statsample 0.13.1 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data.tar.gz.sig +0 -0
- data/History.txt +15 -0
- data/Manifest.txt +4 -0
- data/README.txt +11 -3
- data/Rakefile +2 -2
- data/data/hartman_23.matrix +9 -0
- data/examples/correlation_matrix.rb +1 -1
- data/examples/velicer_map_test.rb +35 -0
- data/lib/distribution/chisquare.rb +2 -2
- data/lib/statsample.rb +1 -1
- data/lib/statsample/bivariate/pearson.rb +0 -1
- data/lib/statsample/converters.rb +2 -2
- data/lib/statsample/crosstab.rb +1 -1
- data/lib/statsample/factor.rb +3 -1
- data/lib/statsample/factor/map.rb +102 -0
- data/lib/statsample/factor/parallelanalysis.rb +54 -24
- data/lib/statsample/factor/pca.rb +46 -28
- data/lib/statsample/factor/principalaxis.rb +54 -22
- data/lib/statsample/factor/rotation.rb +51 -4
- data/lib/statsample/matrix.rb +14 -14
- data/lib/statsample/reliability.rb +1 -0
- data/lib/statsample/reliability/multiscaleanalysis.rb +35 -10
- data/lib/statsample/reliability/scaleanalysis.rb +10 -9
- data/lib/statsample/test.rb +12 -11
- data/lib/statsample/test/chisquare.rb +43 -0
- data/lib/statsample/vector.rb +18 -11
- data/po/es/statsample.mo +0 -0
- data/po/es/statsample.po +151 -85
- data/po/statsample.pot +126 -53
- data/test/test_factor.rb +29 -3
- data/test/test_matrix.rb +2 -0
- data/test/test_reliability.rb +46 -46
- data/test/test_rserve_extension.rb +2 -2
- data/test/test_stest.rb +16 -2
- data/test/test_vector.rb +10 -1
- metadata +14 -9
- metadata.gz.sig +0 -0
@@ -29,27 +29,42 @@ module Factor
|
|
29
29
|
# * Smith, L. (2002). A tutorial on Principal Component Analysis. Available on http://courses.eas.ualberta.ca/eas570/pca_tutorial.pdf
|
30
30
|
#
|
31
31
|
class PCA
|
32
|
+
include Summarizable
|
32
33
|
# Name of analysis
|
33
34
|
attr_accessor :name
|
35
|
+
|
34
36
|
# Number of factors. Set by default to the number of factors
|
35
37
|
# with eigen values > 1
|
36
38
|
attr_accessor :m
|
37
39
|
# Use GSL if available
|
38
40
|
attr_accessor :use_gsl
|
39
|
-
|
40
|
-
|
41
|
+
# Add to the summary a rotation report
|
42
|
+
attr_accessor :summary_rotation
|
43
|
+
# Add to the summary a parallel analysis report
|
44
|
+
attr_accessor :summary_parallel_analysis
|
45
|
+
# Type of rotation. By default, Statsample::Factor::Rotation::Varimax
|
46
|
+
attr_accessor :rotation_type
|
47
|
+
|
41
48
|
def initialize(matrix, opts=Hash.new)
|
42
|
-
|
49
|
+
@use_gsl=nil
|
43
50
|
@name=_("Principal Component Analysis")
|
44
51
|
@matrix=matrix
|
45
52
|
@n_variables=@matrix.column_size
|
46
53
|
@m=nil
|
54
|
+
|
55
|
+
@rotation_type=Statsample::Factor::Varimax
|
56
|
+
|
47
57
|
opts.each{|k,v|
|
48
58
|
self.send("#{k}=",v) if self.respond_to? k
|
49
59
|
}
|
50
60
|
if @use_gsl.nil?
|
51
61
|
@use_gsl=Statsample.has_gsl?
|
52
62
|
end
|
63
|
+
if @matrix.respond_to? :fields
|
64
|
+
@variables_names=@matrix.fields
|
65
|
+
else
|
66
|
+
@variables_names=@n_variables.times.map {|i| "V#{i+1}"}
|
67
|
+
end
|
53
68
|
calculate_eigenpairs
|
54
69
|
if @m.nil?
