statsample 1.5.0 → 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.build.sh +15 -0
- data/.gitignore +1 -0
- data/.travis.yml +19 -7
- data/CONTRIBUTING.md +33 -0
- data/History.txt +5 -0
- data/README.md +41 -53
- data/benchmarks/correlation_matrix_15_variables.rb +6 -5
- data/benchmarks/correlation_matrix_5_variables.rb +6 -5
- data/benchmarks/correlation_matrix_methods/correlation_matrix.rb +23 -26
- data/examples/boxplot.rb +17 -5
- data/examples/correlation_matrix.rb +36 -7
- data/examples/dataset.rb +25 -5
- data/examples/dominance_analysis.rb +8 -7
- data/examples/dominance_analysis_bootstrap.rb +16 -11
- data/examples/histogram.rb +16 -2
- data/examples/icc.rb +5 -6
- data/examples/levene.rb +17 -3
- data/examples/multiple_regression.rb +6 -3
- data/examples/parallel_analysis.rb +11 -6
- data/examples/polychoric.rb +26 -13
- data/examples/principal_axis.rb +8 -4
- data/examples/reliability.rb +10 -10
- data/examples/scatterplot.rb +8 -0
- data/examples/t_test.rb +7 -0
- data/examples/u_test.rb +10 -2
- data/examples/vector.rb +9 -6
- data/examples/velicer_map_test.rb +12 -8
- data/lib/statsample.rb +13 -47
- data/lib/statsample/analysis/suite.rb +1 -1
- data/lib/statsample/anova/oneway.rb +6 -6
- data/lib/statsample/anova/twoway.rb +26 -24
- data/lib/statsample/bivariate.rb +78 -61
- data/lib/statsample/bivariate/pearson.rb +2 -2
- data/lib/statsample/codification.rb +45 -32
- data/lib/statsample/converter/csv.rb +15 -53
- data/lib/statsample/converter/spss.rb +6 -5
- data/lib/statsample/converters.rb +50 -211
- data/lib/statsample/crosstab.rb +26 -25
- data/lib/statsample/daru.rb +117 -0
- data/lib/statsample/dataset.rb +70 -942
- data/lib/statsample/dominanceanalysis.rb +16 -17
- data/lib/statsample/dominanceanalysis/bootstrap.rb +26 -28
- data/lib/statsample/factor/parallelanalysis.rb +17 -19
- data/lib/statsample/factor/pca.rb +21 -20
- data/lib/statsample/factor/principalaxis.rb +3 -3
- data/lib/statsample/graph/boxplot.rb +8 -16
- data/lib/statsample/graph/histogram.rb +4 -4
- data/lib/statsample/graph/scatterplot.rb +8 -7
- data/lib/statsample/histogram.rb +128 -119
- data/lib/statsample/matrix.rb +20 -16
- data/lib/statsample/multiset.rb +39 -38
- data/lib/statsample/regression.rb +3 -3
- data/lib/statsample/regression/multiple.rb +8 -10
- data/lib/statsample/regression/multiple/alglibengine.rb +96 -89
- data/lib/statsample/regression/multiple/baseengine.rb +32 -32
- data/lib/statsample/regression/multiple/gslengine.rb +33 -36
- data/lib/statsample/regression/multiple/matrixengine.rb +7 -9
- data/lib/statsample/regression/multiple/rubyengine.rb +39 -41
- data/lib/statsample/reliability.rb +23 -25
- data/lib/statsample/reliability/icc.rb +8 -7
- data/lib/statsample/reliability/multiscaleanalysis.rb +14 -12
- data/lib/statsample/reliability/scaleanalysis.rb +58 -60
- data/lib/statsample/reliability/skillscaleanalysis.rb +34 -29
