
- data/client/skr/models/Sku.coffee +1 -1
- data/client/skr/models/TimeEntry.coffee +3 -4
- data/client/skr/models/mixins/PrintSupport.coffee +4 -1
- data/client/skr/models/mixins/SkuLine.coffee +1 -1
- data/client/skr/screens/customer-maint/CustomerMaint.cjsx +1 -2
- data/client/skr/screens/customer-projects/CustomerProjects.cjsx +7 -3
- data/client/skr/screens/customer-projects/index.scss +1 -0
- data/client/skr/screens/fresh-books-import/ApiInfo.cjsx +1 -1
- data/client/skr/screens/gl-accounts/GlAccounts.cjsx +1 -1
- data/client/skr/screens/gl-transactions/GlTransactions.cjsx +1 -1
- data/client/skr/screens/invoice/Invoice.cjsx +9 -17
- data/client/skr/screens/invoice/Payment.cjsx +94 -13
- data/client/skr/screens/invoice/index.scss +32 -0
- data/client/skr/screens/locations/Locations.cjsx +3 -2
- data/client/skr/screens/payment-category/PaymentCategory.cjsx +1 -1
- data/client/skr/screens/payments/Payments.cjsx +5 -4
- data/client/skr/screens/sale-report/SaleReport.cjsx +73 -0
- data/client/skr/screens/sale-report/index.js +5 -0
- data/client/skr/screens/sale-report/index.scss +9 -0
- data/client/skr/screens/sales-order/SalesOrder.cjsx +4 -4
- data/client/skr/screens/sku-maint/SkuMaint.cjsx +5 -0
- data/client/skr/screens/sku-maint/SkuUomList.cjsx +45 -56
- data/client/skr/screens/sku-maint/index.scss +33 -13
- data/client/skr/screens/time-invoicing/TimeInvoicing.cjsx +2 -2
- data/client/skr/screens/time-tracking/EditEntry.cjsx +2 -4
- data/client/skr/screens/time-tracking/TimeTracking.cjsx +1 -1
- data/client/skr/screens/vendor-maint/VendorMaint.cjsx +1 -1
- data/client/skr/vendor/index.js +2438 -0
- data/config/lanes.rb +10 -3
- data/config/routes.rb +9 -7
- data/config/screens.rb +39 -13
- data/db/migrate/20160517032350_create_remove_location_logos.rb +11 -0
- data/db/migrate/20160531014306_create_public_skus.rb +7 -0
- data/db/migrate/20160604195848_create_null_addresses.rb +9 -0
- data/db/migrate/20160605024432_create_sku_associations_views.rb +48 -0
- data/db/migrate/20160608023553_create_invoice_payments.rb +9 -0
- data/db/migrate/20160620010455_add_payments_to_inv_details.rb +54 -0
- data/db/schema.sql +206 -38
- data/db/seed.rb +6 -0
- data/lib/skr.rb +1 -1
- data/lib/skr/access_roles.rb +6 -1
- data/lib/skr/concerns/has_gl_transaction.rb +8 -0
- data/lib/skr/concerns/inv_extensions.rb +11 -0
- data/lib/skr/concerns/is_order_like.rb +3 -3
- data/lib/skr/concerns/visible_id_identifier.rb +3 -8
- data/lib/skr/configuration.rb +2 -0
- data/lib/skr/extension.rb +6 -0
- data/lib/skr/handlers/credit_card_gateway.rb +31 -0
- data/lib/skr/handlers/invoice_from_time_entries.rb +12 -26
- data/lib/skr/handlers/sales.rb +44 -0
- data/lib/skr/handlers/sequential_ids.rb +46 -0
- data/lib/skr/handlers/skus.rb +36 -0
- data/lib/skr/jobs/fresh_books/import.rb +3 -1
- data/lib/skr/merchant_gateway.rb +37 -0
- data/lib/skr/models/address.rb +7 -5
- data/lib/skr/models/bank_account.rb +12 -0
- data/lib/skr/models/business_entity.rb +1 -1
- data/lib/skr/models/gl_transaction.rb +3 -0
- data/lib/skr/models/inv_line.rb +7 -2
- data/lib/skr/models/inventory_adjustment.rb +0 -5
- data/lib/skr/models/invoice.rb +25 -36
- data/lib/skr/models/location.rb +1 -1
- data/lib/skr/models/payment.rb +56 -10
- data/lib/skr/models/po_receipt.rb +0 -8
- data/lib/skr/models/sales_order.rb +7 -2
- data/lib/skr/models/sequential_id.rb +6 -1
- data/lib/skr/models/sku.rb +3 -0
- data/lib/skr/print.rb +1 -0
- data/lib/skr/print/context.rb +19 -0
- data/lib/skr/print/form.rb +7 -1
- data/lib/skr/version.rb +1 -1
- data/npm-build/package.json +26 -0
- data/npm-build/vendor.js +10 -0
- data/npm-build/webpack.config.js +25 -0
- data/spec/fixtures/skr/bank_account.yml +9 -0
- data/spec/fixtures/skr/customer.yml +10 -0
- data/spec/fixtures/skr/inv_line.yml +12 -0
- data/spec/fixtures/skr/invoice.yml +17 -0
- data/spec/fixtures/skr/payment_category.yml +6 -0
- data/spec/fixtures/skr/sales_order.yml +1 -1
- data/spec/fixtures/skr/sku.yml +10 -0
- data/spec/fixtures/skr/sku_loc.yml +4 -0
- data/spec/fixtures/skr/uom.yml +6 -0
- data/spec/server/handlers/invoice_from_time_entries_spec.rb +13 -6
- data/spec/server/handlers/sequential_ids_spec.rb +22 -0
- data/spec/server/models/invoice_spec.rb +36 -0
- data/spec/server/models/payment_spec.rb +50 -22
- data/spec/server/models/sales_order_spec.rb +12 -0
- data/spec/server/print/form_spec.rb +20 -4
- data/spec/skr/api/SingleItemCheckoutSpec.cjsx +10 -0
- data/spec/skr/screens/sale-report/SaleReportSpec.coffee +5 -0
- data/stockor.gemspec +5 -4
- data/templates/print/layout.tex.erb +1 -1
- data/templates/print/packages/INSTALL +7 -0
- data/templates/print/packages/qrcode.sty +3051 -0
- data/templates/print/packages/svgnam.def +186 -0
- data/templates/print/packages/x11nam.def +352 -0
- data/templates/print/packages/xcolor.pro +58 -0
- data/templates/print/packages/xcolor.sty +1460 -0
- data/templates/print/types/invoice/default.tex.erb +2 -0
- data/templates/print/types/invoice/labor.tex.erb +2 -1
- data/templates/print/types/invoice/ticket.tex.erb +41 -0
- data/templates/print/types/payment/default.tex.erb +13 -12
- metadata +78 -12
@@ -28,7 +28,7 @@
|
|
28
28
|
\showboxbreadth=\maxdimen
|
29
29
|
\usepackage{fancyhdr,lastpage}
|
30
30
|
% showframe to debug geometry
|
31
|
-
\usepackage[includehead,includefoot, left=2cm, top=1cm, headheight=2.5cm,headsep=8pt, right=2cm, foot=18pt, bottom=1cm]{geometry}
|
31
|
+
\usepackage[includehead, includefoot, left=2cm, top=1cm, headheight=2.5cm,headsep=8pt, right=2cm, foot=18pt, bottom=1cm]{geometry}
|
32
32
|
\newcolumntype{C}{>{\centering\arraybackslash}p{2cm}}
|
33
33
|
\pagestyle{fancy}
|
34
34
|
\fancyhf{}
|
@@ -0,0 +1,3051 @@
|
|
1
|
+
%%
|
2
|
+
%% This is file `qrcode.sty',
|
3
|
+
%% generated with the docstrip utility.
|
4
|
+
%%
|
5
|
+
%% The original source files were:
|
6
|
+
%%
|
7
|
+
%% qrcode.dtx (with options: `package')
|
8
|
+
%%
|
9
|
+
%% This is a generated file.
|
10
|
+
%%
|
11
|
+
%% Copyright (C) 2015 by Anders Hendrickson <ahendric@cord.edu>
|
12
|
+
%%
|
13
|
+
%% This work may be distributed and/or modified under the
|
14
|
+
%% conditions of the LaTeX Project Public License, either version 1.3
|
15
|
+
%% of this license or (at your option) any later version.
|
16
|
+
%% The latest version of this license is in
|
17
|
+
%% http://www.latex-project.org/lppl.txt
|
18
|
+
%% and version 1.3 or later is part of all distributions of LaTeX
|
19
|
+
%% version 2005/12/01 or later.
|
20
|
+
%%
|
21
|
+
\NeedsTeXFormat{LaTeX2e}[1999/12/01]
|
22
|
+
\ProvidesPackage{qrcode}
|
23
|
+
[2015/01/08 v1.51 QR code generation]
|
24
|
+
%%PACKAGE LOADING
|
25
|
+
\RequirePackage{xcolor}%
|
26
|
+
\RequirePackage{xkeyval}%
|
27
|
+
|
28
|
+
%%INITIAL CODE
|
29
|
+
\newif\ifqr@draft@mode
|
30
|
+
\newif\ifqr@forget@mode
|
31
|
+
|
32
|
+
%%DECLARATION OF OPTIONS
|
33
|
+
\define@boolkey{qr}[qr@]{draft}[true]{\ifqr@draft\qr@draft@modetrue\else\qr@draft@modefalse\fi}%
|
34
|
+
\define@boolkey{qr}[qr@]{final}[true]{\ifqr@final\qr@draft@modefalse\else\qr@draft@modetrue\fi}%
|
35
|
+
\define@boolkey{qr}[qr@]{forget}[true]{\ifqr@forget\qr@forget@modetrue\else\qr@forget@modefalse\fi}%
|
36
|
+
\define@boolkey{qr}[qr@]{hyperlink}[true]{}% %This creates \ifqr@hyperlink.
|
37
|
+
\define@boolkey{qr}[qr@]{hyperlinks}[true]{\ifqr@hyperlinks\qr@hyperlinktrue\else\qr@hyperlinkfalse\fi}%
|
38
|
+
\define@boolkey{qr}[qr@]{link}[true]{\ifqr@link\qr@hyperlinktrue\else\qr@hyperlinkfalse\fi}%
|
39
|
+
\define@boolkey{qr}[qr@]{nolink}[true]{\ifqr@nolink\qr@hyperlinkfalse\else\qr@hyperlinktrue\fi}% %Make nolink an antonym.
|
40
|
+
\define@boolkey{qr}[qr@]{links}[true]{\ifqr@links\qr@hyperlinktrue\else\qr@hyperlinkfalse\fi}%
|
41
|
+
\define@boolkey{qr}[qr@]{nolinks}[true]{\ifqr@nolinks\qr@hyperlinkfalse\else\qr@hyperlinktrue\fi}% %Make nolinks an antonym.
|
42
|
+
|
43
|
+
%%EXECUTION OF OPTIONS
|
44
|
+
\qr@draft@modefalse
|
45
|
+
\qr@forget@modefalse
|
46
|
+
\qr@hyperlinktrue
|
47
|
+
|
48
|
+
\ProcessOptionsX<qr>
|
49
|
+
|
50
|
+
\newcounter{qr@i}%
|
51
|
+
\newcounter{qr@j}%
|
52
|
+
\newcount\qr@a
|
53
|
+
\newcount\qr@b
|
54
|
+
\newcount\qr@c
|
55
|
+
|
56
|
+
\let\xa=\expandafter
|
57
|
+
|
58
|
+
\newlinechar=`\^^J
|
59
|
+
|
60
|
+
\def\qr@relax{\relax}%
|
61
|
+
|
62
|
+
\def\qr@preface@macro#1#2{%
|
63
|
+
% #1 = macro name
|
64
|
+
% #2 = text to add to front of macro
|
65
|
+
\def\qr@tempb{#2}%
|
66
|
+
\xa\xa\xa\def\xa\xa\xa#1\xa\xa\xa{\xa\qr@tempb #1}%
|
67
|
+
}%
|
68
|
+
|
69
|
+
\def\qr@g@preface@macro#1#2{%
|
70
|
+
% #1 = macro to be appended to
|
71
|
+
% #2 = code to add
|
72
|
+
\edef\qr@tempb{#2}%
|
73
|
+
\xa\xa\xa\gdef\xa\xa\xa#1\xa\xa\xa{\xa\qr@tempb#1}%
|
74
|
+
}
|
75
|
+
|
76
|
+
\def\qr@getstringlength#1{%
|
77
|
+
\bgroup
|
78
|
+
\qr@a=0%
|
79
|
+
\xdef\qr@thestring{#1}%
|
80
|
+
\xa\qr@stringlength@recursive\xa(\qr@thestring\relax\relax)%
|
81
|
+
\xdef\qr@stringlength{\the\qr@a}%
|
82
|
+
\egroup
|
83
|
+
}%
|
84
|
+
|
85
|
+
\def\qr@stringlength@recursive(#1#2){%
|
86
|
+
\def\qr@testi{#1}%
|
87
|
+
\ifx\qr@testi\qr@relax
|
88
|
+
%we are done.
|
89
|
+
\let\qr@next=\relax%
|
90
|
+
\else
|
91
|
+
\advance\qr@a by 1%
|
92
|
+
\def\qr@next{\qr@stringlength@recursive(#2)}%
|
93
|
+
\fi
|
94
|
+
\qr@next
|
95
|
+
}%
|
96
|
+
\newcount\qr@for@depth%
|
97
|
+
\newcount\qr@for@maxdepth%
|
98
|
+
\qr@for@depth=0%
|
99
|
+
\qr@for@maxdepth=0%
|
100
|
+
\newcount\qr@for@start%
|
101
|
+
\newcount\qr@for@end%
|
102
|
+
\newcount\qr@for@step%
|
103
|
+
\def\qr@allocate@new@for@counter{%
|
104
|
+
\global\advance\qr@for@maxdepth by 1%
|
105
|
+
\newcount\qr@newforcount%
|
106
|
+
\xa\global\xa\let\csname qr@for@var@\the\qr@for@maxdepth\endcsname=\qr@newforcount%
|
107
|
+
}%
|
108
|
+
|
109
|
+
\newif\ifqr@loopshouldrun
|
110
|
+
\def\qr@for #1=#2to#3by#4#{%
|
111
|
+
\qr@for@int{#1}{#2}{#3}{#4}%
|
112
|
+
}%
|
113
|
+
\long\def\qr@for@int#1#2#3#4#5{%
|
114
|
+
\bgroup
|
115
|
+
%Because we're working within a TeX group,
|
116
|
+
%any values of \qr@for@start, \qr@for@end, and \qr@for@step from an outer loop
|
117
|
+
%will be restored after the \egroup.
|
118
|
+
%
|
119
|
+
%For the \qr@for@var itself, however, we need a different counter,
|
120
|
+
%because the user's text within the loop might need to access the variable from the outer loop.
|
121
|
+
\advance\qr@for@depth by 1\relax% This is a local change.
|
122
|
+
\ifnum\qr@for@depth>\qr@for@maxdepth%
|
123
|
+
%This is the first time we have gone to this depth of nesting!
|
124
|
+
%We should only be over by one.
|
125
|
+
\qr@allocate@new@for@counter%
|
126
|
+
\fi
|
127
|
+
\xa\let\xa\qr@for@var\xa=\csname qr@for@var@\the\qr@for@depth\endcsname%
|
128
|
+
%Now \qr@for@var points to the same register as \qr@for@var@3 or something.
|
129
|
+
%The next line lets the user-level variable (e.g., \i or \j) point to the same count register.
|
130
|
+
\let#1=\qr@for@var%
|
131
|
+
%Now establish the looping parameters.
|
132
|
+
\edef\qr@for@start@text{#2}%
|
133
|
+
\edef\qr@for@end@text{#3}%
|
134
|
+
\edef\qr@for@step@text{#4}%
|
135
|
+
\def\qr@for@body{\bgroup #5\egroup}%
|
136
|
+
\xa\qr@for@start\qr@for@start@text\relax%
|
137
|
+
\xa\qr@for@end \qr@for@end@text\relax%
|
138
|
+
\xa\qr@for@step \qr@for@step@text\relax%
|
139
|
+
%
|
140
|
+
%Next, test whether the loop should run at all.
|
141
|
+
% * "\qr@for \i = 1 to 0 by 1" should fail.
|
142
|
+
% * "\qr@for \i = 3 to 5 by -1" should fail.
|
143
|
+
% * "\qr@for \i = 6 to 2 by 1" should fail.
|
144
|
+
% * "\qr@for \i = 4 to 4 by -1" should run.
|
145
|
+
% * "\qr@for \i = 4 to 4 by 1" should run.
|
146
|
+
% * "\qr@for \i = 5 to 7 by 0" should fail.
|
147
|
+
%The loop should fail if (step)=0 or if (step) and (end-start) have opposite signs.
|
148
|
+
%The loop will fail if (step=0) or (step)*(end-start)<0.
|
149
|
+
% TODO: "\qr@for \i = 5 to 5 by 0" should run (just one iteration).
|
150
|
+
\qr@loopshouldruntrue
|
151
|
+
\ifnum\qr@for@step=0\relax
|
152
|
+
\qr@loopshouldrunfalse
|
153
|
+
\fi
|
154
|
+
\qr@a=\qr@for@end%
|
155
|
+
\advance\qr@a by -\qr@for@start%
|
156
|
+
\multiply\qr@a by \qr@for@step%
|
157
|
+
\ifnum\qr@a<0\relax
|
158
|
+
\qr@loopshouldrunfalse
|
159
|
+
\fi
|
160
|
+
\ifqr@loopshouldrun
|
161
|
+
\qr@for@var=\qr@for@start%
|
162
|
+
\ifnum\qr@for@step>0\relax
|
163
|
+
\def\qr@for@recursive{%
|
164
|
+
\qr@for@body%
|
165
|
+
\advance\qr@for@var by \qr@for@step%
|
166
|
+
\ifnum\qr@for@var>\qr@for@end%
|
167
|
+
\let\qr@for@next=\relax%
|
168
|
+
\else%
|
169
|
+
\let\qr@for@next=\qr@for@recursive%
|
170
|
+
\fi%
|
171
|
+
\qr@for@next%
|
172
|
+
}%
|
173
|
+
\else
|
174
|
+
\def\qr@for@recursive{%
|
175
|
+
\qr@for@body%
|
176
|
+
\advance\qr@for@var by \qr@for@step%
|
177
|
+
\ifnum\qr@for@var<\qr@for@end%
|
178
|
+
\let\qr@for@next=\relax%
|
179
|
+
\else%
|
180
|
+
\let\qr@for@next=\qr@for@recursive%
|
181
|
+
\fi%
|
182
|
+
\qr@for@next%
|
183
|
+
}%
|
184
|
+
\fi
|
185
|
+
\qr@for@recursive%
|
186
|
+
\fi
|
187
|
+
\egroup
|
188
|
+
}%
|
189
|
+
\def\qr@padatfront#1#2{%
|
190
|
+
% #1 = macro containing text to pad
|
191
|
+
% #2 = desired number of characters
|
192
|
+
% Pads a number with initial zeros.
|
193
|
+
\qr@getstringlength{#1}%
|
194
|
+
\qr@a=\qr@stringlength\relax%
|
195
|
+
\advance\qr@a by 1\relax%
|
196
|
+
\qr@for \i = \qr@a to #2 by 1\relax%
|
197
|
+
{\qr@g@preface@macro{#1}{0}}%
|
198
|
+
}
|
199
|
+
|
200
|
+
\qr@a=-1\relax%
|
201
|
+
\def\qr@savehexsymbols(#1#2){%
|
202
|
+
\advance\qr@a by 1\relax%
|
203
|
+
\xa\def\csname qr@hexchar@\the\qr@a\endcsname{#1}%
|
204
|
+
\xa\edef\csname qr@hextodecimal@#1\endcsname{\the\qr@a}%
|
205
|
+
\ifnum\qr@a=15\relax
|
206
|
+
%Done.
|
207
|
+
\let\qr@next=\relax%
|
208
|
+
\else
|
209
|
+
\def\qr@next{\qr@savehexsymbols(#2)}%
|
210
|
+
\fi%
|
211
|
+
\qr@next%
|
212
|
+
}%
|
213
|
+
\qr@savehexsymbols(0123456789abcdef\relax\relax)%
|
214
|
+
|
215
|
+
\def\qr@decimaltobase#1#2#3{%
|
216
|
+
% #1 = macro to store result
|
217
|
+
% #2 = decimal representation of a positive integer
|
218
|
+
% #3 = new base
|
219
|
+
\bgroup
|
220
|
+
\edef\qr@newbase{#3}%
|
221
|
+
\gdef\qr@base@result{}%
|
222
|
+
\qr@a=#2\relax%
|
223
|
+
\qr@decimaltobase@recursive%
|
224
|
+
\xdef#1{\qr@base@result}%
|
225
|
+
\egroup
|
226
|
+
}
|
227
|
+
\def\qr@decimaltobase@recursive{%
|
228
|
+
\qr@b=\qr@a%
|
229
|
+
\divide\qr@b by \qr@newbase\relax
|
230
|
+
\multiply\qr@b by -\qr@newbase\relax
|
231
|
+
\advance\qr@b by \qr@a\relax%
|
232
|
+
\divide\qr@a by \qr@newbase\relax%
|
233
|
+
\ifnum\qr@b<10\relax
|
234
|
+
\edef\qr@newdigit{\the\qr@b}%
|
235
|
+
\else
|
236
|
+
\edef\qr@newdigit{\csname qr@hexchar@\the\qr@b\endcsname}%
|
237
|
+
\fi
|
238
|
+
\edef\qr@argument{{\noexpand\qr@base@result}{\qr@newdigit}}%
|
239
|
+
\xa\qr@g@preface@macro\qr@argument%
|
240
|
+
\ifnum\qr@a=0\relax
|
241
|
+
\relax
|
242
|
+
\else
|
243
|
+
\xa\qr@decimaltobase@recursive
|
244
|
+
\fi
|
245
|
+
}
|
246
|
+
|
247
|
+
\newcommand\qr@decimaltohex[3][0]{%
|
248
|
+
% #1 (opt.) = number of hex digits to create
|
249
|
+
% #2 = macro to store result
|
250
|
+
% #3 = decimal digits to convert
|
251
|
+
\qr@decimaltobase{#2}{#3}{16}%
|
252
|
+
\qr@padatfront{#2}{#1}%
|
253
|
+
}
|
254
|
+
|
255
|
+
\newcommand\qr@decimaltobinary[3][0]{%
|
256
|
+
% #1 (opt.) = number of bits to create
|
257
|
+
% #2 = macro to store result
|
258
|
+
% #3 = decimal digits to convert
|
259
|
+
\qr@decimaltobase{#2}{#3}{2}%
|
260
|
+
\qr@padatfront{#2}{#1}%
|
261
|
+
}
|
262
|
+
|
263
|
+
\qr@for \i = 0 to 15 by 1%
|
264
|
+
{%
|
265
|
+
\qr@decimaltohex[1]{\qr@hexchar}{\the\i}%
|
266
|
+
\qr@decimaltobinary[4]{\qr@bits}{\the\i}%
|
267
|
+
\xa\xdef\csname qr@b2h@\qr@bits\endcsname{\qr@hexchar}%
|
268
|
+
\xa\xdef\csname qr@h2b@\qr@hexchar\endcsname{\qr@bits}%
|
269
|
+
}%
|
270
|
+
|
271
|
+
\newcommand\qr@binarytohex[3][\relax]{%
|
272
|
+
% #1 (optional) = # digits desired
|
273
|
+
% #2 = macro to save to
|
274
|
+
% #3 = binary string (must be multiple of 4 bits)
|
275
|
+
\def\qr@test@i{#1}%
|
276
|
+
\ifx\qr@test@i\qr@relax%
|
277
|
+
%No argument specified
|
278
|
+
\def\qr@desireddigits{0}%
|
279
|
+
\else
|
280
|
+
\def\qr@desireddigits{#1}%
|
281
|
+
\fi
|
282
|
+
\gdef\qr@base@result{}%
|
283
|
+
\edef\qr@argument{(#3\relax\relax\relax\relax\relax)}%
|
284
|
+
\xa\qr@binarytohex@int\qr@argument%
|
285
|
+
\qr@padatfront{\qr@base@result}{\qr@desireddigits}%
|
286
|
+
\xdef#2{\qr@base@result}%
|
287
|
+
}
|
288
|
+
\def\qr@binarytohex@int(#1#2#3#4#5){%
|
289
|
+
% #1#2#3#4 = 4 bits
|
290
|
+
% #5 = remainder, including \relax\relax\relax\relax\relax terminator
|
291
|
+
\def\qr@test@i{#1}%
|
292
|
+
\ifx\qr@test@i\qr@relax%
|
293
|
+
%Done.