|
55
70
|
# Set number of factors with eigenvalues > 1
|
@@ -57,6 +72,9 @@ module Factor
|
|
57
72
|
end
|
58
73
|
|
59
74
|
end
|
75
|
+
def rotation
|
76
|
+
@rotation_type.new(component_matrix)
|
77
|
+
end
|
60
78
|
def create_centered_ds
|
61
79
|
h={}
|
62
80
|
@original_ds.factors.each {|f|
|
@@ -93,7 +111,13 @@ module Factor
|
|
93
111
|
gammas.push(Math::sqrt(@eigenpairs[i][0]))
|
94
112
|
}
|
95
113
|
gamma_m=::Matrix.diagonal(*gammas)
|
96
|
-
(omega_m*(gamma_m)).to_matrix
|
114
|
+
cm=(omega_m*(gamma_m)).to_matrix
|
115
|
+
|
116
|
+
cm.extend CovariateMatrix
|
117
|
+
cm.name=_("Component matrix")
|
118
|
+
cm.fields_x = @variables_names
|
119
|
+
cm.fields_y = m.times.map {|i| "component_#{i+1}"}
|
120
|
+
cm
|
97
121
|
end
|
98
122
|
# Communalities for all variables given m factors
|
99
123
|
def communalities(m=nil)
|
@@ -122,12 +146,7 @@ module Factor
|
|
122
146
|
end
|
123
147
|
|
124
148
|
def calculate_eigenpairs_ruby
|
125
|
-
|
126
|
-
@eigenpairs={}
|
127
|
-
eigval.to_a.each_index {|i|
|
128
|
-
@eigenpairs[eigval[i]]=eigvec.column(i)
|
129
|
-
}
|
130
|
-
@eigenpairs=@eigenpairs.sort.reverse
|
149
|
+
@eigenpairs = @matrix.eigenpairs
|
131
150
|
end
|
132
151
|
def calculate_eigenpairs_gsl
|
133
152
|
eigval, eigvec= GSL::Eigen.symmv(@matrix.to_gsl)
|
@@ -140,25 +159,24 @@ module Factor
|
|
140
159
|
|
141
160
|
def report_building(builder) # :nodoc:
|
142
161
|
builder.section(:name=>@name) do |generator|
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
component_matrix(m)
|
158
|
-
|
159
|
-
|
162
|
+
generator.text _("Number of factors: %d") % m
|
163
|
+
generator.table(:name=>_("Communalities"), :header=>[_("Variable"),_("Initial"),_("Extraction")]) do |t|
|
164
|
+
communalities(m).each_with_index {|com, i|
|
165
|
+
t.row([@variables_names[i], 1.0, sprintf("%0.3f", com)])
|
166
|
+
}
|
167
|
+
end
|
168
|
+
|
169
|
+
generator.table(:name=>_("Total Variance Explained"), :header=>[_("Component"), _("E.Total"), _("%"), _("Cum. %")]) do |t|
|
170
|
+
ac_eigen=0
|
171
|
+
eigenvalues.each_with_index {|eigenvalue,i|
|
172
|
+
ac_eigen+=eigenvalue
|
173
|
+
t.row([_("Component %d") % (i+1), sprintf("%0.3f",eigenvalue), sprintf("%0.3f%%", eigenvalue*100.quo(@n_variables)), sprintf("%0.3f",ac_eigen*100.quo(@n_variables))])
|
174
|
+
}
|
175
|
+
end
|
176
|
+
generator.parse_element(component_matrix(m))
|
177
|
+
if (summary_rotation)
|
178
|
+
generator.parse_element(rotation)
|
160
179
|
end
|
161
|
-
end
|
162
180
|
end
|
163
181
|
end
|
164
182
|
private :calculate_eigenpairs, :create_centered_ds
|
@@ -29,31 +29,39 @@ module Factor
|
|
29
29
|
class PrincipalAxis
|
30
30
|
include DirtyMemoize
|
31
31
|
include Summarizable
|
32
|
-
# Minimum difference between succesive iterations on sum of communalities
|
33
|
-
DELTA=1e-3
|
34
|
-
# Maximum number of iterations
|
35
|
-
MAX_ITERATIONS=50
|
36
|
-
# Number of factors. Set by default to the number of factors
|
37
|
-
# with eigen values > 1 on PCA over data
|
38
|
-
attr_accessor :m
|
39
|
-
|
40
32
|
# Name of analysis
|
41
33
|
attr_accessor :name
|
34
|
+
|
35
|
+
# Number of factors. Set by default to the number of factors
|
36
|
+
# with eigenvalues > 1 (Kaiser criterion).
|
37
|
+
#
|
38
|
+
# _Warning:_ Kaiser criterion overfactors! Give yourself some time
|
39
|
+
# and use Horn's Parallel Analysis.
|
40
|
+
#
|
41
|
+
attr_accessor :m
|
42
42
|
|
43
43
|
# Number of iterations required to converge
|
44
44
|
attr_reader :iterations
|
45
|
+
|
45
46
|
# Initial eigenvalues
|
46
47
|
attr_reader :initial_eigenvalues
|
47
|
-
|
48
|
+
|
49
|
+
# Tolerance for iterations
|
48
50
|
attr_accessor :epsilon
|
51
|
+
|
49
52
|
# Use SMC(squared multiple correlations) as diagonal. If false, use 1
|
50
53
|
attr_accessor :smc
|
54
|
+
|
51
55
|
# Maximum number of iterations
|
52
56
|
attr_accessor :max_iterations
|
57
|
+
|
53
58
|
# Eigenvalues of factor analysis
|
54
59
|
attr_reader :eigenvalues
|
55
60
|
|
56
|
-
|
61
|
+
# Minimum difference between succesive iterations on sum of communalities
|
62
|
+
DELTA=1e-3
|
63
|
+
# Maximum number of iterations
|
64
|
+
MAX_ITERATIONS=25
|
57
65
|
|
58
66
|
def initialize(matrix, opts=Hash.new)
|
59
67
|
@matrix=matrix
|
@@ -62,7 +70,7 @@ module Factor
|
|
62
70
|
else
|
63
71
|
@fields=@matrix.row_size.times.map {|i| _("Variable %d") % (i+1)}
|
64
72
|
end
|
65
|
-
|
73
|
+
@n_variables=@matrix.row_size
|
66
74
|
@name=""
|
67
75
|
@m=nil
|
68
76
|
@initial_eigenvalues=nil
|
@@ -74,7 +82,11 @@ module Factor
|
|
74
82
|
opts.each{|k,v|
|
75
83
|
self.send("#{k}=",v) if self.respond_to? k
|
76
84
|
}
|
77
|
-
|
85
|
+
if @matrix.respond_to? :fields
|
86
|
+
@variables_names=@matrix.fields
|
87
|
+
else
|
88
|
+
@variables_names=@n_variables.times.map {|i| "V#{i+1}"}
|
89
|
+
end
|
78
90
|
if @m.nil?
