stick 1.2.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (56) hide show
  1. data/CHANGES +7 -0
  2. data/COPYING +344 -0
  3. data/README +110 -0
  4. data/lib/stick/constants.rb +3 -0
  5. data/lib/stick/constants/cgs.rb +151 -0
  6. data/lib/stick/constants/mks.rb +158 -0
  7. data/lib/stick/constants/number.rb +33 -0
  8. data/lib/stick/constants/typeless_cgs.rb +141 -0
  9. data/lib/stick/constants/typeless_mks.rb +142 -0
  10. data/lib/stick/currency.rb +8 -0
  11. data/lib/stick/mapcar.rb +61 -0
  12. data/lib/stick/matrix.rb +1022 -0
  13. data/lib/stick/quaternion.rb +562 -0
  14. data/lib/stick/times.rb +441 -0
  15. data/lib/stick/units.rb +112 -0
  16. data/lib/stick/units/base.rb +980 -0
  17. data/lib/stick/units/currency.rb +159 -0
  18. data/lib/stick/units/data/binary/base.rb +4 -0
  19. data/lib/stick/units/data/cex.rb +5 -0
  20. data/lib/stick/units/data/currency-default.rb +5 -0
  21. data/lib/stick/units/data/currency-standard.rb +2 -0
  22. data/lib/stick/units/data/currency/base.rb +89 -0
  23. data/lib/stick/units/data/iec.rb +5 -0
  24. data/lib/stick/units/data/iec_binary/base.rb +6 -0
  25. data/lib/stick/units/data/si.rb +7 -0
  26. data/lib/stick/units/data/si/base.rb +9 -0
  27. data/lib/stick/units/data/si/derived.rb +26 -0
  28. data/lib/stick/units/data/si/extra.rb +22 -0
  29. data/lib/stick/units/data/uk.rb +10 -0
  30. data/lib/stick/units/data/uk/base.rb +22 -0
  31. data/lib/stick/units/data/units-default.rb +11 -0
  32. data/lib/stick/units/data/units-standard.rb +5 -0
  33. data/lib/stick/units/data/us.rb +10 -0
  34. data/lib/stick/units/data/us/base.rb +23 -0
  35. data/lib/stick/units/data/xmethods.rb +5 -0
  36. data/lib/stick/units/data/xmethods/cached.rb +84 -0
  37. data/lib/stick/units/data/xmethods/mapping.rb +87 -0
  38. data/lib/stick/units/loaders.rb +98 -0
  39. data/lib/stick/units/units.rb +109 -0
  40. data/meta/MANIFEST +76 -0
  41. data/meta/ROLLRC +2 -0
  42. data/meta/icli.yaml +16 -0
  43. data/meta/project.yaml +18 -0
  44. data/task/clobber/package +10 -0
  45. data/task/publish +57 -0
  46. data/task/release +10 -0
  47. data/task/setup +1616 -0
  48. data/task/test +25 -0
  49. data/test/spec_matrix.rb +342 -0
  50. data/test/test_currency.rb +26 -0
  51. data/test/test_matrix.rb +359 -0
  52. data/test/test_units.rb +205 -0
  53. data/work/TODO +20 -0
  54. data/work/bytes.rb +231 -0
  55. data/work/multipliers.rb +195 -0
  56. metadata +138 -0
@@ -0,0 +1,562 @@
1
+ # Title:
2
+ #
3
+ # Quaternion
4
+ #
5
+ # Copyright:
6
+ #
7
+ # Copyright (c) 2002 K. Kodama
8
+ #
9
+ # License:
10
+ #
11
+ # Ruby License
12
+ #
13
+ # This module is free software. You may use, modify, and/or redistribute this
14
+ # software under the same terms as Ruby.
15
+ #
16
+ # This program is distributed in the hope that it will be useful, but WITHOUT
17
+ # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
18
+ # FOR A PARTICULAR PURPOSE.
19
+ #
20
+ # Authors:
21
+ #
22
+ # K. Kodama
23
+ #
24
+ # Todo:
25
+ #
26
+ # - The following documentation should occur before the methods
27
+ # they describe.