|
294
|
+
\def\qr@next{\relax}%
|
295
|
+
\else%
|
296
|
+
\xdef\qr@base@result{\qr@base@result\csname qr@b2h@#1#2#3#4\endcsname}%
|
297
|
+
\def\qr@next{\qr@binarytohex@int(#5)}%
|
298
|
+
\fi%
|
299
|
+
\qr@next%
|
300
|
+
}
|
301
|
+
|
302
|
+
\newcommand\qr@hextobinary[3][\relax]{%
|
303
|
+
% #1 (optional) = # bits desired
|
304
|
+
% #2 = macro to save to
|
305
|
+
% #3 = hexadecimal string
|
306
|
+
\bgroup
|
307
|
+
\def\qr@test@i{#1}%
|
308
|
+
\ifx\qr@test@i\qr@relax%
|
309
|
+
%No argument specified
|
310
|
+
\def\qr@desireddigits{0}%
|
311
|
+
\else
|
312
|
+
\def\qr@desireddigits{#1}%
|
313
|
+
\fi
|
314
|
+
\gdef\qr@base@result{}%
|
315
|
+
\edef\qr@argument{(#3\relax\relax)}%
|
316
|
+
\xa\qr@hextobinary@int\qr@argument%
|
317
|
+
\qr@padatfront{\qr@base@result}{\qr@desireddigits}%
|
318
|
+
\xdef#2{\qr@base@result}%
|
319
|
+
\egroup
|
320
|
+
}
|
321
|
+
\def\qr@hextobinary@int(#1#2){%
|
322
|
+
% #1 = hexadecimal character
|
323
|
+
% #2 = remainder, including \relax\relax terminator
|
324
|
+
\def\qr@test@@i{#1}%
|
325
|
+
\ifx\qr@test@@i\qr@relax%
|
326
|
+
%Done.
|
327
|
+
\def\qr@next{\relax}%
|
328
|
+
\else%
|
329
|
+
\xdef\qr@base@result{\qr@base@result\csname qr@h2b@#1\endcsname}%
|
330
|
+
\def\qr@next{\qr@hextobinary@int(#2)}%
|
331
|
+
\fi%
|
332
|
+
\qr@next%
|
333
|
+
}
|
334
|
+
|
335
|
+
\def\qr@hextodecimal#1#2{%
|
336
|
+
\edef\qr@argument{#2}%
|
337
|
+
\xa\qr@a\xa=\xa\number\xa"\qr@argument\relax%
|
338
|
+
\edef#1{\the\qr@a}%
|
339
|
+
}
|
340
|
+
|
341
|
+
\def\qr@hextodecimal#1#2{%
|
342
|
+
% #1 = macro to store result
|
343
|
+
% #2 = hexadecimal representation of a positive integer
|
344
|
+
\bgroup
|
345
|
+
\qr@a=0\relax%
|
346
|
+
\edef\qr@argument{(#2\relax)}%
|
347
|
+
\xa\qr@hextodecimal@recursive\qr@argument%
|
348
|
+
\xdef#1{\the\qr@a}%
|
349
|
+
\egroup
|
350
|
+
}
|
351
|
+
\def\qr@hextodecimal@recursive(#1#2){%
|
352
|
+
% #1 = first hex char
|
353
|
+
% #2 = remainder
|
354
|
+
\advance \qr@a by \csname qr@hextodecimal@#1\endcsname\relax%
|
355
|
+
\edef\qr@testii{#2}%
|
356
|
+
\ifx\qr@testii\qr@relax%
|
357
|
+
%Done.
|
358
|
+
\let\qr@next=\relax%
|
359
|
+
\else
|
360
|
+
%There's at least one more digit.
|
361
|
+
\multiply\qr@a by 16\relax
|
362
|
+
\edef\qr@next{\noexpand\qr@hextodecimal@recursive(#2)}%
|
363
|
+
\fi%
|
364
|
+
\qr@next%
|
365
|
+
}
|
366
|
+
{\catcode`\ =12\relax\gdef\qr@otherspace{ }}%
|
367
|
+
{\catcode`\%=12\relax\gdef\qr@otherpercent{%}}%
|
368
|
+
{\catcode`\#=12\relax\gdef\qr@otherpound{#}}%
|
369
|
+
{\catcode`\|=0\relax|catcode`|\=12|relax|gdef|qr@otherbackslash{\}}%
|
370
|
+
{\catcode`\^^J=12\relax\gdef\qr@otherlf{^^J}}%
|
371
|
+
\bgroup
|
372
|
+
\catcode`\<=1\relax
|
373
|
+
\catcode`\>=2\relax
|
374
|
+
\catcode`\{=12\relax\gdef\qr@otherleftbrace<{>%
|
375
|
+
\catcode`\}=12\relax\gdef\qr@otherrightbrace<}>%
|
376
|
+
\egroup%
|
377
|
+
{\catcode`\&=12\relax\gdef\qr@otherampersand{&}}%
|
378
|
+
{\catcode`\~=12\relax\gdef\qr@othertilde{~}}%
|
379
|
+
{\catcode`\^=12\relax\gdef\qr@othercaret{^}}%
|
380
|
+
{\catcode`\_=12\relax\gdef\qr@otherunderscore{_}}%
|
381
|
+
{\catcode`\$=12\relax\gdef\qr@otherdollar{$}}%
|
382
|
+
|
383
|
+
{\catcode`\^^M=13\relax\gdef\qr@verbatimlinefeeds{\let^^M=\qr@otherlf}}
|
384
|
+
\def\qr@verbatimcatcodes{%
|
385
|
+
\catcode`\#=12\relax
|
386
|
+
\catcode`\$=12\relax
|
387
|
+
\catcode`\&=12\relax
|
388
|
+
\catcode`\^=12\relax
|
389
|
+
\catcode`\_=12\relax
|
390
|
+
\catcode`\~=12\relax
|
391
|
+
\catcode`\%=12\relax
|
392
|
+
\catcode`\ =12\relax
|
393
|
+
\catcode`\^^M=13\relax\qr@verbatimlinefeeds}%
|
394
|
+
|
395
|
+
\def\qr@setescapedspecials{%
|
396
|
+
\let\ =\qr@otherspace%
|
397
|
+
\let\%=\qr@otherpercent%
|
398
|
+
\let\#=\qr@otherpound%
|
399
|
+
\let\&=\qr@otherampersand%
|
400
|
+
\let\^=\qr@othercaret%
|
401
|
+
\let\_=\qr@otherunderscore%
|
402
|
+
\let\~=\qr@othertilde%
|
403
|
+
\let\$=\qr@otherdollar%
|
404
|
+
\let\\=\qr@otherbackslash%
|
405
|
+
\let\{=\qr@otherleftbrace%
|
406
|
+
\let\}=\qr@otherrightbrace%
|
407
|
+
\let\?=\qr@otherlf%
|
408
|
+
}%
|
409
|
+
\def\qr@creatematrix#1{%
|
410
|
+
\xa\gdef\csname #1\endcsname##1##2{%
|
411
|
+
\csname #1@##1@##2\endcsname
|
412
|
+
}%
|
413
|
+
}%
|
414
|
+
|
415
|
+
\def\qr@storetomatrix#1#2#3#4{%
|
416
|
+
% #1 = matrix name
|
417
|
+
% #2 = row number
|
418
|
+
% #3 = column number
|
419
|
+
% #4 = value of matrix entry
|
420
|
+
\xa\gdef\csname #1@#2@#3\endcsname{#4}%
|
421
|
+
}%
|
422
|
+
|
423
|
+
\def\qr@estoretomatrix#1#2#3#4{%
|
424
|
+
% This version performs exactly one expansion on #4.
|
425
|
+
% #1 = matrix name
|
426
|
+
% #2 = row number
|
427
|
+
% #3 = column number
|
428
|
+
% #4 = value of matrix
|
429
|
+
\xa\xa\xa\gdef\xa\xa\csname #1@#2@#3\endcsname\xa{#4}%
|
430
|
+
}%
|
431
|
+
|
432
|
+
\def\qr@matrixentry#1#2#3{%
|
433
|
+
% #1 = matrix name
|
434
|
+
% #2 = row number
|
435
|
+
% #3 = column number
|
436
|
+
\csname #1@#2@#3\endcsname%
|
437
|
+
}%
|
438
|
+
|
439
|
+
\def\qr@createsquareblankmatrix#1#2{%
|
440
|
+
\qr@creatematrix{#1}%
|
441
|
+
\xa\gdef\csname #1@numrows\endcsname{#2}%
|
442
|
+
\xa\gdef\csname #1@numcols\endcsname{#2}%
|
443
|
+
\qr@for \i = 1 to #2 by 1%
|
444
|
+
{\qr@for \j = 1 to #2 by 1%
|
445
|
+
{\qr@storetomatrix{#1}{\the\i}{\the\j}{\qr@blank}}}%
|
446
|
+
}%
|
447
|
+
|
448
|
+
\def\qr@numberofrowsinmatrix#1{%
|
449
|
+
\csname #1@numrows\endcsname%
|
450
|
+
}%
|
451
|
+
|
452
|
+
\def\qr@numberofcolsinmatrix#1{%
|
453
|
+
\csname #1@numcols\endcsname%
|
454
|
+
}%
|
455
|
+
|
456
|
+
\def\qr@setnumberofrows#1#2{%
|
457
|
+
\xa\xdef\csname #1@numrows\endcsname{#2}%
|
458
|
+
}%
|
459
|
+
|
460
|
+
\def\qr@setnumberofcols#1#2{%
|
461
|
+
\xa\xdef\csname #1@numcols\endcsname{#2}%
|
462
|
+
}%
|
463
|
+
|
464
|
+
\newlength\qr@desiredheight
|
465
|
+
\setlength\qr@desiredheight{2cm}%
|
466
|
+
\newlength\qr@modulesize
|
467
|
+
\newlength\qr@minipagewidth
|
468
|
+
|
469
|
+
\def\qr@printmatrix#1{%
|
470
|
+
\def\qr@black{\rule{\qr@modulesize}{\qr@modulesize}}%
|
471
|
+
\def\qr@white{\rule{\qr@modulesize}{0pt}}%
|
472
|
+
\def\qr@black@fixed{\rule{\qr@modulesize}{\qr@modulesize}}%
|
473
|
+
\def\qr@white@fixed{\rule{\qr@modulesize}{0pt}}%
|
474
|
+
\def\qr@black@format{\rule{\qr@modulesize}{\qr@modulesize}}%
|
475
|
+
\def\qr@white@format{\rule{\qr@modulesize}{0pt}}%
|
476
|
+
%Set module size
|
477
|
+
\setlength{\qr@modulesize}{\qr@desiredheight}%
|
478
|
+
\divide\qr@modulesize by \qr@size\relax%
|
479
|
+
%
|
480
|
+
\setlength{\qr@minipagewidth}{\qr@modulesize}%
|
481
|
+
\multiply\qr@minipagewidth by \qr@size\relax%
|
482
|
+
\ifqr@tight
|
483
|
+
\else
|
484
|
+
\advance\qr@minipagewidth by 8\qr@modulesize%
|
485
|
+
\fi
|
486
|
+
\begin{minipage}{\qr@minipagewidth}%
|
487
|
+
\baselineskip=\qr@modulesize%
|
488
|
+
\ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi% %Blank space at top.
|
489
|
+
\qr@for \i = 1 to \qr@numberofrowsinmatrix{#1} by 1%
|
490
|
+
{\ifqr@tight\else\rule{4\qr@modulesize}{0pt}\fi% %Blank space at left.
|
491
|
+
\qr@for \j = 1 to \qr@numberofcolsinmatrix{#1} by 1%
|
492
|
+
{\qr@matrixentry{#1}{\the\i}{\the\j}}%
|
493
|
+
\par}%
|
494
|
+
\ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi%
|
495
|
+
\end{minipage}%
|
496
|
+
}%
|
497
|
+
|
498
|
+
\def\qr@printsavedbinarymatrix#1{%
|
499
|
+
\edef\qr@binarystring{#1\relax\relax}%
|
500
|
+
%Set module size
|
501
|
+
\setlength{\qr@modulesize}{\qr@desiredheight}%
|
502
|
+
\divide\qr@modulesize by \qr@size\relax%
|
503
|
+
%
|
504
|
+
\setlength{\qr@minipagewidth}{\qr@modulesize}%
|
505
|
+
\multiply\qr@minipagewidth by \qr@size\relax%
|
506
|
+
\ifqr@tight
|
507
|
+
\else
|
508
|
+
\advance\qr@minipagewidth by 8\qr@modulesize%
|
509
|
+
\fi
|
510
|
+
\begin{minipage}{\qr@minipagewidth}%
|
511
|
+
\baselineskip=\qr@modulesize%
|
512
|
+
\ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi% %Blank space at top.
|
513
|
+
\qr@for \i = 1 to \qr@size by 1%
|
514
|
+
{\ifqr@tight\else\rule{4\qr@modulesize}{0pt}\fi% %Blank space at left.
|
515
|
+
\qr@for \j = 1 to \qr@size by 1%
|
516
|
+
{\edef\qr@theargument{(\qr@binarystring)}%
|
517
|
+
\xa\qr@printsavedbinarymatrix@int\qr@theargument
|
518
|
+
}%
|
519
|
+
\par}%
|
520
|
+
\ifqr@tight\else\rule{0pt}{4\qr@modulesize}\par\fi%
|
521
|
+
\end{minipage}%
|
522
|
+
}%
|
523
|
+
|
524
|
+
\def\qr@printsavedbinarymatrix@int(#1#2){%
|
525
|
+
% #1 = first bit, either 1 or 0.
|
526
|
+
% #2 = remainder of string, terminating with \relax\relax
|
527
|
+
% There's no need to check for EOF here, because
|
528
|
+
% we'll only call this n^2 times.
|
529
|
+
\ifcase #1\relax
|
530
|
+
\rule{\qr@modulesize}{0pt}% % 0: white square
|
531
|
+
\or
|
532
|
+
\rule{\qr@modulesize}{\qr@modulesize}% % 1: black square
|
533
|
+
\fi
|
534
|
+
\xdef\qr@binarystring{#2}%
|
535
|
+
}%
|
536
|
+
|
537
|
+
\def\qr@createliteralmatrix#1#2#3{%
|
538
|
+
% #1 = matrix name
|
539
|
+
% #2 = m, the number of rows and columns in the square matrix
|
540
|
+
% #3 = a string of m^2 tokens to be written into the matrix
|
541
|
+
\qr@creatematrix{#1}%
|
542
|
+
\xa\xdef\csname #1@numrows\endcsname{#2}%
|
543
|
+
\xa\xdef\csname #1@numcols\endcsname{#2}%
|
544
|
+
\gdef\qr@literalmatrix@tokens{#3}%
|
545
|
+
\qr@for \i = 1 to #2 by 1%
|
546
|
+
{\qr@for \j = 1 to #2 by 1%
|
547
|
+
{\xa\qr@createliteralmatrix@int\xa(\qr@literalmatrix@tokens)%
|
548
|
+
\qr@estoretomatrix{#1}{\the\i}{\the\j}{\qr@entrytext}%
|
549
|
+
}%
|
550
|
+
}%
|
551
|
+
}
|
552
|
+
\def\qr@createliteralmatrix@int(#1#2){%
|
553
|
+
\def\qr@entrytext{#1}%
|
554
|
+
\gdef\qr@literalmatrix@tokens{#2}%
|
555
|
+
}
|
556
|
+
|
557
|
+
\qr@createliteralmatrix{finderpattern}{8}{%
|
558
|
+
\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed%
|
559
|
+
\qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed%
|
560
|
+
\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed%
|
561
|
+
\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed%
|
562
|
+
\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed%
|
563
|
+
\qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed%
|
564
|
+
\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@white@fixed%
|
565
|
+
\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed%
|
566
|
+
}%
|
567
|
+
|
568
|
+
\qr@createliteralmatrix{alignmentpattern}{5}{%
|
569
|
+
\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed%
|
570
|
+
\qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed%
|
571
|
+
\qr@black@fixed\qr@white@fixed\qr@black@fixed\qr@white@fixed\qr@black@fixed%
|
572
|
+
\qr@black@fixed\qr@white@fixed\qr@white@fixed\qr@white@fixed\qr@black@fixed%
|
573
|
+
\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed\qr@black@fixed%
|
574
|
+
}%
|
575
|
+
|
576
|
+
\def\qr@copymatrixentry#1#2#3#4#5#6{%
|
577
|
+
% Copy the (#2,#3) entry of matrix #1
|
578
|
+
% to the (#5,#6) position of matrix #4.
|
579
|
+
\xa\xa\xa\global%
|
580
|
+
\xa\xa\xa\let\xa\xa\csname #4@#5@#6\endcsname%
|
581
|
+
\csname #1@#2@#3\endcsname%
|
582
|
+
}%
|
583
|
+
|
584
|
+
\def\qr@createduplicatematrix#1#2{%
|
585
|
+
% #1 = name of copy
|
586
|
+
% #2 = original matrix to be copied
|
587
|
+
\qr@creatematrix{#1}%
|
588
|
+
\qr@for \i = 1 to \qr@numberofrowsinmatrix{#2} by 1%
|
589
|
+
{\qr@for \j = 1 to \qr@numberofcolsinmatrix{#2} by 1%
|
590
|
+
{\qr@copymatrixentry{#2}{\the\i}{\the\j}{#1}{\the\i}{\the\j}%
|
591
|
+
}%
|
592
|
+
}%
|
593
|
+
\qr@setnumberofrows{#1}{\qr@numberofrowsinmatrix{#2}}%
|
594
|
+
\qr@setnumberofcols{#1}{\qr@numberofcolsinmatrix{#2}}%
|
595
|
+
}%
|
596
|
+
|
597
|
+
\def\qr@placefinderpattern@int#1#2#3#4#5{%
|
598
|
+
% Work on matrix #1.
|
599
|
+
% Start in position (#2, #3) -- should be a corner
|
600
|
+
% #4 indicates horizontal direction (1=right, -1=left)
|
601
|
+
% #5 indicates vertical direction (1=down, -1=up)
|
602
|
+
%
|
603
|
+
% In this code, \sourcei and \sourcej are TeX counts working through the finderpattern matrix,
|
604
|
+
% and i and j are LaTeX counters indicating positions in the big matrix.
|
605
|
+
\setcounter{qr@i}{#2}%
|
606
|
+
\qr@for \sourcei=1 to 8 by 1%
|
607
|
+
{\setcounter{qr@j}{#3}%
|
608
|
+
\qr@for \sourcej=1 to 8 by 1%
|
609
|
+
{\qr@copymatrixentry{finderpattern}{\the\sourcei}{\the\sourcej}%
|
610
|
+
{#1}{\theqr@i}{\theqr@j}%
|
611
|
+
\addtocounter{qr@j}{#5}%
|
612
|
+
}%
|
613
|
+
\addtocounter{qr@i}{#4}%
|
614
|
+
}%
|
615
|
+
}%
|
616
|
+
|
617
|
+
\def\qr@placefinderpatterns#1{%
|
618
|
+
% #1=matrix name
|
619
|
+
\qr@placefinderpattern@int{#1}{1}{1}{1}{1}%
|
620
|
+
\qr@placefinderpattern@int{#1}{\qr@numberofrowsinmatrix{#1}}{1}{-1}{1}%
|
621
|
+
\qr@placefinderpattern@int{#1}{1}{\qr@numberofcolsinmatrix{#1}}{1}{-1}%
|
622
|
+
}%
|
623
|
+
|
624
|
+
\def\qr@placetimingpatterns#1{%
|
625
|
+
%Set \qr@endingcol to n-8.
|
626
|
+
\qr@a=\qr@size\relax%
|
627
|
+
\advance\qr@a by -8\relax%
|
628
|
+
\edef\qr@endingcol{\the\qr@a}%
|
629
|
+
\qr@for \j = 9 to \qr@endingcol by 1%
|
630
|
+
{\ifodd\j\relax%
|
631
|
+
\qr@storetomatrix{#1}{7}{\the\j}{\qr@black@fixed}%
|
632
|
+
\qr@storetomatrix{#1}{\the\j}{7}{\qr@black@fixed}%
|
633
|
+
\else%
|
634
|
+
\qr@storetomatrix{#1}{7}{\the\j}{\qr@white@fixed}%
|
635
|
+
\qr@storetomatrix{#1}{\the\j}{7}{\qr@white@fixed}%
|
636
|
+
\fi%
|
637
|
+
}%
|
638
|
+
}%
|
639
|
+
|
640
|
+
\def\qr@placealignmentpattern@int#1#2#3{%
|
641
|
+
% Work on matrix #1.
|
642
|
+
% Write an alignment pattern into the matrix, centered on (#2,#3).
|
643
|
+
\qr@a=#2\relax%
|
644
|
+
\advance\qr@a by -2\relax%
|
645
|
+
\qr@b=#3\relax%
|
646
|
+
\advance\qr@b by -2\relax%
|
647
|
+
\setcounter{qr@i}{\the\qr@a}%
|
648
|
+
\qr@for \i=1 to 5 by 1%
|
649
|
+
{\setcounter{qr@j}{\the\qr@b}%
|
650
|
+
\qr@for \j=1 to 5 by 1%
|
651
|
+
{\qr@copymatrixentry{alignmentpattern}{\the\i}{\the\j}%
|
652
|
+
{#1}{\theqr@i}{\theqr@j}%
|
653
|
+
\stepcounter{qr@j}%
|
654
|
+
}%
|
655
|
+
\stepcounter{qr@i}%
|
656
|
+
}%
|
657
|
+
}%
|
658
|
+
|
659
|
+
\newif\ifqr@incorner%
|
660
|
+
\def\qr@placealignmentpatterns#1{%
|
661
|
+
%There are k^2-3 alignment patterns,
|
662
|
+
%arranged in a (k x k) grid within the matrix.
|
663
|
+
%They begin in row 7, column 7,
|
664
|
+
%except that the ones in the NW, NE, and SW corners
|
665
|
+
%are omitted because of the finder patterns.
|
666
|
+
%Recall that
|
667
|
+
% * \qr@k stores k,
|
668
|
+
% * \qr@alignment@firstskip stores how far between the 1st and 2nd row/col, &
|
669
|
+
% * \qr@alignment@generalskip stores how far between each subsequent row/col.
|
670
|
+
\xa\ifnum\qr@k>0\relax
|
671
|
+
%There will be at least one alignment pattern.
