statsample 0.5.1 → 0.6.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (51) hide show
  1. data/History.txt +12 -0
  2. data/Manifest.txt +13 -0
  3. data/README.txt +2 -1
  4. data/demo/pca.rb +29 -0
  5. data/demo/umann.rb +8 -0
  6. data/lib/distribution.rb +0 -1
  7. data/lib/matrix_extension.rb +35 -21
  8. data/lib/statsample.rb +31 -28
  9. data/lib/statsample/anova.rb +7 -2
  10. data/lib/statsample/bivariate.rb +17 -11
  11. data/lib/statsample/codification.rb +136 -87
  12. data/lib/statsample/combination.rb +0 -2
  13. data/lib/statsample/converter/csv18.rb +1 -1
  14. data/lib/statsample/converter/csv19.rb +1 -1
  15. data/lib/statsample/converters.rb +176 -171
  16. data/lib/statsample/crosstab.rb +227 -154
  17. data/lib/statsample/dataset.rb +94 -12
  18. data/lib/statsample/dominanceanalysis.rb +69 -62
  19. data/lib/statsample/dominanceanalysis/bootstrap.rb +25 -21
  20. data/lib/statsample/factor.rb +18 -0
  21. data/lib/statsample/factor/pca.rb +128 -0
  22. data/lib/statsample/factor/principalaxis.rb +133 -0
  23. data/lib/statsample/factor/rotation.rb +125 -0
  24. data/lib/statsample/histogram.rb +99 -0
  25. data/lib/statsample/mle.rb +125 -126
  26. data/lib/statsample/mle/logit.rb +91 -91
  27. data/lib/statsample/mle/probit.rb +84 -85
  28. data/lib/statsample/multiset.rb +1 -1
  29. data/lib/statsample/permutation.rb +96 -0
  30. data/lib/statsample/regression.rb +1 -1
  31. data/lib/statsample/regression/binomial.rb +89 -89
  32. data/lib/statsample/regression/binomial/logit.rb +9 -9
  33. data/lib/statsample/regression/binomial/probit.rb +9 -9
  34. data/lib/statsample/regression/multiple.rb +8 -14
  35. data/lib/statsample/regression/multiple/gslengine.rb +1 -1
  36. data/lib/statsample/regression/multiple/rubyengine.rb +55 -55
  37. data/lib/statsample/resample.rb +12 -17
  38. data/lib/statsample/srs.rb +4 -1
  39. data/lib/statsample/test.rb +23 -22
  40. data/lib/statsample/test/umannwhitney.rb +182 -0
  41. data/lib/statsample/vector.rb +854 -815
  42. data/test/test_bivariate.rb +132 -132
  43. data/test/test_codification.rb +71 -50
  44. data/test/test_dataset.rb +19 -1
  45. data/test/test_factor.rb +44 -0
  46. data/test/test_histogram.rb +26 -0
  47. data/test/test_permutation.rb +37 -0
  48. data/test/test_statistics.rb +74 -63
  49. data/test/test_umannwhitney.rb +17 -0
  50. data/test/test_vector.rb +46 -30
  51. metadata +31 -4
@@ -0,0 +1,26 @@
1
+ $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
+ require 'statsample'
3
+ require 'tmpdir'
4
+ require 'test/unit'
5
+
6
+ class StatsampleHistogramTestCase < Test::Unit::TestCase
7
+ def test_control
8
+ h = Statsample::Histogram.alloc(4)
9
+ assert_equal([0.0]*4, h.bin)
10