28
+
29
+ require "mathn"
30
+ require "complex"
31
+
32
+ # = Quaternion
33
+ #
34
+ # NOTE This Quaternion class is still very experimental.
35
+ #
36
+ # Quaternions are attributed to Sir William Rowan Hamilton
37
+ # who find it in 1843, and published a major analysis in 1844 called
38
+ # "On a Species of Imaginary Quantities Connected with a Theory of Quaternions"
39
+ # in the Proceedings of the Royal Irish Academ. (2, pp 424-434).
40
+ #
41
+ # Typical quaternion number q is of the form q = r + a i + b j + c k.
42
+ # Bases i j k behaves as follows:
43
+ #
44
+ # i^2 = j^2 = k^2 = -1
45
+ # i j = k, j k = i, k i = j
46
+ # j i = -k, k j = -i, i k = -j
47
+ #
48
+ # Quaternion numbers are not Commutative.
49
+ # Quaternion is 4-D space over Real number,
50
+ # and 2-D space over Complex numbers as q = (a + b i) + (c + d i)j.
51
+ #
52
+ # === Polar Coordinates
53
+ #
54
+ # A Quaternion q = r + a i + b j + k c have 1st level polar form such that
55
+ #
56
+ # q = |q|(cos t1 + sin t1 u1) , where u1 is unit vector of u1 = a1 i + b1 j + c1 k.
57
+ #
58
+ # u1 have 2nd level
59
+ #
60
+ # u1 = i cos t2 + sin t2 u2, where u2 is unit vector of u2 = b2 j + c2 k.
61
+ #
62
+ # And u2 have 3rd level
63
+ #
64
+ # u2 = j cos t3 + k sin t3.
65
+ #
66
+ # So we have
67
+ #
68
+ # q=|q|( cos t1 + sin t1 ( i cos t2 + sin t2 ( j cos t3 + k sin t3 )))
69
+ #
70
+ # The equivalent to polar coordinates in quaternion space are
71
+ #
72
+ # r = |q| cos(t1)
73
+ # a = |q| sin(t1) cos(t2)
74
+ # b = |q| sin(t1) sin(t2) cos(t3)
75
+ # c = |q| sin(t1) sin(t2) sin(t3)
76
+ #
77
+ # |q| is known as the magnitude of the quaternion, t1 is the amplitude(or angle),
78
+ # t2 and t3 are the latitude (or co-latitude) and longitude respectively.
79
+ #
80
+ # === Vector
81
+ #
82
+ # A Quaternions q= r + a i + b j + c k is 4-D space over Real numbers.
83
+ # A Quaternions with zero real part q = a i + b j + c k is 3-D space,
84
+ # and called a vector quaternion or, simply, vector.
85
+ # For q = r + a i + b j + c k,
86
+ # v=a i + b j + c k is called vector part of q.
87
+ # A vector u of |u|=1 is called a unit vector.
88
+ # We can write q = r + u |v| = |q|(cos t + u sin t).
89
+ # Note that u^2=-1.
90
+ # Vectors are 3-D space And can define cross-product q1 x q2.
91
+ #
92
+ # === Rotation
93
+ #
94
+ # Quaternion can be used to describe rotation in 3-D space.
95
+ # For a vector v and a Quaternion q = |q|(cos t/2 + u sin t/2),
96
+ # q v q^(-1) is a vector v t-rotated along u.
97
+ # Composit rotation of q1, q2 is described as q2 q1,
98
+ # because q2 (q1 v q1^(-1)) q2^(-1) = (q2 q1) v (q2 q1)^(-1).
99
+ #
100
+ # === GCD
101
+ #
102
+ # D4 lattice space is lattice points of Quaternion q = r + a i + b j + c k as follows.
103
+ # (1) r,a,b,c are all integer, or
104
+ # (2) r,a,b,c are all half-integer.
105
+ # D4 is sub-ring of Quaternion with GCD.
106
+ # (Ring means a space with +, -, *.)