|
672
|
+
%N.B. k cannot equal 1.
|
673
|
+
\xa\ifnum\qr@k=2\relax
|
674
|
+
% 2*2-3 = exactly 1 alignment pattern.
|
675
|
+
\qr@a=7\relax
|
676
|
+
\advance\qr@a by \qr@alignment@firstskip\relax
|
677
|
+
\xdef\qr@target@ii{\the\qr@a}%
|
678
|
+
\qr@placealignmentpattern@int{#1}{\qr@target@ii}{\qr@target@ii}%
|
679
|
+
\else
|
680
|
+
% k is at least 3, so the following loops should be safe.
|
681
|
+
\xdef\qr@target@ii{7}%
|
682
|
+
\qr@for \ii = 1 to \qr@k by 1%
|
683
|
+
{\ifcase\ii\relax%
|
684
|
+
\relax% \ii should never equal 0.
|
685
|
+
\or
|
686
|
+
\xdef\qr@target@ii{7}% If \ii = 1, we start in row 7.
|
687
|
+
\or
|
688
|
+
%If \ii = 2, we add the firstskip.
|
689
|
+
\qr@a=\qr@target@ii\relax%
|
690
|
+
\advance\qr@a by \qr@alignment@firstskip\relax%
|
691
|
+
\xdef\qr@target@ii{\the\qr@a}%
|
692
|
+
\else
|
693
|
+
%If \ii>2, we add the generalskip.
|
694
|
+
\qr@a=\qr@target@ii\relax%
|
695
|
+
\advance\qr@a by \qr@alignment@generalskip\relax%
|
696
|
+
\xdef\qr@target@ii{\the\qr@a}%
|
697
|
+
\fi
|
698
|
+
\qr@for \jj = 1 to \qr@k by 1%
|
699
|
+
{\ifcase\jj\relax%
|
700
|
+
\relax% \jj should never equal 0.
|
701
|
+
\or
|
702
|
+
\xdef\qr@target@jj{7}% If \jj=1, we start in row 7.
|
703
|
+
\or
|
704
|
+
%If \jj=2, we add the firstskip.
|
705
|
+
\qr@a=\qr@target@jj\relax%
|
706
|
+
\advance\qr@a by \qr@alignment@firstskip%
|
707
|
+
\xdef\qr@target@jj{\the\qr@a}%
|
708
|
+
\else
|
709
|
+
%If \jj>2, we add the generalskip.
|
710
|
+
\qr@a=\qr@target@jj\relax%
|
711
|
+
\advance\qr@a by \qr@alignment@generalskip%
|
712
|
+
\xdef\qr@target@jj{\the\qr@a}%
|
713
|
+
\fi
|
714
|
+
\qr@incornerfalse%
|
715
|
+
\ifnum\ii=1\relax
|
716
|
+
\ifnum\jj=1\relax
|
717
|
+
\qr@incornertrue
|
718
|
+
\else
|
719
|
+
\ifnum\qr@k=\jj\relax
|
720
|
+
\qr@incornertrue
|
721
|
+
\fi
|
722
|
+
\fi
|
723
|
+
\else
|
724
|
+
\xa\ifnum\qr@k=\ii\relax
|
725
|
+
\ifnum\jj=1\relax
|
726
|
+
\qr@incornertrue
|
727
|
+
\fi
|
728
|
+
\fi
|
729
|
+
\fi
|
730
|
+
\ifqr@incorner
|
731
|
+
\relax
|
732
|
+
\else
|
733
|
+
\qr@placealignmentpattern@int{#1}{\qr@target@ii}{\qr@target@jj}%
|
734
|
+
\fi
|
735
|
+
}% ends \qr@for \jj
|
736
|
+
}% ends \qr@for \ii
|
737
|
+
\fi
|
738
|
+
\fi
|
739
|
+
}%
|
740
|
+
|
741
|
+
\def\qr@placedummyformatpatterns#1{%
|
742
|
+
\qr@for \j = 1 to 9 by 1%
|
743
|
+
{\ifnum\j=7\relax%
|
744
|
+
\else%
|
745
|
+
\qr@storetomatrix{#1}{9}{\the\j}{\qr@format@square}%
|
746
|
+
\qr@storetomatrix{#1}{\the\j}{9}{\qr@format@square}%
|
747
|
+
\fi%
|
748
|
+
}%
|
749
|
+
\setcounter{qr@j}{\qr@size}%
|
750
|
+
\qr@for \j = 1 to 8 by 1%
|
751
|
+
{\qr@storetomatrix{#1}{9}{\theqr@j}{\qr@format@square}%
|
752
|
+
\qr@storetomatrix{#1}{\theqr@j}{9}{\qr@format@square}%
|
753
|
+
\addtocounter{qr@j}{-1}%
|
754
|
+
}%
|
755
|
+
%Now go back and change the \qr@format@square in (n-8,9) to \qr@black@fixed.
|
756
|
+
\addtocounter{qr@j}{1}%
|
757
|
+
\qr@storetomatrix{#1}{\theqr@j}{9}{\qr@black@fixed}%
|
758
|
+
}%
|
759
|
+
|
760
|
+
\def\qr@placedummyversionpatterns#1{%
|
761
|
+
\xa\ifnum\qr@version>6\relax
|
762
|
+
%Must include version information.
|
763
|
+
\global\c@qr@i=\qr@size%
|
764
|
+
\global\advance\c@qr@i by -10\relax%
|
765
|
+
\qr@for \i = 1 to 3 by 1%
|
766
|
+
{\qr@for \j = 1 to 6 by 1%
|
767
|
+
{\qr@storetomatrix{#1}{\theqr@i}{\the\j}{\qr@format@square}%
|
768
|
+
\qr@storetomatrix{#1}{\the\j}{\theqr@i}{\qr@format@square}%
|
769
|
+
}%
|
770
|
+
\stepcounter{qr@i}%
|
771
|
+
}%
|
772
|
+
\fi
|
773
|
+
}%
|
774
|
+
|
775
|
+
\def\qr@writebit(#1#2)#3{%
|
776
|
+
% #3 = matrix name
|
777
|
+
% (qr@i,qr@j) = position to write in (LaTeX counters)
|
778
|
+
% #1 = bit to be written
|
779
|
+
% #2 = remaining bits plus '\relax' as an end-of-file marker
|
780
|
+
\edef\qr@datatowrite{#2}%
|
781
|
+
\ifnum#1=1
|
782
|
+
\qr@storetomatrix{#3}{\theqr@i}{\theqr@j}{\qr@black}%
|
783
|
+
\else
|
784
|
+
\qr@storetomatrix{#3}{\theqr@i}{\theqr@j}{\qr@white}%
|
785
|
+
\fi
|
786
|
+
}%
|
787
|
+
|
788
|
+
\newif\ifqr@rightcol
|
789
|
+
\newif\ifqr@goingup
|
790
|
+
|
791
|
+
\def\qr@writedata@hex#1#2{%
|
792
|
+
% #1 = name of a matrix that has been prepared with finder patterns, timing patterns, etc.
|
793
|
+
% #2 = a string consisting of bytes to write into the matrix, in two-char hex format.
|
794
|
+
\setcounter{qr@i}{\qr@numberofrowsinmatrix{#1}}%
|
795
|
+
\setcounter{qr@j}{\qr@numberofcolsinmatrix{#1}}%
|
796
|
+
\qr@rightcoltrue%
|
797
|
+
\qr@goinguptrue%
|
798
|
+
\edef\qr@argument{{#1}(#2\relax\relax\relax)}%
|
799
|
+
\xa\qr@writedata@hex@recursive\qr@argument%
|
800
|
+
}%
|
801
|
+
|
802
|
+
\def\qr@writedata@hex@recursive#1(#2#3#4){%
|
803
|
+
% #1 = name of a matrix that has been prepared with finder patterns, timing patterns, etc.
|
804
|
+
% (qr@i,qr@j) = position to write in LaTeX counters
|
805
|
+
% #2#3#4 contains the hex codes of the bytes to be written, plus \relax\relax\relax
|
806
|
+
% as an end-of-file marker
|
807
|
+
\edef\qr@testii{#2}%
|
808
|
+
\ifx\qr@testii\qr@relax%
|
809
|
+
% #2 is \relax, so there is nothing more to write.
|
810
|
+
\relax
|
811
|
+
\let\qr@next=\relax
|
812
|
+
\else
|
813
|
+
% #2 is not \relax, so there is another byte to write.
|
814
|
+
\qr@hextobinary[8]{\bytetowrite}{#2#3}%
|
815
|
+
\xdef\qr@datatowrite{\bytetowrite\relax}% %Add terminating "\relax"
|
816
|
+
\qr@writedata@recursive{#1}% %This function actually writes the 8 bits.
|
817
|
+
\edef\qr@argument{{#1}(#4)}%
|
818
|
+
\xa\def\xa\qr@next\xa{\xa\qr@writedata@hex@recursive\qr@argument}% %Call self to write the next bit.
|
819
|
+
\fi
|
820
|
+
\qr@next
|
821
|
+
}%
|
822
|
+
|
823
|
+
\def\qr@writedata#1#2{%
|
824
|
+
% #1 = name of a matrix that has been prepared with finder patterns, timing patterns, etc.
|
825
|
+
% #2 = a string consisting of 0's and 1's to write into the matrix.
|
826
|
+
\setcounter{qr@i}{\qr@numberofrowsinmatrix{#1}}%
|
827
|
+
\setcounter{qr@j}{\qr@numberofcolsinmatrix{#1}}%
|
828
|
+
\qr@rightcoltrue
|
829
|
+
\qr@goinguptrue
|
830
|
+
\edef\qr@datatowrite{#2\relax}%
|
831
|
+
\qr@writedata@recursive{#1}%
|
832
|
+
}%
|
833
|
+
|
834
|
+
\def\qr@@blank{\qr@blank}%
|
835
|
+
|
836
|
+
\def\qr@writedata@recursive#1{%
|
837
|
+
% #1 = matrix name
|
838
|
+
% (qr@i,qr@j) = position to write in (LaTeX counters)
|
839
|
+
% \qr@datatowrite contains the bits to be written, plus '\relax' as an end-of-file marker
|
840
|
+
\xa\let\xa\squarevalue\csname #1@\theqr@i @\theqr@j\endcsname%
|
841
|
+
\ifx\squarevalue\qr@@blank
|
842
|
+
%Square is blank, so write data in it.
|
843
|
+
\xa\qr@writebit\xa(\qr@datatowrite){#1}%
|
844
|
+
%The \qr@writebit macro not only writes the first bit of \qr@datatowrite into the matrix,
|
845
|
+
%but also removes the bit from the 'bitstream' of \qr@datatowrite.
|
846
|
+
\fi
|
847
|
+
%Now adjust our position in the matrix.
|
848
|
+
\ifqr@rightcol
|
849
|
+
%From the right-hand half of the two-bit column, we always move left. Easy peasy.
|
850
|
+
\addtocounter{qr@j}{-1}%
|
851
|
+
\qr@rightcolfalse
|
852
|
+
\else
|
853
|
+
%If we're in the left-hand column, things are harder.
|
854
|
+
\ifqr@goingup
|
855
|
+
%First, suppose we're going upwards.
|
856
|
+
\ifnum\c@qr@i>1\relax%
|
857
|
+
%If we're not in the first row, things are easy.
|
858
|
+
%We move one to the right and one up.
|
859
|
+
\addtocounter{qr@j}{1}%
|
860
|
+
\addtocounter{qr@i}{-1}%
|
861
|
+
\qr@rightcoltrue
|
862
|
+
\else
|
863
|
+
%If we are in the first row, then we move to the left,
|
864
|
+
%and we are now in the right-hand column on a downward pass.
|
865
|
+
\addtocounter{qr@j}{-1}%
|
866
|
+
\qr@goingupfalse
|
867
|
+
\qr@rightcoltrue
|
868
|
+
\fi
|
869
|
+
\else
|
870
|
+
%Now, suppose we're going downwards.
|
871
|
+
\xa\ifnum\qr@size>\c@qr@i\relax%
|
872
|
+
%If we're not yet in the bottom row, things are easy.
|
873
|
+
%We move one to the right and one down.
|
874
|
+
\addtocounter{qr@j}{1}%
|
875
|
+
\addtocounter{qr@i}{1}%
|
876
|
+
\qr@rightcoltrue
|
877
|
+
\else
|
878
|
+
%If we are in the bottom row, then we move to the left,
|
879
|
+
%and we are now in the right-hand column on an upward pass.
|
880
|
+
\addtocounter{qr@j}{-1}%
|
881
|
+
\qr@rightcoltrue
|
882
|
+
\qr@goinguptrue
|
883
|
+
\fi
|
884
|
+
\fi
|
885
|
+
%One problem: what if we just moved into the 7th column?
|
886
|
+
%Das ist verboten.
|
887
|
+
%If we just moved (left) into the 7th column, we should move on into the 6th column.
|
888
|
+
\ifnum\c@qr@j=7\relax%
|
889
|
+
\setcounter{qr@j}{6}%
|
890
|
+
\fi
|
891
|
+
\fi
|
892
|
+
%Now check whether there are any more bits to write.
|
893
|
+
\ifx\qr@datatowrite\qr@relax
|
894
|
+
% \qr@datatowrite is just `\relax', so we're done.
|
895
|
+
\let\qr@next=\relax
|
896
|
+
\relax
|
897
|
+
\else
|
898
|
+
% Write some more!
|
899
|
+
\def\qr@next{\qr@writedata@recursive{#1}}%
|
900
|
+
\fi
|
901
|
+
\qr@next
|
902
|
+
}%
|
903
|
+
|
904
|
+
\def\qr@writeremainderbits#1{%
|
905
|
+
% #1 = name of a matrix that has been prepared and partly filled.
|
906
|
+
% (qr@i,qr@j) = position to write in LaTeX counters
|
907
|
+
\xa\ifnum\qr@numremainderbits>0\relax
|
908
|
+
\def\qr@datatowrite{}%
|
909
|
+
\qr@for \i = 1 to \qr@numremainderbits by 1%
|
910
|
+
{\g@addto@macro{\qr@datatowrite}{0}}%
|
911
|
+
\g@addto@macro{\qr@datatowrite}{\relax}% terminator
|
912
|
+
\qr@writedata@recursive{#1}%
|
913
|
+
\fi
|
914
|
+
}%
|
915
|
+
|
916
|
+
\newif\ifqr@cellinmask
|
917
|
+
|
918
|
+
\def\qr@setmaskingfunction#1{%
|
919
|
+
% #1 = 1 decimal digit for the mask. (I see no reason to use the 3-bit binary code.)
|
920
|
+
% The current position is (\themaski,\themaskj), with indexing starting at 0.
|
921
|
+
\edef\qr@maskselection{#1}%
|
922
|
+
\xa\ifcase\qr@maskselection\relax
|
923
|
+
%Case 0: checkerboard
|
924
|
+
\def\qr@parsemaskingfunction{%
|
925
|
+
% Compute mod(\themaski+\themaskj,2)%
|
926
|
+
\qr@a=\c@maski%
|
927
|
+
\advance\qr@a by \c@maskj%
|
928
|
+
\qr@b=\qr@a%
|
929
|
+
\divide\qr@b by 2%
|
930
|
+
\multiply\qr@b by 2%
|
931
|
+
\advance\qr@a by -\qr@b%
|
932
|
+
\edef\qr@maskfunctionresult{\the\qr@a}%
|
933
|
+
}%
|
934
|
+
\or
|
935
|
+
%Case 1: horizontal stripes
|
936
|
+
\def\qr@parsemaskingfunction{%
|
937
|
+
% Compute mod(\themaski,2)%
|
938
|
+
\ifodd\c@maski\relax%
|
939
|
+
\def\qr@maskfunctionresult{1}%
|
940
|
+
\else%
|
941
|
+
\def\qr@maskfunctionresult{0}%
|
942
|
+
\fi%
|
943
|
+
}%
|
944
|
+
\or
|
945
|
+
%Case 2: vertical stripes
|
946
|
+
\def\qr@parsemaskingfunction{%
|
947
|
+
% Compute mod(\themaskj,3)%
|
948
|
+
\qr@a=\c@maskj%
|
949
|
+
\divide\qr@a by 3%
|
950
|
+
\multiply\qr@a by 3%
|
951
|
+
\advance\qr@a by -\c@maskj%
|
952
|
+
\edef\qr@maskfunctionresult{\the\qr@a}%
|
953
|
+
}%
|
954
|
+
\or
|
955
|
+
%Case 3: diagonal stripes
|
956
|
+
\def\qr@parsemaskingfunction{%
|
957
|
+
% Compute mod(\themaski+\themaskj,3)%
|
958
|
+
\qr@a=\c@maski%
|
959
|
+
\advance\qr@a by \c@maskj%
|
960
|
+
\qr@b=\qr@a%
|
961
|
+
\divide\qr@b by 3%
|
962
|
+
\multiply\qr@b by 3%
|
963
|
+
\advance\qr@b by -\qr@a%
|
964
|
+
\edef\qr@maskfunctionresult{\the\qr@b}%
|
965
|
+
}%
|
966
|
+
\or
|
967
|
+
%Case 4: wide checkerboard
|
968
|
+
\def\qr@parsemaskingfunction{%
|
969
|
+
% Compute mod(floor(\themaski/2) + floor(\themaskj/3),2) %
|
970
|
+
\qr@a=\c@maski%
|
971
|
+
\divide\qr@a by 2%
|
972
|
+
\qr@b=\c@maskj%
|
973
|
+
\divide\qr@b by 3%
|
974
|
+
\advance\qr@a by \qr@b%
|
975
|
+
\qr@b=\qr@a%
|
976
|
+
\divide\qr@a by 2%
|
977
|
+
\multiply\qr@a by 2%
|
978
|
+
\advance\qr@a by -\qr@b%
|
979
|
+
\edef\qr@maskfunctionresult{\the\qr@a}%
|
980
|
+
}%
|
981
|
+
\or
|
982
|
+
%Case 5: quilt
|
983
|
+
\def\qr@parsemaskingfunction{%
|
984
|
+
% Compute mod(\themaski*\themaskj,2) + mod(\themaski*\themaskj,3) %
|
985
|
+
\qr@a=\c@maski%
|
986
|
+
\multiply\qr@a by \c@maskj%
|
987
|
+
\qr@b=\qr@a%
|
988
|
+
\qr@c=\qr@a%
|
989
|
+
\divide\qr@a by 2%
|
990
|
+
\multiply\qr@a by 2%
|
991
|
+
\advance\qr@a by -\qr@c% (result will be -mod(i*j,2), which is negative.)
|
992
|
+
\divide\qr@b by 3%
|
993
|
+
\multiply\qr@b by 3%
|
994
|
+
\advance\qr@b by -\qr@c% (result will be -mod(i*j,3), which is negative.)
|
995
|
+
\advance\qr@a by \qr@b% (result is negative of what's in the spec.)
|
996
|
+
\edef\qr@maskfunctionresult{\the\qr@a}%
|
997
|
+
}%
|
998
|
+
\or
|
999
|
+
%Case 6: arrows
|
1000
|
+
\def\qr@parsemaskingfunction{%
|
1001
|
+
% Compute mod( mod(\themaski*\themaskj,2) + mod(\themaski*\themaskj,3) , 2 ) %
|
1002
|
+
\qr@a=\c@maski%
|
1003
|
+
\multiply\qr@a by \c@maskj%
|
1004
|
+
\qr@b=\qr@a%
|
1005
|
+
\qr@c=\qr@a%
|
1006
|
+
\multiply\qr@c by 2% % \qr@c equals 2*i*j.
|
1007
|
+
\divide\qr@a by 2%
|
1008
|
+
\multiply\qr@a by 2%
|
1009
|
+
\advance\qr@c by -\qr@a% Now \qr@c equals i*j + mod(i*j,2).
|
1010
|
+
\divide\qr@b by 3%
|
1011
|
+
\multiply\qr@b by 3%
|
1012
|
+
\advance\qr@c by -\qr@b% (Now \qr@c equals mod(i*j,2) + mod(i*j,3).
|
1013
|
+
\qr@a=\qr@c%
|
1014
|
+
\divide\qr@a by 2%
|
1015
|
+
\multiply\qr@a by 2%
|
1016
|
+
\advance\qr@c by-\qr@a%
|
1017
|
+
\edef\qr@maskfunctionresult{\the\qr@c}%
|
1018
|
+
}%
|
1019
|
+
\or
|
1020
|
+
%Case 7: shotgun
|
1021
|
+
\def\qr@parsemaskingfunction{%
|
1022
|
+
% Compute mod( mod(\themaski+\themaskj,2) + mod(\themaski*\themaskj,3) , 2 ) %
|
1023
|
+
\qr@a=\c@maski%
|
1024
|
+
\advance\qr@a by \c@maskj% %So \qr@a = i+j
|
1025
|
+
\qr@b=\c@maski%
|
1026
|
+
\multiply\qr@b by \c@maskj% %So \qr@b = i*j
|
1027
|
+
\qr@c=\qr@a%
|
1028
|
+
\advance\qr@c by \qr@b% So \qr@c = i+j+i*j
|
1029
|
+
\divide\qr@a by 2%
|
1030
|
+
\multiply\qr@a by 2%
|
1031
|
+
\advance\qr@c by -\qr@a% So \qr@c = mod(i+j,2) + i*j
|
1032
|
+
\divide\qr@b by 3%
|
1033
|
+
\multiply\qr@b by 3%
|
1034
|
+
\advance\qr@c by -\qr@b% So \qr@c = mod(i+j,2) + mod(i*j,3)
|
1035
|
+
\qr@a=\qr@c%
|
1036
|
+
\divide\qr@c by 2%
|
1037
|
+
\multiply\qr@c by 2%
|
1038
|
+
\advance\qr@a by -\qr@c%
|
1039
|
+
\edef\qr@maskfunctionresult{\the\qr@a}%
|
1040
|
+
}%
|
1041
|
+
\fi
|
1042
|
+
}%
|
1043
|
+
|
1044
|
+
\def\qr@checkifcellisinmask{%
|
1045
|
+
% The current position is (\i,\j), in TeX counts,
|
1046
|
+
% but the LaTeX counters (maski,maskj) should contain
|
1047
|
+
% the current position with indexing starting at 0.
|
1048
|
+
% That is, maski = \i-1 and maskj = \j-1.
|
1049
|
+
%
|
1050
|
+
% \qr@parsemaskingfunction must have been set by a call to \qr@setmaskingfunction
|
1051
|
+
\qr@parsemaskingfunction
|
1052
|
+
\xa\ifnum\qr@maskfunctionresult=0\relax
|
1053
|
+
\qr@cellinmasktrue
|
1054
|
+
\else
|
1055
|
+
\qr@cellinmaskfalse
|
1056
|
+
\fi
|
1057
|
+
}%
|
1058
|
+
|
1059
|
+
\newcounter{maski}%
|
1060
|
+
\newcounter{maskj}%
|
1061
|
+
|
1062
|
+
\def\qr@applymask#1#2#3{%
|
1063
|
+
% #1 = name of a matrix that should be filled out completely
|
1064
|
+
% except for the format and/or version information.