+ assert_equal([0.0]*5, h.range)
11
+ h = Statsample::Histogram.alloc([1, 3, 7, 9, 20])
12
+ assert_equal([0.0]*4, h.bin)
13
+ assert_equal([1,3,7,9,20], h.range)
14
+ h = Statsample::Histogram.alloc(5, [0, 5])
15
+ assert_equal([0.0,1.0,2.0,3.0,4.0,5.0], h.range)
16
+ assert_equal([0.0]*5,h.bin)
17
+ h.increment(2.5)
18
+ assert_equal([0.0,0.0,1.0,0.0,0.0], h.bin)
19
+ h.increment([0.5,0.5,3.5,3.5])
20
+ assert_equal([2.0,0.0,1.0,2.0,0.0], h.bin)
21
+ h.increment(0)
22
+ assert_equal([3.0,0.0,1.0,2.0,0.0], h.bin)
23
+ h.increment(5)
24
+ assert_equal([3.0,0.0,1.0,2.0,0.0], h.bin)
25
+ end
26
+ end
@@ -0,0 +1,37 @@
1
+ $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
+ require 'statsample'
3
+ require 'test/unit'
4
+
5
+ class StatsamplePermutationTestCase < Test::Unit::TestCase
6
+ def initialize(*args)
7
+ super
8
+ end
9
+ def test_number_of_permutations
10
+ per1=Statsample::Permutation.new(4)
11
+ assert_equal(24,per1.permutation_number)
12
+ per2=Statsample::Permutation.new([1,1,1,0,0,0])
13
+ assert_equal(20,per2.permutation_number)
14
+ end
15
+ def test_permutation_with_number
16
+ per1=Statsample::Permutation.new(2)
17
+ exp1=[[0,1],[1,0]]
18
+ assert_equal(exp1,per1.permutations)
19
+ per2=Statsample::Permutation.new(3)
20
+ exp2=[[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]]
21
+ assert_equal(exp2,per2.permutations)
22
+
23
+ end
24
+ def test_permutation_with_array_simple
25
+ per1=Statsample::Permutation.new(%w{a b})
26
+ exp1=[['a','b'],['b','a']]
27
+ assert_equal(exp1,per1.permutations)
28
+ per2=Statsample::Permutation.new(%w{a b c})
29
+ exp2=[%w{a b c},%w{a c b},%w{b a c} ,%w{b c a},%w{c a b},%w{c b a}]
30
+ assert_equal(exp2,per2.permutations)
31
+ end
32
+ def test_permutation_with_array_repeated
33
+ per1=Statsample::Permutation.new([0,0,1,1])
34
+ exp1=[[0,0,1,1],[0,1,0,1],[0,1,1,0],[1,0,0,1],[1,0,1,0],[1,1,0,0]]
35
+ assert_equal(exp1,per1.permutations)
36
+ end
37
+ end
@@ -11,72 +11,83 @@ class StatsampleStatisicsTestCase < Test::Unit::TestCase
11
11
  exp=["a","b","c_1","c_2","d_1","d_2","d_3","e"]
12
12
  assert_equal(exp,a.recode_repeated)
13
13
  end
14
- def test_is_number
15
- assert("10".is_number?)
16
- assert("-10".is_number?)
17
- assert("0.1".is_number?)
18
- assert("-0.1".is_number?)
19
- assert("10e3".is_number?)
20
- assert("10e-3".is_number?)
21
- assert(!"1212-1212-1".is_number?)
22
- assert(!"a10".is_number?)
23
- assert(!"".is_number?)
24
-
14
+ def test_is_number
15
+ assert("10".is_number?)
16
+ assert("-10".is_number?)
17
+ assert("0.1".is_number?)
18
+ assert("-0.1".is_number?)
19
+ assert("10e3".is_number?)
20
+ assert("10e-3".is_number?)
21
+ assert(!"1212-1212-1".is_number?)
22
+ assert(!"a10".is_number?)
23
+ assert(!"".is_number?)