107
+
108
+ =begin
109
+
110
+ * Building quaternions and taking them apart
111
+ Quaternion(real number r) # r as quaternion
112
+ Quaternion(a+bi) # a+bi as quaternion
113
+ Quaternion(a+bi,c+di) # a+bi+cj+dk = (a+bi)+(c+di)j
114
+ Quaternion(a,b=0,c=0,d=0) # a+bi+cj+dk
115
+ Quaternion(quaternion number q) # return q
116
+ Quaternion::Zero (=0 as quaternion)
117
+ Quaternion::One (=1 as quaternion)
118
+ Quaternion::I (=i as quaternion)
119
+ Quaternion::J (=j)
120
+ Quaternion::K (=k)
121
+ q.re ( = real part of q)
122
+ q.real ( = real part of q)
123
+ q.real_part ( = real part of q)
124
+ q.im ( = i part of q)
125
+ q.image ( = i part of q)
126
+ q.jm ( = j part of q)
127
+ q.km ( = k part of q)
128
+ orthogonal_split(o)
129
+ return [q1,q2].
130
+ q = q1 + q2 such that q1 parallel to o, and q2 orthogonal to o.
131
+
132
+ * Vector
133
+ q.vector ( = vector part of q = non-real part of q)
134
+ q.unit_vector ( = unit vector of q)
135
+ Quaternian::vector(v)
136
+ # 3-D vector v=[x,y,z] as array to Quaternion vector
137
+ Quaternion::rotation(v,t)
138
+ # t-rotatin along the 3-D vector v
139
+ q.rotate(r)
140
+ rotate by r = q r^(-1)
141
+ q.rotate_angle
142
+ # = q.amplitude/2
143
+
144
+ * Polar notation
145
+ Quaternion::polar(m,t1=0,t2=0,t3=0)
146
+ q.magnitude (= |q|)
147
+ q.amplitude (=arg1)
148
+ q.latitude (=arg2)
149
+ q.longitude (=arg3)
150
+ q.arg1
151
+ q.arg2
152
+ q.arg3
153
+ q.abs ( = |q| )
154
+ q.abs2 ( = |q|^2 )
155
+ q.polar # get array of [magnitude, amplitude, latitude, longitude]
156
+
157
+ * Boolean
158
+ Quaternion::generic?(other)
159
+ q.is_vector? # have no real part
160
+ q.is_unit_vector? # q is vector and |q|=1
161
+ q.is_complex? # j part =0 and k part = 0
162
+ q.is_quaternion? # have j or k part
163
+ q.is_real? # i,j,k parts are all 0
164
+
165
+ * Arithmetic
166
+ q.conjugate (= q~)
167
+ q.inverse (=1/q)
168
+ q1<=>q2 ( same as |q1|<=>|q2| )
169
+ q1==q2
170
+ q1 + q2
171
+ q1 - q2
172
+ q1 * q2
173
+ q1 / q2
174
+ q1.dot_product(q2) (Dot product q1, q2 = (q1*q2.conjugate).real_part )
175
+ q1.cross_product(q2) (Cross product as vectors q1,q2)
176
+ Assume q1, q2 be 3-D vectors.
177
+ q1.rdiv(q2) # right division: q1/q2 (same as /)
178
+ q1.ldiv(q2) # left division: 1/q1 * q2
179
+
180
+ * lattice or D4-lattice
181
+ q.round # round to integer coefficients
182
+ q.round_D4 # round to D4 lattice
183
+ q1.divmod(q2) # right divmod: q1=d*q2+m
184
+ q1.ldivmod(q2) # left divmod: q2=q1*d+m
185
+ q1 % q2 # right mod
186
+ q1.rmod(q2) # right mod(same as %)
187
+ q1.lmod(q2) # left mod
188
