stick 1.3.2 → 1.3.3
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGES +3 -4
- data/README +1 -1
- data/lib/stick/constants/cgs.rb +112 -110
- data/lib/stick/constants/mks.rb +6 -4
- data/lib/stick/constants/number.rb +3 -2
- data/lib/stick/constants/typeless_cgs.rb +105 -106
- data/lib/stick/constants/typeless_mks.rb +106 -107
- data/lib/stick/currency.rb +2 -0
- data/lib/stick/mapcar.rb +36 -23
- data/lib/stick/matrix.rb +10 -395
- data/lib/stick/matrix/core.rb +1408 -0
- data/lib/stick/matrix/exception.rb +23 -0
- data/lib/stick/matrix/givens.rb +59 -0
- data/lib/stick/matrix/hessenberg.rb +63 -0
- data/lib/stick/matrix/householder.rb +106 -0
- data/lib/stick/matrix/jacobi.rb +106 -0
- data/lib/stick/matrix/lu.rb +60 -0
- data/lib/stick/quaternion.rb +10 -6
- data/lib/stick/units.rb +2 -0
- data/lib/stick/units/base.rb +75 -72
- data/lib/stick/units/currency.rb +8 -8
- data/lib/stick/units/loaders.rb +3 -2
- data/lib/stick/units/units.rb +2 -0
- data/lib/stick/vector.rb +20 -0
- data/meta/MANIFEST +23 -3
- data/meta/stick.roll +1 -1
- data/task/tests/solo +293 -0
- data/test/spec_matrix.rb +3 -0
- data/test/test_constants.rb +4 -0
- data/test/test_currency.rb +2 -2
- data/test/test_matrix.rb +7 -1
- data/test/test_units.rb +2 -2
- metadata +15 -2
@@ -0,0 +1,1408 @@
|
|
1
|
+
#!/usr/local/bin/ruby
|
2
|
+
#--
|
3
|
+
# matrix.rb -
|
4
|
+
# $Release Version: 1.0$
|
5
|
+
# $Revision: 1.13 $
|
6
|
+
# $Date: 2001/12/09 14:22:23 $
|
7
|
+
# Original Version from Smalltalk-80 version
|
8
|
+
# on July 23, 1985 at 8:37:17 am
|
9
|
+
# by Keiju ISHITSUKA
|
10
|
+
#++
|
11
|
+
#
|
12
|
+
# = matrix.rb
|
13
|
+
#
|
14
|
+
# An implementation of Matrix and Vector classes.
|
15
|
+
#
|
16
|
+
# Author:: Keiju ISHITSUKA
|
17
|
+
# Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
|
18
|
+
#
|
19
|
+
# See classes Matrix and Vector for documentation.
|
20
|
+
#
|
21
|
+
|
22
|
+
|
23
|
+
require "e2mmap.rb"
|
24
|
+
|
25
|
+
module Stick
|
26
|
+
|
27
|
+
module ExceptionForMatrix # :nodoc:
|
28
|
+
extend Exception2MessageMapper
|
29
|
+
def_e2message(TypeError, "wrong argument type %s (expected %s)")
|
30
|
+
def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
|
31
|
+
|
32
|
+
def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
|
33
|
+
def_exception("ErrNotRegular", "Not Regular Matrix")
|
34
|
+
def_exception("ErrOperationNotDefined", "This operation(%s) can\\'t defined")
|
35
|
+
end
|
36
|
+
|
37
|
+
#
|
38
|
+
# The +Matrix+ class represents a mathematical matrix, and provides methods for creating
|
39
|
+
# special-case matrices (zero, identity, diagonal, singular, vector), operating on them
|
40
|
+
# arithmetically and algebraically, and determining their mathematical properties (trace, rank,
|
41
|
+
# inverse, determinant).
|
42
|
+
#
|
43
|
+
# Note that although matrices should theoretically be rectangular, this is not
|
44
|
+
# enforced by the class.
|
45
|
+
#
|
46
|
+
# Also note that the determinant of integer matrices may be incorrectly calculated unless you
|
47
|
+
# also <tt>require 'mathn'</tt>. This may be fixed in the future.
|
48
|
+
#
|
49
|
+
# == Method Catalogue
|
50
|
+
#
|
51
|
+
# To create a matrix:
|
52
|
+
# * <tt> Matrix[*rows] </tt>
|
53
|
+
# * <tt> Matrix.[](*rows) </tt>
|
54
|
+
# * <tt> Matrix.rows(rows, copy = true) </tt>
|
55
|
+
# * <tt> Matrix.columns(columns) </tt>
|
56
|
+
# * <tt> Matrix.diagonal(*values) </tt>
|
57
|
+
# * <tt> Matrix.scalar(n, value) </tt>
|
58
|
+
# * <tt> Matrix.scalar(n, value) </tt>
|
59
|
+
# * <tt> Matrix.identity(n) </tt>
|
60
|
+
# * <tt> Matrix.unit(n) </tt>
|
61
|
+
# * <tt> Matrix.I(n) </tt>
|
62
|
+
# * <tt> Matrix.zero(n) </tt>
|
63
|
+
# * <tt> Matrix.row_vector(row) </tt>
|
64
|
+
# * <tt> Matrix.column_vector(column) </tt>
|
65
|
+
#
|
66
|
+
# To access Matrix elements/columns/rows/submatrices/properties:
|
67
|
+
# * <tt> [](i, j) </tt>
|
68
|
+
# * <tt> #row_size </tt>
|
69
|
+
# * <tt> #column_size </tt>
|
70
|
+
# * <tt> #row(i) </tt>
|
71
|
+
# * <tt> #column(j) </tt>
|
72
|
+
# * <tt> #collect </tt>
|
73
|
+
# * <tt> #map </tt>
|
74
|
+
# * <tt> #minor(*param) </tt>
|
75
|
+
#
|
76
|
+
# Properties of a matrix:
|
77
|
+
# * <tt> #regular? </tt>
|
78
|
+
# * <tt> #singular? </tt>
|
79
|
+
# * <tt> #square? </tt>
|
80
|
+
#
|
81
|
+
# Matrix arithmetic:
|
82
|
+
# * <tt> *(m) </tt>
|
83
|
+
# * <tt> +(m) </tt>
|
84
|
+
# * <tt> -(m) </tt>
|
85
|
+
# * <tt> #/(m) </tt>
|
86
|
+
# * <tt> #inverse </tt>
|
87
|
+
# * <tt> #inv </tt>
|
88
|
+
# * <tt> ** </tt>
|
89
|
+
#
|
90
|
+
# Matrix functions:
|
91
|
+
# * <tt> #determinant </tt>
|
92
|
+
# * <tt> #det </tt>
|
93
|
+
# * <tt> #rank </tt>
|
94
|
+
# * <tt> #trace </tt>
|
95
|
+
# * <tt> #tr </tt>
|
96
|
+
# * <tt> #transpose </tt>
|
97
|
+
# * <tt> #t </tt>
|
98
|
+
#
|
99
|
+
# Conversion to other data types:
|
100
|
+
# * <tt> #coerce(other) </tt>
|
101
|
+
# * <tt> #row_vectors </tt>
|
102
|
+
# * <tt> #column_vectors </tt>
|
103
|
+
# * <tt> #to_a </tt>
|
104
|
+
#
|
105
|
+
# String representations:
|
106
|
+
# * <tt> #to_s </tt>
|
107
|
+
# * <tt> #inspect </tt>
|
108
|
+
#
|
109
|
+
class Matrix
|
110
|
+
@RCS_ID='-$Id: matrix.rb,v 1.13 2001/12/09 14:22:23 keiju Exp keiju $-'
