statsample 0.5.1 → 0.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (51) hide show
  1. data/History.txt +12 -0
  2. data/Manifest.txt +13 -0
  3. data/README.txt +2 -1
  4. data/demo/pca.rb +29 -0
  5. data/demo/umann.rb +8 -0
  6. data/lib/distribution.rb +0 -1
  7. data/lib/matrix_extension.rb +35 -21
  8. data/lib/statsample.rb +31 -28
  9. data/lib/statsample/anova.rb +7 -2
  10. data/lib/statsample/bivariate.rb +17 -11
  11. data/lib/statsample/codification.rb +136 -87
  12. data/lib/statsample/combination.rb +0 -2
  13. data/lib/statsample/converter/csv18.rb +1 -1
  14. data/lib/statsample/converter/csv19.rb +1 -1
  15. data/lib/statsample/converters.rb +176 -171
  16. data/lib/statsample/crosstab.rb +227 -154
  17. data/lib/statsample/dataset.rb +94 -12
  18. data/lib/statsample/dominanceanalysis.rb +69 -62
  19. data/lib/statsample/dominanceanalysis/bootstrap.rb +25 -21
  20. data/lib/statsample/factor.rb +18 -0
  21. data/lib/statsample/factor/pca.rb +128 -0
  22. data/lib/statsample/factor/principalaxis.rb +133 -0
  23. data/lib/statsample/factor/rotation.rb +125 -0
  24. data/lib/statsample/histogram.rb +99 -0
  25. data/lib/statsample/mle.rb +125 -126
  26. data/lib/statsample/mle/logit.rb +91 -91
  27. data/lib/statsample/mle/probit.rb +84 -85
  28. data/lib/statsample/multiset.rb +1 -1
  29. data/lib/statsample/permutation.rb +96 -0
  30. data/lib/statsample/regression.rb +1 -1
  31. data/lib/statsample/regression/binomial.rb +89 -89
  32. data/lib/statsample/regression/binomial/logit.rb +9 -9
  33. data/lib/statsample/regression/binomial/probit.rb +9 -9
  34. data/lib/statsample/regression/multiple.rb +8 -14
  35. data/lib/statsample/regression/multiple/gslengine.rb +1 -1
  36. data/lib/statsample/regression/multiple/rubyengine.rb +55 -55
  37. data/lib/statsample/resample.rb +12 -17
  38. data/lib/statsample/srs.rb +4 -1
  39. data/lib/statsample/test.rb +23 -22
  40. data/lib/statsample/test/umannwhitney.rb +182 -0
  41. data/lib/statsample/vector.rb +854 -815
  42. data/test/test_bivariate.rb +132 -132
  43. data/test/test_codification.rb +71 -50
  44. data/test/test_dataset.rb +19 -1
  45. data/test/test_factor.rb +44 -0
  46. data/test/test_histogram.rb +26 -0
  47. data/test/test_permutation.rb +37 -0
  48. data/test/test_statistics.rb +74 -63
  49. data/test/test_umannwhitney.rb +17 -0
  50. data/test/test_vector.rb +46 -30
  51. metadata +31 -4
@@ -0,0 +1,26 @@
1
+ $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
+ require 'statsample'
3
+ require 'tmpdir'
4
+ require 'test/unit'
5
+
6
+ class StatsampleHistogramTestCase < Test::Unit::TestCase
7
+ def test_control
8
+ h = Statsample::Histogram.alloc(4)
9
+ assert_equal([0.0]*4, h.bin)
10