+ divmod_D4 other # right divmod: q1=d*q2+m, d be D4 value
189
+ ldivmod_D4 other # left divmod: q2=q1*d+m, d be D4 value
190
+ rmod_D4 other # right mod with d be D4 value
191
+ lmod_D4 other # left mod with d be D4 value
192
+ q1.gcd(q2) # Asume that q1, q2 are D4 value
193
+
194
+ * Exponential and logarithmic functions
195
+ q.exp # e^(r+uv)=exp(r)(cos(v)+u*sin(v))
196
+ q.log # log(r+uv)=1/2 log(r^2+v^2)+u atan(v/w)
197
+ q1**q2 ( = q1^q2 )
198
+ q.sqrt ( = q^1/2 )
199
+ q.sinh
200
+ q.cosh
201
+ q.tanh
202
+
203
+ * Trigonometric functions
204
+ q.sin
205
+ q.cos
206
+ q.tan
207
+
208
+ * Inverse trigonometric functions
209
+ q.asin
210
+ q.acos
211
+ q.atan
212
+
213
+ * Conversion
214
+ to_s # get string
215
+ to_c # real and i part as complex
216
+ to_c2 # j and k part as complex
217
+ to_v # vector part as array
218
+ to_a # array of parts
219
+
220
+ * Other
221
+ q.hash
222
+ q.inspect
223
+ =end
224
+
225
+
226
+ def Quaternion(a=0, b=0,c=0, d=0)
227
+ if a.kind_of?(Quaternion);
228
+ a;
229
+ elsif a.kind_of?(Complex) and b.kind_of?(Complex);
230
+ Quaternion.new(a.real, a.image, b.real, b.image)
231
+ elsif a.kind_of?(Complex);
232
+ Quaternion.new(a.real, a.image)
233
+ else
234
+ Quaternion.new(a,b,c,d);
235
+ end
236
+ end
237
+
238
+ class Quaternion < Numeric
239
+ attr :re
240
+ attr :im
241
+ attr :jm
242
+ attr :km
243
+ def image; return @im; end
244
+ def real_part; return @re; end
245
+ def real; return @re; end
246
+ def to_c; return Complex(@re,@im); end
247
+ def to_c2; return Complex(@jm,@km); end
248
+ def to_a; return [@re, @im, @jm, @km]; end
249
+ def Quaternion::generic?(other)
250
+ return (other.kind_of?(Complex) or Complex.generic?(other));
251
+ end
252
+ def initialize(a=0,b=0,c=0,d=0)
253
+ raise "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric;
254
+ raise "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric;
255
+ raise "non numeric 3rd arg `#{c.inspect}'" if !c.kind_of? Numeric;
256
+ raise "non numeric 4th arg `#{d.inspect}'" if !d.kind_of? Numeric;
257
+ @re=a; @im=b; @jm=c; @km=d
258
+ end
259
+ private :initialize
260
+
261
+ Zero=Quaternion(0)
262
+ One=Quaternion(1)
263
+ I=Quaternion(0,1)
264
+ J=Quaternion(0,0,1)
265
+ K=Quaternion(0,0,0,1)
266
+
267
+ def Quaternion::polar(m,t1=0,t2=0,t3=0)
268
+ # q=
269
+ # m*cos(t1)
270
+ # +m*sin(t1)cos(t2)i
271
+ # +m*sin(t1)sin(t2)cos(t3)j
272
+ # +m*sin(t1)sin(t2)sin(t3)k
273
+ # m is known as the magnitude,
274
+ # t1 is the amplitude(or angle) of the quaternion,
275
+ # t2 and t3 are the latitude (or co-latitude) and longitude respectively.