- data/lib/statsample/resample.rb +1 -1
- data/lib/statsample/shorthand.rb +29 -25
- data/lib/statsample/test/kolmogorovsmirnov.rb +5 -3
- data/lib/statsample/test/levene.rb +28 -27
- data/lib/statsample/test/t.rb +7 -9
- data/lib/statsample/test/umannwhitney.rb +28 -28
- data/lib/statsample/test/wilcoxonsignedrank.rb +45 -43
- data/lib/statsample/vector.rb +70 -1013
- data/lib/statsample/version.rb +1 -1
- data/statsample.gemspec +12 -16
- data/test/helpers_tests.rb +1 -1
- data/test/test_analysis.rb +17 -17
- data/test/test_anova_contrast.rb +6 -6
- data/test/test_anovatwowaywithdataset.rb +8 -8
- data/test/test_anovawithvectors.rb +8 -8
- data/test/test_awesome_print_bug.rb +1 -1
- data/test/test_bartlettsphericity.rb +4 -4
- data/test/test_bivariate.rb +48 -43
- data/test/test_codification.rb +33 -33
- data/test/test_crosstab.rb +9 -9
- data/test/test_dataset.rb +28 -458
- data/test/test_factor.rb +46 -38
- data/test/test_factor_pa.rb +22 -13
- data/test/test_ggobi.rb +4 -4
- data/test/test_gsl.rb +4 -4
- data/test/test_histogram.rb +3 -3
- data/test/test_matrix.rb +13 -13
- data/test/test_multiset.rb +103 -91
- data/test/test_regression.rb +57 -52
- data/test/test_reliability.rb +55 -45
- data/test/test_reliability_icc.rb +8 -8
- data/test/test_reliability_skillscale.rb +26 -24
- data/test/test_resample.rb +1 -1
- data/test/test_statistics.rb +3 -13
- data/test/test_stest.rb +9 -9
- data/test/test_stratified.rb +3 -3
- data/test/test_test_t.rb +12 -12
- data/test/test_umannwhitney.rb +2 -2
- data/test/test_vector.rb +76 -613
- data/test/test_wilcoxonsignedrank.rb +4 -4
- metadata +57 -28
- data/lib/statsample/rserve_extension.rb +0 -20
- data/lib/statsample/vector/gsl.rb +0 -106
- data/test/fixtures/repeated_fields.csv +0 -7
- data/test/fixtures/scientific_notation.csv +0 -4
- data/test/fixtures/test_csv.csv +0 -7
- data/test/fixtures/test_xls.xls +0 -0
- data/test/test_csv.rb +0 -63
- data/test/test_rserve_extension.rb +0 -42
- data/test/test_xls.rb +0 -52
@@ -25,8 +25,8 @@ module Statsample
|
|
25
25
|
# * x: independent Vector
|
26
26
|
# * y: dependent Vector
|
27
27
|
# <b>Usage:</b>
|
28
|
-
# x=100.times.collect {|i| rand(100)}
|
29
|
-
# y=100.times.collect {|i| 2+x[i]*2+rand()}
|
28
|
+
# x = Daru::Vector.new(100.times.collect {|i| rand(100)})
|
29
|
+
# y = Daru::Vector.new(100.times.collect {|i| 2+x[i]*2+rand()})
|
30
30
|
# sr=Statsample::Regression.simple(x,y)
|
31
31
|
# sr.a
|
32
32
|
# => 2.51763295177808
|
@@ -49,7 +49,7 @@ module Statsample
|
|
49
49
|
# * :pairwise: uses correlation matrix. Use with caution.
|
50
50
|
#
|
51
51
|
# <b>Usage:</b>
|
52
|
-
# lr=Statsample::Regression::multiple(ds
|
52
|
+
# lr=Statsample::Regression::multiple(ds,:y)
|
53
53
|
def self.multiple(ds,y_var, opts=Hash.new)
|
54
54
|
missing_data= (opts[:missing_data].nil? ) ? :listwise : opts.delete(:missing_data)
