stick 1.2.0
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGES +7 -0
- data/COPYING +344 -0
- data/README +110 -0
- data/lib/stick/constants.rb +3 -0
- data/lib/stick/constants/cgs.rb +151 -0
- data/lib/stick/constants/mks.rb +158 -0
- data/lib/stick/constants/number.rb +33 -0
- data/lib/stick/constants/typeless_cgs.rb +141 -0
- data/lib/stick/constants/typeless_mks.rb +142 -0
- data/lib/stick/currency.rb +8 -0
- data/lib/stick/mapcar.rb +61 -0
- data/lib/stick/matrix.rb +1022 -0
- data/lib/stick/quaternion.rb +562 -0
- data/lib/stick/times.rb +441 -0
- data/lib/stick/units.rb +112 -0
- data/lib/stick/units/base.rb +980 -0
- data/lib/stick/units/currency.rb +159 -0
- data/lib/stick/units/data/binary/base.rb +4 -0
- data/lib/stick/units/data/cex.rb +5 -0
- data/lib/stick/units/data/currency-default.rb +5 -0
- data/lib/stick/units/data/currency-standard.rb +2 -0
- data/lib/stick/units/data/currency/base.rb +89 -0
- data/lib/stick/units/data/iec.rb +5 -0
- data/lib/stick/units/data/iec_binary/base.rb +6 -0
- data/lib/stick/units/data/si.rb +7 -0
- data/lib/stick/units/data/si/base.rb +9 -0
- data/lib/stick/units/data/si/derived.rb +26 -0
- data/lib/stick/units/data/si/extra.rb +22 -0
- data/lib/stick/units/data/uk.rb +10 -0
- data/lib/stick/units/data/uk/base.rb +22 -0
- data/lib/stick/units/data/units-default.rb +11 -0
- data/lib/stick/units/data/units-standard.rb +5 -0
- data/lib/stick/units/data/us.rb +10 -0
- data/lib/stick/units/data/us/base.rb +23 -0
- data/lib/stick/units/data/xmethods.rb +5 -0
- data/lib/stick/units/data/xmethods/cached.rb +84 -0
- data/lib/stick/units/data/xmethods/mapping.rb +87 -0
- data/lib/stick/units/loaders.rb +98 -0
- data/lib/stick/units/units.rb +109 -0
- data/meta/MANIFEST +76 -0
- data/meta/ROLLRC +2 -0
- data/meta/icli.yaml +16 -0
- data/meta/project.yaml +18 -0
- data/task/clobber/package +10 -0
- data/task/publish +57 -0
- data/task/release +10 -0
- data/task/setup +1616 -0
- data/task/test +25 -0
- data/test/spec_matrix.rb +342 -0
- data/test/test_currency.rb +26 -0
- data/test/test_matrix.rb +359 -0
- data/test/test_units.rb +205 -0
- data/work/TODO +20 -0
- data/work/bytes.rb +231 -0
- data/work/multipliers.rb +195 -0
- metadata +138 -0
@@ -0,0 +1,562 @@
|
|
1
|
+
# Title:
|
2
|
+
#
|
3
|
+
# Quaternion
|
4
|
+
#
|
5
|
+
# Copyright:
|
6
|
+
#
|
7
|
+
# Copyright (c) 2002 K. Kodama
|
8
|
+
#
|
9
|
+
# License:
|
10
|
+
#
|
11
|
+
# Ruby License
|
12
|
+
#
|
13
|
+
# This module is free software. You may use, modify, and/or redistribute this
|
14
|
+
# software under the same terms as Ruby.
|
15
|
+
#
|
16
|
+
# This program is distributed in the hope that it will be useful, but WITHOUT
|
17
|
+
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
18
|
+
# FOR A PARTICULAR PURPOSE.
|
19
|
+
#
|
20
|
+
# Authors:
|
21
|
+
#
|
22
|
+
# K. Kodama
|
23
|
+
#
|
24
|
+
# Todo:
|
25
|
+
#
|
26
|
+
# - The following documentation should occur before the methods
|
27
|
+
# they describe.
|
28
|
+
|
29
|
+
require "mathn"
|
30
|
+
require "complex"