276
+ if m.kind_of?(Array) and (m.size==4); t1=m[1]; t2=m[2]; t3=m[3]; m=m[0]; end;
277
+ s=m
278
+ r_part=s*Math.cos(t1); s=s*Math.sin(t1)
279
+ i_part=s*Math.cos(t2); s=s*Math.sin(t2)
280
+ j_part=s*Math.cos(t3); k_part=s*Math.sin(t3)
281
+ new(r_part, i_part, j_part, k_part)
282
+ end
283
+ def amplitude; Math.atan2(Math.sqrt((@im*@im+@jm*@jm+@km*@km).to_f),@re.to_f); end
284
+ def latitude; Math.atan2(Math.sqrt((@jm*@jm+@km*@km).to_f),@im.to_f); end
285
+ def longitude; Math.atan2( @km.to_f, @jm.to_f); end
286
+ def arg1; return amplitude; end
287
+ def arg2; return latitude; end
288
+ def arg3; return longitude; end
289
+ def polar; [magnitude, amplitude, latitude, longitude]; end
290
+
291
+ def round; Quaternion(@re.round,@im.round,@jm.round,@km.round);end
292
+ def round_D4
293
+ # round to D4 lattice
294
+ r1=@re.round; a1=@im.round; b1=@jm.round; c1=@km.round;
295
+ q1=Quaternion(r1,a1,b1,c1); d1=(q1-self).abs2
296
+ if d1<=1/4; return q1; end
297
+ if @re<r1; r2=r1-1/2; else r2=r1+1/2; end
298
+ if @im<r1; a2=a1-1/2; else a2=a1+1/2; end
299
+ if @jm<r1; b2=b1-1/2; else b2=b1+1/2; end
300
+ if @km<r1; c2=c1-1/2; else c2=c1+1/2; end
301
+ q2=Quaternion(r2,a2,b2,c2); d2=(q2-self).abs2
302
+ if d1<=d2; return q1; else return q2; end
303
+ end
304
+ def abs2; return @re*@re+@im*@im+@jm*@jm+@km*@km; end
305
+ def abs; Math.sqrt((@re*@re+@im*@im+@jm*@jm+@km*@km).to_f); end
306
+ def magnitude; return abs; end
307
+ def conjugate; Quaternion(@re,-@im,-@jm,-@km); end
308
+ def inverse; conjugate/abs2; end
309
+
310
+ def is_real?; @im==0 and @jm==0 and @km==0; end
311
+ def is_complex?; @jm==0 and @km==0; end
312
+ def is_quaternion?; not(is_complex?); end
313
+
314
+ def vector; Quaternion(0,@im,@jm,@km); end
315
+ def is_vector?; @re==0; end
316
+ def to_v; return [@im, @jm, @km]; end
317
+ def Quaternion::vector(v)
318
+ # 3-D vector v=[x,y,z]
319
+ Quaternion(0,v[0],v[1],v[2])
320
+ end
321
+ def unit_vector
322
+ if is_real?; return Quaternion(0,1); end
323
+ m=Math::sqrt((@im*@im+@jm*@jm+@km*@km).to_f)
324
+ Quaternion(0,@im/m,@jm/m,@km/m);
325
+ end
326
+ def is_unit_vector?; @re==0 and abs2==1; end
327
+ def Quaternion::rotation(v,t)
328
+ # t-rotatin along the 3-D vector v
329
+ (Quaternion::vector(v).unit_vector) * Math::sin(t/2) + Math::cos(t/2)
330
+ end
331
+ def rotate(r); r * self * r.conjugate / r.abs2; end
332
+ def rotate_angle; amplitude/2; end
333
+
334
+ # Arithmetic
335
+ def coerce(other)
336
+ if other.kind_of?(Complex); return Quaternion(other), self
337
+ elsif Complex::generic?(other); return Quaternion(other), self
338
+ else super
339
+ end
340
+ end
341
+ def <=> (other); self.abs <=> other.abs; end
342
+ def == (other)
343
+ if other.kind_of?(Quaternion)
344
+ return (@re==other.re and @im==other.im and @jm==other.jm and @km==other.km)
345
+ elsif other.kind_of?(Complex)
346
+ @re==other.real and @im==other.image and @jm==0 and @km==0
347
+ elsif Complex.generic?(other)
348
+ @re==other and @im==0 and @jm==0 and @km==0
349
+ else x , y = other.coerce(self); x == y
350
+ end
351
+ end
352
+ def + (other)
353
+ if other.kind_of?(Quaternion)
354
+ Quaternion(@re+other.re,@im+other.im,@jm+other.jm,@km+other.km)
355
