statsample 0.8.0 → 0.8.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +2 -0
- data/lib/statsample.rb +1 -1
- data/lib/statsample/dominanceanalysis.rb +46 -47
- data/lib/statsample/regression/multiple/baseengine.rb +2 -2
- data/lib/statsample/regression/multiple/matrixengine.rb +2 -2
- data/test/test_promise_after.rb +1 -1
- data/test/test_regression.rb +14 -2
- metadata +1 -1
data/History.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1
|
+
=== 0.8.1 / 2010-03-29
|
2
|
+
* Fixed Regression summaries
|
1
3
|
=== 0.8.0 / 2010-03-29
|
2
4
|
* New Statsample::Test::T module, with classes and methods to do Student's t tests for one and two samples.
|
3
5
|
* Statsample::PromiseAfter module to set a number of variables without explicitly call the compute or iterate method
|
data/lib/statsample.rb
CHANGED
@@ -313,59 +313,58 @@ module Statsample
|
|
313
313
|
rp.add(self)
|
314
314
|
rp.to_text
|
315
315
|
end
|
316
|
-
def report_building(
|
316
|
+
def report_building(g)
|
317
317
|
compute if @models.nil?
|
318
318
|
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
t.row(m.add_table_row)
|
335
|
-
}
|
336
|
-
# Report averages
|
337
|
-
a=average_k(i)
|
338
|
-
if !a.nil?
|
339
|
-
t.hr
|
340
|
-
row=[_("k=%d Average") % i,"",""] + @predictors.collect{|f|
|
341
|
-
sprintf("%0.3f",a[f])
|
319
|
+
g.section(:name=>@name) do |generator|
|
320
|
+
header=["","r2",_("sign")]+@predictors.collect {|c| DominanceAnalysis.predictor_name(c) }
|
321
|
+
|
322
|
+
generator.table(:name=>_("Dominance Analysis result"), :header=>header) do |t|
|
323
|
+
|
324
|
+
row=[_("Model 0"),"",""]+@predictors.collect{|f|
|
325
|
+
sprintf("%0.3f", md([f]).r2)
|
326
|
+
}
|
327
|
+
|
328
|
+
t.row(row)
|
329
|
+
t.hr
|
330
|
+
for i in 1..@predictors.size
|
331
|
+
mk=md_k(i)
|
332
|
+
mk.each{|m|
|
333
|
+
t.row(m.add_table_row)
|
342
334
|
}
|
335
|
+
# Report averages
|
336
|
+
a=average_k(i)
|
337
|
+
if !a.nil?
|
338
|
+
t.hr
|
339
|
+
row=[_("k=%d Average") % i,"",""] + @predictors.collect{|f|
|
340
|
+
sprintf("%0.3f",a[f])
|
341
|
+
}
|
342
|
+
t.row(row)
|
343
|
+
t.hr
|
344
|
+
|
345
|
+
end
|
346
|
+
end
|
347
|
+
|
348
|
+
g=general_averages
|
349
|
+
t.hr
|
350
|
+
|
351
|
+
row=[_("Overall averages"),"",""]+@predictors.collect{|f|
|
352
|
+
sprintf("%0.3f",g[f])
|
353
|
+
}
|
354
|
+
t.row(row)
|
355
|
+
end
|
356
|
+
|
357
|
+
td=total_dominance
|
358
|
+
cd=conditional_dominance
|
359
|
+
gd=general_dominance
|
360
|
+
generator.table(:name=>_("Pairwise dominance"), :header=>[_("Pairs"),_("Total"),_("Conditional"),_("General")]) do |t|
|
361
|
+
pairs.each{|p|
|
362
|
+
name=p.join(" - ")
|
363
|
+
row=[name, sprintf("%0.1f",td[p]), sprintf("%0.1f",cd[p]), sprintf("%0.1f",gd[p])]
|
343
364
|
t.row(row)
|
344
|
-
|
345
|
-
|
365
|
+
}
|
346
366
|
end
|
347
367
|
end
|
348
|
-
|
349
|
-
g=general_averages
|
350
|
-
t.hr
|
351
|
-
|
352
|
-
row=[_("Overall averages"),"",""]+@predictors.collect{|f|
|
353
|
-
sprintf("%0.3f",g[f])
|
354
|
-
}
|
355
|
-
t.row(row)
|
356
|
-
generator.parse_element(t)
|
357
|
-
|
358
|
-
td=total_dominance
|
359
|
-
cd=conditional_dominance
|
360
|
-
gd=general_dominance
|
361
|
-
t=ReportBuilder::Table.new(:name=>_("Pairwise dominance"), :header=>[_("Pairs"),_("Total"),_("Conditional"),_("General")])
|
362
|
-
pairs.each{|p|
|
363
|
-
name=p.join(" - ")
|
364
|
-
row=[name, sprintf("%0.1f",td[p]), sprintf("%0.1f",cd[p]), sprintf("%0.1f",gd[p])]
|
365
|
-
t.row(row)
|
366
|
-
}
|
367
|
-
generator.parse_element(t)
|
368
|
-
generator.html("</div>")