|
31
|
+
|
32
|
+
# = Quaternion
|
33
|
+
#
|
34
|
+
# NOTE This Quaternion class is still very experimental.
|
35
|
+
#
|
36
|
+
# Quaternions are attributed to Sir William Rowan Hamilton
|
37
|
+
# who find it in 1843, and published a major analysis in 1844 called
|
38
|
+
# "On a Species of Imaginary Quantities Connected with a Theory of Quaternions"
|
39
|
+
# in the Proceedings of the Royal Irish Academ. (2, pp 424-434).
|
40
|
+
#
|
41
|
+
# Typical quaternion number q is of the form q = r + a i + b j + c k.
|
42
|
+
# Bases i j k behaves as follows:
|
43
|
+
#
|
44
|
+
# i^2 = j^2 = k^2 = -1
|
45
|
+
# i j = k, j k = i, k i = j
|
46
|
+
# j i = -k, k j = -i, i k = -j
|
47
|
+
#
|
48
|
+
# Quaternion numbers are not Commutative.
|
49
|
+
# Quaternion is 4-D space over Real number,
|
50
|
+
# and 2-D space over Complex numbers as q = (a + b i) + (c + d i)j.
|
51
|
+
#
|
52
|
+
# === Polar Coordinates
|
53
|
+
#
|
54
|
+
# A Quaternion q = r + a i + b j + k c have 1st level polar form such that
|
55
|
+
#
|
56
|
+
# q = |q|(cos t1 + sin t1 u1) , where u1 is unit vector of u1 = a1 i + b1 j + c1 k.
|
57
|
+
#
|
58
|
+
# u1 have 2nd level
|
59
|
+
#
|
60
|
+
# u1 = i cos t2 + sin t2 u2, where u2 is unit vector of u2 = b2 j + c2 k.
|
61
|
+
#
|
62
|
+
# And u2 have 3rd level
|
63
|
+
#
|
64
|
+
# u2 = j cos t3 + k sin t3.
|
65
|
+
#
|
66
|
+
# So we have
|
67
|
+
#
|
68
|
+
# q=|q|( cos t1 + sin t1 ( i cos t2 + sin t2 ( j cos t3 + k sin t3 )))
|
69
|
+
#
|
70
|
+
# The equivalent to polar coordinates in quaternion space are
|
71
|
+
#
|
72
|
+
# r = |q| cos(t1)
|
73
|
+
# a = |q| sin(t1) cos(t2)
|
74
|
+
# b = |q| sin(t1) sin(t2) cos(t3)
|
75
|
+
# c = |q| sin(t1) sin(t2) sin(t3)
|
76
|
+
#
|
77
|
+
# |q| is known as the magnitude of the quaternion, t1 is the amplitude(or angle),
|
78
|
+
# t2 and t3 are the latitude (or co-latitude) and longitude respectively.
|
79
|
+
#
|
80
|
+
# === Vector
|
81
|
+
#
|
82
|
+
# A Quaternions q= r + a i + b j + c k is 4-D space over Real numbers.
|
83
|
+
# A Quaternions with zero real part q = a i + b j + c k is 3-D space,
|
84
|
+
# and called a vector quaternion or, simply, vector.
|
85
|
+
# For q = r + a i + b j + c k,
|
86
|
+
# v=a i + b j + c k is called vector part of q.
|
87
|
+
# A vector u of |u|=1 is called a unit vector.
|
88
|
+
# We can write q = r + u |v| = |q|(cos t + u sin t).
|
89
|
+
# Note that u^2=-1.
|
90
|
+
# Vectors are 3-D space And can define cross-product q1 x q2.
|
91
|
+
#
|
92
|
+
# === Rotation
|
93
|
+
#
|
94
|
+
# Quaternion can be used to describe rotation in 3-D space.
|
95
|
+
# For a vector v and a Quaternion q = |q|(cos t/2 + u sin t/2),
|
96
|
+
# q v q^(-1) is a vector v t-rotated along u.
|
97
|
+
# Composit rotation of q1, q2 is described as q2 q1,
|
98
|
+