+ elsif other.kind_of?(Complex)
356
+ Quaternion(@re+other.real,@im+other.image, @jm, @km)
357
+ elsif Complex.generic?(other)
358
+ Quaternion(@re+other.real,@im, @jm, @km)
359
+ else x , y = other.coerce(self); x + y
360
+ end
361
+ end
362
+ def - (other)
363
+ if other.kind_of?(Quaternion)
364
+ Quaternion(@re-other.re,@im-other.im,@jm-other.jm,@km-other.km)
365
+ elsif other.kind_of?(Complex)
366
+ Quaternion(@re-other.real,@im-other.image, @jm, @km)
367
+ elsif Complex.generic?(other)
368
+ Quaternion(@re-other.real,@im, @jm, @km)
369
+ else x , y = other.coerce(self); x - y
370
+ end
371
+ end
372
+ def * (other)
373
+ if other.kind_of?(Quaternion)
374
+ Quaternion(@re*other.re-@im*other.im-@jm*other.jm-@km*other.km,
375
+ @re*other.im+@im*other.re+@jm*other.km-@km*other.jm,
376
+ @re*other.jm-@im*other.km+@jm*other.re+@km*other.im,
377
+ @re*other.km+@im*other.jm-@jm*other.im+@km*other.re)
378
+ elsif other.kind_of?(Complex)
379
+ Quaternion(@re*other.real - @im*other.image,
380
+ @re*other.image + @im*other.real,
381
+ @jm*other.real + @km*other.image,
382
+ @km*other.real - @jm*other.image)
383
+ elsif Complex.generic?(other)
384
+ Quaternion(@re * other, @im * other, @jm * other, @km * other)
385
+ else x , y = other.coerce(self); x * y
386
+ end
387
+ end
388
+ def dot_product other
389
+ (self*other.conjugate).re
390
+ end
391
+ def cross_product other
392
+ -(self*other.conjugate).vector
393
+ end
394
+ def / other
395
+ if other.kind_of?(Quaternion); self*other.conjugate/other.abs2
396
+ elsif other.kind_of?(Complex); self*other.conjugate/other.abs2
397
+ elsif Complex.generic?(other);
398
+ Quaternion(@re/other, @im/other, @jm/other, @km/other )
399
+ else x, y = other.coerce(self); x / y
400
+ end
401
+ end
402
+ def rdiv other
403
+ # right division: q1/q2
404
+ self/other
405
+ end
406
+ def ldiv other
407
+ # left division: 1/q1 * q2
408
+ (self.conjugate)*other/self.abs2
409
+ end
410
+ def divmod other
411
+ # right divmod: q1=d*q2+m
412
+ d=self.rdiv(other).round; m=self-d*other; return d,m
413
+ end
414
+ def divmod_D4 other
415
+ # right divmod: q1=d*q2+m, d be D4
416
+ d=self.rdiv(other).round_D4; m=self-d*other; return d,m
417
+ end
418
+ def ldivmod other
419
+ # left divmod: q2=q1*d+m
420
+ d=self.ldiv(other).round; m=other-self*d; return d,m
421
+ end
422
+ def ldivmod_D4 other
423
+ # left divmod: q2=q1*d+m, d be D4
424
+ d=self.ldiv(other).round_D4; m=other-self*d; return d,m
425
+ end
426
+ def % other
427
+ # right mod
428
+ d,m=divmod(other); return m
429
+ end
430
+ def rmod other
431
+ # right mod(same as %)
432
+ d,m=divmod(other); return m
433
+ end
434
+ def rmod_D4 other
435
+ # right mod with D4
436
+ d,m=divmod_D4(other); return m
437
+ end
438
+ def lmod other
439
+ # left mod
440
+ d,m=ldivmod(other); return m
441
+ end
442
+ def lmod_D4 other
443
+ # left mod with D4
444
+ d,m=ldivmod_D4(other); return m
445
+ end
446
+ def gcd other
447
+ a=self; b=other
448
+ while true
449
+ if b==0 ; return a;end
450
+ a=a.rmod_D4(b)
451
+ if a==0 ; return b;end
452
+ b=a.lmod_D4(b)
453
+ end
454
+ end
455
+ def orthogonal_split(o)
456
+ # [q1,q2]. q = q1 + q2 such that q1 parallel to o, and q2 orthogonal to o.