24
+
25
+ end
26
+ def test_chi_square
27
+ assert_raise TypeError do
28
+ Statsample::Test.chi_square(1,1)
25
29
  end
26
- def test_chi_square
27
- assert_raise TypeError do
28
- Statsample::Test.chi_square(1,1)
29
- end
30
- real=Matrix[[95,95],[45,155]]
31
- expected=Matrix[[68,122],[72,128]]
32
- assert_nothing_raised do
33
- chi=Statsample::Test.chi_square(real,expected)
34
- end
30
+ real=Matrix[[95,95],[45,155]]
31
+ expected=Matrix[[68,122],[72,128]]
32
+ assert_nothing_raised do
35
33
  chi=Statsample::Test.chi_square(real,expected)
36
- assert_in_delta(32.53,chi,0.1)
37
34
  end
35
+ chi=Statsample::Test.chi_square(real,expected)
36
+ assert_in_delta(32.53,chi,0.1)
37
+ end
38
38
 
39
- def test_estimation_mean
40
- v=([42]*23+[41]*4+[36]*1+[32]*1+[29]*1+[27]*2+[23]*1+[19]*1+[16]*2+[15]*2+[14,11,10,9,7]+ [6]*3+[5]*2+[4,3]).to_vector(:scale)
41
- assert_equal(50,v.size)
42
- assert_equal(1471,v.sum())
43
- limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80)
44
- end
45
- def test_estimation_proportion
46
- # total
47
- pop=3042
48
- sam=200
49
- prop=0.19
50
- assert_in_delta(81.8, Statsample::SRS.proportion_total_sd_ep_wor(prop, sam, pop), 0.1)
51
-
52
- # confidence limits
53
- pop=500
54
- sam=100
55
- prop=0.37
56
- a=0.95
57
- l= Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a)
58
- assert_in_delta(0.28,l[0],0.01)
59
- assert_in_delta(0.46,l[1],0.01)
60
- end
61
- def test_ml
62
- if(true)
63
- real=[1,1,1,1].to_vector(:scale)
64
-
65
- pred=[0.0001,0.0001,0.0001,0.0001].to_vector(:scale)
66
- # puts Statsample::Bivariate.maximum_likehood_dichotomic(pred,real)
67
-
68
- end
39
+ def test_estimation_mean
40
+ v=([42]*23+[41]*4+[36]*1+[32]*1+[29]*1+[27]*2+[23]*1+[19]*1+[16]*2+[15]*2+[14,11,10,9,7]+ [6]*3+[5]*2+[4,3]).to_vector(:scale)
41
+ assert_equal(50,v.size)
42
+ assert_equal(1471,v.sum())
43
+ limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80)
44
+ end
45
+ def test_estimation_proportion
46
+ # total
47
+ pop=3042
48
+ sam=200
49
+ prop=0.19
50
+ assert_in_delta(81.8, Statsample::SRS.proportion_total_sd_ep_wor(prop, sam, pop), 0.1)
51
+
52
+ # confidence limits
53
+ pop=500
54
+ sam=100
55
+ prop=0.37
56
+ a=0.95
57
+ l= Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a)
58
+ assert_in_delta(0.28,l[0],0.01)
59
+ assert_in_delta(0.46,l[1],0.01)
60
+ end
61
+ def test_ml
62
+ if(true)
63
+ real=[1,1,1,1].to_vector(:scale)
64
+
65
+ pred=[0.0001,0.0001,0.0001,0.0001].to_vector(:scale)
66
+ # puts Statsample::Bivariate.maximum_likehood_dichotomic(pred,real)
67
+
69
68
  end
70
- def test_simple_linear_regression
71
- a=[1,2,3,4,5,6].to_vector(:scale)
72
- b=[6,2,4,10,12,8].to_vector(:scale)
73
- reg = Statsample::Regression::Simple.new_from_vectors(a,b)
74
- assert_in_delta((reg.ssr+reg.sse).to_f,reg.sst,0.001)
75
- assert_in_delta(Statsample::Bivariate.pearson(a,b),reg.r,0.001)
76
- assert_in_delta(2.4,reg.a,0.01)
77
- assert_in_delta(1.314,reg.b,0.001)
78
- assert_in_delta(0.657,reg.r,0.001)
79
- assert_in_delta(0.432,reg.r2,0.001)
80
-
81
- end
69
+ end
70
+ def test_simple_linear_regression
71
+ a=[1,2,3,4,5,6].to_vector(:scale)
72
+ b=[6,2,4,10,12,8].to_vector(:scale)
73
+ reg = Statsample::Regression::Simple.new_from_vectors(a,b)