# because q2 (q1 v q1^(-1)) q2^(-1) = (q2 q1) v (q2 q1)^(-1).
|
99
|
+
#
|
100
|
+
# === GCD
|
101
|
+
#
|
102
|
+
# D4 lattice space is lattice points of Quaternion q = r + a i + b j + c k as follows.
|
103
|
+
# (1) r,a,b,c are all integer, or
|
104
|
+
# (2) r,a,b,c are all half-integer.
|
105
|
+
# D4 is sub-ring of Quaternion with GCD.
|
106
|
+
# (Ring means a space with +, -, *.)
|
107
|
+
|
108
|
+
=begin
|
109
|
+
|
110
|
+
* Building quaternions and taking them apart
|
111
|
+
Quaternion(real number r) # r as quaternion
|
112
|
+
Quaternion(a+bi) # a+bi as quaternion
|
113
|
+
Quaternion(a+bi,c+di) # a+bi+cj+dk = (a+bi)+(c+di)j
|
114
|
+
Quaternion(a,b=0,c=0,d=0) # a+bi+cj+dk
|
115
|
+
Quaternion(quaternion number q) # return q
|
116
|
+
Quaternion::Zero (=0 as quaternion)
|
117
|
+
Quaternion::One (=1 as quaternion)
|
118
|
+
Quaternion::I (=i as quaternion)
|
119
|
+
Quaternion::J (=j)
|
120
|
+
Quaternion::K (=k)
|
121
|
+
q.re ( = real part of q)
|
122
|
+
q.real ( = real part of q)
|
123
|
+
q.real_part ( = real part of q)
|
124
|
+
q.im ( = i part of q)
|
125
|
+
q.image ( = i part of q)
|
126
|
+
q.jm ( = j part of q)
|
127
|
+
q.km ( = k part of q)
|
128
|
+
orthogonal_split(o)
|
129
|
+
return [q1,q2].
|
130
|
+
q = q1 + q2 such that q1 parallel to o, and q2 orthogonal to o.
|
131
|
+
|
132
|
+
* Vector
|
133
|
+
q.vector ( = vector part of q = non-real part of q)
|
134
|
+
q.unit_vector ( = unit vector of q)
|
135
|
+
Quaternian::vector(v)
|
136
|
+
# 3-D vector v=[x,y,z] as array to Quaternion vector
|
137
|
+
Quaternion::rotation(v,t)
|
138
|
+
# t-rotatin along the 3-D vector v
|
139
|
+
q.rotate(r)
|
140
|
+
rotate by r = q r^(-1)
|
141
|
+
q.rotate_angle
|
142
|
+
# = q.amplitude/2
|
143
|
+
|
144
|
+
* Polar notation
|
145
|
+
Quaternion::polar(m,t1=0,t2=0,t3=0)
|
146
|
+
q.magnitude (= |q|)
|
147
|
+
q.amplitude (=arg1)
|
148
|
+
q.latitude (=arg2)
|
149
|
+
q.longitude (=arg3)
|
150
|
+
q.arg1
|
151
|
+
q.arg2
|
152
|
+
q.arg3
|
153
|
+
q.abs ( = |q| )
|
154
|
+
q.abs2 ( = |q|^2 )
|
155
|
+
q.polar # get array of [magnitude, amplitude, latitude, longitude]
|
156
|
+
|
157
|
+
* Boolean
|
158
|
+
Quaternion::generic?(other)
|
159
|
+
q.is_vector? # have no real part
|
160
|
+
q.is_unit_vector? # q is vector and |q|=1
|
161
|
+
q.is_complex? # j part =0 and k part = 0
|
162
|
+
q.is_quaternion? # have j or k part
|
163
|
+
q.is_real? # i,j,k parts are all 0
|
164
|
+
|
165
|
+
* Arithmetic
|
166
|
+
q.conjugate (= q~)
|
167
|
+
q.inverse (=1/q)
|
168
|
+
q1<=>q2 ( same as |q1|<=>|q2| )
|
169
|
+
q1==q2
|
170
|
+
q1 + q2
|
171
|
+
q1 - q2
|
172
|
+
q1 * q2
|
173
|
+
q1 / q2
|
174
|
+
q1.dot_product(q2) (Dot product q1, q2 = (q1*q2.conjugate).real_part )
|
175
|
+
q1.cross_product(q2) (Cross product as vectors q1,q2)
|
176
|
+
Assume q1, q2 be 3-D vectors.