|
369
368
|
end
|
370
369
|
class ModelData # :nodoc:
|
371
370
|
attr_reader :contributions
|
@@ -172,9 +172,9 @@ module Statsample
|
|
172
172
|
|
173
173
|
g.table(:name=>"ANOVA", :header=>%w{source ss df ms f s}) do |t|
|
174
174
|
t.row([_("Regression"), sprintf("%0.3f",ssr), df_r, sprintf("%0.3f",msr), sprintf("%0.3f",f), sprintf("%0.3f", significance)])
|
175
|
-
t.row([_("Error"), sprintf("%0.3f",sse), df_e, sprintf("%0.3f",mse)])
|
175
|
+
t.row([_("Error"), sprintf("%0.3f",sse), df_e, sprintf("%0.3f",mse),"",""])
|
176
176
|
|
177
|
-
t.row([_("Total"), sprintf("%0.3f",sst), df_r+df_e])
|
177
|
+
t.row([_("Total"), sprintf("%0.3f",sst), df_r+df_e,"","",""])
|
178
178
|
end
|
179
179
|
sc=standarized_coeffs
|
180
180
|
cse=coeffs_se
|
@@ -206,9 +206,9 @@ class MatrixEngine < BaseEngine
|
|
206
206
|
|
207
207
|
g.table(:name=>"ANOVA", :header=>%w{source ss df ms f s}) do |t|
|
208
208
|
t.row([_("Regression"), sprintf("%0.3f",ssr), df_r, sprintf("%0.3f",msr), sprintf("%0.3f",f), sprintf("%0.3f", significance)])
|
209
|
-
t.row([_("Error"), sprintf("%0.3f",sse), df_e, sprintf("%0.3f",mse)])
|
209
|
+
t.row([_("Error"), sprintf("%0.3f",sse), df_e, sprintf("%0.3f",mse),"",""])
|
210
210
|
|
211
|
-
t.row([_("Total"), sprintf("%0.3f",sst), df_r+df_e])
|
211
|
+
t.row([_("Total"), sprintf("%0.3f",sst), df_r+df_e,"","",""])
|
212
212
|
end
|
213
213
|
sc=standarized_coeffs
|
214
214
|
cse=coeffs_se
|
data/test/test_promise_after.rb
CHANGED
data/test/test_regression.rb
CHANGED
@@ -18,7 +18,17 @@ class StatsampleRegressionTestCase < MiniTest::Unit::TestCase
|
|
18
18
|
assert_in_delta(-0.957, reg.b,0.001)
|
19
19
|
assert_in_delta(4.248,reg.standard_error,0.002)
|
20
20
|
end
|
21
|
-
|
21
|
+
def test_summaries
|
22
|
+
a=100.times.map{rand(100)}.to_scale
|
23
|
+
b=100.times.map{rand(100)}.to_scale
|
24
|
+
y=100.times.map{rand(100)}.to_scale
|
25
|
+
ds={'a'=>a,'b'=>b,'y'=>y}.to_dataset
|
26
|
+
lr=Statsample::Regression::Multiple::RubyEngine.new(ds,'y')
|
27
|
+
assert(lr.summary.size>0)
|
28
|
+
|
29
|
+
|
30
|
+
|
31
|
+
end
|
22
32
|
def test_multiple_dependent
|
23
33
|
complete=Matrix[
|
24
34
|
[1,0.53,0.62,0.19,-0.09,0.08,0.02,-0.12,0.08],
|
@@ -40,8 +50,8 @@ class StatsampleRegressionTestCase < MiniTest::Unit::TestCase
|
|
40
50
|
assert_in_delta(0.197, lr.r2yx_covariance,0.001)
|
41
51
|
assert_in_delta(0.07, lr.p2yx,0.001)
|
42
52
|
|
43
|
-
|
44
53
|
end
|
54
|
+
|
45
55
|
def test_multiple_regression_pairwise_2
|
46
56
|
@a=[1,3,2,4,3,5,4,6,5,7,3,nil,3,nil,3].to_vector(:scale)
|
47
57
|
@b=[3,3,4,4,5,5,6,6,4,4,2,2,nil,6,2].to_vector(:scale)
|
@@ -67,6 +77,7 @@ class StatsampleRegressionTestCase < MiniTest::Unit::TestCase
|
|
67
77
|
@y=[3,4,5,6,7,8,9,10,20,30].to_vector(:scale)
|
68
78
|
ds={'a'=>@a,'b'=>@b,'c'=>@c,'y'=>@y}.to_dataset
|
69
79
|
lr=Statsample::Regression::Multiple::GslEngine.new(ds,'y')
|
80
|
+
assert(lr.summary.size>0)
|
70
81
|
model_test(lr,'gsl')
|
71
82
|
predicted=[1.7857, 6.0989, 3.2433, 7.2908, 4.9667, 10.3428, 8.8158, 10.4717, 23.6639, 25.3198]
|
72
83
|
c_predicted=lr.predicted
|
@@ -148,6 +159,7 @@ class StatsampleRegressionTestCase < MiniTest::Unit::TestCase
|
|
148
159
|
|
149
160
|
covariance=Statsample::Bivariate.covariance_matrix(ds)
|
150
161
|
lr=Statsample::Regression::Multiple::MatrixEngine.new(covariance,'y', :y_mean=>@y.mean, :x_mean=>{'a'=>ds['a'].mean, 'b'=>ds['b'].mean, 'c'=>ds['c'].mean}, :cases=>@a.size)
|
162
|
+
assert(lr.summary.size>0)
|
151
163
|
|
152
164
|
model_test(lr , "covariance matrix")
|
153
165
|
end
|