|
55
55
|
if missing_data==:pairwise
|
@@ -6,12 +6,12 @@ module Statsample
|
|
6
6
|
# Use:.
|
7
7
|
#
|
8
8
|
# require 'statsample'
|
9
|
-
# a=1000.times.collect {rand}
|
10
|
-
# b=1000.times.collect {rand}
|
11
|
-
# c=1000.times.collect {rand}
|
12
|
-
# ds={
|
13
|
-
# ds[
|
14
|
-
# lr=Statsample::Regression.multiple(ds,
|
9
|
+
# a = Daru::Vector.new(1000.times.collect {rand})
|
10
|
+
# b = Daru::Vector.new(1000.times.collect {rand})
|
11
|
+
# c = Daru::Vector.new(1000.times.collect {rand})
|
12
|
+
# ds= Daru::DataFrame.new({:a => a,:b => b,:c => c})
|
13
|
+
# ds[:y]=ds.collect{|row| row[:a]*5 + row[:b]*3 + row[:c]*2 + rand()}
|
14
|
+
# lr=Statsample::Regression.multiple(ds, :y)
|
15
15
|
# puts lr.summary
|
16
16
|
# Summary for regression of a,b,c over y
|
17
17
|
# *************************************************************
|
@@ -53,8 +53,8 @@ module Statsample
|
|
53
53
|
def initialize(matrix,y_var, opts=Hash.new)
|
54
54
|
matrix.extend Statsample::CovariateMatrix
|
55
55
|
@matrix=matrix
|
56
|
-
@fields=matrix.fields-y_var
|
57
|
-
@y_var=y_var
|
56
|
+
@fields=matrix.fields - y_var
|
57
|
+
@y_var = y_var
|
58
58
|
@q=@y_var.size
|
59
59
|
@matrix_cor=matrix.correlation
|
60
60
|
@matrix_cor_xx = @matrix_cor.submatrix(@fields)
|
@@ -84,8 +84,6 @@ module Statsample
|
|
84
84
|
vxy.quo(@q)
|
85
85
|
end
|
86
86
|
end
|
87
|
-
|
88
|
-
|
89
87
|
end
|
90
88
|
end
|
91
89
|
end
|
@@ -9,108 +9,115 @@ module Multiple
|
|
9
9
|
# If you need pairwise, use RubyEngine
|
10
10
|
# Example:
|
11
11
|
#
|
12
|
-
# @a=[1,3,2,4,3,5,4,6,5,7]
|
13
|
-
# @b=[3,3,4,4,5,5,6,6,4,4]
|
14
|
-
# @c=[11,22,30,40,50,65,78,79,99,100]
|
15
|
-
# @y=[3,4,5,6,7,8,9,10,20,30]
|
16
|
-
# ds={
|
17
|
-
# lr=Statsample::Regression::Multiple::AlglibEngine.new(ds,
|
12
|
+
# @a = Daru::Vector.new([1,3,2,4,3,5,4,6,5,7])
|
13
|
+
# @b = Daru::Vector.new([3,3,4,4,5,5,6,6,4,4])
|
14
|
+
# @c = Daru::Vector.new([11,22,30,40,50,65,78,79,99,100])
|
15
|
+
# @y = Daru::Vector.new([3,4,5,6,7,8,9,10,20,30])
|
16
|
+
# ds = Daru::DataFrame.new({:a => @a,:b => @b,:c => @c,:y => @y})
|
17
|
+
# lr=Statsample::Regression::Multiple::AlglibEngine.new(ds, :y)
|
18
18
|
#
|
19
19
|
class AlglibEngine < BaseEngine
|
20
20
|
def initialize(ds,y_var, opts=Hash.new)
|
21
21
|
super
|
22
|
-
@ds=ds.dup_only_valid
|
23
|
-
@ds_valid
|
24
|
-
@dy
|
25
|
-
@ds_indep=ds.dup(ds.
|
22
|
+
@ds = ds.dup_only_valid
|
23
|
+
@ds_valid = @ds
|
24
|
+
@dy = @ds[@y_var]
|
25
|
+
@ds_indep = ds.dup(ds.vectors.to_a - [y_var])
|
26
26
|
# Create a custom matrix
|
27
|
-
columns=[]
|
28
|
-
@fields=[]
|
29
|
-
@ds.