|
177
|
+
q1.rdiv(q2) # right division: q1/q2 (same as /)
|
178
|
+
q1.ldiv(q2) # left division: 1/q1 * q2
|
179
|
+
|
180
|
+
* lattice or D4-lattice
|
181
|
+
q.round # round to integer coefficients
|
182
|
+
q.round_D4 # round to D4 lattice
|
183
|
+
q1.divmod(q2) # right divmod: q1=d*q2+m
|
184
|
+
q1.ldivmod(q2) # left divmod: q2=q1*d+m
|
185
|
+
q1 % q2 # right mod
|
186
|
+
q1.rmod(q2) # right mod(same as %)
|
187
|
+
q1.lmod(q2) # left mod
|
188
|
+
divmod_D4 other # right divmod: q1=d*q2+m, d be D4 value
|
189
|
+
ldivmod_D4 other # left divmod: q2=q1*d+m, d be D4 value
|
190
|
+
rmod_D4 other # right mod with d be D4 value
|
191
|
+
lmod_D4 other # left mod with d be D4 value
|
192
|
+
q1.gcd(q2) # Asume that q1, q2 are D4 value
|
193
|
+
|
194
|
+
* Exponential and logarithmic functions
|
195
|
+
q.exp # e^(r+uv)=exp(r)(cos(v)+u*sin(v))
|
196
|
+
q.log # log(r+uv)=1/2 log(r^2+v^2)+u atan(v/w)
|
197
|
+
q1**q2 ( = q1^q2 )
|
198
|
+
q.sqrt ( = q^1/2 )
|
199
|
+
q.sinh
|
200
|
+
q.cosh
|
201
|
+
q.tanh
|
202
|
+
|
203
|
+
* Trigonometric functions
|
204
|
+
q.sin
|
205
|
+
q.cos
|
206
|
+
q.tan
|
207
|
+
|
208
|
+
* Inverse trigonometric functions
|
209
|
+
q.asin
|
210
|
+
q.acos
|
211
|
+
q.atan
|
212
|
+
|
213
|
+
* Conversion
|
214
|
+
to_s # get string
|
215
|
+
to_c # real and i part as complex
|
216
|
+
to_c2 # j and k part as complex
|
217
|
+
to_v # vector part as array
|
218
|
+
to_a # array of parts
|
219
|
+
|
220
|
+
* Other
|
221
|
+
q.hash
|
222
|
+
q.inspect
|
223
|
+
=end
|
224
|
+
|
225
|
+
|
226
|
+
def Quaternion(a=0, b=0,c=0, d=0)
|
227
|
+
if a.kind_of?(Quaternion);
|
228
|
+
a;
|
229
|
+
elsif a.kind_of?(Complex) and b.kind_of?(Complex);
|
230
|
+
Quaternion.new(a.real, a.image, b.real, b.image)
|
231
|
+
elsif a.kind_of?(Complex);
|
232
|
+
Quaternion.new(a.real, a.image)
|
233
|
+
else
|
234
|
+
Quaternion.new(a,b,c,d);
|
235
|
+
end
|
236
|
+
end
|
237
|
+
|
238
|
+
class Quaternion < Numeric
|
239
|
+
attr :re
|
240
|
+
attr :im
|
241
|
+
attr :jm
|
242
|
+
attr :km
|
243
|
+
def image; return @im; end
|
244
|
+
def real_part; return @re; end
|
245
|
+
def real; return @re; end
|
246
|
+
def to_c; return Complex(@re,@im); end
|
247
|
+
def to_c2; return Complex(@jm,@km); end
|
248
|
+
def to_a; return [@re, @im, @jm, @km]; end
|
249
|
+
def Quaternion::generic?(other)
|
250
|
+
return (other.kind_of?(Complex) or Complex.generic?(other));
|
251
|
+
end
|
252
|
+
def initialize(a=0,b=0,c=0,d=0)
|
253
|
+
raise "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric;
|
254
|
+
raise "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric;
|
255
|
+
raise "non numeric 3rd arg `#{c.inspect}'" if !c.kind_of? Numeric;
|
256
|
+
raise "non numeric 4th arg `#{d.inspect}'" if !d.kind_of? Numeric;
|
257
|
+
@re=a; @im=b; @jm=c; @km=d
|
258
|
+
end
|
259
|
+
private :initialize
|
260
|
+
|
261
|
+
Zero=Quaternion(0)
|
262
|
+
One=Quaternion(1)
|
263
|
+
I=Quaternion(0,1)
|
264
|
+
J=Quaternion(0,0,1)
|
265
|
+
K=Quaternion(0,0,0,1)
|
266
|
+
|
267
|
+
def Quaternion::polar(m,t1=0,t2=0,t3=0)