74
+ assert_in_delta((reg.ssr+reg.sse).to_f,reg.sst,0.001)
75
+ assert_in_delta(Statsample::Bivariate.pearson(a,b),reg.r,0.001)
76
+ assert_in_delta(2.4,reg.a,0.01)
77
+ assert_in_delta(1.314,reg.b,0.001)
78
+ assert_in_delta(0.657,reg.r,0.001)
79
+ assert_in_delta(0.432,reg.r2,0.001)
80
+ end
81
+ def test_u_mannwhitney
82
+ a=[1,2,3,4,5,6].to_scale
83
+ b=[0,5,7,9,10,11].to_scale
84
+ assert_equal(7.5, Statsample::Test.u_mannwhitney(a,b).u)
85
+ assert_equal(7.5, Statsample::Test.u_mannwhitney(b,a).u)
86
+ a=[1, 7,8,9,10,11].to_scale
87
+ b=[2,3,4,5,6,12].to_scale
88
+ assert_equal(11, Statsample::Test.u_mannwhitney(a,b).u)
89
+
90
+
91
+
92
+ end
82
93
  end
@@ -0,0 +1,17 @@
1
+ $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
+ require 'statsample'
3
+ require 'test/unit'
4
+
5
+ class StatsampleSrsTestCase < Test::Unit::TestCase
6
+ def test_u_mannwhitney
7
+ v1=[1,2,3,4,7,8,9,10,14,15].to_scale
8
+ v2=[5,6,11,12,13,16,17,18,19].to_scale
9
+ u=Statsample::Test::UMannWhitney.new(v1,v2)
10
+ assert_equal(73,u.r1)
11
+ assert_equal(117,u.r2)
12
+ assert_equal(18,u.u)
13
+ assert_in_delta(-2.205,u.z,0.001)
14
+ assert_in_delta(0.027,u.z_probability,0.001)
15
+ assert_in_delta(0.028,u.exact_probability,0.001)
16
+ end
17
+ end
data/test/test_vector.rb CHANGED
@@ -149,6 +149,10 @@ class TestStatsample::TestVector < Test::Unit::TestCase
149
149
  assert_equal(5,@c.median)
150
150
  assert_equal(4,@c.percentil(25))
151
151
  assert_equal(7,@c.percentil(75))
152
+
153
+ v=[200000, 200000, 210000, 220000, 230000, 250000, 250000, 250000, 270000, 300000, 450000, 130000, 140000, 140000, 140000, 145000, 148000, 165000, 170000, 180000, 180000, 180000, 180000, 180000, 180000 ].to_scale
154
+ assert_equal(180000,v.median)
155
+
152
156
  end
153
157
  def test_ranked
154
158
  v1=[0.8,1.2,1.2,2.3,18].to_vector(:ordinal)
@@ -254,36 +258,28 @@ class TestStatsample::TestVector < Test::Unit::TestCase
254
258
  assert_equal(expected.data,@c.data)
255
259
  end
256
260
  def test_gsl
257
- if HAS_GSL
258
- a=Statsample::Vector.new([1,2,3,4,"STRING"], :scale)
259
- assert_equal(2,a.mean)
260
- assert_equal(a.variance_sample_slow,a.variance_sample)
261
- assert_equal(a.standard_deviation_sample_slow,a.sds)
262
- assert_equal(a.variance_population_slow,a.variance_population)
263
- assert_equal(a.standard_deviation_population_slow,a.standard_deviation_population)
264
- assert_nothing_raised do
265
- a=[].to_vector(:scale)
266
- end
267
- a.add(1,false)
268
- a.add(2,false)
269
- a.set_valid_data
270
- assert_equal(3,a.sum)
271
- b=[1,2,nil,3,4,5,nil,6].to_vector(:scale)
272
- assert_equal(21, b.sum)
273
-
274
- assert_equal(3.5, b.mean)
275
- assert_equal(6,b.gsl.size)
276
- # histogram
277
- a=[11,12,13,15,21,22,23,32,33].to_vector(:scale)
278
- h=a.histogram(3)
279
- assert_equal(4,h[0])
280
- assert_equal(3,h[1])
281
- assert_equal(2,h[2])
282
- h=a.histogram([10,20,30,40])
283
- assert_equal(4,h[0])
284
- assert_equal(3,h[1])
285
- assert_equal(2,h[2])
286
-
261
+ if HAS_GSL
262
+ a=Statsample::Vector.new([1,2,3,4,"STRING"], :scale)
263
+ assert_equal(2,a.mean)
264
+ assert_equal(a.variance_sample_slow,a.variance_sample)
265
+ assert_equal(a.standard_deviation_sample_slow,a.sds)