|
111
|
+
|
112
|
+
# extend Exception2MessageMapper
|
113
|
+
include ExceptionForMatrix
|
114
|
+
|
115
|
+
# instance creations
|
116
|
+
private_class_method :new
|
117
|
+
|
118
|
+
#
|
119
|
+
# Creates a matrix where each argument is a row.
|
120
|
+
# Matrix[ [25, 93], [-1, 66] ]
|
121
|
+
# => 25 93
|
122
|
+
# -1 66
|
123
|
+
#
|
124
|
+
def Matrix.[](*rows)
|
125
|
+
new(:init_rows, rows, false)
|
126
|
+
end
|
127
|
+
|
128
|
+
#
|
129
|
+
# Creates a matrix where +rows+ is an array of arrays, each of which is a row
|
130
|
+
# to the matrix. If the optional argument +copy+ is false, use the given
|
131
|
+
# arrays as the internal structure of the matrix without copying.
|
132
|
+
# Matrix.rows([[25, 93], [-1, 66]])
|
133
|
+
# => 25 93
|
134
|
+
# -1 66
|
135
|
+
def Matrix.rows(rows, copy = true)
|
136
|
+
new(:init_rows, rows, copy)
|
137
|
+
end
|
138
|
+
|
139
|
+
#
|
140
|
+
# Creates a matrix using +columns+ as an array of column vectors.
|
141
|
+
# Matrix.columns([[25, 93], [-1, 66]])
|
142
|
+
# => 25 -1
|
143
|
+
# 93 66
|
144
|
+
#
|
145
|
+
#
|
146
|
+
def Matrix.columns(columns)
|
147
|
+
rows = (0 .. columns[0].size - 1).collect {
|
148
|
+
|i|
|
149
|
+
(0 .. columns.size - 1).collect {
|
150
|
+
|j|
|
151
|
+
columns[j][i]
|
152
|
+
}
|
153
|
+
}
|
154
|
+
Matrix.rows(rows, false)
|
155
|
+
end
|
156
|
+
|
157
|
+
#
|
158
|
+
# Creates a matrix where the diagonal elements are composed of +values+.
|
159
|
+
# Matrix.diagonal(9, 5, -3)
|
160
|
+
# => 9 0 0
|
161
|
+
# 0 5 0
|
162
|
+
# 0 0 -3
|
163
|
+
#
|
164
|
+
def Matrix.diagonal(*values)
|
165
|
+
size = values.size
|
166
|
+
rows = (0 .. size - 1).collect {
|
167
|
+
|j|
|
168
|
+
row = Array.new(size).fill(0, 0, size)
|
169
|
+
row[j] = values[j]
|
170
|
+
row
|
171
|
+
}
|
172
|
+
rows(rows, false)
|
173
|
+
end
|
174
|
+
|
175
|
+
#
|
176
|
+
# Creates an +n+ by +n+ diagonal matrix where each diagonal element is
|
177
|
+
# +value+.
|
178
|
+
# Matrix.scalar(2, 5)
|
179
|
+
# => 5 0
|
180
|
+
# 0 5
|
181
|
+
#
|
182
|
+
def Matrix.scalar(n, value)
|
183
|
+
Matrix.diagonal(*Array.new(n).fill(value, 0, n))
|
184
|
+
end
|
185
|
+
|
186
|
+
#
|
187
|
+
# Creates an +n+ by +n+ identity matrix.
|
188
|
+
# Matrix.identity(2)
|
189
|
+
# => 1 0
|
190
|
+
# 0 1
|
191
|
+
#
|
192
|
+
def Matrix.identity(n)
|
193
|
+
Matrix.scalar(n, 1)
|
194
|
+
end
|
195
|
+
class << Matrix
|
196
|
+
alias unit identity
|
197
|
+
alias I identity
|
198
|
+
end
|
199
|
+
|
200
|
+
#
|
201
|
+
# Creates an +n+ by +n+ zero matrix.
|
202
|
+
# Matrix.zero(2)
|
203
|
+
# => 0 0
|
204
|
+
# 0 0
|
205
|
+
#
|
206
|
+
def Matrix.zero(n)
|
207
|
+
Matrix.scalar(n, 0)
|
208
|
+
end
|
209
|
+
|
210
|
+
#
|
211
|
+
# Creates a single-row matrix where the values of that row are as given in
|
212
|
+
# +row+.
|
213
|
+
# Matrix.row_vector([4,5,6])
|
214
|
+
# => 4 5 6
|
215
|
+
#
|
216
|
+
def Matrix.row_vector(row)
|
217
|
+
case row
|
218
|
+
when Vector
|
219
|
+
Matrix.rows([row.to_a], false)
|
220
|
+
when Array
|
221
|
+
Matrix.rows([row.dup], false)
|
222
|
+
else
|
223
|
+
Matrix.rows([[row]], false)
|
224
|
+
end
|
225
|
+
end
|
226
|
+
|
227
|
+
#
|
228
|
+
# Creates a single-column matrix where the values of that column are as given
|
229
|
+
# in +column+.
|
230
|
+
# Matrix.column_vector([4,5,6])
|
231
|
+
# => 4
|
232
|
+
# 5
|
233
|
+
# 6
|
234
|
+
#
|
235
|
+
def Matrix.column_vector(column)
|
236
|
+
case column
|
237
|
+
when Vector
|
238
|
+
Matrix.columns([column.to_a])
|
239
|
+
when Array
|
240
|
+
Matrix.columns([column])
|
241
|
+
else
|
242
|
+
Matrix.columns([[column]])
|
243
|
+
end
|
244
|
+
end
|
245
|
+
|
246
|
+
#
|
247
|
+
# This method is used by the other methods that create matrices, and is of no
|
248
|
+
# use to general users.
|
249
|
+
#
|
250
|
+
def initialize(init_method, *argv)
|
251
|
+
self.send(init_method, *argv)
|
252
|
+
end
|
253
|
+
|
254
|
+
def init_rows(rows, copy)
|
255
|
+
if copy
|
256
|
+
@rows = rows.collect{|row| row.dup}
|
257
|
+
else
|
258
|
+
@rows = rows
|
259
|
+
end
|
260
|
+
self
|
261
|
+
end
|
262
|
+
private :init_rows
|
263
|
+
|
264
|
+
#
|
265
|
+
# Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
|
266
|
+
#
|
267
|
+
def [](i, j)
|
268
|
+
@rows[i][j]
|
269
|
+
end
|
270
|
+
alias element []
|
271
|
+
alias component []
|
272
|
+
|
273
|
+
def []=(i, j, v)
|
274
|
+
@rows[i][j] = v
|
275
|
+
end
|
276
|
+
alias set_element []=
|
277
|
+
alias set_component []=
|
278
|
+
private :[]=, :set_element, :set_component
|
279
|
+
|
280
|
+
#
|
281
|
+
# Returns the number of rows.
|
282
|
+
#
|
283
|
+
def row_size
|
284
|
+
@rows.size
|
285
|
+
end
|
286
|
+
|
287
|
+
#
|
288
|
+
# Returns the number of columns. Note that it is possible to construct a
|
289
|
+
# matrix with uneven columns (e.g. Matrix[ [1,2,3], [4,5] ]), but this is
|
290
|
+
# mathematically unsound. This method uses the first row to determine the
|
291
|
+
# result.
|
292
|
+
#
|
293
|
+
def column_size
|
294
|
+
@rows[0].size
|
295
|
+
end
|
296
|
+
|
297
|
+
#
|
298
|
+
# Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
|
299
|
+
# an array). When a block is given, the elements of that vector are iterated.
|
300
|
+
#
|
301
|
+
def row(i) # :yield: e
|
302
|
+
if block_given?