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
@dep_columns=columns.dup
|
27
|
+
columns = []
|
28
|
+
@fields = []
|
29
|
+
@ds.vectors.each do |f|
|
30
|
+
if f != @y_var
|
31
|
+
columns.push(@ds[f].to_a)
|
32
|
+
@fields.push(f)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
@dep_columns = columns.dup
|
36
36
|
columns.push(@ds[@y_var])
|
37
37
|
matrix=Matrix.columns(columns)
|
38
38
|
@lr_s=nil
|
39
39
|
@lr=::Alglib::LinearRegression.build_from_matrix(matrix)
|
40
40
|
@coeffs=assign_names(@lr.coeffs)
|
41
|
-
|
42
41
|
end
|
43
42
|
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
columns.push(@ds_s[f].to_a) unless f==@y_var
|
94
|
-
}
|
95
|
-
@dep_columns_s=columns.dup
|
96
|
-
columns.push(@ds_s[@y_var])
|
97
|
-
matrix=Matrix.columns(columns)
|
98
|
-
@lr_s=Alglib::LinearRegression.build_from_matrix(matrix)
|
99
|
-
end
|
100
|
-
def process(v)
|
101
|
-
@lr.process(v)
|
102
|
-
end
|
103
|
-
def process_s(v)
|
104
|
-
lr_s.process(v)
|
105
|
-
end
|
106
|
-
# ???? Not equal to SPSS output
|
107
|
-
def standarized_residuals
|
108
|
-
res=residuals
|
109
|
-
red_sd=residuals.sds
|
110
|
-
res.collect {|v|
|
111
|
-
v.quo(red_sd)
|
112
|
-
}.to_vector(:numeric)
|
43
|
+
def _dump(i)
|
44
|
+
Marshal.dump({'ds'=>@ds,'y_var'=>@y_var})
|
45
|
+
end
|
46
|
+
|
47
|
+
def self._load(data)
|
48
|
+
h=Marshal.load(data)
|
49
|
+
self.new(h['ds'], h['y_var'])
|
50
|
+
end
|
51
|
+
|
52
|
+
def coeffs
|
53
|
+
@coeffs
|
54
|
+
end
|
55
|
+
# Coefficients using a constant
|
56
|
+
# Based on http://www.xycoon.com/ols1.htm
|
57
|
+
def matrix_resolution
|
58
|
+
mse_p=mse
|
59
|
+
columns=@dep_columns.dup.map {|xi| xi.map{|i| i.to_f}}
|
60
|
+
columns.unshift([1.0]*@ds.cases)
|
61
|
+
y=Matrix.columns([@dy.data.map {|i| i.to_f}])
|
62
|
+
x=Matrix.columns(columns)
|
63
|
+
xt=x.t
|
64
|
+
matrix=((xt*x)).inverse*xt
|
65
|
+
matrix*y
|
66
|
+
end
|
67
|
+
|
68
|
+
def r2
|
69
|
+
r**2
|
70
|
+
end
|
71
|
+
|
72
|
+
def r
|
73
|
+
Bivariate::pearson(@dy,predicted)
|
74
|
+
end
|
75
|
+
|
76
|
+
def sst
|
77
|
+
@dy.ss
|
78
|
+
end
|
79
|
+
|
80
|
+
def constant
|
81
|
+
@lr.constant
|
82
|
+
end
|
83
|
+
|
84
|
+
def standarized_coeffs
|
85
|
+
l=lr_s
|
86
|
+
assign_names(l.coeffs)
|
87
|
+
end
|
88
|
+
|
89
|
+
def lr_s
|
90
|
+
if @lr_s.nil?