|
1065
|
+
% #2 = name of a new matrix to contain the masked version
|
1066
|
+
% #3 = 1 decimal digit naming the mask
|
1067
|
+
\qr@createduplicatematrix{#2}{#1}%
|
1068
|
+
\qr@setmaskingfunction{#3}%
|
1069
|
+
\setcounter{maski}{-1}%
|
1070
|
+
\qr@for \i = 1 to \qr@size by 1%
|
1071
|
+
{\stepcounter{maski}%
|
1072
|
+
\setcounter{maskj}{-1}%
|
1073
|
+
\qr@for \j = 1 to \qr@size by 1%
|
1074
|
+
{\stepcounter{maskj}%
|
1075
|
+
\qr@checkifcellisinmask
|
1076
|
+
\ifqr@cellinmask
|
1077
|
+
\qr@checkifcurrentcellcontainsdata{#2}%
|
1078
|
+
\ifqr@currentcellcontainsdata
|
1079
|
+
\qr@flipcurrentcell{#2}%
|
1080
|
+
\fi
|
1081
|
+
\fi
|
1082
|
+
}%
|
1083
|
+
}%
|
1084
|
+
}%
|
1085
|
+
|
1086
|
+
\newif\ifqr@currentcellcontainsdata
|
1087
|
+
\qr@currentcellcontainsdatafalse
|
1088
|
+
|
1089
|
+
\def\qr@@white{\qr@white}%
|
1090
|
+
\def\qr@@black{\qr@black}%
|
1091
|
+
|
1092
|
+
\def\qr@checkifcurrentcellcontainsdata#1{%
|
1093
|
+
% #1 = name of matrix
|
1094
|
+
\qr@currentcellcontainsdatafalse
|
1095
|
+
\xa\ifx\csname #1@\the\i @\the\j\endcsname\qr@@white
|
1096
|
+
\qr@currentcellcontainsdatatrue
|
1097
|
+
\fi
|
1098
|
+
\xa\ifx\csname #1@\the\i @\the\j\endcsname\qr@@black
|
1099
|
+
\qr@currentcellcontainsdatatrue
|
1100
|
+
\fi
|
1101
|
+
}%
|
1102
|
+
|
1103
|
+
\def\qr@flipped@black{\qr@black}%
|
1104
|
+
\def\qr@flipped@white{\qr@white}%
|
1105
|
+
|
1106
|
+
\def\qr@flipcurrentcell#1{%
|
1107
|
+
% #1 = name of matrix
|
1108
|
+
% (\i, \j) = current position, in TeX counts.
|
1109
|
+
% This assumes the cell contains data, either black or white!
|
1110
|
+
\xa\ifx\csname #1@\the\i @\the\j\endcsname\qr@@white
|
1111
|
+
\qr@storetomatrix{#1}{\the\i}{\the\j}{\qr@flipped@black}%
|
1112
|
+
\else
|
1113
|
+
\qr@storetomatrix{#1}{\the\i}{\the\j}{\qr@flipped@white}%
|
1114
|
+
\fi
|
1115
|
+
}%
|
1116
|
+
|
1117
|
+
\def\qr@chooseandapplybestmask#1{%
|
1118
|
+
% #1 = name of a matrix that should be filled out completely
|
1119
|
+
% except for the format and/or version information.
|
1120
|
+
% This function applies all eight masks in succession,
|
1121
|
+
% calculates their penalties, and remembers the best.
|
1122
|
+
% The number indicating which mask was used is saved in \qr@mask@selected.
|
1123
|
+
\qr@createduplicatematrix{originalmatrix}{#1}%
|
1124
|
+
\message{<Applying Mask 0...}%
|
1125
|
+
\qr@applymask{originalmatrix}{#1}{0}%
|
1126
|
+
\message{done. Calculating penalty...}%
|
1127
|
+
\qr@evaluatemaskpenalty{#1}%
|
1128
|
+
\xdef\qr@currentbestpenalty{\qr@penalty}%
|
1129
|
+
\message{penalty is \qr@penalty>^^J}%
|
1130
|
+
\gdef\qr@currentbestmask{0}%
|
1131
|
+
\qr@for \i = 1 to 7 by 1%
|
1132
|
+
{\message{<Applying Mask \the\i...}%
|
1133
|
+
\qr@applymask{originalmatrix}{currentmasked}{\the\i}%
|
1134
|
+
\message{done. Calculating penalty...}%
|
1135
|
+
\qr@evaluatemaskpenalty{currentmasked}%
|
1136
|
+
\message{penalty is \qr@penalty>^^J}%
|
1137
|
+
\xa\xa\xa\ifnum\xa\qr@penalty\xa<\qr@currentbestpenalty\relax
|
1138
|
+
%We found a better mask.
|
1139
|
+
\xdef\qr@currentbestmask{\the\i}%
|
1140
|
+
\qr@createduplicatematrix{#1}{currentmasked}%
|
1141
|
+
\xdef\qr@currentbestpenalty{\qr@penalty}%
|
1142
|
+
\fi
|
1143
|
+
}%
|
1144
|
+
\xdef\qr@mask@selected{\qr@currentbestmask}%
|
1145
|
+
\message{<Selected Mask \qr@mask@selected>^^J}%
|
1146
|
+
}%
|
1147
|
+
|
1148
|
+
\def\qr@Ni{3}%
|
1149
|
+
\def\qr@Nii{3}%
|
1150
|
+
\def\qr@Niii{40}%
|
1151
|
+
\def\qr@Niv{10}%
|
1152
|
+
\def\qr@fiveones{11111}%
|
1153
|
+
\def\qr@fivezeros{11111}%
|
1154
|
+
\def\qr@twoones{11}%
|
1155
|
+
\def\qr@twozeros{00}%
|
1156
|
+
\def\qr@finderA{00001011101}%
|
1157
|
+
\def\qr@finderB{10111010000}%
|
1158
|
+
\def\qr@finderB@three{1011101000}%
|
1159
|
+
\def\qr@finderB@two{101110100}%
|
1160
|
+
\def\qr@finderB@one{10111010}%
|
1161
|
+
\def\qr@finderB@zero{1011101}%
|
1162
|
+
\newif\ifqr@stringoffive
|
1163
|
+
\def\qr@addpenaltyiii{%
|
1164
|
+
\addtocounter{penaltyiii}{\qr@Niii}%
|
1165
|
+
}%
|
1166
|
+
\newcounter{totalones}%
|
1167
|
+
\newcounter{penaltyi}%
|
1168
|
+
\newcounter{penaltyii}%
|
1169
|
+
\newcounter{penaltyiii}%
|
1170
|
+
\newcounter{penaltyiv}%
|
1171
|
+
\def\qr@evaluatemaskpenalty#1{%
|
1172
|
+
% #1 = name of a matrix that we will test for the penalty
|
1173
|
+
% according to the specs.
|
1174
|
+
\setcounter{penaltyi}{0}%
|
1175
|
+
\setcounter{penaltyii}{0}%
|
1176
|
+
\setcounter{penaltyiii}{0}%
|
1177
|
+
\setcounter{penaltyiv}{0}%
|
1178
|
+
\bgroup%localize the meanings we give to the symbols
|
1179
|
+
\def\qr@black{1}\def\qr@white{0}%
|
1180
|
+
\def\qr@black@fixed{1}\def\qr@white@fixed{0}%
|
1181
|
+
\def\qr@format@square{0}% This is not stated in the specs, but seems
|
1182
|
+
% to be the standard implementation.
|
1183
|
+
\def\qr@blank{0}% These would be any bits at the end.
|
1184
|
+
%
|
1185
|
+
\setcounter{totalones}{0}%
|
1186
|
+
\qr@for \i=1 to \qr@size by 1%
|
1187
|
+
{\def\qr@lastfive{z}% %The z is a dummy, that will be removed before any testing.
|
1188
|
+
\qr@stringoffivefalse
|
1189
|
+
\def\qr@lasttwo@thisrow{z}% %The z is a dummy.
|
1190
|
+
\def\qr@lasttwo@nextrow{z}% %The z is a dummy.
|
1191
|
+
\def\qr@lastnine{z0000}% %The 0000 stands for the white space to the left. The z is a dummy.
|
1192
|
+
\def\qr@ignore@finderB@at{0}%
|
1193
|
+
\qr@for \j=1 to \qr@size by 1%
|
1194
|
+
{\edef\qr@newbit{\qr@matrixentry{#1}{\the\i}{\the\j}}%
|
1195
|
+
%
|
1196
|
+
% LASTFIVE CODE FOR PENALTY 1
|
1197
|
+
% First, add the new bit to the end.
|
1198
|
+
\xa\g@addto@macro\xa\qr@lastfive\xa{\qr@newbit}%
|
1199
|
+
\ifnum\j<5\relax%
|
1200
|
+
%Not yet on the 5th entry.
|
1201
|
+
%Don't do any testing.
|
1202
|
+
\else
|
1203
|
+
% 5th entry or later.
|
1204
|
+
% Remove the old one, and then test.
|
1205
|
+
\qr@removefirsttoken\qr@lastfive%
|
1206
|
+
\ifx\qr@lastfive\qr@fiveones%
|
1207
|
+
\ifqr@stringoffive%
|
1208
|
+
%This is a continuation of a previous block of five or more 1's.
|
1209
|
+
\stepcounter{penaltyi}%
|
1210
|
+
\else
|
1211
|
+
%This is a new string of five 1's.
|
1212
|
+
\addtocounter{penaltyi}{\qr@Ni}%
|
1213
|
+
\global\qr@stringoffivetrue
|
1214
|
+
\fi
|
1215
|
+
\else
|
1216
|
+
\ifx\qr@lastfive\qr@fivezeros%
|
1217
|
+
\ifqr@stringoffive
|
1218
|
+
%This is a continuation of a previous block of five or more 0's.
|
1219
|
+
\stepcounter{penaltyi}%
|
1220
|
+
\else
|
1221
|
+
%This is a new string of five 0's.
|
1222
|
+
\addtocounter{penaltyi}{\qr@Ni}%
|
1223
|
+
\global\qr@stringoffivetrue
|
1224
|
+
\fi
|
1225
|
+
\else
|
1226
|
+
%This is not a string of five 1's or five 0's.
|
1227
|
+
\global\qr@stringoffivefalse
|
1228
|
+
\fi
|
1229
|
+
\fi
|
1230
|
+
\fi
|
1231
|
+
%
|
1232
|
+
% 2x2 BLOCKS FOR PENALTY 2
|
1233
|
+
% Every 2x2 block of all 1's counts for \qr@Nii penalty points.
|
1234
|
+
% We do not need to run this test in the last row.
|
1235
|
+
\xa\ifnum\xa\i\xa<\qr@size\relax
|
1236
|
+
\xa\g@addto@macro\xa\qr@lasttwo@thisrow\xa{\qr@newbit}%
|
1237
|
+
%Compute \qr@iplusone
|
1238
|
+
\qr@a=\i\relax%
|
1239
|
+
\advance\qr@a by 1%
|
1240
|
+
\edef\qr@iplusone{\the\qr@a}%
|
1241
|
+
%
|
1242
|
+
\edef\qr@nextrowbit{\qr@matrixentry{#1}{\qr@iplusone}{\the\j}}%
|
1243
|
+
\xa\g@addto@macro\xa\qr@lasttwo@nextrow\xa{\qr@nextrowbit}%
|
1244
|
+
\ifnum\j<2\relax%
|
1245
|
+
%Still in the first column; no check.
|
1246
|
+
\else
|
1247
|
+
%Second column or later. Remove the old bits, and then test.
|
1248
|
+
\qr@removefirsttoken\qr@lasttwo@thisrow
|
1249
|
+
\qr@removefirsttoken\qr@lasttwo@nextrow
|
1250
|
+
\ifx\qr@lasttwo@thisrow\qr@twoones
|
1251
|
+
\ifx\qr@lasttwo@nextrow\qr@twoones
|
1252
|
+
\addtocounter{penaltyii}{\qr@Nii}%
|
1253
|
+
\fi
|
1254
|
+
\else
|
1255
|
+
\ifx\qr@lasttwo@thisrow\qr@twozeros
|
1256
|
+
\ifx\qr@lasttwo@nextrow\qr@twozeros
|
1257
|
+
\addtocounter{penaltyii}{\qr@Nii}%
|
1258
|
+
\fi
|
1259
|
+
\fi
|
1260
|
+
\fi
|
1261
|
+
\fi
|
1262
|
+
\fi
|
1263
|
+
%
|
1264
|
+
% LASTNINE CODE FOR PENALTY 3
|
1265
|
+
% First, add the new bit to the end.
|
1266
|
+
\xa\g@addto@macro\xa\qr@lastnine\xa{\qr@newbit}%
|
1267
|
+
\ifnum\j<7\relax%
|
1268
|
+
%Not yet on the 7th entry.
|
1269
|
+
%Don't do any testing.
|
1270
|
+
\else
|
1271
|
+
% 7th entry or later.
|
1272
|
+
% Remove the old one, and then test.
|
1273
|
+
\qr@removefirsttoken\qr@lastnine
|
1274
|
+
\xa\ifnum\qr@size=\j\relax%
|
1275
|
+
% Last column. Any of the following should count:
|
1276
|
+
% 1011101 (\qr@finderB@zero)
|
1277
|
+
% 10111010 (\qr@finderB@one)
|
1278
|
+
% 101110100 (\qr@finderB@two)
|
1279
|
+
% 1011101000 (\qr@finderB@three)
|
1280
|
+
% 10111010000 (\qr@finderB)
|
1281
|
+
\ifx\qr@lastnine\qr@finderB
|
1282
|
+
\qr@addpenaltyiii
|
1283
|
+
\else
|
1284
|
+
\qr@removefirsttoken\qr@lastnine
|
1285
|
+
\ifx\qr@lastnine\qr@finderB@three
|
1286
|
+
\qr@addpenaltyiii
|
1287
|
+
\else
|
1288
|
+
\qr@removefirsttoken\qr@lastnine
|
1289
|
+
\ifx\qr@lastnine\qr@finderB@two
|
1290
|
+
\qr@addpenaltyiii
|
1291
|
+
\else
|
1292
|
+
\qr@removefirsttoken\qr@lastnine
|
1293
|
+
\ifx\qr@lastnine\qr@finderB@one
|
1294
|
+
\qr@addpenaltyiii
|
1295
|
+
\else
|
1296
|
+
\qr@removefirsttoken\qr@lastnine
|
1297
|
+
\ifx\qr@lastnine\qr@finderB@zero
|
1298
|
+
\qr@addpenaltyiii
|
1299
|
+
\fi
|
1300
|
+
\fi
|
1301
|
+
\fi
|
1302
|
+
\fi
|
1303
|
+
\fi
|
1304
|
+
\else
|
1305
|
+
\ifx\qr@lastnine\qr@finderA% %Matches 0000 1011101
|
1306
|
+
\qr@addpenaltyiii
|
1307
|
+
%Also, we record our discovery, so that we can't count this pattern again
|
1308
|
+
%if it shows up four columns later as 1011101 0000.
|
1309
|
+
%
|
1310
|
+
%Set \qr@ignore@finderB@at to \j+4.
|
1311
|
+
\qr@a=\j\relax%
|
1312
|
+
\advance\qr@a by 4%
|
1313
|
+
\xdef\qr@ignore@finderB@at{\the\qr@a}%
|
1314
|
+
\else
|
1315
|
+
\ifx\qr@lastfive\qr@finderB% %Matches 1011101 0000.
|
1316
|
+
\xa\ifnum\qr@ignore@finderB@at=\j\relax
|
1317
|
+
%This pattern was *not* counted already earlier.
|
1318
|
+
\qr@addpenaltyiii
|
1319
|
+
\fi
|
1320
|
+
\fi
|
1321
|
+
\fi
|
1322
|
+
\fi
|
1323
|
+
\fi
|
1324
|
+
%
|
1325
|
+
%COUNT 1's FOR PENALTY 4
|
1326
|
+
\xa\ifnum\qr@newbit=1\relax%
|
1327
|
+
\stepcounter{totalones}%
|
1328
|
+
\fi
|
1329
|
+
}% end of j-loop
|
1330
|
+
}% end of i-loop
|
1331
|
+
%
|
1332
|
+
%NOW WE ALSO NEED TO RUN DOWN THE COLUMNS TO FINISH CALCULATING PENALTIES 1 AND 3.
|
1333
|
+
\qr@for \j=1 to \qr@size by 1%
|
1334
|
+
{\def\qr@lastfive{z}% %The z is a dummy, that will be removed before any testing.
|
1335
|
+
\qr@stringoffivefalse
|
1336
|
+
\def\qr@lastnine{z0000}% %The 0000 stands for the white space to the left. The z is a dummy.
|
1337
|
+
\def\qr@ignore@finderB@at{0}%
|
1338
|
+
\qr@for \i=1 to \qr@size by 1%
|
1339
|
+
{\edef\qr@newbit{\qr@matrixentry{#1}{\the\i}{\the\j}}%
|
1340
|
+
%
|
1341
|
+
% LASTFIVE CODE FOR PENALTY 1
|
1342
|
+
% First, add the new bit to the end.
|
1343
|
+
\xa\g@addto@macro\xa\qr@lastfive\xa{\qr@newbit}%
|
1344
|
+
\ifnum\i<5\relax%
|
1345
|
+
%Not yet on the 5th entry.
|
1346
|
+
%Don't do any testing.
|
1347
|
+
\else
|
1348
|
+
% 5th entry or later.
|
1349
|
+
% Remove the old one, and then test.
|
1350
|
+
\qr@removefirsttoken\qr@lastfive%
|
1351
|
+
\ifx\qr@lastfive\qr@fiveones%
|
1352
|
+
\ifqr@stringoffive%
|
1353
|
+
%This is a continuation of a previous block of five or more 1's.
|
1354
|
+
\stepcounter{penaltyi}%
|
1355
|
+
\else
|
1356
|
+
%This is a new string of five 1's.
|
1357
|
+
\addtocounter{penaltyi}{\qr@Ni}%
|
1358
|
+
\global\qr@stringoffivetrue
|
1359
|
+
\fi
|
1360
|
+
\else
|
1361
|
+
\ifx\qr@lastfive\qr@fivezeros%
|
1362
|
+
\ifqr@stringoffive
|
1363
|
+
%This is a continuation of a previous block of five or more 0's.
|
1364
|
+
\stepcounter{penaltyi}%
|
1365
|
+
\else
|
1366
|
+
%This is a new string of five 0's.
|
1367
|
+
\addtocounter{penaltyi}{\qr@Ni}%
|
1368
|
+
\global\qr@stringoffivetrue
|
1369
|
+
\fi
|
1370
|
+
\else
|
1371
|
+
%This is not a string of five 1's or five 0's.
|
1372
|
+
\global\qr@stringoffivefalse
|
1373
|
+
\fi
|
1374
|
+
\fi
|
1375
|
+
\fi
|
1376
|
+
%
|
1377
|
+
% HAPPILY, WE DON'T NEED TO CALCULATE PENALTY 2 AGAIN.
|
1378
|
+
%
|
1379
|
+
% LASTNINE CODE FOR PENALTY 3
|
1380
|
+
% First, add the new bit to the end.
|
1381
|
+
\xa\g@addto@macro\xa\qr@lastnine\xa{\qr@newbit}%
|
1382
|
+
\ifnum\i<7\relax%
|
1383
|
+
%Not yet on the 7th entry.
|
1384
|
+
%Don't do any testing.
|
1385
|
+
\else
|
1386
|
+
% 7th entry or later.
|
1387
|
+
% Remove the old one, and then test.
|
1388
|
+
\qr@removefirsttoken\qr@lastnine
|
1389
|
+
\xa\ifnum\qr@size=\i\relax%
|
1390
|
+
% Last column. Any of the following should count:
|
1391
|
+
% 1011101 (\qr@finderB@zero)
|
1392
|
+
% 10111010 (\qr@finderB@one)
|
1393
|
+
% 101110100 (\qr@finderB@two)
|
1394
|
+
% 1011101000 (\qr@finderB@three)
|
1395
|
+
% 10111010000 (\qr@finderB)
|
1396
|
+
\ifx\qr@lastnine\qr@finderB
|
1397
|
+
\qr@addpenaltyiii
|
1398
|
+
\else
|
1399
|
+
\qr@removefirsttoken\qr@lastnine
|
1400
|
+
\ifx\qr@lastnine\qr@finderB@three
|
1401
|
+
\qr@addpenaltyiii
|
1402
|
+
\else
|
1403
|
+
\qr@removefirsttoken\qr@lastnine
|
1404
|
+
\ifx\qr@lastnine\qr@finderB@two
|
1405
|
+
\qr@addpenaltyiii
|
1406
|
+
\else
|
1407
|
+
\qr@removefirsttoken\qr@lastnine
|
1408
|
+
\ifx\qr@lastnine\qr@finderB@one
|
1409
|
+
\qr@addpenaltyiii
|
1410
|
+
\else
|
1411
|
+
\qr@removefirsttoken\qr@lastnine
|
1412
|
+
\ifx\qr@lastnine\qr@finderB@zero
|
1413
|
+
\qr@addpenaltyiii
|
1414
|
+
\fi
|
1415
|
+
\fi
|
1416
|
+
\fi
|
1417
|
+
\fi
|
1418
|
+
\fi
|
1419
|
+
\else
|
1420
|
+
\ifx\qr@lastnine\qr@finderA% %Matches 0000 1011101
|
1421
|
+
\qr@addpenaltyiii
|
1422
|
+
%Also, we record our discovery, so that we can't count this pattern again
|
1423
|
+
%if it shows up four columns later as 1011101 0000.
|
1424
|
+
%
|
1425
|
+
%Set \qr@ignore@finderB@at to \i+4.
|
1426
|
+
\qr@a=\i\relax%
|
1427
|
+
\advance\qr@a by 4%
|
1428
|
+
\xdef\qr@ignore@finderB@at{\the\qr@a}%
|
1429
|
+
\else
|
1430
|
+
\ifx\qr@lastfive\qr@finderB% %Matches 1011101 0000.
|
1431
|
+
\xa\ifnum\qr@ignore@finderB@at=\i\relax
|
1432
|
+
%This pattern was *not* counted already earlier.
|
1433
|
+
\qr@addpenaltyiii
|
1434
|
+
\fi
|
1435
|
+
\fi
|
1436
|
+
\fi
|
1437
|
+
\fi
|
1438
|
+
\fi
|
1439
|
+
%
|
1440
|
+
}% end of i-loop
|
1441
|
+
}% end of j-loop
|
1442
|
+
\egroup%
|
1443
|
+
%
|
1444
|
+
%CALCULATE PENALTY 4
|
1445
|
+
%According to the spec, penalty #4 is computed as
|
1446
|
+
% floor( |(i/n^2)-0.5|/0.05 )
|
1447
|
+
% where i is the total number of 1's in the matrix.
|
1448
|
+
% This is equal to abs(20*i-10n^2) div n^2.
|
1449
|
+
%
|
1450
|
+
\qr@a=\c@totalones\relax
|
1451
|
+
\multiply\qr@a by 20\relax
|
1452
|
+
\qr@b=\qr@size\relax
|
1453
|
+
\multiply\qr@b by \qr@size\relax
|
1454
|
+
\qr@c=10\relax
|
1455
|
+
\multiply\qr@c by \qr@b\relax
|
1456
|
+
\advance\qr@a by -\qr@c\relax
|
1457
|
+
\ifnum\qr@a<0\relax
|
1458
|
+
\multiply\qr@a by -1\relax
|
1459
|
+
\fi
|
1460
|
+
\divide\qr@a by \qr@b\relax
|
1461
|
+
\setcounter{penaltyiv}{\the\qr@a}%
|
1462
|
+
%
|
1463
|
+
%CALCULATE TOTAL PENALTY
|
1464
|
+
\qr@a=\thepenaltyi\relax%
|
1465
|
+
\advance\qr@a by \thepenaltyii\relax%
|
1466
|
+
\advance\qr@a by \thepenaltyiii\relax%
|
1467
|
+
\advance\qr@a by \thepenaltyiv\relax%
|
1468
|
+
\edef\qr@penalty{\the\qr@a}%
|
1469
|
+
}%
|
1470
|
+
|
1471
|
+
\def\qr@removefirsttoken#1{%
|
1472
|
+
%Removes the first token from the macro named in #1.