|
303
|
+
for e in @rows[i]
|
304
|
+
yield e
|
305
|
+
end
|
306
|
+
else
|
307
|
+
Vector.elements(@rows[i])
|
308
|
+
end
|
309
|
+
end
|
310
|
+
|
311
|
+
#
|
312
|
+
# Returns column vector number +j+ of the matrix as a Vector (starting at 0
|
313
|
+
# like an array). When a block is given, the elements of that vector are
|
314
|
+
# iterated.
|
315
|
+
#
|
316
|
+
def column(j) # :yield: e
|
317
|
+
if block_given?
|
318
|
+
0.upto(row_size - 1) do
|
319
|
+
|i|
|
320
|
+
yield @rows[i][j]
|
321
|
+
end
|
322
|
+
else
|
323
|
+
col = (0 .. row_size - 1).collect {
|
324
|
+
|i|
|
325
|
+
@rows[i][j]
|
326
|
+
}
|
327
|
+
Vector.elements(col, false)
|
328
|
+
end
|
329
|
+
end
|
330
|
+
|
331
|
+
#
|
332
|
+
# Returns a matrix that is the result of iteration of the given block over all
|
333
|
+
# elements of the matrix.
|
334
|
+
# Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
|
335
|
+
# => 1 4
|
336
|
+
# 9 16
|
337
|
+
#
|
338
|
+
def collect # :yield: e
|
339
|
+
rows = @rows.collect{|row| row.collect{|e| yield e}}
|
340
|
+
Matrix.rows(rows, false)
|
341
|
+
end
|
342
|
+
alias map collect
|
343
|
+
|
344
|
+
#
|
345
|
+
# Returns a section of the matrix. The parameters are either:
|
346
|
+
# * start_row, nrows, start_col, ncols; OR
|
347
|
+
# * col_range, row_range
|
348
|
+
#
|
349
|
+
# Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
|
350
|
+
# => 9 0 0
|
351
|
+
# 0 5 0
|
352
|
+
#
|
353
|
+
def minor(*param)
|
354
|
+
case param.size
|
355
|
+
when 2
|
356
|
+
from_row = param[0].first
|
357
|
+
size_row = param[0].end - from_row
|
358
|
+
size_row += 1 unless param[0].exclude_end?
|
359
|
+
from_col = param[1].first
|
360
|
+
size_col = param[1].end - from_col
|
361
|
+
size_col += 1 unless param[1].exclude_end?
|
362
|
+
when 4
|
363
|
+
from_row = param[0]
|
364
|
+
size_row = param[1]
|
365
|
+
from_col = param[2]
|
366
|
+
size_col = param[3]
|
367
|
+
else
|
368
|
+
Matrix.Raise ArgumentError, param.inspect
|
369
|
+
end
|
370
|
+
|
371
|
+
rows = @rows[from_row, size_row].collect{
|
372
|
+
|row|
|
373
|
+
row[from_col, size_col]
|
374
|
+
}
|
375
|
+
Matrix.rows(rows, false)
|
376
|
+
end
|
377
|
+
|
378
|
+
#--
|
379
|
+
# TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
380
|
+
#++
|
381
|
+
|
382
|
+
#
|
383
|
+
# Returns +true+ if this is a regular matrix.
|
384
|
+
#
|
385
|
+
def regular?
|
386
|
+
square? and rank == column_size
|
387
|
+
end
|
388
|
+
|
389
|
+
#
|
390
|
+
# Returns +true+ is this is a singular (i.e. non-regular) matrix.
|
391
|
+
#
|
392
|
+
def singular?
|
393
|
+
not regular?
|
394
|
+
end
|
395
|
+
|
396
|
+
#
|
397
|
+
# Returns +true+ is this is a square matrix. See note in column_size about this
|
398
|
+
# being unreliable, though.
|
399
|
+
#
|
400
|
+
def square?
|
401
|
+
column_size == row_size
|
402
|
+
end
|
403
|
+
|
404
|
+
#--
|
405
|
+
# OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
406
|
+
#++
|
407
|
+
|
408
|
+
#
|
409
|
+
# Returns +true+ if and only if the two matrices contain equal elements.
|
410
|
+
#
|
411
|
+
def ==(other)
|
412
|
+
return false unless Matrix === other
|
413
|
+
|
414
|
+
other.compare_by_row_vectors(@rows)
|
415
|
+
end
|
416
|
+
alias eql? ==
|
417
|
+
|
418
|
+
#
|
419
|
+
# Not really intended for general consumption.
|
420
|
+
#
|
421
|
+
def compare_by_row_vectors(rows)
|
422
|
+
return false unless @rows.size == rows.size
|
423
|
+
|
424
|
+
0.upto(@rows.size - 1) do
|
425
|
+
|i|
|
426
|
+
return false unless @rows[i] == rows[i]
|
427
|
+
end
|
428
|
+
true
|
429
|
+
end
|
430
|
+
|
431
|
+
#
|
432
|
+
# Returns a clone of the matrix, so that the contents of each do not reference
|
433
|
+
# identical objects.
|
434
|
+
#
|
435
|
+
def clone
|
436
|
+
Matrix.rows(@rows)