|
91
|
+
build_standarized
|
113
92
|
end
|
93
|
+
@lr_s
|
94
|
+
end
|
95
|
+
|
96
|
+
def build_standarized
|
97
|
+
@ds_s=@ds.standardize
|
98
|
+
columns=[]
|
99
|
+
@ds_s.vectors.each{|f|
|
100
|
+
columns.push(@ds_s[f].to_a) unless f == @y_var
|
101
|
+
}
|
102
|
+
@dep_columns_s=columns.dup
|
103
|
+
columns.push(@ds_s[@y_var])
|
104
|
+
matrix=Matrix.columns(columns)
|
105
|
+
@lr_s=Alglib::LinearRegression.build_from_matrix(matrix)
|
106
|
+
end
|
107
|
+
|
108
|
+
def process(v)
|
109
|
+
@lr.process(v)
|
110
|
+
end
|
111
|
+
|
112
|
+
def process_s(v)
|
113
|
+
lr_s.process(v)
|
114
|
+
end
|
115
|
+
# ???? Not equal to SPSS output
|
116
|
+
def standarized_residuals
|
117
|
+
res = residuals
|
118
|
+
red_sd = residuals.sds
|
119
|
+
Daru::Vector.new(res.collect {|v| v.quo(red_sd) })
|
120
|
+
end
|
114
121
|
end
|
115
122
|
end
|
116
123
|
end
|
@@ -19,13 +19,12 @@ module Statsample
|
|
19
19
|
end
|
20
20
|
def initialize(ds, y_var, opts = Hash.new)
|
21
21
|
@ds=ds
|
22
|
-
@predictors_n=@ds.
|
23
|
-
@total_cases=@ds.
|
24
|
-
@cases=@ds.
|
22
|
+
@predictors_n=@ds.vectors.size-1
|
23
|
+
@total_cases=@ds.nrows
|
24
|
+
@cases=@ds.nrows
|
25
25
|
@y_var=y_var
|
26
26
|
@r2=nil
|
27
|
-
@name=_("Multiple Regression: %s over %s") % [ ds.
|
28
|
-
|
27
|
+
@name=_("Multiple Regression: %s over %s") % [ ds.vectors.to_a.join(",") , @y_var]
|
29
28
|
|
30
29
|
opts_default={:digits=>3}
|
31
30
|
@opts=opts_default.merge opts
|
@@ -33,7 +32,6 @@ module Statsample
|
|
33
32
|
@opts.each{|k,v|
|
34
33
|
self.send("#{k}=",v) if self.respond_to? k
|
35
34
|
}
|
36
|
-
|
37
35
|
end
|
38
36
|
# Calculate F Test
|
39
37
|
def anova
|
@@ -45,15 +43,17 @@ module Statsample
|
|
45
43
|
end
|
46
44
|
# Retrieves a vector with predicted values for y
|
47
45
|
def predicted
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
46
|
+
Daru::Vector.new(
|
47
|
+
@total_cases.times.collect do |i|
|
48
|
+
invalid = false
|
49
|
+
vect = @dep_columns.collect {|v| invalid = true if v[i].nil?; v[i]}
|
50
|
+
if invalid
|
51
|
+
nil
|
52
|
+
else
|
53
|
+
process(vect)
|
54
|
+
end
|
55
55
|
end
|
56
|
-
|
56
|
+
)
|
57
57
|
end
|
58
58
|
# Retrieves a vector with standarized values for y
|
59
59
|
def standarized_predicted
|
@@ -61,15 +61,17 @@ module Statsample
|
|
61
61
|
end
|
62
62
|
# Retrieves a vector with residuals values for y
|
63
63
|
def residuals
|
64
|
-
(
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
nil
|
69
|
-
|
70
|
-
|
64
|
+
Daru::Vector.new(
|
65
|
+
(0...@total_cases).collect do |i|
|
66
|
+
invalid=false
|
67
|
+
vect=@dep_columns.collect{|v| invalid=true if v[i].nil?; v[i]}
|
68
|
+
if invalid or @ds[@y_var][i].nil?