266
+ assert_equal(a.variance_population_slow,a.variance_population)
267
+ assert_equal(a.standard_deviation_population_slow,a.standard_deviation_population)
268
+ assert_nothing_raised do
269
+ a=[].to_vector(:scale)
270
+ end
271
+ a.add(1,false)
272
+ a.add(2,false)
273
+ a.set_valid_data
274
+ assert_equal(3,a.sum)
275
+ b=[1,2,nil,3,4,5,nil,6].to_vector(:scale)
276
+ assert_equal(21, b.sum)
277
+ assert_equal(3.5, b.mean)
278
+ assert_equal(6,b.gsl.size)
279
+ c=[10,20,30,40,50,100,1000,2000,5000].to_scale
280
+ assert_in_delta(c.skew, c.skew_slow ,0.0001)
281
+ assert_in_delta(c.kurtosis, c.kurtosis_slow ,0.0001)
282
+
287
283
  end
288
284
  end
289
285
  def test_vector_matrix
@@ -344,5 +340,25 @@ class TestStatsample::TestVector < Test::Unit::TestCase
344
340
  exp=[0,0,0,1,1,1].to_scale
345
341
  assert_equal(exp, a.dichotomize)
346
342
  end
343
+ def test_can_be_methods
344
+ a= [0,0,0,1,2,3,nil].to_vector
345
+ assert(a.can_be_scale?)
346
+ a=[0,"s",0,1,2,3,nil].to_vector
347
+ assert(!a.can_be_scale?)
348
+ a.missing_values=["s"]
349
+ assert(a.can_be_scale?)
350
+
351
+ a=[Date.new(2009,10,10), Date.today(), "2009-10-10", "2009-1-1", nil, "NOW"].to_vector
352
+ assert(a.can_be_date?)
353
+ a=[Date.new(2009,10,10), Date.today(),nil,"sss"].to_vector
354
+ assert(!a.can_be_date?)
355
+ end
356
+ def test_date_vector
357
+ a=[Date.new(2009,10,10), :NOW, "2009-10-10", "2009-1-1", nil, "NOW","MISSING"].to_vector(:date, :missing_values=>["MISSING"])
358
+
359
+ assert(a.type==:date)
360
+ expected=[Date.new(2009,10,10), Date.today(), Date.new(2009,10,10), Date.new(2009,1,1), nil, Date.today(), nil ]
361
+ assert_equal(expected, a.date_data_with_nils)
347
362
 
363
+ end
348
364
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: statsample
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.5.1
4
+ version: 0.6.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Claudio Bustos
@@ -9,7 +9,7 @@ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
11
 
12
- date: 2009-11-22 00:00:00 -03:00
12
+ date: 2010-02-06 00:00:00 -03:00
13
13
  default_executable:
14
14
  dependencies:
15
15
  - !ruby/object:Gem::Dependency
@@ -32,6 +32,16 @@ dependencies:
32
32
  - !ruby/object:Gem::Version
33
33
  version: 1.0.0
34
34
  version:
35
+ - !ruby/object:Gem::Dependency
36
+ name: reportbuilder
37
+ type: :runtime
38
+ version_requirement:
39
+ version_requirements: !ruby/object:Gem::Requirement
40
+ requirements:
41
+ - - ">="
42
+ - !ruby/object:Gem::Version
43
+ version: 0.2.0
44
+ version:
35
45
  - !ruby/object:Gem::Dependency
36
46
  name: hoe
37
47
  type: :development
@@ -40,9 +50,9 @@ dependencies:
40
50
  requirements:
41
51
  - - ">="
42
52
  - !ruby/object:Gem::Version
43
- version: 2.3.3
53
+ version: 2.4.0
44
54
  version:
45
- description: A suite for your basic and advanced statistics needs. Descriptive statistics, multiple regression, dominance analysis, scale's reliability analysis, bivariate statistics and others procedures.
55
+ description: A suite for your basic and advanced statistics needs. Descriptive statistics, multiple regression, factorial analysis, dominance analysis, scale's reliability analysis, bivariate statistics and others procedures.
