statsample 0.5.0 → 0.5.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +11 -0
- data/Manifest.txt +7 -0
- data/README.txt +3 -3
- data/data/repeated_fields.csv +7 -0
- data/data/tetmat_matrix.txt +5 -0
- data/data/tetmat_test.txt +1001 -0
- data/demo/spss_matrix.rb +3 -0
- data/lib/spss.rb +1 -1
- data/lib/statistics2.rb +1 -1
- data/lib/statsample.rb +30 -1
- data/lib/statsample/anova.rb +62 -66
- data/lib/statsample/bivariate.rb +273 -281
- data/lib/statsample/bivariate/tetrachoric.rb +418 -0
- data/lib/statsample/codification.rb +15 -15
- data/lib/statsample/combination.rb +108 -106
- data/lib/statsample/converter/csv18.rb +52 -52
- data/lib/statsample/converter/csv19.rb +45 -48
- data/lib/statsample/converter/spss.rb +47 -0
- data/lib/statsample/converters.rb +74 -77
- data/lib/statsample/crosstab.rb +21 -17
- data/lib/statsample/dataset.rb +595 -543
- data/lib/statsample/dominanceanalysis.rb +7 -10
- data/lib/statsample/htmlreport.rb +23 -0
- data/lib/statsample/regression/multiple/baseengine.rb +59 -59
- data/lib/statsample/regression/multiple/gslengine.rb +1 -1
- data/lib/statsample/reliability.rb +165 -145
- data/lib/statsample/vector.rb +16 -2
- data/test/test_anova.rb +16 -16
- data/test/test_bivariate.rb +146 -0
- data/test/test_csv.rb +6 -0
- data/test/test_dataset.rb +49 -5
- data/test/test_statistics.rb +6 -90
- data/test/test_vector.rb +27 -10
- metadata +10 -4
- data/test/test_r.rb +0 -9
- data/test/test_stata.rb +0 -11
@@ -114,6 +114,11 @@ module Statsample
|
|
114
114
|
}
|
115
115
|
out
|
116
116
|
end
|
117
|
+
def get_averages(averages)
|
118
|
+
out={}
|
119
|
+
averages.each{|key,val| out[key]=val.to_vector(:scale).mean }
|
120
|
+
out
|
121
|
+
end
|
117
122
|
def average_k(k)
|
118
123
|
return nil if k==@fields.size
|
119
124
|
models=md_k(k)
|
@@ -123,11 +128,7 @@ module Statsample
|
|
123
128
|
averages[f].push(m.contributions[f]) unless m.contributions[f].nil?
|
124
129
|
}
|
125
130
|
}
|
126
|
-
|
127
|
-
averages.each{|key,val|
|
128
|
-
out[key]=val.to_vector(:scale).mean
|
129
|
-
}
|
130
|
-
out
|
131
|
+
get_averages(averages)
|
131
132
|
end
|
132
133
|
def general_averages
|
133
134
|
if @general_averages.nil?
|
@@ -138,11 +139,7 @@ module Statsample
|
|
138
139
|
averages[f].push(ak[f])
|
139
140
|
}
|
140
141
|
end
|
141
|
-
|
142
|
-
averages.each{|key,val|
|
143
|
-
out[key]=val.to_vector(:scale).mean
|
144
|
-
}
|
145
|
-
@general_averages=out
|
142
|
+
@general_averages=get_averages(averages)
|
146
143
|
end
|
147
144
|
@general_averages
|
148
145
|
end
|
@@ -27,6 +27,29 @@ module Statsample
|
|
27
27
|
@uniq_file+=1
|
28
28
|
"#{prepend}_#{@uniq_file}_#{Time.now.to_i}"
|
29
29
|
end
|
30
|
+
|
31
|
+
def add_tetrachoric_correlation_matrix(ds)
|
32
|
+
add_anchor("Tetrachoric correlation Matrix")
|
33
|
+
html="<h2>Tetrachoric Correlation Matrix</h2> <table><thead><th>-</th><th>"+ds.fields.join("</th><th>")+"</th> </thead> <tbody>"
|
34
|
+
matrix=Statsample::Bivariate.tetrachoric_correlation_matrix(ds)
|
35
|
+
|
36
|
+
|
37
|
+
(0...(matrix.row_size)).each {|row|
|
38
|
+
html+="<tr><td>"+ds.fields[row]+"</td>"
|
39
|
+
(0...(matrix.column_size)).each {|col|
|
40
|
+
if matrix[row,col].nil?