|
69
|
+
nil
|
70
|
+
else
|
71
|
+
@ds[@y_var][i] - process(vect)
|
72
|
+
end
|
71
73
|
end
|
72
|
-
|
74
|
+
)
|
73
75
|
end
|
74
76
|
# R Multiple
|
75
77
|
def r
|
@@ -131,12 +133,10 @@ module Statsample
|
|
131
133
|
# Tolerance for a given variable
|
132
134
|
# http://talkstats.com/showthread.php?t=5056
|
133
135
|
def tolerance(var)
|
134
|
-
ds=assign_names(@dep_columns)
|
135
|
-
ds.each{|k,v|
|
136
|
-
|
137
|
-
|
138
|
-
lr=self.class.new(ds.to_dataset,var)
|
139
|
-
1-lr.r2
|
136
|
+
ds = assign_names(@dep_columns)
|
137
|
+
ds.each { |k,v| ds[k] = Daru::Vector.new(v) }
|
138
|
+
lr = self.class.new(Daru::DataFrame.new(ds),var)
|
139
|
+
1 - lr.r2
|
140
140
|
end
|
141
141
|
# Tolerances for each coefficient
|
142
142
|
def coeffs_tolerances
|
@@ -165,12 +165,12 @@ module Statsample
|
|
165
165
|
def estimated_variance_covariance_matrix
|
166
166
|
#mse_p=mse
|
167
167
|
columns=[]
|
168
|
-
@ds_valid.
|
169
|
-
v
|
170
|
-
columns.push(v.
|
168
|
+
@ds_valid.vectors.each{|k|
|
169
|
+
v = @ds_valid[k]
|
170
|
+
columns.push(v.to_a) unless k == @y_var
|
171
171
|
}
|
172
172
|
columns.unshift([1.0]*@valid_cases)
|
173
|
-
x
|
173
|
+
x=::Matrix.columns(columns)
|
174
174
|
matrix=((x.t*x)).inverse * mse
|
175
175
|
matrix.collect {|i| Math::sqrt(i) if i>=0 }
|
176
176
|
end
|
@@ -9,43 +9,44 @@ if Statsample.has_gsl?
|
|
9
9
|
# If you need pairwise, use RubyEngine
|
10
10
|
# Example:
|
11
11
|
#
|
12
|
-
# @a=[1,3,2,4,3,5,4,6,5,7]
|
13
|
-
# @b=[3,3,4,4,5,5,6,6,4,4]
|
14
|
-
# @c=[11,22,30,40,50,65,78,79,99,100]
|
15
|
-
# @y=[3,4,5,6,7,8,9,10,20,30]
|
16
|
-
# ds={
|
17
|
-
# lr=Statsample::Regression::Multiple::GslEngine.new(ds
|
12
|
+
# @a = Daru::Vector.new([1,3,2,4,3,5,4,6,5,7])
|
13
|
+
# @b = Daru::Vector.new([3,3,4,4,5,5,6,6,4,4])
|
14
|
+
# @c = Daru::Vector.new([11,22,30,40,50,65,78,79,99,100])
|
15
|
+
# @y = Daru::Vector.new([3,4,5,6,7,8,9,10,20,30])
|
16
|
+
# ds = Daru::DataFrame.new({:a => @a,:b => @b,:c => @c,:y => @y})
|
17
|
+
# lr=Statsample::Regression::Multiple::GslEngine.new(ds,:y)
|
18
18
|
#
|
19
19
|
class GslEngine < BaseEngine
|
20
20
|
def initialize(ds,y_var, opts=Hash.new)
|
21
21
|
super
|
22
|
-
@ds=ds.dup_only_valid
|
23
|
-
@ds_valid
|
24
|
-
@valid_cases
|
25
|
-
@dy
|
26
|
-
@ds_indep=ds.dup(ds.