+ assert_equal([0.0]*5, h.range)
11
+ h = Statsample::Histogram.alloc([1, 3, 7, 9, 20])
12
+ assert_equal([0.0]*4, h.bin)
13
+ assert_equal([1,3,7,9,20], h.range)
14
+ h = Statsample::Histogram.alloc(5, [0, 5])
15
+ assert_equal([0.0,1.0,2.0,3.0,4.0,5.0], h.range)
16
+ assert_equal([0.0]*5,h.bin)
17
+ h.increment(2.5)
18
+ assert_equal([0.0,0.0,1.0,0.0,0.0], h.bin)
19
+ h.increment([0.5,0.5,3.5,3.5])
20
+ assert_equal([2.0,0.0,1.0,2.0,0.0], h.bin)
21
+ h.increment(0)
22
+ assert_equal([3.0,0.0,1.0,2.0,0.0], h.bin)
23
+ h.increment(5)
24
+ assert_equal([3.0,0.0,1.0,2.0,0.0], h.bin)
25
+ end
26
+ end
@@ -0,0 +1,37 @@
1
+ $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
+ require 'statsample'
3
+ require 'test/unit'
4
+
5
+ class StatsamplePermutationTestCase < Test::Unit::TestCase
6
+ def initialize(*args)
7
+ super
8
+ end
9
+ def test_number_of_permutations
10
+ per1=Statsample::Permutation.new(4)
11
+ assert_equal(24,per1.permutation_number)
12
+ per2=Statsample::Permutation.new([1,1,1,0,0,0])
13
+ assert_equal(20,per2.permutation_number)
14
+ end
15
+ def test_permutation_with_number
16
+ per1=Statsample::Permutation.new(2)
17
+ exp1=[[0,1],[1,0]]
18
+ assert_equal(exp1,per1.permutations)
19
+ per2=Statsample::Permutation.new(3)
20
+ exp2=[[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]]
21
+ assert_equal(exp2,per2.permutations)
22
+
23
+ end
24
+ def test_permutation_with_array_simple
25
+ per1=Statsample::Permutation.new(%w{a b})
26
+ exp1=[['a','b'],['b','a']]
27
+ assert_equal(exp1,per1.permutations)
28
+ per2=Statsample::Permutation.new(%w{a b c})
29
+ exp2=[%w{a b c},%w{a c b},%w{b a c} ,%w{b c a},%w{c a b},%w{c b a}]
30
+ assert_equal(exp2,per2.permutations)
31
+ end
32
+ def test_permutation_with_array_repeated
33
+ per1=Statsample::Permutation.new([0,0,1,1])
34
+ exp1=[[0,0,1,1],[0,1,0,1],[0,1,1,0],[1,0,0,1],[1,0,1,0],[1,1,0,0]]
35
+ assert_equal(exp1,per1.permutations)
36
+ end
37
+ end
@@ -11,72 +11,83 @@ class StatsampleStatisicsTestCase < Test::Unit::TestCase
11
11
  exp=["a","b","c_1","c_2","d_1","d_2","d_3","e"]
12
12
  assert_equal(exp,a.recode_repeated)
13
13
  end
14
- def test_is_number
15
- assert("10".is_number?)
16
- assert("-10".is_number?)
17
- assert("0.1".is_number?)
18
- assert("-0.1".is_number?)
19
- assert("10e3".is_number?)
20
- assert("10e-3".is_number?)
21
- assert(!"1212-1212-1".is_number?)
22
- assert(!"a10".is_number?)
23
- assert(!"".is_number?)
24
-
14
+ def test_is_number
15
+ assert("10".is_number?)
16
+ assert("-10".is_number?)
17
+ assert("0.1".is_number?)
18
+ assert("-0.1".is_number?)
19
+ assert("10e3".is_number?)
20
+ assert("10e-3".is_number?)
21
+ assert(!"1212-1212-1".is_number?)
22
+ assert(!"a10".is_number?)
23
+ assert(!"".is_number?)
