statsample 0.3.4 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/History.txt +8 -0
- data/Manifest.txt +20 -2
- data/data/crime.txt +47 -0
- data/data/test_binomial.csv +201 -0
- data/demo/distribution_t.rb +2 -2
- data/demo/regression.rb +2 -1
- data/lib/distribution.rb +8 -0
- data/lib/distribution/chisquare.rb +24 -0
- data/lib/distribution/f.rb +25 -0
- data/lib/distribution/normal.rb +25 -0
- data/lib/distribution/t.rb +22 -0
- data/lib/matrix_extension.rb +78 -0
- data/lib/statistics2.rb +531 -0
- data/lib/statsample.rb +12 -9
- data/lib/statsample/anova.rb +1 -5
- data/lib/statsample/bivariate.rb +24 -20
- data/lib/statsample/combination.rb +14 -4
- data/lib/statsample/converters.rb +17 -1
- data/lib/statsample/dataset.rb +66 -10
- data/lib/statsample/dominanceanalysis/bootstrap.rb +1 -3
- data/lib/statsample/graph/gdchart.rb +2 -3
- data/lib/statsample/graph/svggraph.rb +8 -4
- data/lib/statsample/mle.rb +137 -0
- data/lib/statsample/mle/logit.rb +95 -0
- data/lib/statsample/mle/normal.rb +83 -0
- data/lib/statsample/mle/probit.rb +93 -0
- data/lib/statsample/regression.rb +3 -1
- data/lib/statsample/regression/binomial.rb +65 -0
- data/lib/statsample/regression/binomial/logit.rb +13 -0
- data/lib/statsample/regression/binomial/probit.rb +13 -0
- data/lib/statsample/regression/multiple.rb +61 -58
- data/lib/statsample/regression/multiple/rubyengine.rb +1 -1
- data/lib/statsample/srs.rb +5 -5
- data/lib/statsample/vector.rb +129 -59
- data/test/test_anova.rb +0 -5
- data/test/test_dataset.rb +13 -1
- data/test/test_distribution.rb +57 -0
- data/test/test_gsl.rb +22 -0
- data/test/test_logit.rb +22 -0
- data/test/test_mle.rb +140 -0
- data/test/test_r.rb +9 -0
- data/test/test_regression.rb +12 -4
- data/test/test_srs.rb +0 -4
- data/test/test_stata.rb +11 -0
- data/test/test_statistics.rb +0 -15
- data/test/test_vector.rb +11 -0
- metadata +28 -4
- data/lib/statsample/chidistribution.rb +0 -39
- data/lib/statsample/regression/logit.rb +0 -35
@@ -1,39 +0,0 @@
|
|
1
|
-
module Statsample
|
2
|
-
# Based on Babatunde, Iyiola & Eni () :
|
3
|
-
# "A Numerical Procedure for Computing Chi-Square Percentage Points"
|
4
|
-
#
|
5
|
-
module ChiDistribution
|
6
|
-
class << self
|
7
|
-
def steps(av, bv, itv)
|
8
|
-
steps = ((bv.to_f - av.to_f) / itv.to_f).to_i
|
9
|
-
end
|
10
|
-
def loggamma(k)
|
11
|
-
c1 = 76.18009173
|
12
|
-
c2 = -86.50532033
|
13
|
-
c3 = 24.01409822
|
14
|
-
c4 = -1.231739516
|
15
|
-
c5 = 0.00120858
|
16
|
-
c6 = -0.000005364
|
17
|
-
c7 = 2.506628275
|
18
|
-
x1 = k - 1
|
19
|
-
ws = x1 + 5.5
|
20
|
-
ws = (x1 + 0.5) * Math::log(ws) - ws
|
21
|
-
s = 1 + c1 / (x1 + 1) + c2 / (x1 + 2) + c3 / (x1 + 3) + c4 / (x1 + 4) + c5 / (x1 + 5) + c6 / (x1 + 6)
|
22
|
-
ws + Math::log(c7 * s)
|
23
|
-
end
|
24
|
-
def f(x, k)
|
25
|
-
Math::exp(0.5 * k * Math::log(0.5 * x) - Math::log(x) - loggamma(0.5 * k) - 0.5 * x)
|
26
|
-
end
|
27
|
-
def cdf(b,k)
|
28
|
-
a = 0.001
|
29
|
-
b=b.to_f
|
30
|
-
if k==2
|
31
|
-
1 - Math::exp( -b.to_f / 2)
|
32
|
-
else
|
33
|
-
w = (b - a) / 28.to_f
|
34
|
-
2 * w / 45 * (7 * (f(a, k) + f(a + 28 * w, k)) + 12 * (f(a + 2 * w, k) + f(a + 6 * w, k) + f(a + 10 * w, k) + f(a + 14 * w, k) + f(a + 18 * w, k) + f(a + 22 * w, k) + f(a + 26 * w, k)) + 14 * (f(a + 4 * w, k) + f(a + 8 * w, k) + f(a + 12 * w, k) + f(a + 16 * w, k) + f(a + 20 * w, k) + f(a + 24 * w, k)) + 32 * (f(a + w, k) + f(a + 3 * w, k) + f(a + 5 * w, k) + f(a + 7 * w, k) + f(a + 9 * w, k) + f(a + 11 * w, k) + f(a + 13 * w, k) + f(a + 15 * w, k) + f(a + 17 * w, k) + f(a + 19 * w, k) + f(a + 21 * w, k) + f(a + 23 * w, k) + f(a + 25 * w, k) + f(a + 27 * w, k)))
|
35
|
-
end
|
36
|
-
end
|
37
|
-
end
|
38
|
-
end
|
39
|
-
end
|
@@ -1,35 +0,0 @@
|
|
1
|
-
module Statsample
|
2
|
-
module Regression
|
3
|
-
class Logit
|
4
|
-
def initialize(ds,y_var)
|
5
|
-
@ds=ds
|
6
|
-
@y_var=y_var
|
7
|
-
end
|
8
|
-
def vp(x1,x2)
|
9
|
-
sum=0
|
10
|
-
x1.each_index{|i|
|
11
|
-
sum+=x1[i]*x2[i]
|
12
|
-
}
|
13
|
-
sum
|
14
|
-
end
|
15
|
-
# F(B'Xi)
|
16
|
-
def f(b,x)
|
17
|
-
Math::exp(vp(b,x)) / (1+Math::exp(vp(b,x)))
|
18
|
-
end
|
19
|
-
# f(B'Xi)
|
20
|
-
def fa(b,x)
|
21
|
-
f(b,x)*(1-f(b,x))
|
22
|
-
end
|
23
|
-
def l(b)
|
24
|
-
prod=1
|
25
|
-
y=@ds[@y_var]
|
26
|
-
@ds.each_array{|x|
|
27
|
-
x.unshift(1) # add constant
|
28
|
-
l=(f(b,x)**y[@ds.i])*((1.0-f(b,x))**(1.0-y[@ds.i]))
|
29
|
-
prod=prod*l
|
30
|
-
}
|
31
|
-
prod
|
32
|
-
end
|
33
|
-
end
|
34
|
-
end
|
35
|
-
end
|