|
437
|
+
end
|
438
|
+
|
439
|
+
#
|
440
|
+
# Returns a hash-code for the matrix.
|
441
|
+
#
|
442
|
+
def hash
|
443
|
+
value = 0
|
444
|
+
for row in @rows
|
445
|
+
for e in row
|
446
|
+
value ^= e.hash
|
447
|
+
end
|
448
|
+
end
|
449
|
+
return value
|
450
|
+
end
|
451
|
+
|
452
|
+
#--
|
453
|
+
# ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
454
|
+
#++
|
455
|
+
|
456
|
+
#
|
457
|
+
# Matrix multiplication.
|
458
|
+
# Matrix[[2,4], [6,8]] * Matrix.identity(2)
|
459
|
+
# => 2 4
|
460
|
+
# 6 8
|
461
|
+
#
|
462
|
+
def *(m) # m is matrix or vector or number
|
463
|
+
case(m)
|
464
|
+
when Numeric
|
465
|
+
rows = @rows.collect {
|
466
|
+
|row|
|
467
|
+
row.collect {
|
468
|
+
|e|
|
469
|
+
e * m
|
470
|
+
}
|
471
|
+
}
|
472
|
+
return Matrix.rows(rows, false)
|
473
|
+
when Vector
|
474
|
+
m = Matrix.column_vector(m)
|
475
|
+
r = self * m
|
476
|
+
return r.column(0)
|
477
|
+
when Matrix
|
478
|
+
Matrix.Raise ErrDimensionMismatch if column_size != m.row_size
|
479
|
+
|
480
|
+
rows = (0 .. row_size - 1).collect {
|
481
|
+
|i|
|
482
|
+
(0 .. m.column_size - 1).collect {
|
483
|
+
|j|
|
484
|
+
vij = 0
|
485
|
+
0.upto(column_size - 1) do
|
486
|
+
|k|
|
487
|
+
vij += self[i, k] * m[k, j]
|
488
|
+
end
|
489
|
+
vij
|
490
|
+
}
|
491
|
+
}
|
492
|
+
return Matrix.rows(rows, false)
|
493
|
+
else
|
494
|
+
x, y = m.coerce(self)
|
495
|
+
return x * y
|
496
|
+
end
|
497
|
+
end
|
498
|
+
|
499
|
+
#
|
500
|
+
# Matrix addition.
|
501
|
+
# Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
|
502
|
+
# => 6 0
|
503
|
+
# -4 12
|
504
|
+
#
|
505
|
+
def +(m)
|
506
|
+
case m
|
507
|
+
when Numeric
|
508
|
+
Matrix.Raise ErrOperationNotDefined, "+"
|
509
|
+
when Vector
|
510
|
+
m = Matrix.column_vector(m)
|
511
|
+
when Matrix
|
512
|
+
else
|
513
|
+
x, y = m.coerce(self)
|
514
|
+
return x + y
|
515
|
+
end
|
516
|
+
|
517
|
+
Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
|
518
|
+
|
519
|
+
rows = (0 .. row_size - 1).collect {
|
520
|
+
|i|
|
521
|
+
(0 .. column_size - 1).collect {
|
522
|
+
|j|
|
523
|
+
self[i, j] + m[i, j]
|
524
|
+
}
|
525
|
+
}
|
526
|
+
Matrix.rows(rows, false)
|
527
|
+
end
|
528
|
+
|
529
|
+
#
|
530
|
+
# Matrix subtraction.
|
531
|
+
# Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
|
532
|
+
# => -8 2
|
533
|
+
# 8 1
|
534
|
+
#
|
535
|
+
def -(m)
|
536
|
+
case m
|
537
|
+
when Numeric
|
538
|
+
Matrix.Raise ErrOperationNotDefined, "-"
|
539
|
+
when Vector
|
540
|
+
m = Matrix.column_vector(m)
|
541
|
+
when Matrix
|
542
|
+
else
|
543
|
+
x, y = m.coerce(self)
|
544
|
+
return x - y
|
545
|
+
end
|
546
|
+
|
547
|
+
Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
|
548
|
+
|
549
|
+
rows = (0 .. row_size - 1).collect {
|
550
|
+
|i|
|
551
|
+
(0 .. column_size - 1).collect {
|
552
|
+
|j|
|
553
|
+
self[i, j] - m[i, j]
|
554
|
+
}
|
555
|
+
}
|
556
|
+
Matrix.rows(rows, false)
|
557
|
+
end
|
558
|
+
|
559
|
+
#
|
560
|
+
# Matrix division (multiplication by the inverse).
|
561
|
+
# Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
|
562
|
+
# => -7 1
|
563
|
+
# -3 -6
|
564
|
+
#
|
565
|
+
def /(other)
|
566
|
+
case other
|
567
|
+
when Numeric
|
568
|
+
rows = @rows.collect {
|
569
|
+
|row|
|
570
|
+
row.collect {
|
571
|
+
|e|
|
572
|
+
e / other
|
573
|
+
}
|
574
|
+
}
|
575
|
+
return Matrix.rows(rows, false)
|
576
|
+
when Matrix
|
577
|
+
return self * other.inverse
|
578
|
+
else
|
579
|
+
x, y = other.coerce(self)
|
580
|
+
rerurn x / y
|
581
|
+
end
|
582
|
+
end
|
583
|
+
|
584
|
+
#
|
585
|
+
# Returns the inverse of the matrix.
|
586
|
+
# Matrix[[1, 2], [2, 1]].inverse
|
587
|
+
# => -1 1
|
588
|
+
# 0 -1
|
589
|
+
#
|
590
|
+
def inverse
|
591
|
+
Matrix.Raise ErrDimensionMismatch unless square?
|
592
|
+
Matrix.I(row_size).inverse_from(self)
|
593
|
+
end
|
594
|
+
alias inv inverse
|
595
|
+
|
596
|
+
#
|
597
|
+
# Not for public consumption?
|
598
|
+
#
|
599
|
+
def inverse_from(src)
|
600
|
+
size = row_size - 1
|
601
|
+
a = src.to_a
|
602
|
+
|
603
|
+
for k in 0..size
|
604
|
+
i = k
|
605
|
+
akk = a[k][k].abs
|
606
|
+
for j in (k+1)..size
|
607
|
+
v = a[j][k].abs
|
608
|
+
if v > akk
|
609
|
+
i = j
|
610
|
+
akk = v
|
611
|
+
end
|
612
|
+
end
|
613
|
+
Matrix.Raise ErrNotRegular if akk == 0
|
614
|
+
if i != k
|
615
|
+
a[i], a[k] = a[k], a[i]
|
616
|
+
@rows[i], @rows[k] = @rows[k], @rows[i]
|
617
|
+
end
|
618
|
+
akk = a[k][k]
|
619
|
+
|
620
|
+
for i in 0 .. size
|
621
|
+
next if i == k
|
622
|
+
q = a[i][k].quo(akk)
|
623
|
+
a[i][k] = 0
|
624
|
+
|
625
|
+
(k + 1).upto(size) do
|
626
|
+
|j|
|
627
|
+
a[i][j] -= a[k][j] * q
|
628
|
+
end
|
629
|
+
0.upto(size) do
|
630
|
+
|j|
|
631
|
+
@rows[i][j] -= @rows[k][j] * q
|
632
|
+
end
|
633
|
+
end
|
634
|
+
|
635
|
+
(k + 1).upto(size) do
|
636
|
+
|j|
|
637
|
+
a[k][j] = a[k][j].quo(akk)
|
638
|
+
end
|
639
|
+
0.upto(size) do
|
640
|
+
|j|
|
641
|
+
@rows[k][j] = @rows[k][j].quo(akk)