24
+
25
+ end
26
+ def test_chi_square
27
+ assert_raise TypeError do
28
+ Statsample::Test.chi_square(1,1)
25
29
  end
26
- def test_chi_square
27
- assert_raise TypeError do
28
- Statsample::Test.chi_square(1,1)
29
- end
30
- real=Matrix[[95,95],[45,155]]
31
- expected=Matrix[[68,122],[72,128]]
32
- assert_nothing_raised do
33
- chi=Statsample::Test.chi_square(real,expected)
34
- end
30
+ real=Matrix[[95,95],[45,155]]
31
+ expected=Matrix[[68,122],[72,128]]
32
+ assert_nothing_raised do
35
33
  chi=Statsample::Test.chi_square(real,expected)
36
- assert_in_delta(32.53,chi,0.1)
37
34
  end
35
+ chi=Statsample::Test.chi_square(real,expected)
36
+ assert_in_delta(32.53,chi,0.1)
37
+ end
38
38
 
39
- def test_estimation_mean
40
- v=([42]*23+[41]*4+[36]*1+[32]*1+[29]*1+[27]*2+[23]*1+[19]*1+[16]*2+[15]*2+[14,11,10,9,7]+ [6]*3+[5]*2+[4,3]).to_vector(:scale)
41
- assert_equal(50,v.size)
42
- assert_equal(1471,v.sum())
43
- limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80)
44
- end
45
- def test_estimation_proportion
46
- # total
47
- pop=3042
48
- sam=200
49
- prop=0.19
50
- assert_in_delta(81.8, Statsample::SRS.proportion_total_sd_ep_wor(prop, sam, pop), 0.1)
51
-
52
- # confidence limits
53
- pop=500
54
- sam=100
55
- prop=0.37
56
- a=0.95
57
- l= Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a)
58
- assert_in_delta(0.28,l[0],0.01)
59
- assert_in_delta(0.46,l[1],0.01)
60
- end
61
- def test_ml
62
- if(true)
63
- real=[1,1,1,1].to_vector(:scale)
64
-
65
- pred=[0.0001,0.0001,0.0001,0.0001].to_vector(:scale)
66
- # puts Statsample::Bivariate.maximum_likehood_dichotomic(pred,real)
67
-
68
- end
39
+ def test_estimation_mean
40
+ v=([42]*23+[41]*4+[36]*1+[32]*1+[29]*1+[27]*2+[23]*1+[19]*1+[16]*2+[15]*2+[14,11,10,9,7]+ [6]*3+[5]*2+[4,3]).to_vector(:scale)
41
+ assert_equal(50,v.size)
42
+ assert_equal(1471,v.sum())
43
+ limits=Statsample::SRS.mean_confidence_interval_z(v.mean(), v.sds(), v.size,676,0.80)
44
+ end
45
+ def test_estimation_proportion
46
+ # total
47
+ pop=3042
48
+ sam=200
49
+ prop=0.19
50
+ assert_in_delta(81.8, Statsample::SRS.proportion_total_sd_ep_wor(prop, sam, pop), 0.1)
51
+
52
+ # confidence limits
53
+ pop=500
54
+ sam=100
55
+ prop=0.37
56
+ a=0.95
57
+ l= Statsample::SRS.proportion_confidence_interval_z(prop, sam, pop, a)
58
+ assert_in_delta(0.28,l[0],0.01)
59
+ assert_in_delta(0.46,l[1],0.01)
60
+ end
61
+ def test_ml
62
+ if(true)
63
+ real=[1,1,1,1].to_vector(:scale)
64
+
65
+ pred=[0.0001,0.0001,0.0001,0.0001].to_vector(:scale)
66
+ # puts Statsample::Bivariate.maximum_likehood_dichotomic(pred,real)
67
+
69
68
  end
70
- def test_simple_linear_regression
71
- a=[1,2,3,4,5,6].to_vector(:scale)
72
- b=[6,2,4,10,12,8].to_vector(:scale)
73
- reg = Statsample::Regression::Simple.new_from_vectors(a,b)
74
- assert_in_delta((reg.ssr+reg.sse).to_f,reg.sst,0.001)
75
- assert_in_delta(Statsample::Bivariate.pearson(a,b),reg.r,0.001)
76
- assert_in_delta(2.4,reg.a,0.01)
77
- assert_in_delta(1.314,reg.b,0.001)
78
- assert_in_delta(0.657,reg.r,0.001)
79
- assert_in_delta(0.432,reg.r2,0.001)
80
-
81
- end
69
+ end
70
+ def test_simple_linear_regression
71
+ a=[1,2,3,4,5,6].to_vector(:scale)
72
+ b=[6,2,4,10,12,8].to_vector(:scale)
73
