statsample 0.3.4 → 0.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. data/History.txt +8 -0
  2. data/Manifest.txt +20 -2
  3. data/data/crime.txt +47 -0
  4. data/data/test_binomial.csv +201 -0
  5. data/demo/distribution_t.rb +2 -2
  6. data/demo/regression.rb +2 -1
  7. data/lib/distribution.rb +8 -0
  8. data/lib/distribution/chisquare.rb +24 -0
  9. data/lib/distribution/f.rb +25 -0
  10. data/lib/distribution/normal.rb +25 -0
  11. data/lib/distribution/t.rb +22 -0
  12. data/lib/matrix_extension.rb +78 -0
  13. data/lib/statistics2.rb +531 -0
  14. data/lib/statsample.rb +12 -9
  15. data/lib/statsample/anova.rb +1 -5
  16. data/lib/statsample/bivariate.rb +24 -20
  17. data/lib/statsample/combination.rb +14 -4
  18. data/lib/statsample/converters.rb +17 -1
  19. data/lib/statsample/dataset.rb +66 -10
  20. data/lib/statsample/dominanceanalysis/bootstrap.rb +1 -3
  21. data/lib/statsample/graph/gdchart.rb +2 -3
  22. data/lib/statsample/graph/svggraph.rb +8 -4
  23. data/lib/statsample/mle.rb +137 -0
  24. data/lib/statsample/mle/logit.rb +95 -0
  25. data/lib/statsample/mle/normal.rb +83 -0
  26. data/lib/statsample/mle/probit.rb +93 -0
  27. data/lib/statsample/regression.rb +3 -1
  28. data/lib/statsample/regression/binomial.rb +65 -0
  29. data/lib/statsample/regression/binomial/logit.rb +13 -0
  30. data/lib/statsample/regression/binomial/probit.rb +13 -0
  31. data/lib/statsample/regression/multiple.rb +61 -58
  32. data/lib/statsample/regression/multiple/rubyengine.rb +1 -1
  33. data/lib/statsample/srs.rb +5 -5
  34. data/lib/statsample/vector.rb +129 -59
  35. data/test/test_anova.rb +0 -5
  36. data/test/test_dataset.rb +13 -1
  37. data/test/test_distribution.rb +57 -0
  38. data/test/test_gsl.rb +22 -0
  39. data/test/test_logit.rb +22 -0
  40. data/test/test_mle.rb +140 -0
  41. data/test/test_r.rb +9 -0
  42. data/test/test_regression.rb +12 -4
  43. data/test/test_srs.rb +0 -4
  44. data/test/test_stata.rb +11 -0
  45. data/test/test_statistics.rb +0 -15
  46. data/test/test_vector.rb +11 -0
  47. metadata +28 -4
  48. data/lib/statsample/chidistribution.rb +0 -39
  49. data/lib/statsample/regression/logit.rb +0 -35
@@ -1,39 +0,0 @@
1
- module Statsample
2
- # Based on Babatunde, Iyiola & Eni () :
3
- # "A Numerical Procedure for Computing Chi-Square Percentage Points"
4
- #
5
- module ChiDistribution
6
- class << self
7
- def steps(av, bv, itv)
8
- steps = ((bv.to_f - av.to_f) / itv.to_f).to_i
9
- end
10
- def loggamma(k)
11
- c1 = 76.18009173
12
- c2 = -86.50532033
13
- c3 = 24.01409822
14
- c4 = -1.231739516
15
- c5 = 0.00120858
16
- c6 = -0.000005364
17
- c7 = 2.506628275
18
- x1 = k - 1
19
- ws = x1 + 5.5
20
- ws = (x1 + 0.5) * Math::log(ws) - ws
21
- s = 1 + c1 / (x1 + 1) + c2 / (x1 + 2) + c3 / (x1 + 3) + c4 / (x1 + 4) + c5 / (x1 + 5) + c6 / (x1 + 6)
22
- ws + Math::log(c7 * s)
23
- end
24
- def f(x, k)
25
- Math::exp(0.5 * k * Math::log(0.5 * x) - Math::log(x) - loggamma(0.5 * k) - 0.5 * x)
26
- end
27
- def cdf(b,k)
28
- a = 0.001
29
- b=b.to_f
30
- if k==2
31
- 1 - Math::exp( -b.to_f / 2)
32
- else
33
- w = (b - a) / 28.to_f
34
- 2 * w / 45 * (7 * (f(a, k) + f(a + 28 * w, k)) + 12 * (f(a + 2 * w, k) + f(a + 6 * w, k) + f(a + 10 * w, k) + f(a + 14 * w, k) + f(a + 18 * w, k) + f(a + 22 * w, k) + f(a + 26 * w, k)) + 14 * (f(a + 4 * w, k) + f(a + 8 * w, k) + f(a + 12 * w, k) + f(a + 16 * w, k) + f(a + 20 * w, k) + f(a + 24 * w, k)) + 32 * (f(a + w, k) + f(a + 3 * w, k) + f(a + 5 * w, k) + f(a + 7 * w, k) + f(a + 9 * w, k) + f(a + 11 * w, k) + f(a + 13 * w, k) + f(a + 15 * w, k) + f(a + 17 * w, k) + f(a + 19 * w, k) + f(a + 21 * w, k) + f(a + 23 * w, k) + f(a + 25 * w, k) + f(a + 27 * w, k)))
35
- end
36
- end
37
- end
38
- end
39
- end
@@ -1,35 +0,0 @@
1
- module Statsample
2
- module Regression
3
- class Logit
4
- def initialize(ds,y_var)
5
- @ds=ds
6
- @y_var=y_var
7
- end
8
- def vp(x1,x2)
9
- sum=0
10
- x1.each_index{|i|
11
- sum+=x1[i]*x2[i]
12
- }
13
- sum
14
- end
15
- # F(B'Xi)
16
- def f(b,x)
17
- Math::exp(vp(b,x)) / (1+Math::exp(vp(b,x)))
18
- end
19
- # f(B'Xi)
20
- def fa(b,x)
21
- f(b,x)*(1-f(b,x))
22
- end
23
- def l(b)
24
- prod=1
25
- y=@ds[@y_var]
26
- @ds.each_array{|x|
27
- x.unshift(1) # add constant
28
- l=(f(b,x)**y[@ds.i])*((1.0-f(b,x))**(1.0-y[@ds.i]))
29
- prod=prod*l
30
- }
31
- prod
32
- end
33
- end
34
- end
35
- end