|
268
|
+
# q=
|
269
|
+
# m*cos(t1)
|
270
|
+
# +m*sin(t1)cos(t2)i
|
271
|
+
# +m*sin(t1)sin(t2)cos(t3)j
|
272
|
+
# +m*sin(t1)sin(t2)sin(t3)k
|
273
|
+
# m is known as the magnitude,
|
274
|
+
# t1 is the amplitude(or angle) of the quaternion,
|
275
|
+
# t2 and t3 are the latitude (or co-latitude) and longitude respectively.
|
276
|
+
if m.kind_of?(Array) and (m.size==4); t1=m[1]; t2=m[2]; t3=m[3]; m=m[0]; end;
|
277
|
+
s=m
|
278
|
+
r_part=s*Math.cos(t1); s=s*Math.sin(t1)
|
279
|
+
i_part=s*Math.cos(t2); s=s*Math.sin(t2)
|
280
|
+
j_part=s*Math.cos(t3); k_part=s*Math.sin(t3)
|
281
|
+
new(r_part, i_part, j_part, k_part)
|
282
|
+
end
|
283
|
+
def amplitude; Math.atan2(Math.sqrt((@im*@im+@jm*@jm+@km*@km).to_f),@re.to_f); end
|
284
|
+
def latitude; Math.atan2(Math.sqrt((@jm*@jm+@km*@km).to_f),@im.to_f); end
|
285
|
+
def longitude; Math.atan2( @km.to_f, @jm.to_f); end
|
286
|
+
def arg1; return amplitude; end
|
287
|
+
def arg2; return latitude; end
|
288
|
+
def arg3; return longitude; end
|
289
|
+
def polar; [magnitude, amplitude, latitude, longitude]; end
|
290
|
+
|
291
|
+
def round; Quaternion(@re.round,@im.round,@jm.round,@km.round);end
|
292
|
+
def round_D4
|
293
|
+
# round to D4 lattice
|
294
|
+
r1=@re.round; a1=@im.round; b1=@jm.round; c1=@km.round;
|
295
|
+
q1=Quaternion(r1,a1,b1,c1); d1=(q1-self).abs2
|
296
|
+
if d1<=1/4; return q1; end
|
297
|
+
if @re<r1; r2=r1-1/2; else r2=r1+1/2; end
|
298
|
+
if @im<r1; a2=a1-1/2; else a2=a1+1/2; end
|
299
|
+
if @jm<r1; b2=b1-1/2; else b2=b1+1/2; end
|
300
|
+
if @km<r1; c2=c1-1/2; else c2=c1+1/2; end
|
301
|
+
q2=Quaternion(r2,a2,b2,c2); d2=(q2-self).abs2
|
302
|
+
if d1<=d2; return q1; else return q2; end
|
303
|
+
end
|
304
|
+
def abs2; return @re*@re+@im*@im+@jm*@jm+@km*@km; end
|
305
|
+
def abs; Math.sqrt((@re*@re+@im*@im+@jm*@jm+@km*@km).to_f); end
|
306
|
+
def magnitude; return abs; end
|
307
|
+
def conjugate; Quaternion(@re,-@im,-@jm,-@km); end
|
308
|
+
def inverse; conjugate/abs2; end
|
309
|
+
|
310
|
+
def is_real?; @im==0 and @jm==0 and @km==0; end
|
311
|
+
def is_complex?; @jm==0 and @km==0; end
|
312
|
+
def is_quaternion?; not(is_complex?); end
|
313
|
+
|
314
|
+
def vector; Quaternion(0,@im,@jm,@km); end
|
315
|
+
def is_vector?; @re==0; end
|
316
|
+
def to_v; return [@im, @jm, @km]; end
|
317
|
+
def Quaternion::vector(v)
|
318
|
+
# 3-D vector v=[x,y,z]
|
319
|
+
Quaternion(0,v[0],v[1],v[2])
|
320
|
+
end
|
321
|
+
def unit_vector
|
322
|
+
if is_real?; return Quaternion(0,1); end
|
323
|
+
m=Math::sqrt((@im*@im+@jm*@jm+@km*@km).to_f)
|
324
|
+
Quaternion(0,@im/m,@jm/m,@km/m);
|
325
|
+
end
|
326
|
+
def is_unit_vector?; @re==0 and abs2==1; end
|
327
|
+
def Quaternion::rotation(v,t)
|
328
|
+
# t-rotatin along the 3-D vector v
|
329
|
+
(Quaternion::vector(v).unit_vector) * Math::sin(t/2) + Math::cos(t/2)