|
22
|
+
@ds = ds.dup_only_valid
|
23
|
+
@ds_valid = @ds
|
24
|
+
@valid_cases = @ds_valid.nrows
|
25
|
+
@dy = @ds[@y_var]
|
26
|
+
@ds_indep = ds.dup(ds.vectors.to_a - [y_var])
|
27
27
|
# Create a custom matrix
|
28
28
|
columns=[]
|
29
29
|
@fields=[]
|
30
|
-
max_deps = GSL::Matrix.alloc(@ds.
|
31
|
-
constant_col=@ds.
|
32
|
-
for i in 0...@ds.
|
30
|
+
max_deps = GSL::Matrix.alloc(@ds.nrows, @ds.vectors.size)
|
31
|
+
constant_col=@ds.vectors.size-1
|
32
|
+
for i in 0...@ds.nrows
|
33
33
|
max_deps.set(i,constant_col,1)
|
34
34
|
end
|
35
|
-
j=0
|
36
|
-
@ds.
|
37
|
-
if f
|
38
|
-
@ds[f].each_index
|
35
|
+
j = 0
|
36
|
+
@ds.vectors.each do |f|
|
37
|
+
if f != @y_var
|
38
|
+
@ds[f].each_index do |i1|
|
39
39
|
max_deps.set(i1,j,@ds[f][i1])
|
40
|
-
|
40
|
+
end
|
41
|
+
|
41
42
|
columns.push(@ds[f].to_a)
|
42
43
|
@fields.push(f)
|
43
|
-
j+=1
|
44
|
+
j += 1
|
44
45
|
end
|
45
|
-
|
46
|
-
@dep_columns=columns.dup
|
47
|
-
@lr_s=nil
|
48
|
-
c, @cov, @chisq, @status = GSL::MultiFit.linear(max_deps, @dy.
|
46
|
+
end
|
47
|
+
@dep_columns = columns.dup
|
48
|
+
@lr_s = nil
|
49
|
+
c, @cov, @chisq, @status = GSL::MultiFit.linear(max_deps, @dy.to_gsl)
|
49
50
|
@constant=c[constant_col]
|
50
51
|
@coeffs_a=c.to_a.slice(0...constant_col)
|
51
52
|
@coeffs=assign_names(@coeffs_a)
|
@@ -97,7 +98,7 @@ if Statsample.has_gsl?
|
|
97
98
|
@lr_s
|
98
99
|
end
|
99
100
|
def build_standarized
|
100
|
-
@ds_s=@ds.
|
101
|
+
@ds_s=@ds.standardize
|
101
102
|
@lr_s=GslEngine.new(@ds_s,@y_var)
|
102
103
|
end
|
103
104
|
def process_s(v)
|
@@ -107,24 +108,20 @@ if Statsample.has_gsl?
|
|
107
108
|
def standarized_residuals
|
108
109
|
res=residuals
|
109
110
|
red_sd=residuals.sds
|
110
|
-
res.collect {|v|
|
111
|
-
v.quo(red_sd)
|
112
|
-
}.to_vector(:numeric)
|
111
|
+
Daru::Vector.new(res.collect {|v| v.quo(red_sd) })
|
113
112
|
end
|
114
113
|
|
115
114
|
# Standard error for coeffs
|
116
115
|
def coeffs_se
|
117
|
-
out={}
|
118
|
-
evcm=estimated_variance_covariance_matrix
|
119
|
-
@ds_valid.
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
out[f]=evcm[mi,mi]
|
116
|
+
out = {}
|
117
|
+
evcm = estimated_variance_covariance_matrix
|
118
|
+
@ds_valid.vectors.to_a.each_with_index do |f,i|
|
119
|
+
mi = i+1
|
120
|
+
next if f == @y_var
|
121
|
+
out[f] = evcm[mi,mi]
|
124
122
|
end
|
125
123
|
out
|
126
124
|
end
|
127
|
-
|
128
125
|
end
|
129
126
|
end
|
130
127
|
end
|