|
642
|
+
end
|
643
|
+
end
|
644
|
+
self
|
645
|
+
end
|
646
|
+
#alias reciprocal inverse
|
647
|
+
|
648
|
+
#
|
649
|
+
# Matrix exponentiation. Defined for integer powers only. Equivalent to
|
650
|
+
# multiplying the matrix by itself N times.
|
651
|
+
# Matrix[[7,6], [3,9]] ** 2
|
652
|
+
# => 67 96
|
653
|
+
# 48 99
|
654
|
+
#
|
655
|
+
def ** (other)
|
656
|
+
if other.kind_of?(Integer)
|
657
|
+
x = self
|
658
|
+
if other <= 0
|
659
|
+
x = self.inverse
|
660
|
+
return Matrix.identity(self.column_size) if other == 0
|
661
|
+
other = -other
|
662
|
+
end
|
663
|
+
z = x
|
664
|
+
n = other - 1
|
665
|
+
while n != 0
|
666
|
+
while (div, mod = n.divmod(2)
|
667
|
+
mod == 0)
|
668
|
+
x = x * x
|
669
|
+
n = div
|
670
|
+
end
|
671
|
+
z *= x
|
672
|
+
n -= 1
|
673
|
+
end
|
674
|
+
z
|
675
|
+
elsif other.kind_of?(Float) || defined?(Rational) && other.kind_of?(Rational)
|
676
|
+
Matrix.Raise ErrOperationNotDefined, "**"
|
677
|
+
else
|
678
|
+
Matrix.Raise ErrOperationNotDefined, "**"
|
679
|
+
end
|
680
|
+
end
|
681
|
+
|
682
|
+
#--
|
683
|
+
# MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
684
|
+
#++
|
685
|
+
|
686
|
+
#
|
687
|
+
# Returns the determinant of the matrix. If the matrix is not square, the
|
688
|
+
# result is 0. This method's algorism is Gaussian elimination method
|
689
|
+
# and using Numeric#quo(). Beware that using Float values, with their
|
690
|
+
# usual lack of precision, can affect the value returned by this method. Use
|
691
|
+
# Rational values or Matrix#det_e instead if this is important to you.
|
692
|
+
#
|
693
|
+
# Matrix[[7,6], [3,9]].determinant
|
694
|
+
# => 63.0
|
695
|
+
#
|
696
|
+
def determinant
|
697
|
+
return 0 unless square?
|
698
|
+
|
699
|
+
size = row_size - 1
|
700
|
+
a = to_a
|
701
|
+
|
702
|
+
det = 1
|
703
|
+
k = 0
|
704
|
+
begin
|
705
|
+
if (akk = a[k][k]) == 0
|
706
|
+
i = k
|
707
|
+
begin
|
708
|
+
return 0 if (i += 1) > size
|
709
|
+
end while a[i][k] == 0
|
710
|
+
a[i], a[k] = a[k], a[i]
|
711
|
+
akk = a[k][k]
|
712
|
+
det *= -1
|
713
|
+
end
|
714
|
+
(k + 1).upto(size) do
|
715
|
+
|i|
|
716
|
+
q = a[i][k].quo(akk)
|
717
|
+
(k + 1).upto(size) do
|
718
|
+
|j|
|
719
|
+
a[i][j] -= a[k][j] * q
|
720
|
+
end
|
721
|
+
end
|
722
|
+
det *= akk
|
723
|
+
end while (k += 1) <= size
|
724
|
+
det
|
725
|
+
end
|
726
|
+
alias det determinant
|
727
|
+
|
728
|
+
#
|
729
|
+
# Returns the determinant of the matrix. If the matrix is not square, the
|
730
|
+
# result is 0. This method's algorism is Gaussian elimination method.
|
731
|
+
# This method uses Euclidean algorism. If all elements are integer,
|
732
|
+
# really exact value. But, if an element is a float, can't return
|
733
|
+
# exact value.
|
734
|
+
#
|
735
|
+
# Matrix[[7,6], [3,9]].determinant
|
736
|
+
# => 63
|
737
|
+
#
|
738
|
+
def determinant_e
|
739
|
+
return 0 unless square?
|
740
|
+
|
741
|
+
size = row_size - 1
|
742
|
+
a = to_a
|
743
|
+
|
744
|
+
det = 1
|
745
|
+
k = 0
|
746
|
+
begin
|
747
|
+
if a[k][k].zero?
|
748
|
+
i = k
|
749
|
+
begin
|
750
|
+
return 0 if (i += 1) > size
|
751
|
+
end while a[i][k].zero?
|
752
|
+
a[i], a[k] = a[k], a[i]
|
753
|
+
det *= -1
|
754
|
+
end
|
755
|
+
(k + 1).upto(size) do |i|
|
756
|
+
q = a[i][k].quo(a[k][k])
|
757
|
+
k.upto(size) do |j|
|
758
|
+
a[i][j] -= a[k][j] * q
|
759
|
+
end
|
760
|
+
unless a[i][k].zero?
|
761
|
+
a[i], a[k] = a[k], a[i]
|
762
|
+
det *= -1
|
763
|
+
redo
|
764
|
+
end
|
765
|
+
end
|
766
|
+
det *= a[k][k]
|
767
|
+
end while (k += 1) <= size
|
768
|
+
det
|
769
|
+
end
|
770
|
+
alias det_e determinant_e
|
771
|
+
|
772
|
+
#
|
773
|
+
# Returns the rank of the matrix. Beware that using Float values,
|
774
|
+
# probably return faild value. Use Rational values or Matrix#rank_e
|
775
|
+
# for getting exact result.
|
776
|
+
#
|
777
|
+
# Matrix[[7,6], [3,9]].rank
|
778
|
+
# => 2
|
779
|
+
#
|
780
|
+
def rank
|
781
|
+
if column_size > row_size
|
782
|
+
a = transpose.to_a
|
783
|
+
a_column_size = row_size
|
784
|
+
a_row_size = column_size
|
785
|
+
else
|
786
|
+
a = to_a
|
787
|
+
a_column_size = column_size
|
788
|
+
a_row_size = row_size
|
789
|
+
end
|
790
|
+
rank = 0
|
791
|
+
k = 0
|
792
|
+
begin
|
793
|
+
if (akk = a[k][k]) == 0
|
794
|
+
i = k
|
795
|
+
exists = true
|
796
|
+
begin
|
797
|
+
if (i += 1) > a_column_size - 1
|
798
|
+
exists = false
|
799
|
+
break
|
800
|
+
end
|
801
|
+
end while a[i][k] == 0
|
802
|
+
if exists
|
803
|
+
a[i], a[k] = a[k], a[i]
|
804
|
+
akk = a[k][k]
|
805
|
+
else
|
806
|
+
i = k
|
807
|
+
exists = true
|
808
|
+
begin
|
809
|
+
if (i += 1) > a_row_size - 1
|
810
|
+
exists = false
|
811
|
+
break
|
812
|
+
end
|
813
|
+
end while a[k][i] == 0
|
814
|
+
if exists
|
815
|
+
k.upto(a_column_size - 1) do
|
816
|
+
|j|
|
817
|
+
a[j][k], a[j][i] = a[j][i], a[j][k]
|
818
|
+
end
|
819
|
+
akk = a[k][k]
|
820
|
+
else
|
821
|
+
next
|
822
|
+
end
|
823
|
+
end
|
824
|
+
end
|
825
|
+
(k + 1).upto(a_row_size - 1) do
|
826
|
+
|i|
|
827
|
+
q = a[i][k].quo(akk)
|
828
|
+
(k + 1).upto(a_column_size - 1) do
|
829
|
+
|j|
|
830
|
+
a[i][j] -= a[k][j] * q
|
831
|
+
end
|
832
|
+
end
|
833
|
+
rank += 1
|
834
|
+
end while (k += 1) <= a_column_size - 1
|
835
|
+
return rank
|
836
|
+
end
|
837
|
+
|
838
|
+
#
|
839
|
+
# Returns the rank of the matrix. This method uses Euclidean
|
840
|
+
# algorism. If all elements are integer, really exact value. But, if
|
841
|
+
# an element is a float, can't return exact value.
|
842
|
+
#
|
843
|
+
# Matrix[[7,6], [3,9]].rank
|
844
|
+
# => 2
|
845
|
+
#
|
846
|
+
def rank_e
|
847
|
+
a = to_a
|
848
|
+
a_column_size = column_size
|
849
|
+
a_row_size = row_size
|
850
|
+
pi = 0
|
851
|
+
(0 ... a_column_size).each do |j|
|
852
|
+
if i = (pi ... a_row_size).find{|i0| !a[i0][j].zero?}
|
853
|
+
if i != pi
|
854
|
+
a[pi], a[i] = a[i], a[pi]
|
855
|
+
end
|
856
|
+
(pi + 1 ... a_row_size).each do |k|
|
857
|
+
q = a[k][j].quo(a[pi][j])
|
858
|
+
(pi ... a_column_size).each do |j0|
|
859
|
+
a[k][j0] -= q * a[pi][j0]
|
860
|
+
end
|
861
|
+
if k > pi && !a[k][j].zero?