46
56
  email:
47
57
  - clbustos@gmail.com
48
58
  executables:
@@ -75,6 +85,7 @@ files:
75
85
  - demo/item_analysis.rb
76
86
  - demo/mean.rb
77
87
  - demo/nunnally_6.rb
88
+ - demo/pca.rb
78
89
  - demo/proportion.rb
79
90
  - demo/regression.rb
80
91
  - demo/sample_test.csv
@@ -82,6 +93,7 @@ files:
82
93
  - demo/strata_proportion.rb
83
94
  - demo/stratum.rb
84
95
  - demo/t-student.rb
96
+ - demo/umann.rb
85
97
  - lib/distribution.rb
86
98
  - lib/distribution/chisquare.rb
87
99
  - lib/distribution/f.rb
@@ -104,17 +116,23 @@ files:
104
116
  - lib/statsample/dataset.rb
105
117
  - lib/statsample/dominanceanalysis.rb
106
118
  - lib/statsample/dominanceanalysis/bootstrap.rb
119
+ - lib/statsample/factor.rb
120
+ - lib/statsample/factor/pca.rb
121
+ - lib/statsample/factor/principalaxis.rb
122
+ - lib/statsample/factor/rotation.rb
107
123
  - lib/statsample/graph/gdchart.rb
108
124
  - lib/statsample/graph/svgboxplot.rb
109
125
  - lib/statsample/graph/svggraph.rb
110
126
  - lib/statsample/graph/svghistogram.rb
111
127
  - lib/statsample/graph/svgscatterplot.rb
128
+ - lib/statsample/histogram.rb
112
129
  - lib/statsample/htmlreport.rb
113
130
  - lib/statsample/mle.rb
114
131
  - lib/statsample/mle/logit.rb
115
132
  - lib/statsample/mle/normal.rb
116
133
  - lib/statsample/mle/probit.rb
117
134
  - lib/statsample/multiset.rb
135
+ - lib/statsample/permutation.rb
118
136
  - lib/statsample/regression.rb
119
137
  - lib/statsample/regression/binomial.rb
120
138
  - lib/statsample/regression/binomial/logit.rb
@@ -129,6 +147,7 @@ files:
129
147
  - lib/statsample/resample.rb
130
148
  - lib/statsample/srs.rb
131
149
  - lib/statsample/test.rb
150
+ - lib/statsample/test/umannwhitney.rb
132
151
  - lib/statsample/vector.rb
133
152
  - po/es/statsample.po
134
153
  - po/statsample.pot
@@ -142,11 +161,14 @@ files:
142
161
  - test/test_csv.rb
143
162
  - test/test_dataset.rb
144
163
  - test/test_distribution.rb
164
+ - test/test_factor.rb
145
165
  - test/test_ggobi.rb
146
166
  - test/test_gsl.rb
167
+ - test/test_histogram.rb
147
168
  - test/test_logit.rb
148
169
  - test/test_mle.rb
149
170
  - test/test_multiset.rb
171
+ - test/test_permutation.rb
150
172
  - test/test_regression.rb
151
173
  - test/test_reliability.rb
152
174
  - test/test_resample.rb
@@ -154,6 +176,7 @@ files:
154
176
  - test/test_statistics.rb
155
177
  - test/test_stratified.rb
156
178
  - test/test_svg_graph.rb
179
+ - test/test_umannwhitney.rb
157
180
  - test/test_vector.rb
158
181
  - test/test_xls.rb
159
182
  - test/test_xls.xls
@@ -188,8 +211,11 @@ specification_version: 3
188
211
  summary: A suite for your basic and advanced statistics needs
189
212
  test_files:
190
213
  - test/test_bivariate.rb
214
+ - test/test_factor.rb
191
215
  - test/test_anova.rb
216
+ - test/test_permutation.rb
192
217
  - test/test_codification.rb
218
+ - test/test_umannwhitney.rb
193
219
  - test/test_crosstab.rb
194
220
  - test/test_distribution.rb
195
221
  - test/test_svg_graph.rb
@@ -206,6 +232,7 @@ test_files:
206
232
  - test/test_logit.rb
207
233
  - test/test_statistics.rb
208
234
  - test/test_reliability.rb
235
+ - test/test_histogram.rb
209
236
  - test/test_dataset.rb
210
237
  - test/test_regression.rb
211
238
  - test/test_multiset.rb