+ reg = Statsample::Regression::Simple.new_from_vectors(a,b)
74
+ assert_in_delta((reg.ssr+reg.sse).to_f,reg.sst,0.001)
75
+ assert_in_delta(Statsample::Bivariate.pearson(a,b),reg.r,0.001)
76
+ assert_in_delta(2.4,reg.a,0.01)
77
+ assert_in_delta(1.314,reg.b,0.001)
78
+ assert_in_delta(0.657,reg.r,0.001)
79
+ assert_in_delta(0.432,reg.r2,0.001)
80
+ end
81
+ def test_u_mannwhitney
82
+ a=[1,2,3,4,5,6].to_scale
83
+ b=[0,5,7,9,10,11].to_scale
84
+ assert_equal(7.5, Statsample::Test.u_mannwhitney(a,b).u)
85
+ assert_equal(7.5, Statsample::Test.u_mannwhitney(b,a).u)
86
+ a=[1, 7,8,9,10,11].to_scale
87
+ b=[2,3,4,5,6,12].to_scale
88
+ assert_equal(11, Statsample::Test.u_mannwhitney(a,b).u)
89
+
90
+
91
+
92
+ end
82
93
  end
@@ -0,0 +1,17 @@
1
+ $:.unshift(File.dirname(__FILE__)+'/../lib/')
2
+ require 'statsample'
3
+ require 'test/unit'
4
+
5
+ class StatsampleSrsTestCase < Test::Unit::TestCase
6
+ def test_u_mannwhitney
7
+ v1=[1,2,3,4,7,8,9,10,14,15].to_scale
8
+ v2=[5,6,11,12,13,16,17,18,19].to_scale
9
+ u=Statsample::Test::UMannWhitney.new(v1,v2)
10
+ assert_equal(73,u.r1)
11
+ assert_equal(117,u.r2)
12
+ assert_equal(18,u.u)
13
+ assert_in_delta(-2.205,u.z,0.001)
14
+ assert_in_delta(0.027,u.z_probability,0.001)
15
+ assert_in_delta(0.028,u.exact_probability,0.001)
16
+ end
17
+ end
data/test/test_vector.rb CHANGED
@@ -149,6 +149,10 @@ class TestStatsample::TestVector < Test::Unit::TestCase
149
149
  assert_equal(5,@c.median)
150
150
  assert_equal(4,@c.percentil(25))
151
151
  assert_equal(7,@c.percentil(75))
152
+
153
+ v=[200000, 200000, 210000, 220000, 230000, 250000, 250000, 250000, 270000, 300000, 450000, 130000, 140000, 140000, 140000, 145000, 148000, 165000, 170000, 180000, 180000, 180000, 180000, 180000, 180000 ].to_scale
154
+ assert_equal(180000,v.median)
155
+
152
156
  end
153
157
  def test_ranked
154
158
  v1=[0.8,1.2,1.2,2.3,18].to_vector(:ordinal)
@@ -254,36 +258,28 @@ class TestStatsample::TestVector < Test::Unit::TestCase
254
258
  assert_equal(expected.data,@c.data)
255
259
  end
256
260
  def test_gsl
257
- if HAS_GSL
258
- a=Statsample::Vector.new([1,2,3,4,"STRING"], :scale)
259
- assert_equal(2,a.mean)
260
- assert_equal(a.variance_sample_slow,a.variance_sample)
261
- assert_equal(a.standard_deviation_sample_slow,a.sds)
262
- assert_equal(a.variance_population_slow,a.variance_population)
263
- assert_equal(a.standard_deviation_population_slow,a.standard_deviation_population)
264
- assert_nothing_raised do
265
- a=[].to_vector(:scale)
266
- end
267
- a.add(1,false)
268
- a.add(2,false)
269
- a.set_valid_data
270
- assert_equal(3,a.sum)
271
- b=[1,2,nil,3,4,5,nil,6].to_vector(:scale)
272
- assert_equal(21, b.sum)
273
-
274
- assert_equal(3.5, b.mean)
275
- assert_equal(6,b.gsl.size)
276
- # histogram
277
- a=[11,12,13,15,21,22,23,32,33].to_vector(:scale)
278
- h=a.histogram(3)
279
- assert_equal(4,h[0])
280
- assert_equal(3,h[1])
281
- assert_equal(2,h[2])
282
- h=a.histogram([10,20,30,40])
283
- assert_equal(4,h[0])
284
- assert_equal(3,h[1])
285
- assert_equal(2,h[2])
286
-
261
+ if HAS_GSL
262
+ a=Statsample::Vector.new([1,2,3,4,"STRING"], :scale)
263
+ assert_equal(2,a.mean)
264
+ assert_equal(a.variance_sample_slow,a.variance_sample)
265
+ assert_equal(a.standard_deviation_sample_slow,a.sds)