|
862
|
+
a[k], a[pi] = a[pi], a[k]
|
863
|
+
redo
|
864
|
+
end
|
865
|
+
end
|
866
|
+
pi += 1
|
867
|
+
end
|
868
|
+
end
|
869
|
+
pi
|
870
|
+
end
|
871
|
+
|
872
|
+
|
873
|
+
#
|
874
|
+
# Returns the trace (sum of diagonal elements) of the matrix.
|
875
|
+
# Matrix[[7,6], [3,9]].trace
|
876
|
+
# => 16
|
877
|
+
#
|
878
|
+
def trace
|
879
|
+
tr = 0
|
880
|
+
0.upto(column_size - 1) do
|
881
|
+
|i|
|
882
|
+
tr += @rows[i][i]
|
883
|
+
end
|
884
|
+
tr
|
885
|
+
end
|
886
|
+
alias tr trace
|
887
|
+
|
888
|
+
#
|
889
|
+
# Returns the transpose of the matrix.
|
890
|
+
# Matrix[[1,2], [3,4], [5,6]]
|
891
|
+
# => 1 2
|
892
|
+
# 3 4
|
893
|
+
# 5 6
|
894
|
+
# Matrix[[1,2], [3,4], [5,6]].transpose
|
895
|
+
# => 1 3 5
|
896
|
+
# 2 4 6
|
897
|
+
#
|
898
|
+
def transpose
|
899
|
+
Matrix.columns(@rows)
|
900
|
+
end
|
901
|
+
alias t transpose
|
902
|
+
|
903
|
+
#--
|
904
|
+
# CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
905
|
+
#++
|
906
|
+
|
907
|
+
#
|
908
|
+
# FIXME: describe #coerce.
|
909
|
+
#
|
910
|
+
def coerce(other)
|
911
|
+
case other
|
912
|
+
when Numeric
|
913
|
+
return Scalar.new(other), self
|
914
|
+
else
|
915
|
+
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
|
916
|
+
end
|
917
|
+
end
|
918
|
+
|
919
|
+
#
|
920
|
+
# Returns an array of the row vectors of the matrix. See Vector.
|
921
|
+
#
|
922
|
+
def row_vectors
|
923
|
+
rows = (0 .. row_size - 1).collect {
|
924
|
+
|i|
|
925
|
+
row(i)
|
926
|
+
}
|
927
|
+
rows
|
928
|
+
end
|
929
|
+
|
930
|
+
#
|
931
|
+
# Returns an array of the column vectors of the matrix. See Vector.
|
932
|
+
#
|
933
|
+
def column_vectors
|
934
|
+
columns = (0 .. column_size - 1).collect {
|
935
|
+
|i|
|
936
|
+
column(i)
|
937
|
+
}
|
938
|
+
columns
|
939
|
+
end
|
940
|
+
|
941
|
+
#
|
942
|
+
# Returns an array of arrays that describe the rows of the matrix.
|
943
|
+
#
|
944
|
+
def to_a
|
945
|
+
@rows.collect{|row| row.collect{|e| e}}
|
946
|
+
end
|
947
|
+
|
948
|
+
def elements_to_f
|
949
|
+
collect{|e| e.to_f}
|
950
|
+
end
|
951
|
+
|
952
|
+
def elements_to_i
|
953
|
+
collect{|e| e.to_i}
|
954
|
+
end
|
955
|
+
|
956
|
+
def elements_to_r
|
957
|
+
collect{|e| e.to_r}
|
958
|
+
end
|
959
|
+
|
960
|
+
#--
|
961
|
+
# PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
962
|
+
#++
|
963
|
+
|
964
|
+
#
|
965
|
+
# Overrides Object#to_s
|
966
|
+
#
|
967
|
+
def to_s
|
968
|
+
"Matrix[" + @rows.collect{
|
969
|
+
|row|
|
970
|
+
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
|
971
|
+
}.join(", ")+"]"
|
972
|
+
end
|
973
|
+
|
974
|
+
#
|
975
|
+
# Overrides Object#inspect
|
976
|
+
#
|
977
|
+
def inspect
|
978
|
+
"Matrix"+@rows.inspect
|
979
|
+
end
|
980
|
+
|
981
|
+
# Private CLASS
|
982
|
+
|
983
|
+
class Scalar < Numeric # :nodoc:
|
984
|
+
include ExceptionForMatrix
|
985
|
+
|
986
|
+
def initialize(value)
|
987
|
+
@value = value
|
988
|
+
end
|
989
|
+
|
990
|
+
# ARITHMETIC
|
991
|
+
def +(other)
|
992
|
+
case other
|
993
|
+
when Numeric
|
994
|
+
Scalar.new(@value + other)
|
995
|
+
when Vector, Matrix
|
996
|
+
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
|
997
|
+
when Scalar
|
998
|
+
Scalar.new(@value + other.value)
|
999
|
+
else
|
1000
|
+
x, y = other.coerce(self)
|
1001
|
+
x + y
|
1002
|
+
end
|
1003
|
+
end
|
1004
|
+
|
1005
|
+
def -(other)
|
1006
|
+
case other
|
1007
|
+
when Numeric
|
1008
|
+
Scalar.new(@value - other)
|
1009
|
+
when Vector, Matrix
|
1010
|
+
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
|
1011
|
+
when Scalar
|
1012
|
+
Scalar.new(@value - other.value)
|
1013
|
+
else
|
1014
|
+
x, y = other.coerce(self)
|
1015
|
+
x - y
|
1016
|
+
end
|
1017
|
+
end
|
1018
|
+
|
1019
|
+
def *(other)
|
1020
|
+
case other
|
1021
|
+
when Numeric
|
1022
|
+
Scalar.new(@value * other)
|
1023
|
+
when Vector, Matrix
|
1024
|
+
other.collect{|e| @value * e}
|
1025
|
+
else
|
1026
|
+
x, y = other.coerce(self)
|
1027
|
+
x * y
|
1028
|
+
end
|
1029
|
+
end
|
1030
|
+
|
1031
|
+
def / (other)
|
1032
|
+
case other
|
1033
|
+
when Numeric
|
1034
|
+
Scalar.new(@value / other)
|
1035
|
+
when Vector
|
1036
|
+
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
|
1037
|
+
when Matrix
|
1038
|
+
self * other.inverse
|
1039
|
+
else
|
1040
|
+
x, y = other.coerce(self)
|
1041
|
+
x.quo(y)
|
1042
|
+
end
|
1043
|
+
end
|
1044
|
+
|
1045
|
+
def ** (other)
|
1046
|
+
case other
|
1047
|
+
when Numeric
|
1048
|
+
Scalar.new(@value ** other)
|
1049
|
+
when Vector
|
1050
|
+
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
|
1051
|
+
when Matrix
|
1052
|
+
other.powered_by(self)
|
1053
|
+
else
|
1054
|
+
x, y = other.coerce(self)