|
41
|
+
html+="<td>--</td>"
|
42
|
+
else
|
43
|
+
html+="<td><strong>#{sprintf("%0.2f",matrix[row,col])}</td>"
|
44
|
+
end
|
45
|
+
}
|
46
|
+
html+="</tr>"
|
47
|
+
}
|
48
|
+
html+="</tbody></table>"
|
49
|
+
@partials.push(html)
|
50
|
+
end
|
51
|
+
|
52
|
+
|
30
53
|
def add_correlation_matrix(ds)
|
31
54
|
add_anchor("Correlation Matrix")
|
32
55
|
html="<h2>Correlation Matrix</h2> <table><thead><th>-</th><th>"+ds.fields.join("</th><th>")+"</th> </thead> <tbody>"
|
@@ -8,7 +8,7 @@ module Statsample
|
|
8
8
|
@y_var=y_var
|
9
9
|
@r2=nil
|
10
10
|
end
|
11
|
-
|
11
|
+
|
12
12
|
# Retrieves a vector with predicted values for y
|
13
13
|
def predicted
|
14
14
|
(0...@ds.cases).collect { |i|
|
@@ -52,13 +52,13 @@ module Statsample
|
|
52
52
|
# Sum of squares (Error)
|
53
53
|
def sse
|
54
54
|
sst - ssr
|
55
|
-
end
|
55
|
+
end
|
56
56
|
# T values for coeffs
|
57
57
|
def coeffs_t
|
58
58
|
out={}
|
59
59
|
se=coeffs_se
|
60
60
|
coeffs.each{|k,v|
|
61
|
-
out[k]=v / se[k]
|
61
|
+
out[k]=v / se[k]
|
62
62
|
}
|
63
63
|
out
|
64
64
|
end
|
@@ -69,7 +69,7 @@ module Statsample
|
|
69
69
|
# Mean Square Error
|
70
70
|
def mse
|
71
71
|
sse.quo(df_e)
|
72
|
-
end
|
72
|
+
end
|
73
73
|
# Degrees of freedom for regression
|
74
74
|
def df_r
|
75
75
|
@dep_columns.size
|
@@ -113,7 +113,7 @@ module Statsample
|
|
113
113
|
out
|
114
114
|
end
|
115
115
|
# Estimated Variance-Covariance Matrix
|
116
|
-
# Used for calculation of se of constant
|
116
|
+
# Used for calculation of se of constant
|
117
117
|
def estimated_variance_covariance_matrix
|
118
118
|
mse_p=mse
|
119
119
|
columns=[]
|
@@ -129,7 +129,7 @@ module Statsample
|
|
129
129
|
end
|
130
130
|
# T for constant
|
131
131
|
def constant_t
|
132
|
-
constant.to_f/constant_se
|
132
|
+
constant.to_f/constant_se
|
133
133
|
end
|
134
134
|
# Standard error for constant
|
135
135
|
def constant_se
|
@@ -140,27 +140,27 @@ module Statsample
|
|
140
140
|
c=coeffs
|
141
141
|
out=""
|
142
142
|
out.extend report_type
|
143
|
-
out.add
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
143
|
+
out.add <<-HEREDOC
|
144
|
+
Summary for regression of #{@fields.join(',')} over #{@y_var}
|
145
|
+
*************************************************************
|
146
|
+
Engine: #{self.class}
|
147
|
+
Cases(listwise)=#{@ds.cases}(#{@ds_valid.cases})
|
148
|
+
r=#{sprintf("%0.3f",r)}
|
149
|
+
r2=#{sprintf("%0.3f",r2)}
|
150
|
+
Equation=#{sprintf("%0.3f",constant)}+#{@fields.collect {|k| sprintf("%0.3f%s",c[k],k)}.join(' + ')}