|
1473
|
+
\edef\qr@argument{(#1)}%
|
1474
|
+
\xa\qr@removefirsttoken@int\qr@argument%
|
1475
|
+
\xdef#1{\qr@removefirsttoken@result}%
|
1476
|
+
}%
|
1477
|
+
\def\qr@removefirsttoken@int(#1#2){%
|
1478
|
+
\def\qr@removefirsttoken@result{#2}%
|
1479
|
+
}%
|
1480
|
+
|
1481
|
+
\def\qr@writeformatstring#1#2{%
|
1482
|
+
% #1 = matrix name
|
1483
|
+
% #2 = binary string representing the encoded and masked format information
|
1484
|
+
\setcounter{qr@i}{9}%
|
1485
|
+
\setcounter{qr@j}{1}%
|
1486
|
+
\edef\qr@argument{{#1}(#2\relax)}%
|
1487
|
+
\xa\qr@writeformatA@recursive\qr@argument
|
1488
|
+
%
|
1489
|
+
\setcounter{qr@i}{\qr@numberofrowsinmatrix{#1}}%
|
1490
|
+
\setcounter{qr@j}{9}%
|
1491
|
+
\xa\qr@writeformatB@recursive\qr@argument
|
1492
|
+
}%
|
1493
|
+
|
1494
|
+
\def\qr@writeformatA@recursive#1(#2#3){%
|
1495
|
+
% #1 = matrix name
|
1496
|
+
% #2 = first bit of string
|
1497
|
+
% #3 = rest of bitstream
|
1498
|
+
% (qr@i,qr@j) = current (valid) position to write (in LaTeX counters)
|
1499
|
+
\ifnum#2=1\relax
|
1500
|
+
\qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@black@format}%
|
1501
|
+
\else
|
1502
|
+
\qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@white@format}%
|
1503
|
+
\fi
|
1504
|
+
% Now the tricky part--moving \i and \j to their next positions.
|
1505
|
+
\ifnum\c@qr@j<9\relax
|
1506
|
+
%If we're not yet in column 9, move right.
|
1507
|
+
\stepcounter{qr@j}%
|
1508
|
+
\ifnum\c@qr@j=7\relax
|
1509
|
+
%But we skip column 7!
|
1510
|
+
\stepcounter{qr@j}%
|
1511
|
+
\fi
|
1512
|
+
\else
|
1513
|
+
%If we're in column 9, we move up.
|
1514
|
+
\addtocounter{qr@i}{-1}%
|
1515
|
+
\ifnum\c@qr@i=7\relax
|
1516
|
+
%But we skip row 7!
|
1517
|
+
\addtocounter{qr@i}{-1}%
|
1518
|
+
\fi
|
1519
|
+
\fi
|
1520
|
+
%N.B. that at the end of time, this will leave us at invalid position (0,9).
|
1521
|
+
%That makes for an easy test to know when we are done.
|
1522
|
+
\ifnum\c@qr@i<1
|
1523
|
+
\let\qr@next=\relax
|
1524
|
+
\else
|
1525
|
+
\def\qr@next{\qr@writeformatA@recursive{#1}(#3)}%
|
1526
|
+
\fi
|
1527
|
+
\qr@next
|
1528
|
+
}%
|
1529
|
+
|
1530
|
+
\def\qr@writeformatB@recursive#1(#2#3){%
|
1531
|
+
% #1 = matrix name
|
1532
|
+
% #2 = first bit of string
|
1533
|
+
% #3 = rest of bitstream
|
1534
|
+
% (qr@i,qr@j) = current (valid) position to write (in LaTeX counters)
|
1535
|
+
\ifnum#2=1\relax
|
1536
|
+
\qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@black@format}%
|
1537
|
+
\else
|
1538
|
+
\qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@white@format}%
|
1539
|
+
\fi
|
1540
|
+
% Now the tricky part--moving counters i and j to their next positions.
|
1541
|
+
\qr@a=\qr@size%
|
1542
|
+
\advance\qr@a by -6\relax%
|
1543
|
+
\ifnum\qr@a<\c@qr@i\relax
|
1544
|
+
%If we're not yet in row n-6, move up.
|
1545
|
+
\addtocounter{qr@i}{-1}%
|
1546
|
+
\else
|
1547
|
+
\ifnum\qr@a=\c@qr@i\relax
|
1548
|
+
%If we're actually in row n-6, we jump to position (9,n-7).
|
1549
|
+
\setcounter{qr@i}{9}%
|
1550
|
+
%Set counter j equal to \qr@size-7.
|
1551
|
+
\global\c@qr@j=\qr@size\relax%
|
1552
|
+
\global\advance\c@qr@j by -7\relax%
|
1553
|
+
\else
|
1554
|
+
%Otherwise, we must be in row 9.
|
1555
|
+
%In this case, we move right.
|
1556
|
+
\stepcounter{qr@j}%
|
1557
|
+
\fi
|
1558
|
+
\fi
|
1559
|
+
%N.B. that at the end of time, this will leave us at invalid position (9,n+1).
|
1560
|
+
%That makes for an easy test to know when we are done.
|
1561
|
+
\xa\ifnum\qr@size<\c@qr@j\relax
|
1562
|
+
\let\qr@next=\relax
|
1563
|
+
\else
|
1564
|
+
\def\qr@next{\qr@writeformatB@recursive{#1}(#3)}%
|
1565
|
+
\fi
|
1566
|
+
\qr@next
|
1567
|
+
}%
|
1568
|
+
|
1569
|
+
\def\qr@writeversionstring#1#2{%
|
1570
|
+
% #1 = matrix name
|
1571
|
+
% #2 = binary string representing the encoded version information
|
1572
|
+
%
|
1573
|
+
% Plot the encoded version string into the matrix.
|
1574
|
+
% This is only done for versions 7 and higher.
|
1575
|
+
\xa\ifnum\qr@version>6\relax
|
1576
|
+
%Move to position (n-8,6).
|
1577
|
+
\setcounter{qr@i}{\qr@size}\relax%
|
1578
|
+
\addtocounter{qr@i}{-8}\relax%
|
1579
|
+
\setcounter{qr@j}{6}%
|
1580
|
+
\edef\qr@argument{{#1}(#2\relax)}%
|
1581
|
+
\xa\qr@writeversion@recursive\qr@argument
|
1582
|
+
\fi
|
1583
|
+
}%
|
1584
|
+
|
1585
|
+
\def\qr@writeversion@recursive#1(#2#3){%
|
1586
|
+
% #1 = matrix name
|
1587
|
+
% #2 = first bit of string
|
1588
|
+
% #3 = rest of bitstream
|
1589
|
+
% (qr@i,qr@j) = current (valid) position to write (in LaTeX counters)
|
1590
|
+
%
|
1591
|
+
% The version information is stored symmetrically in the matrix
|
1592
|
+
% In two transposed regions, so we can write both at the same time.
|
1593
|
+
% In the comments, we describe what happens in the lower-left region,
|
1594
|
+
% not the upper-right.
|
1595
|
+
%
|
1596
|
+
%Set \qr@topline equal to n-10.
|
1597
|
+
\qr@a=\qr@size\relax%
|
1598
|
+
\advance\qr@a by -10\relax%
|
1599
|
+
\edef\qr@topline{\the\qr@a}%
|
1600
|
+
%
|
1601
|
+
\ifnum#2=1\relax
|
1602
|
+
\qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@black@format}%
|
1603
|
+
\qr@storetomatrix{#1}{\theqr@j}{\theqr@i}{\qr@black@format}%
|
1604
|
+
\else
|
1605
|
+
\qr@storetomatrix{#1}{\theqr@i}{\theqr@j}{\qr@white@format}%
|
1606
|
+
\qr@storetomatrix{#1}{\theqr@j}{\theqr@i}{\qr@white@format}%
|
1607
|
+
\fi
|
1608
|
+
% Now the tricky part--moving counters i and j to their next positions.
|
1609
|
+
\addtocounter{qr@i}{-1}%
|
1610
|
+
\xa\ifnum\qr@topline>\c@qr@i\relax
|
1611
|
+
%We've overshot the top of the region.
|
1612
|
+
%We need to move left one column and down three.
|
1613
|
+
\addtocounter{qr@j}{-1}%
|
1614
|
+
\addtocounter{qr@i}{3}%
|
1615
|
+
\fi
|
1616
|
+
%N.B. that at the end of time, this will leave us at invalid position (n-8,0).
|
1617
|
+
%That makes for an easy test to know when we are done.
|
1618
|
+
\ifnum\c@qr@j<1\relax
|
1619
|
+
\let\qr@next=\relax
|
1620
|
+
\else
|
1621
|
+
\def\qr@next{\qr@writeversion@recursive{#1}(#3)}%
|
1622
|
+
\fi
|
1623
|
+
\qr@next
|
1624
|
+
}%
|
1625
|
+
\newcounter{qr@hexchars}%
|
1626
|
+
|
1627
|
+
\def\qr@string@binarytohex#1{%
|
1628
|
+
\qr@binarytohex{\qr@hex@result}{#1}%
|
1629
|
+
}%
|
1630
|
+
|
1631
|
+
\def\qr@encode@binary#1{%
|
1632
|
+
% #1 = string of ascii characters, to be converted into bitstream
|
1633
|
+
%
|
1634
|
+
% We do this one entirely in hex, rather than binary, because we can.
|
1635
|
+
\edef\qr@plaintext{#1}%
|
1636
|
+
%
|
1637
|
+
%First, the mode indicator.
|
1638
|
+
\def\qr@codetext{4}% %This means `binary'
|
1639
|
+
%
|
1640
|
+
%Next, the character count.
|
1641
|
+
\qr@getstringlength{\qr@plaintext}%
|
1642
|
+
%Set \qr@charactercountlengthinhex to \qr@charactercountbits@byte/4%
|
1643
|
+
\qr@a=\qr@charactercountbits@byte\relax%
|
1644
|
+
\divide \qr@a by 4\relax%
|
1645
|
+
\edef\qr@charactercountlengthinhex{\the\qr@a}%
|
1646
|
+
\qr@decimaltohex[\qr@charactercountlengthinhex]{\qr@charactercount}{\qr@stringlength}%
|
1647
|
+
\xa\g@addto@macro\xa\qr@codetext\xa{\qr@charactercount}%
|
1648
|
+
%
|
1649
|
+
%Now comes the actual data.
|
1650
|
+
\edef\qr@argument{(,\qr@plaintext\relax\relax\relax)}%
|
1651
|
+
\xa\qr@encode@ascii@recursive\qr@argument%
|
1652
|
+
%
|
1653
|
+
%Now the terminator.
|
1654
|
+
\g@addto@macro\qr@codetext{0}% %This is '0000' in binary.
|
1655
|
+
%
|
1656
|
+
%There is no need to pad bits to make a multiple of 8,
|
1657
|
+
%because the data length is already 4 + 8 + 8n + 4.
|
1658
|
+
%
|
1659
|
+
%Now add padding codewords if needed.
|
1660
|
+
\setcounter{qr@hexchars}{0}%
|
1661
|
+
\qr@getstringlength{\qr@codetext}%
|
1662
|
+
\setcounter{qr@hexchars}{\qr@stringlength}%
|
1663
|
+
%Set \qr@numpaddingcodewords equal to \qr@totaldatacodewords - qr@hexchars/2.
|
1664
|
+
\qr@a=-\c@qr@hexchars\relax
|
1665
|
+
\divide\qr@a by 2\relax
|
1666
|
+
\advance\qr@a by \qr@totaldatacodewords\relax
|
1667
|
+
\edef\qr@numpaddingcodewords{\the\qr@a}%
|
1668
|
+
%
|
1669
|
+
\xa\ifnum\qr@numpaddingcodewords<0%
|
1670
|
+
\edef\ds{ERROR: Too much data! Over by \qr@numpaddingcodewords bytes.}\show\ds%
|
1671
|
+
\fi%
|
1672
|
+
\xa\ifnum\qr@numpaddingcodewords>0%
|
1673
|
+
\qr@for \i = 2 to \qr@numpaddingcodewords by 2%
|
1674
|
+
{\g@addto@macro{\qr@codetext}{ec11}}%
|
1675
|
+
\xa\ifodd\qr@numpaddingcodewords\relax%
|
1676
|
+
\g@addto@macro{\qr@codetext}{ec}%
|
1677
|
+
\fi%
|
1678
|
+
\fi%
|
1679
|
+
}%
|
1680
|
+
|
1681
|
+
\def\qr@encode@ascii@recursive(#1,#2#3){%
|
1682
|
+
% #1 = hex codes translated so far
|
1683
|
+
% #2 = next plaintext character to translate
|
1684
|
+
% #3 = remainder of plaintext
|
1685
|
+
\edef\qr@testii{#2}%
|
1686
|
+
\ifx\qr@testii\qr@relax%
|
1687
|
+
% All done!
|
1688
|
+
\g@addto@macro\qr@codetext{#1}%
|
1689
|
+
\else%
|
1690
|
+
% Another character to translate.
|
1691
|
+
\edef\qr@asciicode{\number`#2}%
|
1692
|
+
\qr@decimaltohex[2]{\qr@newhexcodes}{\qr@asciicode}%
|
1693
|
+
\edef\qr@argument{(#1\qr@newhexcodes,#3)}%
|
1694
|
+
%\show\qr@argument
|
1695
|
+
\xa\qr@encode@ascii@recursive\qr@argument%
|
1696
|
+
\fi%
|
1697
|
+
}%
|
1698
|
+
|
1699
|
+
\def\qr@splitcodetextintoblocks{%
|
1700
|
+
\setcounter{qr@i}{0}%
|
1701
|
+
\qr@for \j = 1 to \qr@numshortblocks by 1%
|
1702
|
+
{\stepcounter{qr@i}%
|
1703
|
+
\qr@splitoffblock{\qr@codetext}{\theqr@i}{\qr@shortblock@size}%
|
1704
|
+
}%
|
1705
|
+
\xa\ifnum\qr@numlongblocks>0\relax%
|
1706
|
+
\qr@for \j = 1 to \qr@numlongblocks by 1%
|
1707
|
+
{\stepcounter{qr@i}%
|
1708
|
+
\qr@splitoffblock{\qr@codetext}{\theqr@i}{\qr@longblock@size}%
|
1709
|
+
}%
|
1710
|
+
\fi%
|
1711
|
+
}%
|
1712
|
+
|
1713
|
+
\def\qr@splitoffblock#1#2#3{%
|
1714
|
+
% #1 = current codetext in hexadecimal
|
1715
|
+
% #2 = number to use in csname "\datablock@#2".
|
1716
|
+
% #3 = number of bytes to split off
|
1717
|
+
\message{<Splitting off block #2>}%
|
1718
|
+
\xa\gdef\csname datablock@#2\endcsname{}% %This line is important!
|
1719
|
+
\qr@for \i = 1 to #3 by 1%
|
1720
|
+
{\edef\qr@argument{{#2}(#1)}%
|
1721
|
+
\xa\qr@splitoffblock@int\qr@argument%
|
1722
|
+
}%
|
1723
|
+
}%
|
1724
|
+
|
1725
|
+
\def\qr@splitoffblock@int#1(#2#3#4){%
|
1726
|
+
% #1 = number to use in csname "\datablock@#1".
|
1727
|
+
% #2#3 = next byte to split off
|
1728
|
+
% #4 = remaining text
|
1729
|
+
%
|
1730
|
+
% We add the next byte to "\datablock@#1",
|
1731
|
+
% and we remove it from the codetext.
|
1732
|
+
\xa\xdef\csname datablock@#1\endcsname{\csname datablock@#1\endcsname#2#3}%
|
1733
|
+
\xdef\qr@codetext{#4}%
|
1734
|
+
}%
|
1735
|
+
|
1736
|
+
\def\qr@createerrorblocks{%
|
1737
|
+
\qr@for \ii = 1 to \qr@numblocks by 1%
|
1738
|
+
{\message{<Making error block \the\ii>}%
|
1739
|
+
\FX@generate@errorbytes{\csname datablock@\the\ii\endcsname}{\qr@num@eccodewords}%
|
1740
|
+
\xa\xdef\csname errorblock@\the\ii\endcsname{\FX@errorbytes}%
|
1741
|
+
}%
|
1742
|
+
}%
|
1743
|
+
|
1744
|
+
\def\qr@interleave{%
|
1745
|
+
\setcounter{qr@i}{0}%
|
1746
|
+
\def\qr@interleaved@text{}%
|
1747
|
+
\message{<Interleaving datablocks of length \qr@shortblock@size\ and \qr@longblock@size: }%
|
1748
|
+
\qr@for \ii = 1 to \qr@shortblock@size by 1%
|
1749
|
+
{\qr@for \jj = 1 to \qr@numblocks by 1%
|
1750
|
+
{\qr@writefromblock{datablock}{\the\jj}%
|
1751
|
+
}%
|
1752
|
+
\message{\the\ii,}%
|
1753
|
+
}%
|
1754
|
+
%The long blocks are numbered \qr@numshortblocks+1, \qr@numshortblocks+2, ..., \qr@numblocks.
|
1755
|
+
\qr@a=\qr@numshortblocks\relax%
|
1756
|
+
\advance\qr@a by 1\relax%
|
1757
|
+
\qr@for \jj = \qr@a to \qr@numblocks by 1%
|
1758
|
+
{\qr@writefromblock{datablock}{\the\jj}}%
|
1759
|
+
\xa\ifnum\qr@numlongblocks>0\relax%
|
1760
|
+
\message{\qr@longblock@size.>}%
|
1761
|
+
\else
|
1762
|
+
\message{.>}%
|
1763
|
+
\fi
|
1764
|
+
\message{<Interleaving errorblocks of length \qr@num@eccodewords: }%
|
1765
|
+
\qr@for \ii = 1 to \qr@num@eccodewords by 1%
|
1766
|
+
{\message{\the\ii,}%
|
1767
|
+
\qr@for \jj = 1 to \qr@numblocks by 1%
|
1768
|
+
{\qr@writefromblock{errorblock}{\the\jj}%
|
1769
|
+
}%
|
1770
|
+
}%
|
1771
|
+
\message{.><Interleaving complete.>}%
|
1772
|
+
}%
|
1773
|
+
|
1774
|
+
\def\qr@writefromblock#1#2{%
|
1775
|
+
% #1 = either 'datablock' or 'errorblock'
|
1776
|
+
% #2 = block number, in {1,...,\qr@numblocks}%
|
1777
|
+
\edef\qr@argument{(\csname #1@#2\endcsname\relax\relax\relax)}%
|
1778
|
+
\xa\qr@writefromblock@int\qr@argument
|
1779
|
+
\xa\xdef\csname #1@#2\endcsname{\qr@writefromblock@remainder}%
|
1780
|
+
}%
|
1781
|
+
|
1782
|
+
\def\qr@writefromblock@int(#1#2#3){%
|
1783
|
+
% #1#2 = first byte (in hex) of text, which will be written to \qr@interleaved@text
|
1784
|
+
% #3 = remainder, including \relax\relax\relax terminator.
|
1785
|
+
\g@addto@macro{\qr@interleaved@text}{#1#2}%
|
1786
|
+
\qr@writefromblock@intint(#3)%
|
1787
|
+
}%
|
1788
|
+
|
1789
|
+
\def\qr@writefromblock@intint(#1\relax\relax\relax){%
|
1790
|
+
\xdef\qr@writefromblock@remainder{#1}%
|
1791
|
+
}%
|
1792
|
+
\let\xa=\expandafter
|
1793
|
+
\makeatletter
|
1794
|
+
|
1795
|
+
\def\qr@preface@macro#1#2{%
|
1796
|
+
% #1 = macro name
|
1797
|
+
% #2 = text to add to front of macro
|
1798
|
+
\def\qr@tempb{#2}%
|
1799
|
+
\xa\xa\xa\gdef\xa\xa\xa#1\xa\xa\xa{\xa\qr@tempb #1}%
|
1800
|
+
}%
|
1801
|
+
|
1802
|
+
\newif\ifqr@leadingcoeff
|
1803
|
+
\def\qr@testleadingcoeff(#1#2){%
|
1804
|
+
% Tests whether the leading digit of #1#2 is 1.
|
1805
|
+
\ifnum#1=1\relax
|
1806
|
+
\qr@leadingcoefftrue
|
1807
|
+
\else
|
1808
|
+
\qr@leadingcoefffalse
|
1809
|
+
\fi
|
1810
|
+
}%
|
1811
|
+
|
1812
|
+
\def\qr@polynomialdivide#1#2{%
|
1813
|
+
\edef\qr@numerator{#1}%
|
1814
|
+
\edef\qr@denominator{#2}%
|
1815
|
+
\qr@divisiondonefalse%
|
1816
|
+
\xa\xa\xa\qr@oneroundofdivision\xa\xa\xa{\xa\qr@numerator\xa}\xa{\qr@denominator}%
|
1817
|
+
}%
|
1818
|
+
|
1819
|
+
\def\@qr@empty{}%
|
1820
|
+
\def\qr@oneroundofdivision#1#2{%
|
1821
|
+
% #1 = f(x), of degree n
|
1822
|
+
% #2 = g(x), of degree m
|
1823
|
+
% Obtains a new polynomial h(x), congruent to f(x) modulo g(x),
|
1824
|
+
% but of degree at most n-1.
|
1825
|
+
%
|
1826
|
+
% If leading coefficient of f(x) is 1, subtracts off g(x) * x^(n-m).
|
1827
|
+
% If leading coefficient of f(x) is 0, strips off that leading zero.
|
1828
|
+
%
|
1829
|
+
\qr@testleadingcoeff(#1)%
|
1830
|
+
\ifqr@leadingcoeff
|
1831
|
+
\qr@xorbitstrings{#1}{#2}%
|
1832
|
+
\ifqr@xorfailed
|
1833
|
+
%If xor failed, that means our #1 was already the remainder!
|
1834
|
+
\qr@divisiondonetrue
|
1835
|
+
\edef\qr@theremainder{#1}%
|
1836
|
+
\else
|
1837
|
+
%xor succeeded. We need to recurse.
|
1838
|
+
\xa\xa\xa\edef\xa\xa\xa\qr@numerator\xa\xa\xa{\xa\qr@stripleadingzero\xa(\qr@xorresult)}%
|
1839
|
+
\fi
|
1840
|
+
\else
|
1841
|
+
\xa\def\xa\qr@numerator\xa{\qr@stripleadingzero(#1)}%
|
1842
|
+
\ifx\qr@numerator\@qr@empty
|
1843
|
+
\qr@divisiondonetrue
|
1844
|
+
\def\qr@theremainder{0}%
|
1845
|
+
\fi
|
1846
|
+
\fi
|
1847
|
+
\ifqr@divisiondone
|
1848
|
+
\relax
|
1849
|
+
\else
|
1850
|
+
\xa\qr@oneroundofdivision\xa{\qr@numerator}{#2}%
|
1851
|
+
\fi
|
1852
|
+
}%
|
1853
|
+
|
1854
|
+
\def\qr@stripleadingzero(0#1){#1}%Strips off a leading zero.
|
1855
|
+
|
1856
|
+
\newif\ifqr@xorfailed% This flag will trigger when #2 is longer than #1.