|
1055
|
+
x ** y
|
1056
|
+
end
|
1057
|
+
end
|
1058
|
+
end
|
1059
|
+
end
|
1060
|
+
|
1061
|
+
|
1062
|
+
#
|
1063
|
+
# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
|
1064
|
+
# also constitutes a row or column of a Matrix.
|
1065
|
+
#
|
1066
|
+
# == Method Catalogue
|
1067
|
+
#
|
1068
|
+
# To create a Vector:
|
1069
|
+
# * <tt> Vector.[](*array) </tt>
|
1070
|
+
# * <tt> Vector.elements(array, copy = true) </tt>
|
1071
|
+
#
|
1072
|
+
# To access elements:
|
1073
|
+
# * <tt> [](i) </tt>
|
1074
|
+
#
|
1075
|
+
# To enumerate the elements:
|
1076
|
+
# * <tt> #each2(v) </tt>
|
1077
|
+
# * <tt> #collect2(v) </tt>
|
1078
|
+
#
|
1079
|
+
# Vector arithmetic:
|
1080
|
+
# * <tt> *(x) "is matrix or number" </tt>
|
1081
|
+
# * <tt> +(v) </tt>
|
1082
|
+
# * <tt> -(v) </tt>
|
1083
|
+
#
|
1084
|
+
# Vector functions:
|
1085
|
+
# * <tt> #inner_product(v) </tt>
|
1086
|
+
# * <tt> #collect </tt>
|
1087
|
+
# * <tt> #map </tt>
|
1088
|
+
# * <tt> #map2(v) </tt>
|
1089
|
+
# * <tt> #r </tt>
|
1090
|
+
# * <tt> #size </tt>
|
1091
|
+
#
|
1092
|
+
# Conversion to other data types:
|
1093
|
+
# * <tt> #covector </tt>
|
1094
|
+
# * <tt> #to_a </tt>
|
1095
|
+
# * <tt> #coerce(other) </tt>
|
1096
|
+
#
|
1097
|
+
# String representations:
|
1098
|
+
# * <tt> #to_s </tt>
|
1099
|
+
# * <tt> #inspect </tt>
|
1100
|
+
#
|
1101
|
+
class Vector
|
1102
|
+
include ExceptionForMatrix
|
1103
|
+
|
1104
|
+
#INSTANCE CREATION
|
1105
|
+
|
1106
|
+
private_class_method :new
|
1107
|
+
|
1108
|
+
#
|
1109
|
+
# Creates a Vector from a list of elements.
|
1110
|
+
# Vector[7, 4, ...]
|
1111
|
+
#
|
1112
|
+
def Vector.[](*array)
|
1113
|
+
new(:init_elements, array, copy = false)
|
1114
|
+
end
|
1115
|
+
|
1116
|
+
#
|
1117
|
+
# Creates a vector from an Array. The optional second argument specifies
|
1118
|
+
# whether the array itself or a copy is used internally.
|
1119
|
+
#
|
1120
|
+
def Vector.elements(array, copy = true)
|
1121
|
+
new(:init_elements, array, copy)
|
1122
|
+
end
|
1123
|
+
|
1124
|
+
#
|
1125
|
+
# For internal use.
|
1126
|
+
#
|
1127
|
+
def initialize(method, array, copy)
|
1128
|
+
self.send(method, array, copy)
|
1129
|
+
end
|
1130
|
+
|
1131
|
+
#
|
1132
|
+
# For internal use.
|
1133
|
+
#
|
1134
|
+
def init_elements(array, copy)
|
1135
|
+
if copy
|
1136
|
+
@elements = array.dup
|
1137
|
+
else
|
1138
|
+
@elements = array
|
1139
|
+
end
|
1140
|
+
end
|
1141
|
+
|
1142
|
+
# ACCESSING
|
1143
|
+
|
1144
|
+
#
|
1145
|
+
# Returns element number +i+ (starting at zero) of the vector.
|
1146
|
+
#
|
1147
|
+
def [](i)
|
1148
|
+
@elements[i]
|
1149
|
+
end
|
1150
|
+
alias element []
|
1151
|
+
alias component []
|
1152
|
+
|
1153
|
+
def []=(i, v)
|
1154
|
+
@elements[i]= v
|
1155
|
+
end
|
1156
|
+
alias set_element []=
|
1157
|
+
alias set_component []=
|
1158
|
+
private :[]=, :set_element, :set_component
|
1159
|
+
|
1160
|
+
#
|
1161
|
+
# Returns the number of elements in the vector.
|
1162
|
+
#
|
1163
|
+
def size
|
1164
|
+
@elements.size
|
1165
|
+
end
|
1166
|
+
|
1167
|
+
#--
|
1168
|
+
# ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
1169
|
+
#++
|
1170
|
+
|
1171
|
+
#
|
1172
|
+
# Iterate over the elements of this vector and +v+ in conjunction.
|
1173
|
+
#
|
1174
|
+
def each2(v) # :yield: e1, e2
|
1175
|
+
Vector.Raise ErrDimensionMismatch if size != v.size
|
1176
|
+
0.upto(size - 1) do
|
1177
|
+
|i|
|
1178
|
+
yield @elements[i], v[i]
|
1179
|
+
end
|
1180
|
+
end
|
1181
|
+
|
1182
|
+
#
|
1183
|
+
# Collects (as in Enumerable#collect) over the elements of this vector and +v+
|
1184
|
+
# in conjunction.
|
1185
|
+
#
|
1186
|
+
def collect2(v) # :yield: e1, e2
|
1187
|
+
Vector.Raise ErrDimensionMismatch if size != v.size
|
1188
|
+
(0 .. size - 1).collect do
|
1189
|
+
|i|
|
1190
|
+
yield @elements[i], v[i]
|
1191
|
+
end
|
1192
|
+
end
|
1193
|
+
|
1194
|
+
#--
|
1195
|
+
# COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
1196
|
+
#++
|
1197
|
+
|
1198
|
+
#
|
1199
|
+
# Returns +true+ iff the two vectors have the same elements in the same order.
|
1200
|
+
#
|
1201
|
+
def ==(other)
|
1202
|
+
return false unless Vector === other
|
1203
|
+
|
1204
|
+
other.compare_by(@elements)
|
1205
|
+
end
|
1206
|
+
alias eqn? ==
|
1207
|
+
|
1208
|
+
#
|
1209
|
+
# For internal use.
|
1210
|
+
#
|
1211
|
+
def compare_by(elements)