266
+ assert_equal(a.variance_population_slow,a.variance_population)
267
+ assert_equal(a.standard_deviation_population_slow,a.standard_deviation_population)
268
+ assert_nothing_raised do
269
+ a=[].to_vector(:scale)
270
+ end
271
+ a.add(1,false)
272
+ a.add(2,false)
273
+ a.set_valid_data
274
+ assert_equal(3,a.sum)
275
+ b=[1,2,nil,3,4,5,nil,6].to_vector(:scale)
276
+ assert_equal(21, b.sum)
277
+ assert_equal(3.5, b.mean)
278
+ assert_equal(6,b.gsl.size)
279
+ c=[10,20,30,40,50,100,1000,2000,5000].to_scale
280
+ assert_in_delta(c.skew, c.skew_slow ,0.0001)
281
+ assert_in_delta(c.kurtosis, c.kurtosis_slow ,0.0001)
282
+
287
283
  end
288
284
  end
289
285
  def test_vector_matrix
@@ -344,5 +340,25 @@ class TestStatsample::TestVector < Test::Unit::TestCase
344
340
  exp=[0,0,0,1,1,1].to_scale
345
341
  assert_equal(exp, a.dichotomize)
346
342
  end
343
+ def test_can_be_methods
344
+ a= [0,0,0,1,2,3,nil].to_vector
345
+ assert(a.can_be_scale?)
346
+ a=[0,"s",0,1,2,3,nil].to_vector
347
+ assert(!a.can_be_scale?)
348
+ a.missing_values=["s"]
349
+ assert(a.can_be_scale?)
350
+
351
+ a=[Date.new(2009,10,10), Date.today(), "2009-10-10", "2009-1-1", nil, "NOW"].to_vector
352
+ assert(a.can_be_date?)
353
+ a=[Date.new(2009,10,10), Date.today(),nil,"sss"].to_vector
354
+ assert(!a.can_be_date?)
355
+ end
356
+ def test_date_vector
357
+ a=[Date.new(2009,10,10), :NOW, "2009-10-10", "2009-1-1", nil, "NOW","MISSING"].to_vector(:date, :missing_values=>["MISSING"])
358
+
359
+ assert(a.type==:date)
360
+ expected=[Date.new(2009,10,10), Date.today(), Date.new(2009,10,10), Date.new(2009,1,1), nil, Date.today(), nil ]
361
+ assert_equal(expected, a.date_data_with_nils)
347
362
 
363
+ end
348
364
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: statsample
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.5.1
4
+ version: 0.6.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Claudio Bustos
@@ -9,7 +9,7 @@ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
11
 
12
- date: 2009-11-22 00:00:00 -03:00
12
+ date: 2010-02-06 00:00:00 -03:00
13
13
  default_executable:
14
14
  dependencies:
15
15
  - !ruby/object:Gem::Dependency
@@ -32,6 +32,16 @@ dependencies:
32
32
  - !ruby/object:Gem::Version
33
33
  version: 1.0.0
34
34
  version:
35
+ - !ruby/object:Gem::Dependency
36
+ name: reportbuilder
37
+ type: :runtime
38
+ version_requirement:
39
+ version_requirements: !ruby/object:Gem::Requirement
40
+ requirements:
41
+ - - ">="
42
+ - !ruby/object:Gem::Version
43
+ version: 0.2.0
44
+ version:
35
45
  - !ruby/object:Gem::Dependency
36
46
  name: hoe
37
47
  type: :development
@@ -40,9 +50,9 @@ dependencies:
40
50
  requirements:
41
51
  - - ">="
42
52
  - !ruby/object:Gem::Version
43
- version: 2.3.3
53
+ version: 2.4.0
44
54
  version:
45
- description: A suite for your basic and advanced statistics needs. Descriptive statistics, multiple regression, dominance analysis, scale's reliability analysis, bivariate statistics and others procedures.
55
+ description: A suite for your basic and advanced statistics needs. Descriptive statistics, multiple regression, factorial analysis, dominance analysis, scale's reliability analysis, bivariate statistics and others procedures.