|
330
|
+
end
|
331
|
+
def rotate(r); r * self * r.conjugate / r.abs2; end
|
332
|
+
def rotate_angle; amplitude/2; end
|
333
|
+
|
334
|
+
# Arithmetic
|
335
|
+
def coerce(other)
|
336
|
+
if other.kind_of?(Complex); return Quaternion(other), self
|
337
|
+
elsif Complex::generic?(other); return Quaternion(other), self
|
338
|
+
else super
|
339
|
+
end
|
340
|
+
end
|
341
|
+
def <=> (other); self.abs <=> other.abs; end
|
342
|
+
def == (other)
|
343
|
+
if other.kind_of?(Quaternion)
|
344
|
+
return (@re==other.re and @im==other.im and @jm==other.jm and @km==other.km)
|
345
|
+
elsif other.kind_of?(Complex)
|
346
|
+
@re==other.real and @im==other.image and @jm==0 and @km==0
|
347
|
+
elsif Complex.generic?(other)
|
348
|
+
@re==other and @im==0 and @jm==0 and @km==0
|
349
|
+
else x , y = other.coerce(self); x == y
|
350
|
+
end
|
351
|
+
end
|
352
|
+
def + (other)
|
353
|
+
if other.kind_of?(Quaternion)
|
354
|
+
Quaternion(@re+other.re,@im+other.im,@jm+other.jm,@km+other.km)
|
355
|
+
elsif other.kind_of?(Complex)
|
356
|
+
Quaternion(@re+other.real,@im+other.image, @jm, @km)
|
357
|
+
elsif Complex.generic?(other)
|
358
|
+
Quaternion(@re+other.real,@im, @jm, @km)
|
359
|
+
else x , y = other.coerce(self); x + y
|
360
|
+
end
|
361
|
+
end
|
362
|
+
def - (other)
|
363
|
+
if other.kind_of?(Quaternion)
|
364
|
+
Quaternion(@re-other.re,@im-other.im,@jm-other.jm,@km-other.km)
|
365
|
+
elsif other.kind_of?(Complex)
|
366
|
+
Quaternion(@re-other.real,@im-other.image, @jm, @km)
|
367
|
+
elsif Complex.generic?(other)
|
368
|
+
Quaternion(@re-other.real,@im, @jm, @km)
|
369
|
+
else x , y = other.coerce(self); x - y
|
370
|
+
end
|
371
|
+
end
|
372
|
+
def * (other)
|
373
|
+
if other.kind_of?(Quaternion)
|
374
|
+
Quaternion(@re*other.re-@im*other.im-@jm*other.jm-@km*other.km,
|
375
|
+
@re*other.im+@im*other.re+@jm*other.km-@km*other.jm,
|
376
|
+
@re*other.jm-@im*other.km+@jm*other.re+@km*other.im,
|
377
|
+
@re*other.km+@im*other.jm-@jm*other.im+@km*other.re)
|
378
|
+
elsif other.kind_of?(Complex)
|
379
|
+
Quaternion(@re*other.real - @im*other.image,
|
380
|
+
@re*other.image + @im*other.real,
|
381
|
+
@jm*other.real + @km*other.image,
|
382
|
+
@km*other.real - @jm*other.image)
|
383
|
+
elsif Complex.generic?(other)
|
384
|
+
Quaternion(@re * other, @im * other, @jm * other, @km * other)
|
385
|
+
else x , y = other.coerce(self); x * y
|
386
|
+
end
|
387
|
+
end
|
388
|
+
def dot_product other
|
389
|
+
(self*other.conjugate).re
|
390
|
+
end
|
391
|
+
def cross_product other
|
392
|
+
-(self*other.conjugate).vector
|
393
|
+
end
|
394
|
+
def / other
|
395
|
+
if other.kind_of?(Quaternion); self*other.conjugate/other.abs2
|
396
|
+
elsif other.kind_of?(Complex); self*other.conjugate/other.abs2
|
397
|
+
elsif Complex.generic?(other);
|
398
|
+