|
1212
|
+
@elements == elements
|
1213
|
+
end
|
1214
|
+
|
1215
|
+
#
|
1216
|
+
# Return a copy of the vector.
|
1217
|
+
#
|
1218
|
+
def clone
|
1219
|
+
Vector.elements(@elements)
|
1220
|
+
end
|
1221
|
+
|
1222
|
+
#
|
1223
|
+
# Return a hash-code for the vector.
|
1224
|
+
#
|
1225
|
+
def hash
|
1226
|
+
@elements.hash
|
1227
|
+
end
|
1228
|
+
|
1229
|
+
#--
|
1230
|
+
# ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
1231
|
+
#++
|
1232
|
+
|
1233
|
+
#
|
1234
|
+
# Multiplies the vector by +x+, where +x+ is a number or another vector.
|
1235
|
+
#
|
1236
|
+
def *(x)
|
1237
|
+
case x
|
1238
|
+
when Numeric
|
1239
|
+
els = @elements.collect{|e| e * x}
|
1240
|
+
Vector.elements(els, false)
|
1241
|
+
when Matrix
|
1242
|
+
Matrix.column_vector(self) * x
|
1243
|
+
else
|
1244
|
+
s, x = x.coerce(self)
|
1245
|
+
s * x
|
1246
|
+
end
|
1247
|
+
end
|
1248
|
+
|
1249
|
+
#
|
1250
|
+
# Vector addition.
|
1251
|
+
#
|
1252
|
+
def +(v)
|
1253
|
+
case v
|
1254
|
+
when Vector
|
1255
|
+
Vector.Raise ErrDimensionMismatch if size != v.size
|
1256
|
+
els = collect2(v) {
|
1257
|
+
|v1, v2|
|
1258
|
+
v1 + v2
|
1259
|
+
}
|
1260
|
+
Vector.elements(els, false)
|
1261
|
+
when Matrix
|
1262
|
+
Matrix.column_vector(self) + v
|
1263
|
+
else
|
1264
|
+
s, x = v.coerce(self)
|
1265
|
+
s + x
|
1266
|
+
end
|
1267
|
+
end
|
1268
|
+
|
1269
|
+
#
|
1270
|
+
# Vector subtraction.
|
1271
|
+
#
|
1272
|
+
def -(v)
|
1273
|
+
case v
|
1274
|
+
when Vector
|
1275
|
+
Vector.Raise ErrDimensionMismatch if size != v.size
|
1276
|
+
els = collect2(v) {
|
1277
|
+
|v1, v2|
|
1278
|
+
v1 - v2
|
1279
|
+
}
|
1280
|
+
Vector.elements(els, false)
|
1281
|
+
when Matrix
|
1282
|
+
Matrix.column_vector(self) - v
|
1283
|
+
else
|
1284
|
+
s, x = v.coerce(self)
|
1285
|
+
s - x
|
1286
|
+
end
|
1287
|
+
end
|
1288
|
+
|
1289
|
+
#--
|
1290
|
+
# VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
1291
|
+
#++
|
1292
|
+
|
1293
|
+
#
|
1294
|
+
# Returns the inner product of this vector with the other.
|
1295
|
+
# Vector[4,7].inner_product Vector[10,1] => 47
|
1296
|
+
#
|
1297
|
+
def inner_product(v)
|
1298
|
+
Vector.Raise ErrDimensionMismatch if size != v.size
|
1299
|
+
|
1300
|
+
p = 0
|
1301
|
+
each2(v) {
|
1302
|
+
|v1, v2|
|
1303
|
+
p += v1 * v2
|
1304
|
+
}
|
1305
|
+
p
|
1306
|
+
end
|
1307
|
+
|
1308
|
+
#
|
1309
|
+
# Like Array#collect.
|
1310
|
+
#
|
1311
|
+
def collect # :yield: e
|
1312
|
+
els = @elements.collect {
|
1313
|
+
|v|
|
1314
|
+
yield v
|
1315
|
+
}
|
1316
|
+
Vector.elements(els, false)
|
1317
|
+
end
|
1318
|
+
alias map collect
|
1319
|
+
|
1320
|
+
#
|
1321
|
+
# Like Vector#collect2, but returns a Vector instead of an Array.
|
1322
|
+
#
|
1323
|
+
def map2(v) # :yield: e1, e2
|
1324
|
+
els = collect2(v) {
|
1325
|
+
|v1, v2|
|
1326
|
+
yield v1, v2
|
1327
|
+
}
|
1328
|
+
Vector.elements(els, false)
|
1329
|
+
end
|
1330
|
+
|
1331
|
+
#
|
1332
|
+
# Returns the modulus (Pythagorean distance) of the vector.
|
1333
|
+
# Vector[5,8,2].r => 9.643650761
|
1334
|
+
#
|
1335
|
+
def r
|
1336
|
+
v = 0
|
1337
|
+
for e in @elements
|
1338
|
+
v += e*e
|
1339
|
+
end
|
1340
|
+
return Math.sqrt(v)
|
1341
|
+
end
|
1342
|
+
|
1343
|
+
#--
|
1344
|
+
# CONVERTING
|
1345
|
+
#++
|
1346
|
+
|
1347
|
+
#
|
1348
|
+
# Creates a single-row matrix from this vector.
|
1349
|
+
#
|
1350
|
+
def covector
|
1351
|
+
Matrix.row_vector(self)
|
1352
|
+
end
|
1353
|
+
|
1354
|
+
#
|
1355
|
+
# Returns the elements of the vector in an array.
|
1356
|
+
#
|
1357
|
+
def to_a
|
1358
|
+
@elements.dup
|
1359
|
+
end
|
1360
|
+
|
1361
|
+
def elements_to_f
|
1362
|
+
collect{|e| e.to_f}
|
1363
|
+
end
|
1364
|
+
|
1365
|
+
def elements_to_i
|
1366
|
+
collect{|e| e.to_i}
|
1367
|
+
end
|
1368
|
+
|
1369
|
+
def elements_to_r
|
1370
|
+
collect{|e| e.to_r}
|
1371
|
+
end
|
1372
|
+
|
1373
|
+
#
|
1374
|
+
# FIXME: describe Vector#coerce.
|
1375
|
+
#
|
1376
|
+
def coerce(other)
|
1377
|
+
case other
|
1378
|
+
when Numeric
|
1379
|
+
return Matrix::Scalar.new(other), self
|
1380
|
+
else
|
1381
|
+
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
|
1382
|
+
end
|
1383
|
+
end
|
1384
|
+
|
1385
|
+
#--
|
1386
|
+
# PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
1387
|
+
#++
|
1388
|
+
|
1389
|
+
#
|
1390
|
+
# Overrides Object#to_s
|
1391
|
+
#
|
1392
|
+
def to_s
|
1393
|
+
"Vector[" + @elements.join(", ") + "]"
|
1394
|
+
end
|
1395
|
+
|
1396
|
+
#
|
1397
|
+
# Overrides Object#inspect
|
1398
|
+
#
|
1399
|
+
def inspect
|
1400
|
+
str = "Vector"+@elements.inspect
|
1401
|
+
end
|
1402
|
+
end
|
1403
|
+
|
1404
|
+
|
1405
|
+
# Documentation comments:
|
1406
|
+
# - Matrix#coerce and Vector#coerce need to be documented
|
1407
|
+
|
1408
|
+
end
|