|
151
151
|
HEREDOC
|
152
|
-
|
152
|
+
|
153
153
|
out.add_line
|
154
154
|
out.add "ANOVA TABLE"
|
155
|
-
|
155
|
+
|
156
156
|
t=Statsample::ReportTable.new(%w{source ss df ms f s})
|
157
157
|
t.add_row(["Regression", sprintf("%0.3f",ssr), df_r, sprintf("%0.3f",msr), sprintf("%0.3f",f), sprintf("%0.3f", significance)])
|
158
158
|
t.add_row(["Error", sprintf("%0.3f",sse), df_e, sprintf("%0.3f",mse)])
|
159
|
-
|
159
|
+
|
160
160
|
t.add_row(["Total", sprintf("%0.3f",sst), df_r+df_e])
|
161
|
-
|
161
|
+
|
162
162
|
out.parse_table(t)
|
163
|
-
|
163
|
+
|
164
164
|
begin
|
165
165
|
out.add "Beta coefficientes"
|
166
166
|
sc=standarized_coeffs
|
@@ -171,63 +171,63 @@ HEREDOC
|
|
171
171
|
t.add_row([f, sprintf("%0.3f", c[f]), sprintf("%0.3f", sc[f]), sprintf("%0.3f", cse[f]), sprintf("%0.3f", c[f].quo(cse[f]))])
|
172
172
|
}
|
173
173
|
out.parse_table(t)
|
174
|
-
|
174
|
+
|
175
175
|
rescue
|
176
176
|
end
|
177
177
|
out
|
178
178
|
end
|
179
179
|
def assign_names(c)
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
end
|
186
|
-
|
187
|
-
|
180
|
+
a={}
|
181
|
+
@fields.each_index {|i|
|
182
|
+
a[@fields[i]]=c[i]
|
183
|
+
}
|
184
|
+
a
|
185
|
+
end
|
186
|
+
|
187
|
+
|
188
188
|
# Deprecated
|
189
189
|
# Sum of squares of error (manual calculation)
|
190
190
|
# using the predicted value minus the y_i value
|
191
191
|
def sse_manual
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
192
|
+
pr=predicted
|
193
|
+
cases=0
|
194
|
+
sse=(0...@ds.cases).inject(0) {|a,i|
|
195
|
+
if !@dy.data_with_nils[i].nil? and !pr[i].nil?
|
196
|
+
cases+=1
|
197
|
+
a+((pr[i]-@dy[i])**2)
|
198
|
+
else
|
199
|
+
a
|
200
|
+
end
|
201
|
+
}
|
202
|
+
sse*(min_n_valid-1.0).quo(cases-1)
|
203
203
|
end
|
204
204
|
# Sum of squares of regression
|
205
205
|
# using the predicted value minus y mean
|
206
206
|
def ssr_direct
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
207
|
+
mean=@dy.mean
|
208
|
+
cases=0
|
209
|
+
ssr=(0...@ds.cases).inject(0) {|a,i|
|
210
|
+
invalid=false
|
211
|
+
v=@dep_columns.collect{|c| invalid=true if c[i].nil?; c[i]}
|
212
|
+
if !invalid
|
213
|
+
cases+=1
|
214
|
+
a+((process(v)-mean)**2)
|
215
|
+
else
|
216
|
+
a
|
217
|
+
end
|
218
|
+
}
|
219
|
+
ssr
|
220
220
|
end
|
221
221
|
def sse_direct
|
222
|
-
|
222
|
+
sst-ssr
|
223
223
|
end
|
224
224
|
def process(v)
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
225
|
+
c=coeffs
|
226
|
+
total=constant
|
227
|
+
@fields.each_index{|i|
|
228
|
+
total+=c[@fields[i]]*v[i]