|
1857
|
+
|
1858
|
+
\def\qr@xorbitstrings#1#2{%
|
1859
|
+
% #1 = bitstring
|
1860
|
+
% #2 = bitstring no longer than #1
|
1861
|
+
\qr@xorfailedfalse
|
1862
|
+
\edef\qr@argument{(,#1\relax\relax)(#2\relax\relax)}%
|
1863
|
+
\xa\qr@xorbitstrings@recursive\qr@argument
|
1864
|
+
%\qr@xorbitstrings@recursive(,#1\relax\relax)(#2\relax\relax)%
|
1865
|
+
}%
|
1866
|
+
|
1867
|
+
\def\qr@xorbitstrings@recursive(#1,#2#3)(#4#5){%
|
1868
|
+
% #1#2#3 is the first bitstring, xor'ed up through #1.
|
1869
|
+
% #4#5 is the remaining portion of the second bitstring.
|
1870
|
+
\def\qr@testii{#2}%
|
1871
|
+
\def\qr@testiv{#4}%
|
1872
|
+
\ifx\qr@testii\qr@relax
|
1873
|
+
% #1 contains the whole string.
|
1874
|
+
% Now if #4 is also \relax, that means the two strings started off with equal lengths.
|
1875
|
+
% If, however, #4 is not \relax, that means the second string was longer than the first, a problem.
|
1876
|
+
\ifx\qr@testiv\qr@relax
|
1877
|
+
%No problem. We are done.
|
1878
|
+
\qr@xorbit@saveresult(#1#2#3)%
|
1879
|
+
\else
|
1880
|
+
%Problem! The second string was longer than the first.
|
1881
|
+
\qr@xorfailedtrue
|
1882
|
+
\def\qr@xorresult{}%
|
1883
|
+
\fi
|
1884
|
+
\else
|
1885
|
+
% There is still a bit to manipulate in #2.
|
1886
|
+
% Check whether #4 contains anything.
|
1887
|
+
\ifx\qr@testiv\qr@relax
|
1888
|
+
% No, #4 is empty. We are done. "#2#3" contains the remainder of the first string,
|
1889
|
+
% which we append untouched and then strip off the two \relax-es.
|
1890
|
+
\qr@xorbit@saveresult(#1#2#3)%
|
1891
|
+
\else
|
1892
|
+
% Yes, #4 still has something to XOR. Do the task.
|
1893
|
+
\ifnum#2=#4\relax
|
1894
|
+
\qr@xorbitstrings@recursive(#1%
|
1895
|
+
0,#3)(#5)%
|
1896
|
+
\else
|
1897
|
+
\qr@xorbitstrings@recursive(#1%
|
1898
|
+
1,#3)(#5)%
|
1899
|
+
\fi
|
1900
|
+
\fi
|
1901
|
+
\fi
|
1902
|
+
}%
|
1903
|
+
|
1904
|
+
\def\qr@xorbit@saveresult(#1\relax\relax){%
|
1905
|
+
%Strips off the extra '\relax'es at the end.
|
1906
|
+
\def\qr@xorresult{#1}%
|
1907
|
+
}%
|
1908
|
+
|
1909
|
+
\newif\ifqr@divisiondone
|
1910
|
+
|
1911
|
+
\def\qr@BCHcode#1{%
|
1912
|
+
\edef\qr@formatinfo{#1}%
|
1913
|
+
\def\qr@formatinfopadded{\qr@formatinfo 0000000000}%
|
1914
|
+
\def\qr@divisor{10100110111}%
|
1915
|
+
\qr@divisiondonefalse
|
1916
|
+
\qr@polynomialdivide{\qr@formatinfopadded}{\qr@divisor}%
|
1917
|
+
%
|
1918
|
+
\qr@getstringlength{\qr@theremainder}%
|
1919
|
+
%Run loop from stringlength+1 to 10.
|
1920
|
+
\qr@a=\qr@stringlength\relax%
|
1921
|
+
\advance\qr@a by 1\relax%
|
1922
|
+
\qr@for \i = \qr@a to 10 by 1%
|
1923
|
+
{\qr@preface@macro{\qr@theremainder}{0}%
|
1924
|
+
\xdef\qr@theremainder{\qr@theremainder}%
|
1925
|
+
}%
|
1926
|
+
\edef\qr@BCHresult{\qr@formatinfo\qr@theremainder}%
|
1927
|
+
}%
|
1928
|
+
|
1929
|
+
\def\qr@formatmask{101010000010010}%
|
1930
|
+
|
1931
|
+
\def\qr@encodeandmaskformat#1{%
|
1932
|
+
\qr@BCHcode{#1}%
|
1933
|
+
\qr@xorbitstrings{\qr@BCHresult}{\qr@formatmask}%
|
1934
|
+
\edef\qr@format@bitstring{\qr@xorresult}%
|
1935
|
+
}%
|
1936
|
+
|
1937
|
+
\def\qr@Golaycode#1{%
|
1938
|
+
% #1 = 6-bit version number
|
1939
|
+
\edef\qr@versioninfo{#1}%
|
1940
|
+
\def\qr@versioninfopadded{\qr@versioninfo 000000000000}% %Append 12 zeros.
|
1941
|
+
\def\qr@divisor{1111100100101}%
|
1942
|
+
\qr@divisiondonefalse
|
1943
|
+
\qr@polynomialdivide{\qr@versioninfopadded}{\qr@divisor}%
|
1944
|
+
%
|
1945
|
+
\qr@getstringlength{\qr@theremainder}%
|
1946
|
+
%Run loop from stringlength+1 to 12.
|
1947
|
+
\qr@a=\qr@stringlength\relax%
|
1948
|
+
\advance\qr@a by 1\relax%
|
1949
|
+
\qr@for \i = \qr@a to 12 by 1%
|
1950
|
+
{\qr@preface@macro{\qr@theremainder}{0}%
|
1951
|
+
\xdef\qr@theremainder{\qr@theremainder}%
|
1952
|
+
}%
|
1953
|
+
\edef\qr@Golayresult{\qr@versioninfo\qr@theremainder}%
|
1954
|
+
}%
|
1955
|
+
\def\F@result{}%
|
1956
|
+
|
1957
|
+
\def\qr@xorbitstring#1#2#3{%
|
1958
|
+
% #1 = new macro to receive result
|
1959
|
+
% #2, #3 = bitstrings to xor. The second can be shorter than the first.
|
1960
|
+
\def\qr@xor@result{}%
|
1961
|
+
\edef\qr@argument{(#2\relax\relax)(#3\relax\relax)}%
|
1962
|
+
\xa\qr@xorbitstring@recursive\qr@argument%
|
1963
|
+
\edef#1{\qr@xor@result}%
|
1964
|
+
}%
|
1965
|
+
\def\qr@xorbitstring@recursive(#1#2)(#3#4){%
|
1966
|
+
\edef\qr@testi{#1}%
|
1967
|
+
\ifx\qr@testi\qr@relax%
|
1968
|
+
%Done.
|
1969
|
+
\let\qr@next=\relax%
|
1970
|
+
\else
|
1971
|
+
\if#1#3\relax
|
1972
|
+
\g@addto@macro{\qr@xor@result}{0}%
|
1973
|
+
\else
|
1974
|
+
\g@addto@macro{\qr@xor@result}{1}%
|
1975
|
+
\fi
|
1976
|
+
\edef\qr@next{\noexpand\qr@xorbitstring@recursive(#2)(#4)}%
|
1977
|
+
\fi
|
1978
|
+
\qr@next
|
1979
|
+
}
|
1980
|
+
|
1981
|
+
\def\F@addchar@raw#1#2{%
|
1982
|
+
%Add two hexadecimal digits using bitwise xor
|
1983
|
+
\qr@hextobinary[4]{\qr@summandA}{#1}%
|
1984
|
+
\qr@hextobinary[4]{\qr@summandB}{#2}%
|
1985
|
+
\qr@xorbitstring{\F@result}{\qr@summandA}{\qr@summandB}%
|
1986
|
+
\qr@binarytohex[1]{\F@result}{\F@result}%
|
1987
|
+
}%
|
1988
|
+
|
1989
|
+
\def\qr@canceltwos#1{%
|
1990
|
+
\edef\qr@argument{(#1\relax\relax)}%
|
1991
|
+
\xa\qr@canceltwos@int\qr@argument%
|
1992
|
+
}%
|
1993
|
+
|
1994
|
+
\def\qr@canceltwos@int(#1#2){%
|
1995
|
+
\xa\qr@canceltwos@recursion(,#1#2)%
|
1996
|
+
}%
|
1997
|
+
|
1998
|
+
\def\qr@canceltwos@recursion(#1,#2#3){%
|
1999
|
+
\def\qr@testii{#2}%
|
2000
|
+
\ifx\qr@testii\qr@relax
|
2001
|
+
%Cancelling complete.
|
2002
|
+
\qr@striptworelaxes(#1#2#3)%
|
2003
|
+
%Now \F@result contains the answer.
|
2004
|
+
\else
|
2005
|
+
\relax
|
2006
|
+
\ifnum#2=2\relax
|
2007
|
+
\qr@canceltwos@recursion(#10,#3)%
|
2008
|
+
\else
|
2009
|
+
\qr@canceltwos@recursion(#1#2,#3)%
|
2010
|
+
\fi
|
2011
|
+
\fi
|
2012
|
+
}%
|
2013
|
+
|
2014
|
+
\def\qr@striptworelaxes(#1\relax\relax){%
|
2015
|
+
\gdef\F@result{#1}%
|
2016
|
+
}%
|
2017
|
+
|
2018
|
+
\qr@for \i = 0 to 15 by 1%
|
2019
|
+
{\qr@decimaltohex[1]{\qr@tempa}{\the\i}%
|
2020
|
+
\qr@for \j = 0 to 15 by 1%
|
2021
|
+
{\qr@decimaltohex[1]{\qr@tempb}{\the\j}%
|
2022
|
+
\F@addchar@raw\qr@tempa\qr@tempb
|
2023
|
+
\xa\xdef\csname F@addchar@\qr@tempa\qr@tempb\endcsname{\F@result}%
|
2024
|
+
}%
|
2025
|
+
}%
|
2026
|
+
|
2027
|
+
\def\F@addchar#1#2{%
|
2028
|
+
\xa\def\xa\F@result\xa{\csname F@addchar@#1#2\endcsname}%
|
2029
|
+
}%
|
2030
|
+
|
2031
|
+
\def\F@addstrings#1#2{%
|
2032
|
+
\edef\qr@argument{(,#1\relax\relax)(#2\relax\relax)}%
|
2033
|
+
\xa\F@addstrings@recursion\qr@argument%
|
2034
|
+
}%
|
2035
|
+
|
2036
|
+
\def\F@addstrings@recursion(#1,#2#3)(#4#5){%
|
2037
|
+
%Adds two hexadecimal strings, bitwise, from left to right.
|
2038
|
+
%The second string is allowed to be shorter than the first.
|
2039
|
+
\def\qr@testii{#2}%
|
2040
|
+
\def\qr@testiv{#4}%
|
2041
|
+
\ifx\qr@testii\qr@relax
|
2042
|
+
%The entire string has been processed.
|
2043
|
+
\gdef\F@result{#1}%
|
2044
|
+
\else
|
2045
|
+
\ifx\qr@testiv\qr@relax
|
2046
|
+
%The second string is over.
|
2047
|
+
\qr@striptworelaxes(#1#2#3)%
|
2048
|
+
%Now \F@result contains the answer.
|
2049
|
+
\else
|
2050
|
+
%We continue to add.
|
2051
|
+
\F@addchar{#2}{#4}%
|
2052
|
+
\edef\qr@argument{(#1\F@result,#3)(#5)}%
|
2053
|
+
\xa\F@addstrings@recursion\qr@argument%
|
2054
|
+
\fi
|
2055
|
+
\fi
|
2056
|
+
}%
|
2057
|
+
\gdef\F@stripleadingzero(0#1){\edef\F@result{#1}}%
|
2058
|
+
|
2059
|
+
\setcounter{qr@i}{0}%
|
2060
|
+
\def\qr@poweroftwo{1}%
|
2061
|
+
\qr@for \i = 1 to 254 by 1%
|
2062
|
+
{\stepcounter{qr@i}%
|
2063
|
+
\qr@a=\qr@poweroftwo\relax
|
2064
|
+
\multiply\qr@a by 2\relax
|
2065
|
+
\edef\qr@poweroftwo{\the\qr@a}%
|
2066
|
+
%\show\qr@poweroftwo
|
2067
|
+
\qr@decimaltohex[2]{\qr@poweroftwo@hex}{\qr@poweroftwo}%
|
2068
|
+
\xa\ifnum\qr@poweroftwo>255\relax
|
2069
|
+
%We need to bitwise add the polynomial represented by 100011101, i.e. 0x11d.
|
2070
|
+
\F@addstrings{\qr@poweroftwo@hex}{11d}% %Now it should start with 0.
|
2071
|
+
\xa\F@stripleadingzero\xa(\F@result)% %Now it should be two hex digits.
|
2072
|
+
\edef\qr@poweroftwo@hex{\F@result}% %Save the hex version.
|
2073
|
+
\qr@hextodecimal{\qr@poweroftwo}{\F@result}%
|
2074
|
+
\fi
|
2075
|
+
\xdef\qr@poweroftwo{\qr@poweroftwo}%
|
2076
|
+
\xa\xdef\csname F@twotothe@\theqr@i\endcsname{\qr@poweroftwo@hex}%
|
2077
|
+
\xa\xdef\csname F@logtwo@\qr@poweroftwo@hex\endcsname{\theqr@i}%
|
2078
|
+
}%
|
2079
|
+
\xa\xdef\csname F@twotothe@0\endcsname{01}%
|
2080
|
+
\xa\xdef\csname F@logtwo@01\endcsname{0}%
|
2081
|
+
|
2082
|
+
\def\F@twotothe#1{%
|
2083
|
+
\xa\xdef\xa\F@result\xa{\csname F@twotothe@#1\endcsname}%
|
2084
|
+
}%
|
2085
|
+
\def\F@logtwo#1{%
|
2086
|
+
\xa\xdef\xa\F@result\xa{\csname F@logtwo@#1\endcsname}%
|
2087
|
+
}%
|
2088
|
+
|
2089
|
+
\def\qr@zerozero{00}%
|
2090
|
+
|
2091
|
+
\def\F@multiply#1#2{%
|
2092
|
+
% #1 and #2 are two elements of F_256,
|
2093
|
+
% given as two-character hexadecimal strings.
|
2094
|
+
% Multiply them within F_256, and place the answer in \F@result
|
2095
|
+
\edef\qr@argA{#1}%
|
2096
|
+
\edef\qr@argB{#2}%
|
2097
|
+
\ifx\qr@argA\qr@zerozero
|
2098
|
+
\def\F@result{00}%
|
2099
|
+
\else
|
2100
|
+
\ifx\qr@argB\qr@zerozero
|
2101
|
+
\def\F@result{00}%
|
2102
|
+
\else
|
2103
|
+
\xa\F@logtwo\xa{\qr@argA}%
|
2104
|
+
\edef\qr@logA{\F@result}%
|
2105
|
+
\xa\F@logtwo\xa{\qr@argB}%
|
2106
|
+
\edef\qr@logB{\F@result}%
|
2107
|
+
\xa\qr@a\xa=\qr@logA\relax% \qr@a = \qr@logA
|
2108
|
+
\xa\advance\xa\qr@a\qr@logB\relax% \advance \qr@a by \qr@logB
|
2109
|
+
\ifnum\qr@a>254\relax%
|
2110
|
+
\advance\qr@a by -255\relax%
|
2111
|
+
\fi%
|
2112
|
+
\xa\F@twotothe\xa{\the\qr@a}%
|
2113
|
+
% Now \F@result contains the product, as desired.
|
2114
|
+
\fi
|
2115
|
+
\fi
|
2116
|
+
}%
|
2117
|
+
|
2118
|
+
\def\F@multiply#1#2{%
|
2119
|
+
% #1 and #2 are two elements of F_256,
|
2120
|
+
% given as two-character hexadecimal strings.
|
2121
|
+
% Multiply them within F_256, and place the answer in \F@result
|
2122
|
+
\edef\qr@argA{#1}%
|
2123
|
+
\edef\qr@argB{#2}%
|
2124
|
+
\ifx\qr@argA\qr@zerozero
|
2125
|
+
\def\F@result{00}%
|
2126
|
+
\else
|
2127
|
+
\ifx\qr@argB\qr@zerozero
|
2128
|
+
\def\F@result{00}%
|
2129
|
+
\else
|
2130
|
+
\xa\F@logtwo\xa{\qr@argA}%
|
2131
|
+
\edef\qr@logA{\F@result}%
|
2132
|
+
\xa\F@logtwo\xa{\qr@argB}%
|
2133
|
+
\edef\qr@logB{\F@result}%
|
2134
|
+
\xa\qr@a\xa=\qr@logA\relax% \qr@a = \qr@logA
|
2135
|
+
\xa\advance\xa\qr@a\qr@logB\relax% \advance \qr@a by \qr@logB
|
2136
|
+
\ifnum\qr@a>254\relax%
|
2137
|
+
\advance\qr@a by -255\relax%
|
2138
|
+
\fi%
|
2139
|
+
\xa\F@twotothe\xa{\the\qr@a}%
|
2140
|
+
% Now \F@result contains the product, as desired.
|
2141
|
+
\fi
|
2142
|
+
\fi
|
2143
|
+
}%
|
2144
|
+
|
2145
|
+
\def\FX@getstringlength#1{%
|
2146
|
+
%Count number of two-character coefficients
|
2147
|
+
\setcounter{qr@i}{0}%
|
2148
|
+
\xdef\qr@argument{(#1\relax\relax\relax)}%
|
2149
|
+
\xa\FX@stringlength@recursive\qr@argument%
|
2150
|
+
\xdef\stringresult{\arabic{qr@i}}%
|
2151
|
+
}%
|
2152
|
+
|
2153
|
+
\def\FX@stringlength@recursive(#1#2#3){%
|
2154
|
+
\def\qr@testi{#1}%
|
2155
|
+
\ifx\qr@testi\qr@relax
|
2156
|
+
%we are done.
|
2157
|
+
\else
|
2158
|
+
\stepcounter{qr@i}%
|
2159
|
+
%\showthe\c@qr@i
|
2160
|
+
\qr@stringlength@recursive(#3)%
|
2161
|
+
\fi
|
2162
|
+
}%
|
2163
|
+
|
2164
|
+
\newif\ifFX@leadingcoeff@zero
|
2165
|
+
\def\FX@testleadingcoeff(#1#2#3){%
|
2166
|
+
% Tests whether the leading coefficient of the hex-string #1#2#3 is '00'.
|
2167
|
+
\edef\FX@leadingcoefficient{#1#2}%
|
2168
|
+
\FX@leadingcoeff@zerofalse
|
2169
|
+
\ifx\FX@leadingcoefficient\qr@zerozero
|
2170
|
+
\FX@leadingcoeff@zerotrue
|
2171
|
+
\fi
|
2172
|
+
}%
|
2173
|
+
|
2174
|
+
\newif\ifFX@divisiondone
|
2175
|
+
|
2176
|
+
\newcounter{qr@divisionsremaining} %Keep track of how many divisions to go!
|
2177
|
+
\def\FX@polynomialdivide#1#2{%
|
2178
|
+
\edef\FX@numerator{#1}%
|
2179
|
+
\edef\FX@denominator{#2}%
|
2180
|
+
\qr@getstringlength\FX@numerator%
|
2181
|
+
\setcounter{qr@divisionsremaining}{\qr@stringlength}%
|
2182
|
+
\qr@getstringlength\FX@denominator%
|
2183
|
+
\addtocounter{qr@divisionsremaining}{-\qr@stringlength}%
|
2184
|
+
\addtocounter{qr@divisionsremaining}{2}%
|
2185
|
+
\divide\c@qr@divisionsremaining by 2\relax% %2 hex chars per number
|
2186
|
+
\FX@divisiondonefalse%
|
2187
|
+
\xa\xa\xa\FX@polynomialdivide@recursive\xa\xa\xa{\xa\FX@numerator\xa}\xa{\FX@denominator}%
|
2188
|
+
}%
|
2189
|
+
|
2190
|
+
\def\FX@polynomialdivide@recursive#1#2{%
|
2191
|
+
% #1 = f(x), of degree n
|
2192
|
+
% #2 = g(x), of degree m
|
2193
|
+
% Obtains a new polynomial h(x), congruent to f(x) modulo g(x),
|
2194
|
+
% but of degree at most n-1.
|
2195
|
+
%
|
2196
|
+
% If leading coefficient of f(x) is 0, strips off that leading zero.
|
2197
|
+
% If leading coefficient of f(x) is a, subtracts off a * g(x) * x^(n-m).
|
2198
|
+
% N.B. we assume g is monic.
|
2199
|
+
%
|
2200
|
+
\FX@testleadingcoeff(#1)%
|
2201
|
+
\ifFX@leadingcoeff@zero%
|
2202
|
+
%Leading coefficient is zero, so remove it.
|
2203
|
+
\xa\def\xa\FX@numerator\xa{\FX@stripleadingzero(#1)}%
|
2204
|
+
\else%
|
2205
|
+
%Leading coefficient is nonzero, and contained in \FX@leadingcoefficient
|
2206
|
+
\FX@subtractphase{#1}{#2}{\FX@leadingcoefficient}%
|
2207
|
+
\ifFX@subtract@failed%
|
2208
|
+
%If subtraction failed, that means our #1 was already the remainder!
|
2209
|
+
\FX@divisiondonetrue%
|
2210
|
+
\edef\qr@theremainder{#1}%
|
2211
|
+
\else%
|
2212
|
+
%xor succeeded. We need to recurse.
|
2213
|
+
\xa\xa\xa\edef\xa\xa\xa\FX@numerator\xa\xa\xa{\xa\FX@stripleadingzero\xa(\FX@subtraction@result)}%
|
2214
|
+
\fi%
|
2215
|
+
\fi%
|
2216
|
+
\addtocounter{qr@divisionsremaining}{-1}%
|
2217
|
+
\ifnum\c@qr@divisionsremaining=0\relax
|
2218
|
+
%Division is done!
|
2219
|
+
\FX@divisiondonetrue%
|
2220
|
+
\edef\qr@theremainder{\FX@numerator}%
|
2221
|
+
\relax%
|
2222
|
+
\else%
|
2223
|
+
\xa\FX@polynomialdivide@recursive\xa{\FX@numerator}{#2}%
|
2224
|
+
\fi%
|
2225
|
+
}%
|
2226
|
+
|
2227
|
+
\def\FX@stripleadingzero(00#1){#1}%Strips off a single leading zero of F_256.
|
2228
|
+
|
2229
|
+
\newif\ifFX@subtract@failed% This flag will trigger when #2 is longer than #1.
|
2230
|
+
|
2231
|
+
\def\FX@subtractphase#1#2#3{%
|
2232
|
+
% #1 = bitstring
|
2233
|
+
% #2 = bitstring no longer than #1
|
2234
|
+
% #3 = leading coefficient
|
2235
|
+
\FX@subtract@failedfalse%
|
2236
|
+
\edef\qr@argument{(,#1\relax\relax\relax)(#2\relax\relax\relax)(#3)}%
|
2237
|
+
\xa\FX@subtract@recursive\qr@argument%
|
2238
|
+
}%
|
2239
|
+
|
2240
|
+
\def\FX@subtract@recursive(#1,#2#3#4)(#5#6#7)(#8){%
|
2241
|
+
% This is a recursive way to compute f(x) - a*g(x)*x^k.
|
2242
|
+
% #1#2#3#4 is the first bitstring, subtracted up through #1.
|
2243
|
+
% Thus #2#3 constitutes the next two-character coefficient.
|
2244
|
+
% #5#6#7 is the remaining portion of the second bitstring.