46
56
  email:
47
57
  - clbustos@gmail.com
48
58
  executables:
@@ -75,6 +85,7 @@ files:
75
85
  - demo/item_analysis.rb
76
86
  - demo/mean.rb
77
87
  - demo/nunnally_6.rb
88
+ - demo/pca.rb
78
89
  - demo/proportion.rb
79
90
  - demo/regression.rb
80
91
  - demo/sample_test.csv
@@ -82,6 +93,7 @@ files:
82
93
  - demo/strata_proportion.rb
83
94
  - demo/stratum.rb
84
95
  - demo/t-student.rb
96
+ - demo/umann.rb
85
97
  - lib/distribution.rb
86
98
  - lib/distribution/chisquare.rb
87
99
  - lib/distribution/f.rb
@@ -104,17 +116,23 @@ files:
104
116
  - lib/statsample/dataset.rb
105
117
  - lib/statsample/dominanceanalysis.rb
106
118
  - lib/statsample/dominanceanalysis/bootstrap.rb
119
+ - lib/statsample/factor.rb
120
+ - lib/statsample/factor/pca.rb
121
+ - lib/statsample/factor/principalaxis.rb
122
+ - lib/statsample/factor/rotation.rb
107
123
  - lib/statsample/graph/gdchart.rb
108
124
  - lib/statsample/graph/svgboxplot.rb
109
125
  - lib/statsample/graph/svggraph.rb
110
126
  - lib/statsample/graph/svghistogram.rb
111
127
  - lib/statsample/graph/svgscatterplot.rb
128
+ - lib/statsample/histogram.rb
112
129
  - lib/statsample/htmlreport.rb
113
130
  - lib/statsample/mle.rb
114
131
  - lib/statsample/mle/logit.rb
115
132
  - lib/statsample/mle/normal.rb
116
133
  - lib/statsample/mle/probit.rb
117
134
  - lib/statsample/multiset.rb
135
+ - lib/statsample/permutation.rb
118
136
  - lib/statsample/regression.rb
119
137
  - lib/statsample/regression/binomial.rb
120
138
  - lib/statsample/regression/binomial/logit.rb
@@ -129,6 +147,7 @@ files:
129
147
  - lib/statsample/resample.rb
130
148
  - lib/statsample/srs.rb
131
149
  - lib/statsample/test.rb
150
+ - lib/statsample/test/umannwhitney.rb
132
151
  - lib/statsample/vector.rb
133
152
  - po/es/statsample.po
134
153
  - po/statsample.pot
@@ -142,11 +161,14 @@ files:
142
161
  - test/test_csv.rb
143
162
  - test/test_dataset.rb
144
163
  - test/test_distribution.rb
164
+ - test/test_factor.rb
145
165
  - test/test_ggobi.rb
146
166
  - test/test_gsl.rb
167
+ - test/test_histogram.rb
147
168
  - test/test_logit.rb
148
169
  - test/test_mle.rb
149
170
  - test/test_multiset.rb
171
+ - test/test_permutation.rb
150
172
  - test/test_regression.rb
151
173
  - test/test_reliability.rb
152
174
  - test/test_resample.rb
@@ -154,6 +176,7 @@ files:
154
176
  - test/test_statistics.rb
155
177
  - test/test_stratified.rb
156
178
  - test/test_svg_graph.rb
179
+ - test/test_umannwhitney.rb
157
180
  - test/test_vector.rb
158
181
  - test/test_xls.rb
159
182
  - test/test_xls.xls
@@ -188,8 +211,11 @@ specification_version: 3
188
211
  summary: A suite for your basic and advanced statistics needs
189
212
  test_files:
190
213
  - test/test_bivariate.rb
214
+ - test/test_factor.rb
191
215
  - test/test_anova.rb
216
+ - test/test_permutation.rb
192
217
  - test/test_codification.rb
218
+ - test/test_umannwhitney.rb
193
219
  - test/test_crosstab.rb
194
220
  - test/test_distribution.rb
195
221
  - test/test_svg_graph.rb
@@ -206,6 +232,7 @@ test_files:
206
232
  - test/test_logit.rb
207
233
  - test/test_statistics.rb
208
234
  - test/test_reliability.rb
235
+ - test/test_histogram.rb
209
236
  - test/test_dataset.rb
210
237
  - test/test_regression.rb
211
238
  - test/test_multiset.rb