|
229
|
+
}
|
230
|
+
total
|
231
231
|
end
|
232
232
|
end
|
233
233
|
end
|
@@ -1,160 +1,158 @@
|
|
1
1
|
module Statsample
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
2
|
+
module Reliability
|
3
|
+
class << self
|
4
|
+
# Calculate Chonbach's alpha for a given dataset.
|
5
|
+
# only uses tuples without missing data
|
6
6
|
def cronbach_alpha(ods)
|
7
7
|
ds=ods.dup_only_valid
|
8
8
|
n_items=ds.fields.size
|
9
9
|
sum_var_items=ds.vectors.inject(0) {|ac,v|
|
10
|
-
|
11
|
-
}
|
10
|
+
ac+v[1].variance_sample }
|
12
11
|
total=ds.vector_sum
|
13
12
|
(n_items / (n_items-1).to_f) * (1-(sum_var_items/ total.variance_sample))
|
14
13
|
end
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
end
|
27
|
-
|
14
|
+
# Calculate Chonbach's alpha for a given dataset
|
15
|
+
# using standarized values for every vector.
|
16
|
+
# Only uses tuples without missing data
|
17
|
+
|
18
|
+
def cronbach_alpha_standarized(ods)
|
19
|
+
ds=ods.dup_only_valid.fields.inject({}){|a,f|
|
20
|
+
a[f]=ods[f].vector_standarized; a
|
21
|
+
}.to_dataset
|
22
|
+
cronbach_alpha(ds)
|
23
|
+
end
|
24
|
+
end
|
28
25
|
class ItemCharacteristicCurve
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
@ds.fields.each
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
26
|
+
attr_reader :totals, :counts,:vector_total
|
27
|
+
def initialize (ds, vector_total=nil)
|
28
|
+
vector_total||=ds.vector_sum
|
29
|
+
raise "Total size != Dataset size" if vector_total.size!=ds.cases
|
30
|
+
@vector_total=vector_total
|
31
|
+
@ds=ds
|
32
|
+
@totals={}
|
33
|
+
@counts=@ds.fields.inject({}) {|a,v| a[v]={};a}
|
34
|
+
process
|
35
|
+
end
|
36
|
+
def process
|
37
|
+
i=0
|
38
|
+
@ds.each do |row|
|
39
|
+
tot=@vector_total[i]
|
40
|
+
@totals[tot]||=0
|
41
|
+
@totals[tot]+=1
|
42
|
+
@ds.fields.each do |f|
|
43
|
+
item=row[f].to_s
|
44
|
+
@counts[f][tot]||={}
|
45
|
+
@counts[f][tot][item]||=0
|
46
|
+
@counts[f][tot][item] += 1
|
47
|
+
end
|
51
48
|
i+=1
|
52
|
-
}
|
53
|
-
end
|
54
|
-
def curve_field(field, item)
|
55
|
-
out={}
|
56
|
-
item=item.to_s
|
57
|
-
@totals.each{|value,n|
|
58
|
-
count_value= @counts[field][value][item].nil? ? 0 : @counts[field][value][item]
|
59
|
-
out[value]=count_value.to_f/n.to_f
|
60
|
-
}
|
61
|
-
out
|
62
|
-
end
|
63
49
|
end
|
50
|
+
end
|
51
|
+
def curve_field(field, item)
|
52
|
+
out={}
|
53
|
+
item=item.to_s
|
54
|
+
@totals.each{|value,n|
|
55
|
+
count_value= @counts[field][value][item].nil? ? 0 : @counts[field][value][item]
|
56
|
+
out[value]=count_value.to_f/n.to_f
|