457
+ q1 = o * dot_product(o); q2=self-q1; return q1,q2
458
+ end
459
+
460
+ # Exponential and logarithmic functions
461
+ def exp
462
+ # e^(r+uv)=exp(r)(cos(v)+u*sin(v))
463
+ if is_real?; return Quaternion(Math::exp(@re)); end
464
+ vec=self.vector; v=vec.abs; u = vec/v;
465
+ Math::exp(@re)*(Math::cos(v)+u*Math::sin(v))
466
+ end
467
+ def log
468
+ # log(r+uv)=1/2 log(r^2+v^2)+u atan(v/r)
469
+ if is_real?;
470
+ if @re>=0; return Quaternion(Math::log(@re));
471
+ else return Quaternion(Math::log(-@re),Math::PI,0,0);
472
+ end
473
+ end
474
+ vec=self.vector; v=vec.abs; u = vec/v;
475
+ Math::log(self.abs2.to_f)/2+u*Math::atan2( v, @re)
476
+ end
477
+ def ** other
478
+ # q1^q2 = exp((log q1)*q2)
479
+ if other.kind_of?(Quaternion); ((self.log)*other).exp
480
+ elsif other.kind_of?(Complex); ((self.log)*other).exp
481
+ elsif other.kind_of?(Integer);
482
+ if other==0; return One;
483
+ elsif other>0;
484
+ x = self; q = x; n = other - 1
485
+ while n != 0
486
+ while (d, m = n.divmod(2); m == 0); x = x*x; n = d; end
487
+ q *= x; n -= 1
488
+ end
489
+ return q
490
+ else return self.inverse**(-other)
491
+ end
492
+ elsif Quaternion::generic?(other); ((self.log)*other).exp
493
+ else x, y = other.coerce(self); x ** y
494
+ end;
495
+ end
496
+ def sqrt; self**(0.5); end
497
+ def sinh; e=exp; return (e-e.inverse)/2; end
498
+ def cosh; e=exp; return (e+e.inverse)/2; end
499
+ def tanh; e=exp; e=e*e; return (e-1)/(e+1); end
500
+ # Trigonometric functions
501
+ def sin
502
+ # sin(r+uv)=sin r cosh v + u cos r sinh v
503
+ vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::sin(@re)); end
504
+ u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er
505
+ (Math::sin(@re)*c+u*Math::cos(@re)*s)/2
506
+ end
507
+ def cos
508
+ # cos(r+uv)=cos r cosh v - u sin r sinh v
509
+ vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::cos(@re)); end
510
+ u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er
511
+ (Math::cos(@re)*c-u*Math::sin(@re)*s)/2
512
+ end
513
+ def tan
514
+ vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::tan(@re)); end
515
+ u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er
516
+ co=Math::cos(@re); si=Math::sin(@re); (si*c+u*co*s)/(co*c-u*si*s)
517
+ end
518
+
519
+ # Inverse trigonometric functions
520
+ def asin
521
+ # asin q = -u log(uq+sqrt(1-q^2))
522
+ q=self; u=unit_vector; -u*((u*q+(1-q*q).sqrt).log)
523
+ end
524
+ def acos
525
+ # acos q = -u log(q+sqrt(q^2-1))
526
+ q=self; u=unit_vector; -u*((q+(q*q-1).sqrt).log)
527
+ end
528
+ def atan
529
+ # atan q = u/2 log( (u+q)/(u-q) )
530
+ q=self; u=q.unit_vector; u*((u+q)/(u-q)).log/2
531
+ end
532
+
533
+
534
+ def hash; @re^@im^@jm^@km; end
535
+
536
+ def inspect
537
+ sprintf("Quaternion(%s,%s,%s,%s)",
538
+ @re.inspect, @im.inspect, @jm.inspect, @km.inspect)
539
+ end
540
+ def to_s
541
+ s=""
542
+ if @re!=0; s=@re.to_s; end
543
+ if @im!=0;
544
+ if s==""; s=sprintf("%si", @im);
545
+ else if @im>0; s=sprintf("%s+%si",s,@im); else s=sprintf("%s-%si",s,-@im); end
546
+ end
547
+ end
548
+ if @jm!=0;
549
+ if s==""; s=sprintf("%sj", @jm);
550
+ else if @jm>0; s=sprintf("%s+%sj",s,@jm); else s=sprintf("%s-%sj",s,-@jm); end
551
+ end
552
+ end
553
+ if @km!=0;
554
+ if s==""; s=sprintf("%sk", @km);
555
+ else if @km>0; s=sprintf("%s+%sk",s,@km); else s=sprintf("%s-%sk",s,-@km); end
556
+ end
557
+ end
558
+ if s=="" ; s="0"; end;
559
+ return s
560
+ end
561
+
562
+ end # Quaternion