Quaternion(@re/other, @im/other, @jm/other, @km/other )
|
399
|
+
else x, y = other.coerce(self); x / y
|
400
|
+
end
|
401
|
+
end
|
402
|
+
def rdiv other
|
403
|
+
# right division: q1/q2
|
404
|
+
self/other
|
405
|
+
end
|
406
|
+
def ldiv other
|
407
|
+
# left division: 1/q1 * q2
|
408
|
+
(self.conjugate)*other/self.abs2
|
409
|
+
end
|
410
|
+
def divmod other
|
411
|
+
# right divmod: q1=d*q2+m
|
412
|
+
d=self.rdiv(other).round; m=self-d*other; return d,m
|
413
|
+
end
|
414
|
+
def divmod_D4 other
|
415
|
+
# right divmod: q1=d*q2+m, d be D4
|
416
|
+
d=self.rdiv(other).round_D4; m=self-d*other; return d,m
|
417
|
+
end
|
418
|
+
def ldivmod other
|
419
|
+
# left divmod: q2=q1*d+m
|
420
|
+
d=self.ldiv(other).round; m=other-self*d; return d,m
|
421
|
+
end
|
422
|
+
def ldivmod_D4 other
|
423
|
+
# left divmod: q2=q1*d+m, d be D4
|
424
|
+
d=self.ldiv(other).round_D4; m=other-self*d; return d,m
|
425
|
+
end
|
426
|
+
def % other
|
427
|
+
# right mod
|
428
|
+
d,m=divmod(other); return m
|
429
|
+
end
|
430
|
+
def rmod other
|
431
|
+
# right mod(same as %)
|
432
|
+
d,m=divmod(other); return m
|
433
|
+
end
|
434
|
+
def rmod_D4 other
|
435
|
+
# right mod with D4
|
436
|
+
d,m=divmod_D4(other); return m
|
437
|
+
end
|
438
|
+
def lmod other
|
439
|
+
# left mod
|
440
|
+
d,m=ldivmod(other); return m
|
441
|
+
end
|
442
|
+
def lmod_D4 other
|
443
|
+
# left mod with D4
|
444
|
+
d,m=ldivmod_D4(other); return m
|
445
|
+
end
|
446
|
+
def gcd other
|
447
|
+
a=self; b=other
|
448
|
+
while true
|
449
|
+
if b==0 ; return a;end
|
450
|
+
a=a.rmod_D4(b)
|
451
|
+
if a==0 ; return b;end
|
452
|
+
b=a.lmod_D4(b)
|
453
|
+
end
|
454
|
+
end
|
455
|
+
def orthogonal_split(o)
|
456
|
+
# [q1,q2]. q = q1 + q2 such that q1 parallel to o, and q2 orthogonal to o.
|
457
|
+
q1 = o * dot_product(o); q2=self-q1; return q1,q2
|
458
|
+
end
|
459
|
+
|
460
|
+
# Exponential and logarithmic functions
|
461
|
+
def exp
|
462
|
+
# e^(r+uv)=exp(r)(cos(v)+u*sin(v))
|
463
|
+
if is_real?; return Quaternion(Math::exp(@re)); end
|
464
|
+
vec=self.vector; v=vec.abs; u = vec/v;
|
465
|
+
Math::exp(@re)*(Math::cos(v)+u*Math::sin(v))
|
466
|
+
end
|
467
|
+
def log
|
468
|
+
# log(r+uv)=1/2 log(r^2+v^2)+u atan(v/r)
|
469
|
+
if is_real?;
|
470
|
+
if @re>=0; return Quaternion(Math::log(@re));
|
471
|
+
else return Quaternion(Math::log(-@re),Math::PI,0,0);
|
472
|
+
end
|
473
|
+
end
|
474
|
+
vec=self.vector; v=vec.abs; u = vec/v;
|
475
|
+
Math::log(self.abs2.to_f)/2+u*Math::atan2( v, @re)
|
476
|
+
end
|
477
|
+
def ** other
|
478
|
+
# q1^q2 = exp((log q1)*q2)
|
479
|
+
if other.kind_of?(Quaternion); ((self.log)*other).exp
|
480
|
+
elsif other.kind_of?(Complex); ((self.log)*other).exp
|
481
|
+
elsif other.kind_of?(Integer);
|
482
|
+
if other==0; return One;
|
483
|
+
elsif other>0;
|
484
|
+