57
|
+
}
|
58
|
+
out
|
59
|
+
end
|
60
|
+
end
|
64
61
|
class ItemAnalysis
|
65
|
-
|
62
|
+
attr_reader :mean, :sd,:valid_n, :alpha , :alpha_standarized
|
66
63
|
def initialize(ds)
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
64
|
+
@ds=ds.dup_only_valid
|
65
|
+
@total=@ds.vector_sum
|
66
|
+
@item_mean=@ds.vector_mean.mean
|
67
|
+
@mean=@total.mean
|
68
|
+
@median=@total.median
|
69
|
+
@skew=@total.skew
|
70
|
+
@kurtosis=@total.kurtosis
|
71
|
+
@sd = @total.sd
|
72
|
+
@valid_n = @total.size
|
73
|
+
begin
|
74
|
+
@alpha = Statsample::Reliability.cronbach_alpha(ds)
|
75
|
+
@alpha_standarized = Statsample::Reliability.cronbach_alpha_standarized(ds)
|
76
|
+
rescue => e
|
77
|
+
raise DatasetException.new(@ds,e), "Problem on calculate alpha"
|
78
|
+
end
|
81
79
|
end
|
82
80
|
# Returns a hash with structure
|
83
81
|
def item_characteristic_curve
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
82
|
+
i=0
|
83
|
+
out={}
|
84
|
+
total={}
|
85
|
+
@ds.each do |row|
|
86
|
+
tot=@total[i]
|
87
|
+
@ds.fields.each do |f|
|
88
|
+
out[f]||= {}
|
89
|
+
total[f]||={}
|
90
|
+
out[f][tot]||= 0
|
91
|
+
total[f][tot]||=0
|
92
|
+
out[f][tot]+= row[f]
|
93
|
+
total[f][tot]+=1
|
94
|
+
end
|
95
|
+
i+=1
|
96
|
+
end
|
97
|
+
total.each do |f,var|
|
98
|
+
var.each do |tot,v|
|
99
|
+
out[f][tot]=out[f][tot].to_f / total[f][tot]
|
100
|
+
end
|
101
|
+
end
|
102
|
+
out
|
105
103
|
end
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
104
|
+
def gnuplot_item_characteristic_curve(directory, base="crd",options={})
|
105
|
+
require 'gnuplot'
|
106
|
+
|
107
|
+
crd=item_characteristic_curve
|
108
|
+
@ds.fields.each {|f|
|
109
|
+
x=[]
|
110
|
+
y=[]
|
111
|
+
Gnuplot.open do |gp|
|
112
|
+
Gnuplot::Plot.new( gp ) do |plot|
|
113
|
+
crd[f].sort.each{|tot,prop|
|
114
|
+
x.push(tot)
|
115
|
+
y.push((prop*100).to_i.to_f/100)
|
116
|
+
}
|
117
|
+
plot.data << Gnuplot::DataSet.new( [x, y] ) do |ds|
|
118
|
+
ds.with = "linespoints"
|
119
|
+
ds.notitle
|
120
|
+
end
|
121
|
+
|
122
|
+
end
|
123
|
+
end
|
124
|
+
}
|
125
|
+
|
126
|
+
end
|
127
|
+
def svggraph_item_characteristic_curve(directory, base="icc",options={})
|
128
|
+
require 'statsample/graph/svggraph'
|
129
|
+
crd=ItemCharacteristicCurve.new(@ds)
|
130
|
+
@ds.fields.each {|f|
|
131
|
+
factors=@ds[f].factors.sort
|
132
|
+
options={
|
133
|
+
:height=>500,
|
134
|
+
:width=>800,
|
135
|
+
:key=>true
|
136
|
+
}.update(options)
|
137
|
+
graph = ::SVG::Graph::Plot.new(options)
|
138
|
+
factors.each{|factor|
|
139
|
+