|
2245
|
+
% Thus #5#6 constitutes the next two-character coefficient
|
2246
|
+
% #8 is the element a of F_256. It should contain two characters.
|
2247
|
+
\def\qr@testii{#2}%
|
2248
|
+
\def\qr@testv{#5}%
|
2249
|
+
\ifx\qr@testii\qr@relax
|
2250
|
+
% #1 contains the whole string.
|
2251
|
+
% Now if #5 is also \relax, that means the two strings started off with equal lengths.
|
2252
|
+
% If, however, #5 is not \relax, that means the second string was longer than the first, a problem.
|
2253
|
+
\ifx\qr@testv\qr@relax
|
2254
|
+
%No problem. We are done.
|
2255
|
+
\FX@subtract@saveresult(#1#2#3#4)% %We keep the #2#3#4 to be sure we have all three relax-es to strip off.
|
2256
|
+
\else
|
2257
|
+
%Problem! The second string was longer than the first.
|
2258
|
+
%This usually indicates the end of the long division process.
|
2259
|
+
\FX@subtract@failedtrue
|
2260
|
+
\def\FX@subtraction@result{}%
|
2261
|
+
\fi
|
2262
|
+
\else
|
2263
|
+
% There is still a coefficient to manipulate in #2#3.
|
2264
|
+
% Check whether #5 contains anything.
|
2265
|
+
\ifx\qr@testv\qr@relax
|
2266
|
+
% No, #5 is empty. We are done. "#2#3#4" contains the remainder of the first string,
|
2267
|
+
% which we append untouched and then strip off the three \relax-es.
|
2268
|
+
\FX@subtract@saveresult(#1#2#3#4)%
|
2269
|
+
\else
|
2270
|
+
% Yes, #5#6 still has something to XOR. Do the task.
|
2271
|
+
\F@multiply{#5#6}{#8}% Multiply by the factor 'a'.
|
2272
|
+
\F@addstrings{#2#3}{\F@result}% Subtract. (We're in characteristic two, so adding works.)
|
2273
|
+
\edef\qr@argument{(#1\F@result,#4)(#7)(#8)}%
|
2274
|
+
\xa\FX@subtract@recursive\qr@argument%
|
2275
|
+
\fi
|
2276
|
+
\fi
|
2277
|
+
}%
|
2278
|
+
|
2279
|
+
\def\FX@subtract@saveresult(#1\relax\relax\relax){%
|
2280
|
+
%Strips off the three extra '\relax'es at the end.
|
2281
|
+
\def\FX@subtraction@result{#1}%
|
2282
|
+
}%
|
2283
|
+
|
2284
|
+
\def\FX@creategeneratorpolynomial#1{%
|
2285
|
+
% #1 = n, the number of error codewords desired.
|
2286
|
+
% We need to create \prod_{j=0}^{n-1} (x-2^j).
|
2287
|
+
\edef\FX@generator@degree{#1}%
|
2288
|
+
\def\FX@generatorpolynomial{01}% Initially, set it equal to 1.
|
2289
|
+
\setcounter{qr@i}{0}%
|
2290
|
+
\FX@creategenerator@recursive%
|
2291
|
+
%The result is now stored in \FX@generatorpolynomial
|
2292
|
+
}%
|
2293
|
+
|
2294
|
+
\def\FX@creategenerator@recursive{%
|
2295
|
+
% \c@qr@i contains the current value of i.
|
2296
|
+
% \FX@generatorpolynomial contains the current polynomial f(x),
|
2297
|
+
% which should be a degree-i polynomial
|
2298
|
+
% equal to \prod_{j=0}^{i-1} (x-2^j).
|
2299
|
+
% (If i=0, then \FX@generatorpolynomial should be 01.)
|
2300
|
+
% This recursion step should multiply the existing polynomial by (x-2^i),
|
2301
|
+
% increment i by 1, and check whether we're done or not.
|
2302
|
+
\edef\qr@summandA{\FX@generatorpolynomial 00}% This is f(x) * x
|
2303
|
+
\edef\qr@summandB{00\FX@generatorpolynomial}% This is f(x), with a 0x^{i+1} in front.
|
2304
|
+
\F@twotothe{\theqr@i}%
|
2305
|
+
\edef\qr@theconstant{\F@result}%
|
2306
|
+
\FX@subtractphase{\qr@summandA}{\qr@summandB}{\qr@theconstant}%
|
2307
|
+
%This calculates \qr@summandA + \qr@theconstant * \qr@summandB
|
2308
|
+
%and stores the result in \FX@subtraction@result
|
2309
|
+
\edef\FX@generatorpolynomial{\FX@subtraction@result}%
|
2310
|
+
\stepcounter{qr@i}%
|
2311
|
+
\xa\ifnum\FX@generator@degree=\c@qr@i\relax%
|
2312
|
+
%We just multiplied by (x-2^{n-1}), so we're done.
|
2313
|
+
\relax%
|
2314
|
+
\else%
|
2315
|
+
%We need to do this again!
|
2316
|
+
\xa%
|
2317
|
+
\FX@creategenerator@recursive%
|
2318
|
+
\fi%
|
2319
|
+
}%
|
2320
|
+
|
2321
|
+
\def\FX@generate@errorbytes#1#2{%
|
2322
|
+
% #1 = datastream in hex
|
2323
|
+
% #2 = number of error correction bytes requested
|
2324
|
+
\edef\qr@numerrorbytes{#2}%
|
2325
|
+
\xa\FX@creategeneratorpolynomial\xa{\qr@numerrorbytes}%
|
2326
|
+
\edef\FX@numerator{#1}%
|
2327
|
+
\qr@for \i = 1 to \qr@numerrorbytes by 1%
|
2328
|
+
{\g@addto@macro\FX@numerator{00}}% %One error byte means two hex codes.
|
2329
|
+
\FX@polynomialdivide{\FX@numerator}{\FX@generatorpolynomial}%
|
2330
|
+
\edef\FX@errorbytes{\qr@theremainder}%
|
2331
|
+
}%
|
2332
|
+
\newif\ifqr@versionmodules
|
2333
|
+
|
2334
|
+
\def\qr@level@char#1{%
|
2335
|
+
\xa\ifcase#1
|
2336
|
+
M\or L\or H\or Q\fi}%
|
2337
|
+
|
2338
|
+
\newif\ifqr@versiongoodenough
|
2339
|
+
\def\qr@choose@best@version#1{%
|
2340
|
+
% \qr@desiredversion = user-requested version
|
2341
|
+
% \qr@desiredlevel = user-requested error-correction level
|
2342
|
+
\edef\qr@plaintext{#1}%
|
2343
|
+
\qr@getstringlength{\qr@plaintext}%
|
2344
|
+
%
|
2345
|
+
%Run double loop over levels and versions, looking for
|
2346
|
+
%the smallest version that can contain our data,
|
2347
|
+
%and then choosing the best error-correcting level at that version,
|
2348
|
+
%subject to the level being at least as good as the user desires.
|
2349
|
+
\global\qr@versiongoodenoughfalse%
|
2350
|
+
\gdef\qr@bestversion{0}%
|
2351
|
+
\gdef\qr@bestlevel{0}%
|
2352
|
+
\ifnum\qr@desiredversion=0\relax
|
2353
|
+
\qr@a=1\relax
|
2354
|
+
\else
|
2355
|
+
\qr@a=\qr@desiredversion\relax
|
2356
|
+
\fi
|
2357
|
+
\qr@for \i=\qr@a to 40 by 1
|
2358
|
+
{\edef\qr@version{\the\i}%
|
2359
|
+
\global\qr@versiongoodenoughfalse
|
2360
|
+
\qr@for \j=0 to 3 by 1%
|
2361
|
+
{%First, we map {0,1,2,3} to {1,0,4,3}, so that we loop through {M,L,H,Q}
|
2362
|
+
%in order of increasing error-correction capabilities.
|
2363
|
+
\qr@a = \j\relax
|
2364
|
+
\divide \qr@a by 2\relax
|
2365
|
+
\multiply \qr@a by 4\relax
|
2366
|
+
\advance \qr@a by 1\relax
|
2367
|
+
\advance \qr@a by -\j\relax
|
2368
|
+
\edef\qr@level{\the\qr@a}%
|
2369
|
+
\ifnum\qr@desiredlevel=\qr@a\relax
|
2370
|
+
\global\qr@versiongoodenoughtrue
|
2371
|
+
\fi
|
2372
|
+
\ifqr@versiongoodenough
|
2373
|
+
\qr@calculate@capacity{\qr@version}{\qr@level}%
|
2374
|
+
\xa\xa\xa\ifnum\xa\qr@truecapacity\xa<\qr@stringlength\relax
|
2375
|
+
%Too short
|
2376
|
+
\relax
|
2377
|
+
\else
|
2378
|
+
%Long enough!
|
2379
|
+
\xdef\qr@bestversion{\qr@version}%
|
2380
|
+
\xdef\qr@bestlevel{\qr@level}%
|
2381
|
+
\global\i=40%
|
2382
|
+
\fi
|
2383
|
+
\fi
|
2384
|
+
}%
|
2385
|
+
}%
|
2386
|
+
\edef\qr@version{\qr@bestversion}%
|
2387
|
+
\edef\qr@level{\qr@bestlevel}%
|
2388
|
+
\xa\ifnum\qr@desiredversion>0\relax
|
2389
|
+
\ifx\qr@bestversion\qr@desiredversion\relax
|
2390
|
+
%No change from desired version.
|
2391
|
+
\else
|
2392
|
+
%Version was increased
|
2393
|
+
\message{<Requested QR version '\qr@desiredversion' is too small for desired text.}%
|
2394
|
+
\message{Version increased to '\qr@bestversion' to fit text.>^^J}%
|
2395
|
+
\fi
|
2396
|
+
\fi
|
2397
|
+
\ifx\qr@bestlevel\qr@desiredlevel\relax
|
2398
|
+
%No change in level.
|
2399
|
+
\else
|
2400
|
+
\message{<Error-correction level increased from \qr@level@char{\qr@desiredlevel}}%
|
2401
|
+
\message{to \qr@level@char{\qr@bestlevel} at no cost.>^^J}%
|
2402
|
+
\fi
|
2403
|
+
}%
|
2404
|
+
|
2405
|
+
\def\qr@calculate@capacity#1#2{%
|
2406
|
+
\edef\qr@version{#1}%
|
2407
|
+
\edef\qr@level{#2}%
|
2408
|
+
%Calculate \qr@size, the number of modules per side.
|
2409
|
+
% The formula is 4\qr@version+17.
|
2410
|
+
\qr@a=\qr@version\relax%
|
2411
|
+
\multiply\qr@a by 4\relax%
|
2412
|
+
\advance\qr@a by 17\relax%
|
2413
|
+
\edef\qr@size{\the\qr@a}%
|
2414
|
+
%
|
2415
|
+
% Calculate \qr@k, which governs the number of alignment patterns.
|
2416
|
+
% The alignment patterns lie in a kxk square, except for 3 that are replaced by finding patterns.
|
2417
|
+
% The formula is 2 + floor( \qr@version / 7 ), except that k=0 for version 1.
|
2418
|
+
\xa\ifnum\qr@version=1\relax%
|
2419
|
+
\def\qr@k{0}%
|
2420
|
+
\else%
|
2421
|
+
\qr@a=\qr@version\relax
|
2422
|
+
\divide \qr@a by 7\relax
|
2423
|
+
\advance\qr@a by 2\relax
|
2424
|
+
\edef\qr@k{\the\qr@a}%
|
2425
|
+
\fi%
|
2426
|
+
%
|
2427
|
+
%Calculate number of function pattern modules.
|
2428
|
+
%This consists of the three 8x8 finder patterns, the two timing strips, and the (k^2-3) 5x5 alignment patterns.
|
2429
|
+
%The formula is 160+2n+25(k^2-3)-10(k-2), unless k=0 in which case we just have 160+2n.
|
2430
|
+
\qr@a=\qr@size\relax
|
2431
|
+
\multiply\qr@a by 2\relax
|
2432
|
+
\advance\qr@a by 160\relax
|
2433
|
+
\xa\ifnum\qr@k=0\relax\else
|
2434
|
+
%\qr@k is nonzero, hence at least 2, so we continue to add 25(k^2-3)-10(k-2).
|
2435
|
+
\qr@b=\qr@k\relax
|
2436
|
+
\multiply\qr@b by \qr@k\relax
|
2437
|
+
\advance\qr@b by -3\relax
|
2438
|
+
\multiply\qr@b by 25\relax
|
2439
|
+
\advance\qr@a by \qr@b\relax
|
2440
|
+
\qr@b=\qr@k\relax
|
2441
|
+
\advance\qr@b by -2\relax
|
2442
|
+
\multiply\qr@b by 10\relax
|
2443
|
+
\advance\qr@a by -\qr@b\relax
|
2444
|
+
\fi
|
2445
|
+
\edef\qr@numfunctionpatternmodules{\the\qr@a}%
|
2446
|
+
%
|
2447
|
+
%Calculate the number of version modules, either 36 or 0.
|
2448
|
+
\xa\ifnum\qr@version>6\relax
|
2449
|
+
\qr@versionmodulestrue
|
2450
|
+
\def\qr@numversionmodules{36}%
|
2451
|
+
\else
|
2452
|
+
\qr@versionmodulesfalse
|
2453
|
+
\def\qr@numversionmodules{0}%
|
2454
|
+
\fi
|
2455
|
+
%
|
2456
|
+
%Now calculate the codeword capacity and remainder bits.
|
2457
|
+
%Take n^2 modules, subtract all those dedicated to finder patterns etc., format information, and version information,
|
2458
|
+
%and what's left is the number of bits we can play with.
|
2459
|
+
%The number of complete bytes is \qr@numdatacodewords;
|
2460
|
+
%the leftover bits are \qr@numremainderbits.
|
2461
|
+
\qr@a=\qr@size\relax
|
2462
|
+
\multiply \qr@a by \qr@size\relax
|
2463
|
+
\advance \qr@a by -\qr@numfunctionpatternmodules\relax
|
2464
|
+
\advance \qr@a by -31\relax% % There are 31 format modules.
|
2465
|
+
\advance \qr@a by -\qr@numversionmodules\relax
|
2466
|
+
\qr@b=\qr@a\relax
|
2467
|
+
\divide \qr@a by 8\relax
|
2468
|
+
\edef\qr@numdatacodewords{\the\qr@a}%
|
2469
|
+
\multiply\qr@a by 8\relax
|
2470
|
+
\advance \qr@b by -\qr@a\relax
|
2471
|
+
\edef\qr@numremainderbits{\the\qr@b}%
|
2472
|
+
%
|
2473
|
+
%The size of the character count indicator also varies by version.
|
2474
|
+
%There are only two options, so hardcoding seems easier than expressing these functionally.
|
2475
|
+
\xa\ifnum\qr@version<10\relax
|
2476
|
+
\def\qr@charactercountbytes@byte{1}%
|
2477
|
+
\def\qr@charactercountbits@byte{8}%
|
2478
|
+
\else
|
2479
|
+
\def\qr@charactercountbytes@byte{2}%
|
2480
|
+
\def\qr@charactercountbits@byte{16}%
|
2481
|
+
\fi
|
2482
|
+
%
|
2483
|
+
%Now we call on the table, from the QR specification,
|
2484
|
+
%of how many blocks to divide the message into, and how many error bytes each block gets.
|
2485
|
+
%This affects the true capacity for data, which we store into \qr@totaldatacodewords.
|
2486
|
+
% The following macro sets \qr@numblocks and \qr@num@eccodewords
|
2487
|
+
% based on Table 9 of the QR specification.
|
2488
|
+
\qr@settableix
|
2489
|
+
\qr@a = -\qr@numblocks\relax
|
2490
|
+
\multiply \qr@a by \qr@num@eccodewords\relax
|
2491
|
+
\advance\qr@a by \qr@numdatacodewords\relax
|
2492
|
+
\edef\qr@totaldatacodewords{\the\qr@a}%
|
2493
|
+
\advance\qr@a by -\qr@charactercountbytes@byte\relax%Subtract character count
|
2494
|
+
\advance\qr@a by -1\relax% Subtract 1 byte for the 4-bit mode indicator and the 4-bit terminator at the end.
|
2495
|
+
\edef\qr@truecapacity{\the\qr@a}%
|
2496
|
+
}
|
2497
|
+
|
2498
|
+
\def\qr@setversion#1#2{%
|
2499
|
+
% #1 = version number, an integer between 1 and 40 inclusive.
|
2500
|
+
% #2 = error-correction level, as an integer between 0 and 3 inclusive.
|
2501
|
+
% 0 = 00 = M
|
2502
|
+
% 1 = 01 = L
|
2503
|
+
% 2 = 10 = H
|
2504
|
+
% 3 = 11 = Q
|
2505
|
+
% This macro calculates and sets a variety of global macros and/or counters
|
2506
|
+
% storing version information that is used later in construction the QR code.
|
2507
|
+
% Thus \qr@setversion should be called every time!
|
2508
|
+
%
|
2509
|
+
\edef\qr@version{#1}%
|
2510
|
+
\edef\qr@level{#2}%
|
2511
|
+
%
|
2512
|
+
\qr@calculate@capacity{\qr@version}{\qr@level}%
|
2513
|
+
%The capacity-check code sets the following:
|
2514
|
+
% * \qr@size
|
2515
|
+
% * \qr@k
|
2516
|
+
% * \ifqr@versionmodules
|
2517
|
+
% * \qr@numversionmodules
|
2518
|
+
% * \qr@numdatacodewords
|
2519
|
+
% * \qr@numremainderbits
|
2520
|
+
% * \qr@charactercountbits@byte
|
2521
|
+
% * \qr@charactercountbytes@byte
|
2522
|
+
% * \qr@numblocks (via \qr@settableix)
|
2523
|
+
% * \qr@num@eccodewords (via \qr@settableix)
|
2524
|
+
% * \qr@totaldatacodewords
|
2525
|
+
%
|
2526
|
+
% The alignment patterns' square is 7 modules in from each edge.
|
2527
|
+
% They are spaced "as evenly as possible" with an even number of modules between each row/column,
|
2528
|
+
% unevenness in division being accommodated by making the first such gap smaller.
|
2529
|
+
% The formula seems to be
|
2530
|
+
% general distance = 2*round((n-13)/(k-1)/2+0.25)
|
2531
|
+
% = 2*floor((n-13)/(k-1)/2+0.75)
|
2532
|
+
% = 2*floor( (2*(n-13)/(k-1)+3) / 4 )
|
2533
|
+
% = (((2*(n-13)) div (k-1) + 3 ) div 4 ) * 2
|
2534
|
+
% first distance = leftovers
|
2535
|
+
% The 0.25 is to accommodate version 32, which is the only time we round down.
|
2536
|
+
% Otherwise a simple 2*ceiling((n-13)/(k-1)/2) would have sufficed.
|
2537
|
+
%
|
2538
|
+
\qr@a = \qr@size\relax
|
2539
|
+
\advance\qr@a by -13\relax
|
2540
|
+
\multiply\qr@a by 2\relax
|
2541
|
+
\qr@b = \qr@k\relax
|
2542
|
+
\advance \qr@b by -1\relax
|
2543
|
+
\divide\qr@a by \qr@b\relax
|
2544
|
+
\advance\qr@a by 3\relax
|
2545
|
+
\divide\qr@a by 4\relax
|
2546
|
+
\multiply\qr@a by 2\relax
|
2547
|
+
\edef\qr@alignment@generalskip{\the\qr@a}%
|
2548
|
+
%
|
2549
|
+
%Now set \qr@alignment@firstskip to (\qr@size-13)-(\qr@k-2)*\qr@alignment@generalskip %
|
2550
|
+
\qr@a = \qr@k\relax
|
2551
|
+
\advance\qr@a by -2\relax
|
2552
|
+
\multiply\qr@a by -\qr@alignment@generalskip\relax
|
2553
|
+
\advance\qr@a by \qr@size\relax
|
2554
|
+
\advance\qr@a by -13\relax
|
2555
|
+
\edef\qr@alignment@firstskip{\the\qr@a}%
|
2556
|
+
%
|
2557
|
+
%
|
2558
|
+
%
|
2559
|
+
% Our \qr@totaldatacodewords bytes of data are broken up as evenly as possible
|
2560
|
+
% into \qr@numblocks datablocks; some may be one byte longer than others.
|
2561
|
+
% We set \qr@shortblock@size to floor(\qr@totaldatacodewords / \qr@numblocks)
|
2562
|
+
% and \qr@numlongblocks to mod(\qr@totaldatacodewords , \qr@numblocks).
|
2563
|
+
\qr@a=\qr@totaldatacodewords\relax
|
2564
|
+
\divide\qr@a by \qr@numblocks\relax
|
2565
|
+
\edef\qr@shortblock@size{\the\qr@a}%
|
2566
|
+
\multiply\qr@a by -\qr@numblocks\relax
|
2567
|
+
\advance\qr@a by \qr@totaldatacodewords\relax
|
2568
|
+
\edef\qr@numlongblocks{\the\qr@a}%
|
2569
|
+
%
|
2570
|
+
%Set \qr@longblock@size to \qr@shortblock@size+1.
|
2571
|
+
\qr@a=\qr@shortblock@size\relax
|
2572
|
+
\advance\qr@a by 1\relax
|
2573
|
+
\edef\qr@longblock@size{\the\qr@a}%
|
2574
|
+
%
|
2575
|
+
%Set \qr@numshortblocks to \qr@numblocks - \qr@numlongblocks
|
2576
|
+
\qr@b=\qr@numblocks\relax
|
2577
|
+
\advance\qr@b by -\qr@numlongblocks\relax
|
2578
|
+
\edef\qr@numshortblocks{\the\qr@b}%
|
2579
|
+
}%
|
2580
|
+
|
2581
|
+
\def\qr@settableix@int(#1,#2){%
|
2582
|
+
\edef\qr@numblocks{#1}%
|
2583
|
+
\edef\qr@num@eccodewords{#2}%
|
2584
|
+
}%
|
2585
|
+
|
2586
|
+
\def\qr@settableix{%
|
2587
|
+
\xa\ifcase\qr@level\relax
|
2588
|
+
%00: Level 'M', medium error correction
|
2589
|
+
\edef\qr@tempdata{(%
|
2590
|
+
\ifcase\qr@version\relax
|
2591
|
+
\relax %There is no version 0.
|
2592
|
+
\or1,10%
|
2593
|
+
\or1,16%
|
2594
|
+
\or1,26%
|
2595
|
+
\or2,18%
|
2596
|
+
\or2,24%
|
2597
|
+
\or4,16%
|
2598
|
+
\or4,18%
|
2599
|
+
\or4,22%
|
2600
|
+
\or5,22%
|
2601
|
+
\or5,26%
|
2602
|
+
\or5,30%
|
2603
|
+
\or8,22%
|
2604
|
+
\or9,22%
|
2605
|
+
\or9,24%
|
2606
|
+
\or10,24%
|
2607
|
+
\or10,28%
|
2608
|
+
\or11,28%
|
2609
|
+
\or13,26%
|
2610
|
+
\or14,26%
|
2611
|
+
\or16,26%
|
2612
|
+
\or17,26%
|
2613
|
+
\or17,28%
|
2614
|
+
\or18,28%
|
2615
|
+
\or20,28%
|
2616
|
+
\or21,28%
|
2617
|
+
\or23,28%
|
2618
|
+
\or25,28%
|
2619
|
+
\or26,28%
|
2620
|
+
\or28,28%
|
2621
|
+
\or29,28%
|
2622
|
+
\or31,28%
|
2623
|
+
\or33,28%
|
2624
|
+
\or35,28%
|
2625
|
+
\or37,28%
|
2626
|
+
\or38,28%
|
2627
|
+
\or40,28%
|
2628
|
+
\or43,28%
|
2629
|
+
\or45,28%
|
2630
|
+
\or47,28%
|
2631
|
+
\or49,28%
|
2632
|
+
\fi)}%
|
2633
|
+
\or
|
2634
|
+
%01: Level 'L', low error correction
|
2635
|
+
\edef\qr@tempdata{%
|
2636
|
+
(\ifcase\qr@version\relax
|
2637
|
+
\relax %There is no version 0.