x = self; q = x; n = other - 1
|
485
|
+
while n != 0
|
486
|
+
while (d, m = n.divmod(2); m == 0); x = x*x; n = d; end
|
487
|
+
q *= x; n -= 1
|
488
|
+
end
|
489
|
+
return q
|
490
|
+
else return self.inverse**(-other)
|
491
|
+
end
|
492
|
+
elsif Quaternion::generic?(other); ((self.log)*other).exp
|
493
|
+
else x, y = other.coerce(self); x ** y
|
494
|
+
end;
|
495
|
+
end
|
496
|
+
def sqrt; self**(0.5); end
|
497
|
+
def sinh; e=exp; return (e-e.inverse)/2; end
|
498
|
+
def cosh; e=exp; return (e+e.inverse)/2; end
|
499
|
+
def tanh; e=exp; e=e*e; return (e-1)/(e+1); end
|
500
|
+
# Trigonometric functions
|
501
|
+
def sin
|
502
|
+
# sin(r+uv)=sin r cosh v + u cos r sinh v
|
503
|
+
vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::sin(@re)); end
|
504
|
+
u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er
|
505
|
+
(Math::sin(@re)*c+u*Math::cos(@re)*s)/2
|
506
|
+
end
|
507
|
+
def cos
|
508
|
+
# cos(r+uv)=cos r cosh v - u sin r sinh v
|
509
|
+
vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::cos(@re)); end
|
510
|
+
u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er
|
511
|
+
(Math::cos(@re)*c-u*Math::sin(@re)*s)/2
|
512
|
+
end
|
513
|
+
def tan
|
514
|
+
vec=self.vector; v=vec.abs; if v==0; return Quaternion(Math::tan(@re)); end
|
515
|
+
u = vec/v; e=Math::exp(v); er=1/e; c=e+er; s=e-er
|
516
|
+
co=Math::cos(@re); si=Math::sin(@re); (si*c+u*co*s)/(co*c-u*si*s)
|
517
|
+
end
|
518
|
+
|
519
|
+
# Inverse trigonometric functions
|
520
|
+
def asin
|
521
|
+
# asin q = -u log(uq+sqrt(1-q^2))
|
522
|
+
q=self; u=unit_vector; -u*((u*q+(1-q*q).sqrt).log)
|
523
|
+
end
|
524
|
+
def acos
|
525
|
+
# acos q = -u log(q+sqrt(q^2-1))
|
526
|
+
q=self; u=unit_vector; -u*((q+(q*q-1).sqrt).log)
|
527
|
+
end
|
528
|
+
def atan
|
529
|
+
# atan q = u/2 log( (u+q)/(u-q) )
|
530
|
+
q=self; u=q.unit_vector; u*((u+q)/(u-q)).log/2
|
531
|
+
end
|
532
|
+
|
533
|
+
|
534
|
+
def hash; @re^@im^@jm^@km; end
|
535
|
+
|
536
|
+
def inspect
|
537
|
+
sprintf("Quaternion(%s,%s,%s,%s)",
|
538
|
+
@re.inspect, @im.inspect, @jm.inspect, @km.inspect)
|
539
|
+
end
|
540
|
+
def to_s
|
541
|
+
s=""
|
542
|
+
if @re!=0; s=@re.to_s; end
|
543
|
+
if @im!=0;
|
544
|
+
if s==""; s=sprintf("%si", @im);
|
545
|
+
else if @im>0; s=sprintf("%s+%si",s,@im); else s=sprintf("%s-%si",s,-@im); end
|
546
|
+
end
|
547
|
+
end
|
548
|
+
if @jm!=0;
|
549
|
+
if s==""; s=sprintf("%sj", @jm);
|
550
|
+
else if @jm>0; s=sprintf("%s+%sj",s,@jm); else s=sprintf("%s-%sj",s,-@jm); end
|
551
|
+
end
|
552
|
+
end
|
553
|
+
if @km!=0;
|
554
|
+
if s==""; s=sprintf("%sk", @km);
|
555
|
+
else if @km>0; s=sprintf("%s+%sk",s,@km); else s=sprintf("%s-%sk",s,-@km); end
|
556
|
+
end
|
557
|
+
end
|
558
|
+
if s=="" ; s="0"; end;
|
559
|
+
return s
|
560
|
+
end
|
561
|
+
|
562
|
+
end # Quaternion
|