factor=factor.to_s
|
140
|
+
dataset=[]
|
141
|
+
crd.curve_field(f, factor).each{|tot,prop|
|
142
|
+
dataset.push(tot)
|
143
|
+
dataset.push((prop*100).to_i.to_f/100)
|
144
|
+
}
|
145
|
+
graph.add_data({
|
146
|
+
:title=>"#{factor}",
|
147
|
+
:data=>dataset
|
148
|
+
})
|
149
|
+
}
|
150
|
+
File.open(directory+"/"+base+"_#{f}.svg","w") {|fp|
|
151
|
+
fp.puts(graph.burn())
|
152
|
+
}
|
153
|
+
}
|
154
|
+
|
155
|
+
end
|
158
156
|
def item_total_correlation
|
159
157
|
@ds.fields.inject({}) do |a,v|
|
160
158
|
vector=@ds[v].dup
|
@@ -163,7 +161,7 @@ module Statsample
|
|
163
161
|
total=ds2.vector_sum
|
164
162
|
a[v]=Statsample::Bivariate.pearson(vector,total)
|
165
163
|
a
|
166
|
-
|
164
|
+
end
|
167
165
|
end
|
168
166
|
def item_statistics
|
169
167
|
@ds.fields.inject({}) do |a,v|
|
@@ -171,9 +169,29 @@ module Statsample
|
|
171
169
|
a
|
172
170
|
end
|
173
171
|
end
|
174
|
-
|
172
|
+
# Returns a dataset with cases ordered by score
|
173
|
+
# and variables ordered by difficulty
|
174
|
+
|
175
|
+
def item_difficulty_analysis
|
176
|
+
dif={}
|
177
|
+
@ds.fields.each{|f| dif[f]=@ds[f].mean }
|
178
|
+
dif_sort=dif.sort{|a,b| -(a[1]<=>b[1])}
|
179
|
+
scores_sort={}
|
180
|
+
scores=@ds.vector_mean
|
181
|
+
scores.each_index{|i| scores_sort[i]=scores[i] }
|
182
|
+
scores_sort=scores_sort.sort{|a,b| a[1]<=>b[1]}
|
183
|
+
ds_new=Statsample::Dataset.new(['case','score'] + dif_sort.collect{|a,b| a})
|
184
|
+
scores_sort.each do |i,score|
|
185
|
+
row=[i, score]
|
186
|
+
case_row=@ds.case_as_hash(i)
|
187
|
+
dif_sort.each{|variable,dif_value| row.push(case_row[variable]) }
|
188
|
+
ds_new.add_case_array(row)
|
189
|
+
end
|
190
|
+
ds_new.update_valid_data
|
191
|
+
ds_new
|
192
|
+
end
|
175
193
|
def stats_if_deleted
|
176
|
-
@ds.fields.inject({})
|
194
|
+
@ds.fields.inject({}) do |a,v|
|
177
195
|
ds2=@ds.dup
|
178
196
|
ds2.delete_vector(v)
|
179
197
|
total=ds2.vector_sum
|
@@ -183,13 +201,15 @@ module Statsample
|
|
183
201
|
a[v][:variance_sample]=total.variance_sample
|
184
202
|
a[v][:alpha]=Statsample::Reliability.cronbach_alpha(ds2)
|
185
203
|
a
|
186
|
-
|
204
|
+
end
|
187
205
|
end
|
188
206
|
def html_summary
|
189
207
|
html = <<EOF
|
190
208
|
<p><strong>Summary for scale:</strong></p>
|
191
209
|
<ul>
|
192
|
-
<li>
|
210
|
+
<li>Items=#{@ds.fields.size}</li>
|
211
|
+
<li>Total Mean=#{@mean}</li>
|
212
|
+
<li>Item Mean=#{@item_mean}</li>
|
193
213
|
<li>Std.Dv.=#{@sd}</li>
|
194
214
|
<li>Median=#{@median}</li>
|
195
215
|
<li>Skewness=#{sprintf("%0.3f",@skew)}</li>
|