|
2638
|
+
\or 1,7%
|
2639
|
+
\or 1,10%
|
2640
|
+
\or 1,15%
|
2641
|
+
\or 1,20%
|
2642
|
+
\or 1,26%
|
2643
|
+
\or 2,18%
|
2644
|
+
\or 2,20%
|
2645
|
+
\or 2,24%
|
2646
|
+
\or 2,30%
|
2647
|
+
\or 4,18%
|
2648
|
+
\or 4,20%
|
2649
|
+
\or 4,24%
|
2650
|
+
\or 4,26%
|
2651
|
+
\or 4,30%
|
2652
|
+
\or 6,22%
|
2653
|
+
\or 6,24%
|
2654
|
+
\or 6,28%
|
2655
|
+
\or 6,30%
|
2656
|
+
\or 7,28%
|
2657
|
+
\or 8,28%
|
2658
|
+
\or 8,28%
|
2659
|
+
\or 9,28%
|
2660
|
+
\or 9,30%
|
2661
|
+
\or 10,30%
|
2662
|
+
\or 12,26%
|
2663
|
+
\or 12,28%
|
2664
|
+
\or 12,30%
|
2665
|
+
\or 13,30%
|
2666
|
+
\or 14,30%
|
2667
|
+
\or 15,30%
|
2668
|
+
\or 16,30%
|
2669
|
+
\or 17,30%
|
2670
|
+
\or 18,30%
|
2671
|
+
\or 19,30%
|
2672
|
+
\or 19,30%
|
2673
|
+
\or 20,30%
|
2674
|
+
\or 21,30%
|
2675
|
+
\or 22,30%
|
2676
|
+
\or 24,30%
|
2677
|
+
\or 25,30%
|
2678
|
+
\fi)}%
|
2679
|
+
\or
|
2680
|
+
%10: Level 'H', high error correction
|
2681
|
+
\edef\qr@tempdata{(%
|
2682
|
+
\ifcase\qr@version\relax
|
2683
|
+
\relax %There is no version 0.
|
2684
|
+
\or1,17%
|
2685
|
+
\or1,28%
|
2686
|
+
\or2,22%
|
2687
|
+
\or4,16%
|
2688
|
+
\or4,22%
|
2689
|
+
\or4,28%
|
2690
|
+
\or5,26%
|
2691
|
+
\or6,26%
|
2692
|
+
\or8,24%
|
2693
|
+
\or8,28%
|
2694
|
+
\or11,24%
|
2695
|
+
\or11,28%
|
2696
|
+
\or16,22%
|
2697
|
+
\or16,24%
|
2698
|
+
\or18,24%
|
2699
|
+
\or16,30%
|
2700
|
+
\or19,28%
|
2701
|
+
\or21,28%
|
2702
|
+
\or25,26%
|
2703
|
+
\or25,28%
|
2704
|
+
\or25,30%
|
2705
|
+
\or34,24%
|
2706
|
+
\or30,30%
|
2707
|
+
\or32,30%
|
2708
|
+
\or35,30%
|
2709
|
+
\or37,30%
|
2710
|
+
\or40,30%
|
2711
|
+
\or42,30%
|
2712
|
+
\or45,30%
|
2713
|
+
\or48,30%
|
2714
|
+
\or51,30%
|
2715
|
+
\or54,30%
|
2716
|
+
\or57,30%
|
2717
|
+
\or60,30%
|
2718
|
+
\or63,30%
|
2719
|
+
\or66,30%
|
2720
|
+
\or70,30%
|
2721
|
+
\or74,30%
|
2722
|
+
\or77,30%
|
2723
|
+
\or81,30%
|
2724
|
+
\fi)}%
|
2725
|
+
\or
|
2726
|
+
%11: Level 'Q', quality error correction
|
2727
|
+
\edef\qr@tempdata{(%
|
2728
|
+
\ifcase\qr@version\relax
|
2729
|
+
\relax %There is no version 0.
|
2730
|
+
\or1,13%
|
2731
|
+
\or1,22%
|
2732
|
+
\or2,18%
|
2733
|
+
\or2,26%
|
2734
|
+
\or4,18%
|
2735
|
+
\or4,24%
|
2736
|
+
\or6,18%
|
2737
|
+
\or6,22%
|
2738
|
+
\or8,20%
|
2739
|
+
\or8,24%
|
2740
|
+
\or8,28%
|
2741
|
+
\or10,26%
|
2742
|
+
\or12,24%
|
2743
|
+
\or16,20%
|
2744
|
+
\or12,30%
|
2745
|
+
\or17,24%
|
2746
|
+
\or16,28%
|
2747
|
+
\or18,28%
|
2748
|
+
\or21,26%
|
2749
|
+
\or20,30%
|
2750
|
+
\or23,28%
|
2751
|
+
\or23,30%
|
2752
|
+
\or25,30%
|
2753
|
+
\or27,30%
|
2754
|
+
\or29,30%
|
2755
|
+
\or34,28%
|
2756
|
+
\or34,30%
|
2757
|
+
\or35,30%
|
2758
|
+
\or38,30%
|
2759
|
+
\or40,30%
|
2760
|
+
\or43,30%
|
2761
|
+
\or45,30%
|
2762
|
+
\or48,30%
|
2763
|
+
\or51,30%
|
2764
|
+
\or53,30%
|
2765
|
+
\or56,30%
|
2766
|
+
\or59,30%
|
2767
|
+
\or62,30%
|
2768
|
+
\or65,30%
|
2769
|
+
\or68,30%
|
2770
|
+
\fi)}%
|
2771
|
+
\fi
|
2772
|
+
\xa\qr@settableix@int\qr@tempdata
|
2773
|
+
}%
|
2774
|
+
\define@key{qr}{version}{\edef\qr@desiredversion{#1}}%
|
2775
|
+
\define@key{qr}{level}{\qr@setlevel{#1}}%
|
2776
|
+
\define@key{qr}{height}{\qr@setheight{#1}}%
|
2777
|
+
\define@boolkey{qr}[qr@]{tight}[true]{}% %This creates \ifqr@tight and initializes it to true.
|
2778
|
+
\define@boolkey{qr}[qr@]{padding}[true]{\ifqr@padding\qr@tightfalse\else\qr@tighttrue\fi}% %Define 'padding' as antonym to 'tight'
|
2779
|
+
|
2780
|
+
\def\@qr@M{M}\def\@qr@z{0}%
|
2781
|
+
\def\@qr@L{L}\def\@qr@i{1}%
|
2782
|
+
\def\@qr@H{H}\def\@qr@ii{2}%
|
2783
|
+
\def\@qr@Q{Q}\def\@qr@iii{3}%
|
2784
|
+
\def\qr@setlevel#1{%
|
2785
|
+
\edef\qr@level@selected{#1}%
|
2786
|
+
\ifx\qr@level@selected\@qr@M
|
2787
|
+
\edef\qr@desiredlevel{0}%
|
2788
|
+
\fi
|
2789
|
+
\ifx\qr@level@selected\@qr@L
|
2790
|
+
\edef\qr@desiredlevel{1}%
|
2791
|
+
\fi
|
2792
|
+
\ifx\qr@level@selected\@qr@H
|
2793
|
+
\edef\qr@desiredlevel{2}%
|
2794
|
+
\fi
|
2795
|
+
\ifx\qr@level@selected\@qr@Q
|
2796
|
+
\edef\qr@desiredlevel{3}%
|
2797
|
+
\fi
|
2798
|
+
\ifx\qr@level@selected\@qr@z
|
2799
|
+
\edef\qr@desiredlevel{0}%
|
2800
|
+
\fi
|
2801
|
+
\ifx\qr@level@selected\@qr@i
|
2802
|
+
\edef\qr@desiredlevel{1}%
|
2803
|
+
\fi
|
2804
|
+
\ifx\qr@level@selected\@qr@ii
|
2805
|
+
\edef\qr@desiredlevel{2}%
|
2806
|
+
\fi
|
2807
|
+
\ifx\qr@level@selected\@qr@iii
|
2808
|
+
\edef\qr@desiredlevel{3}%
|
2809
|
+
\fi
|
2810
|
+
}%
|
2811
|
+
|
2812
|
+
\def\qr@setheight#1{%
|
2813
|
+
\setlength{\qr@desiredheight}{#1}%
|
2814
|
+
}%
|
2815
|
+
|
2816
|
+
\newcommand\qrset[1]{%
|
2817
|
+
\setkeys{qr}{#1}%
|
2818
|
+
}
|
2819
|
+
|
2820
|
+
\qrset{version=0, level=0, tight}
|
2821
|
+
\newif\ifqr@starinvoked%
|
2822
|
+
\def\qrcode{\@ifstar\qrcode@star\qrcode@nostar}%
|
2823
|
+
\def\qrcode@star{\qr@starinvokedtrue\qrcode@i}%
|
2824
|
+
\def\qrcode@nostar{\qr@starinvokedfalse\qrcode@i}%
|
2825
|
+
|
2826
|
+
\newcommand\qrcode@i[1][]{%
|
2827
|
+
\begingroup%
|
2828
|
+
\ifqr@starinvoked%
|
2829
|
+
\qr@hyperlinkfalse%
|
2830
|
+
\fi%
|
2831
|
+
\setkeys{qr}{#1}%
|
2832
|
+
\bgroup\qr@verbatimcatcodes\qr@setescapedspecials\qrcode@in}%
|
2833
|
+
|
2834
|
+
\def\qrcode@in#1{\xdef\qr@texttoencode{#1}\egroup\qrcode@int\endgroup}%
|
2835
|
+
|
2836
|
+
\def\qrcode@hyperwrapper@hyperref{\href{\qr@texttoencode}}%
|
2837
|
+
\def\qrcode@hyperwrapper@nohyperref{\relax}%
|
2838
|
+
|
2839
|
+
\AtBeginDocument{%
|
2840
|
+
\@ifpackageloaded{hyperref}%
|
2841
|
+
{\global\let\qrcode@hyperwrapper=\qrcode@hyperwrapper@hyperref}%
|
2842
|
+
{\global\let\qrcode@hyperwrapper=\qrcode@hyperwrapper@nohyperref}%
|
2843
|
+
}%
|
2844
|
+
|
2845
|
+
\def\qrcode@int{%
|
2846
|
+
\message{^^J^^J<QR code requested for "\qr@texttoencode" in version
|
2847
|
+
\qr@desiredversion-\qr@level@char{\qr@desiredlevel}.>^^J}%
|
2848
|
+
%First, choose the version and level.
|
2849
|
+
%Recall that \qr@choose@best@version sets \qr@version and \qr@level.
|
2850
|
+
\xa\qr@choose@best@version\xa{\qr@texttoencode}%
|
2851
|
+
\qr@setversion{\qr@version}{\qr@level}%
|
2852
|
+
%
|
2853
|
+
\ifqr@hyperlink%
|
2854
|
+
\let\qrcode@wrapper=\qrcode@hyperwrapper%
|
2855
|
+
\else%
|
2856
|
+
\let\qrcode@wrapper=\relax%
|
2857
|
+
\fi%
|
2858
|
+
%
|
2859
|
+
%Next, check whether we have already encoded this text at this version
|
2860
|
+
%and level.
|
2861
|
+
\qrcode@wrapper{%
|
2862
|
+
\xa\ifx\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname
|
2863
|
+
\relax%
|
2864
|
+
%This text has not yet been encoded.
|
2865
|
+
\qrcode@int@new%
|
2866
|
+
\else
|
2867
|
+
%This text has already been encoded!
|
2868
|
+
\ifqr@forget@mode
|
2869
|
+
%In 'forget' mode, we deliberately recalculate anyway.
|
2870
|
+
\qrcode@int@new%
|
2871
|
+
\else
|
2872
|
+
\qrcode@int@remember%
|
2873
|
+
\fi
|
2874
|
+
\fi%
|
2875
|
+
}%
|
2876
|
+
}%
|
2877
|
+
|
2878
|
+
\def\qrcode@int@new{%
|
2879
|
+
\qr@createsquareblankmatrix{newqr}{\qr@size}%
|
2880
|
+
\qr@placefinderpatterns{newqr}%
|
2881
|
+
\qr@placetimingpatterns{newqr}%
|
2882
|
+
\qr@placealignmentpatterns{newqr}%
|
2883
|
+
\qr@placedummyformatpatterns{newqr}%
|
2884
|
+
\qr@placedummyversionpatterns{newqr}%
|
2885
|
+
\ifqr@draft@mode
|
2886
|
+
\message{<Inserting dummy QR code in draft mode for "\qr@texttoencode" in
|
2887
|
+
version \qr@version-\qr@level@char{\qr@level}.>^^J}%
|
2888
|
+
\relax% Draft mode---don't load any data or do any work. Also don't save!
|
2889
|
+
\def\qr@format@square{\qr@black}%
|
2890
|
+
\def\qr@blank{\qr@white}%
|
2891
|
+
\fboxsep=-\fboxrule%
|
2892
|
+
\fbox{\qr@printmatrix{newqr}}%
|
2893
|
+
\else
|
2894
|
+
\message{<Calculating QR code for "\qr@texttoencode" in
|
2895
|
+
version \qr@version-\qr@level@char{\qr@level}.>^^J}%
|
2896
|
+
\xa\qr@encode@binary\xa{\qr@texttoencode}%
|
2897
|
+
\qr@splitcodetextintoblocks
|
2898
|
+
\qr@createerrorblocks
|
2899
|
+
\qr@interleave
|
2900
|
+
\message{<Writing data...}%
|
2901
|
+
\qr@writedata@hex{newqr}{\qr@interleaved@text}%
|
2902
|
+
\message{done.>^^J}%
|
2903
|
+
\qr@writeremainderbits{newqr}%
|
2904
|
+
\qr@chooseandapplybestmask{newqr}%
|
2905
|
+
\qr@decimaltobinary[2]{\qr@level@binary}{\qr@level}%
|
2906
|
+
\qr@decimaltobinary[3]{\qr@mask@binary}{\qr@mask@selected}%
|
2907
|
+
\edef\qr@formatstring{\qr@level@binary\qr@mask@binary}%
|
2908
|
+
\message{<Encoding and writing format string...}%
|
2909
|
+
\xa\qr@encodeandmaskformat\xa{\qr@formatstring}%
|
2910
|
+
\qr@writeformatstring{newqr}{\qr@format@bitstring}%
|
2911
|
+
\message{done.>^^J}%
|
2912
|
+
\message{<Encoding and writing version information...}%
|
2913
|
+
\qr@decimaltobinary[6]{\qr@version@binary}{\qr@version}%
|
2914
|
+
\qr@Golaycode{\qr@version@binary}%
|
2915
|
+
\qr@writeversionstring{newqr}{\qr@Golayresult}%
|
2916
|
+
\message{done.>^^J}%
|
2917
|
+
\message{<Saving QR code to memory...}%
|
2918
|
+
\qr@matrixtobinary{newqr}%
|
2919
|
+
%
|
2920
|
+
%Now save the binary version into TeX's memory for later use in this document.
|
2921
|
+
\xa\xdef\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname
|
2922
|
+
{\qr@binarymatrix@result}%
|
2923
|
+
\message{done.>^^J}%
|
2924
|
+
%
|
2925
|
+
%Also save the binary version into the aux file, for use in later runs.
|
2926
|
+
\message{<Writing QR code to aux file...}%
|
2927
|
+
\qr@writebinarymatrixtoauxfile{\qr@binarymatrix@result}%
|
2928
|
+
\message{done.>^^J}%
|
2929
|
+
\message{<Printing matrix...}%
|
2930
|
+
\qr@printmatrix{newqr}%
|
2931
|
+
\message{done.>^^J}%
|
2932
|
+
\fi
|
2933
|
+
\message{^^J}%
|
2934
|
+
}%
|
2935
|
+
\def\qrcode@int@remember{%
|
2936
|
+
%This text has already been encoded,
|
2937
|
+
%so we just copy it from the saved binary string.
|
2938
|
+
\message{<Copying the QR code for "\qr@texttoencode" in version \qr@version-\qr@level@char{\qr@level} as previously calculated.>^^J}%
|
2939
|
+
\xa\qr@printsavedbinarymatrix\xa{\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname}%
|
2940
|
+
%
|
2941
|
+
% Now this still might need to be written to the aux file.
|
2942
|
+
%
|
2943
|
+
\xa\ifx\csname qr@savedflag@\qr@texttoencode @\qr@version @\qr@level\endcsname\@qr@TRUE
|
2944
|
+
%Okay, this has already been written to aux file.
|
2945
|
+
%Do nothing.
|
2946
|
+
\relax%
|
2947
|
+
\else%
|
2948
|
+
%This has NOT been written to the aux file yet.
|
2949
|
+
%We need to do so now.
|
2950
|
+
\xa\qr@writebinarymatrixtoauxfile\xa{\csname qr@savedbinarymatrix@\qr@texttoencode @\qr@version @\qr@level\endcsname}%
|
2951
|
+
\fi%
|
2952
|
+
}%
|
2953
|
+
|
2954
|
+
\def\qr@matrixtobinary#1{%
|
2955
|
+
\def\qr@binarymatrix@result{}%
|
2956
|
+
\bgroup
|
2957
|
+
\def\qr@black{1}%
|
2958
|
+
\def\qr@white{0}%
|
2959
|
+
\def\qr@blank{0}%
|
2960
|
+
\def\qr@black@fixed{1}%
|
2961
|
+
\def\qr@white@fixed{0}%
|
2962
|
+
\def\qr@black@format{1}%
|
2963
|
+
\def\qr@white@format{0}%
|
2964
|
+
%
|
2965
|
+
\qr@for \i = 1 to \qr@size by 1%
|
2966
|
+
{\qr@for \j = 1 to \qr@size by 1%
|
2967
|
+
{\edef\qr@theentry{\qr@matrixentry{#1}{\the\i}{\the\j}}%
|
2968
|
+
\xa\g@addto@macro\xa\qr@binarymatrix@result\xa{\qr@theentry}%
|
2969
|
+
}%
|
2970
|
+
}%
|
2971
|
+
\egroup%
|
2972
|
+
}%
|
2973
|
+
|
2974
|
+
\def\qr@sanitize@output#1{%
|
2975
|
+
%Read through ASCII text '#1' and escape backslashes and braces
|
2976
|
+
\def\qr@sanitized@result{}%
|
2977
|
+
\edef\qr@argument{(#1\relax\relax\relax)}%
|
2978
|
+
\xa\qr@sanitize@output@int\qr@argument%
|
2979
|
+
}
|
2980
|
+
|
2981
|
+
\def\qr@sanitize@output@int(#1#2){%
|
2982
|
+
% #1 = first character
|
2983
|
+
% #2 = rest of output, including terminator
|
2984
|
+
\edef\qr@testi{#1}%
|
2985
|
+
\ifx\qr@testi\qr@relax
|
2986
|
+
% Done.
|
2987
|
+
\let\qr@next=\relax
|
2988
|
+
\else
|
2989
|
+
\ifx\qr@testi\qr@otherrightbrace
|
2990
|
+
\edef\qr@sanitized@result{\qr@sanitized@result\qr@otherbackslash}%
|
2991
|
+
\else\ifx\qr@testi\qr@otherleftbrace
|
2992
|
+
\edef\qr@sanitized@result{\qr@sanitized@result\qr@otherbackslash}%
|
2993
|
+
\else\ifx\qr@testi\qr@otherbackslash
|
2994
|
+
\edef\qr@sanitized@result{\qr@sanitized@result\qr@otherbackslash}%
|
2995
|
+
\fi
|
2996
|
+
\fi
|
2997
|
+
\fi
|
2998
|
+
\edef\qr@sanitized@result{\qr@sanitized@result#1}%
|
2999
|
+
\def\qr@next{\qr@sanitize@output@int(#2)}%
|
3000
|
+
\fi
|
3001
|
+
\qr@next
|
3002
|
+
}
|
3003
|
+
|
3004
|
+
\def\@qr@TRUE{TRUE}%
|
3005
|
+
\def\qr@writebinarymatrixtoauxfile#1{%
|
3006
|
+
\qr@sanitize@output{\qr@texttoencode}%
|
3007
|
+
\edef\qr@theargument{{\qr@sanitized@result}{\qr@version}{\qr@level}{#1}}%
|
3008
|
+
\xa\write\xa\@auxout\xa{\xa\string\xa\qr@savematrix\qr@theargument}%
|
3009
|
+
%
|
3010
|
+
% Now set a flag, so we don't write this again.
|
3011
|
+
\xa\gdef\csname qr@savedflag@\qr@texttoencode @\qr@version @\qr@level\endcsname{TRUE}%
|
3012
|
+
}%
|
3013
|
+
|
3014
|
+
\gdef\qr@dummyqrsavedefinition{}%
|
3015
|
+
\begingroup
|
3016
|
+
\catcode`\#=12\relax
|
3017
|
+
\catcode`\<=1\relax
|
3018
|
+
\catcode`\{=12\relax
|
3019
|
+
\catcode`\>=2\relax
|
3020
|
+
\catcode`\}=12\relax
|
3021
|
+
\catcode`\|=0\relax
|
3022
|
+
\catcode`\\=12|relax
|
3023
|
+
|gdef|qr@dummyqrsavedefinition<%
|
3024
|
+
\ifx\qr@savematrix\@undefined%
|
3025
|
+
\def\qr@savematrix{\begingroup\let\do\@makeother\dospecials\catcode`\{=1\catcode`\}=2\relax
|
3026
|
+
\qr@savematrix@int}%
|
3027
|
+
\def\qr@savematrix@int#1#2#3#4{\endgroup}%
|
3028
|
+
\fi%
|
3029
|
+
>
|
3030
|
+
|endgroup
|
3031
|
+
|
3032
|
+
\edef\qr@argument{(\qr@dummyqrsavedefinition)}%
|
3033
|
+
\xa\write\xa\@auxout\xa{\qr@dummyqrsavedefinition}%
|
3034
|
+
|
3035
|
+
\def\qr@savematrix{\bgroup\qr@verbatimcatcodes\qr@setescapedspecials\qr@savematrix@int}%
|
3036
|
+
|
3037
|
+
\def\qr@savematrix@int#1{\xdef\qr@savedmatrix@name{#1}\egroup\qr@savematrix@int@int}%
|
3038
|
+
|
3039
|
+
\def\qr@savematrix@int@int#1#2#3{%
|
3040
|
+
% \qr@savedmatrix@name = encoded text
|
3041
|
+
% #1 = version
|
3042
|
+
% #2 = level
|
3043
|
+
% #3 = binary text
|
3044
|
+
\def\ds{<Reading QR code for "\qr@savedmatrix@name" at level #1-\qr@level@char{#2} from aux file.>^^J}\xa\message\xa{\ds}%
|
3045
|
+
{\let\%=\qr@otherpercent
|
3046
|
+
\xa\gdef\csname qr@savedbinarymatrix@\qr@savedmatrix@name @#1@#2\endcsname{#3}%
|
3047
|
+
}%
|
3048
|
+
}%
|
3049
|
+
\endinput
|
3050
|
+
%%
|
3051
|
+
%% End of file `qrcode.sty'.
|