|
79
91
|
pca=PCA.new(::Matrix.rows(@matrix.to_a))
|
80
92
|
@m=pca.m
|
@@ -119,7 +131,7 @@ module Factor
|
|
119
131
|
pca=PCA.new(::Matrix.rows(work_matrix))
|
120
132
|
@communalities=pca.communalities(m)
|
121
133
|
@eigenvalues=pca.eigenvalues
|
122
|
-
com_sum
|
134
|
+
com_sum = @communalities.inject(0) {|ac,v| ac+v}
|
123
135
|
jump=true
|
124
136
|
|
125
137
|
break if (com_sum-prev_sum).abs<@delta
|
@@ -131,6 +143,11 @@ module Factor
|
|
131
143
|
|
132
144
|
end
|
133
145
|
@component_matrix=pca.component_matrix(m)
|
146
|
+
@component_matrix.extend CovariateMatrix
|
147
|
+
@component_matrix.name=_("Factor Matrix")
|
148
|
+
@component_matrix.fields_x = @variables_names
|
149
|
+
@component_matrix.fields_y = m.times.map {|i| "factor_#{i+1}"}
|
150
|
+
|
134
151
|
end
|
135
152
|
alias :compute :iterate
|
136
153
|
|
@@ -182,18 +199,33 @@ module Factor
|
|
182
199
|
t.row([@fields[i], sprintf("%0.4f", initial_communalities[i]), sprintf("%0.3f", com)])
|
183
200
|
}
|
184
201
|
end
|
185
|
-
s.table(:name=>_("
|
202
|
+
s.table(:name=>_("Total Variance"), :header=>[_("Factor"), _("I.E.Total"), _("I.E. %"), _("I.E.Cum. %"),
|
203
|
+
_("S.L.Total"), _("S.L. %"), _("S.L.Cum. %")
|
204
|
+
]) do |t|
|
205
|
+
ac_eigen,ac_i_eigen=0,0
|
186
206
|
@initial_eigenvalues.each_with_index {|eigenvalue,i|
|
187
|
-
|
207
|
+
ac_i_eigen+=eigenvalue
|
208
|
+
ac_eigen+=@eigenvalues[i]
|
209
|
+
new_row=[
|
210
|
+
_("Factor %d") % (i+1),
|
211
|
+
sprintf("%0.3f",eigenvalue),
|
212
|
+
sprintf("%0.3f%%", eigenvalue*100.quo(@n_variables)),
|
213
|
+
sprintf("%0.3f",ac_i_eigen*100.quo(@n_variables))
|
214
|
+
]
|
215
|
+
if i<@m
|
216
|
+
new_row.concat [
|
217
|
+
sprintf("%0.3f", @eigenvalues[i]),
|
218
|
+
sprintf("%0.3f%%", @eigenvalues[i]*100.quo(@n_variables)),
|
219
|
+
sprintf("%0.3f",ac_eigen*100.quo(@n_variables))
|
220
|
+
]
|
221
|
+
else
|
222
|
+
new_row.concat ["","",""]
|
223
|
+
end
|
224
|
+
|
225
|
+
t.row new_row
|
188
226
|
}
|
189
227
|
end
|
190
|
-
s.
|
191
|
-
i=0
|
192
|
-
component_matrix(m).to_a.each do |row|
|
193
|
-
t.row([@fields[i]]+row.collect {|c| sprintf("%0.3f",c)})
|
194
|
-
i+=1
|
195
|
-
end
|
196
|
-
end
|
228
|
+
s.parse_element(component_matrix)
|
197
229
|
end
|
198
230
|
end
|
199
231
|
|
@@ -1,10 +1,12 @@
|
|
1
1
|
module Statsample
|
2
2
|
module Factor
|
3
|
-
# Base class for
|
4
|
-
#
|
3
|
+
# Base class for component matrix rotation.
|
4
|
+
#
|
5
|
+
# == References:
|
5
6
|
# * SPSS Manual
|
6
|
-
# * Johnny Lin code for IDL: http://www.johnny-lin.com/idl_code/varimax_k58.pro
|
7
|
-
#
|
7
|
+
# * Johnny Lin code for IDL: [http://www.johnny-lin.com/idl_code/varimax_k58.pro]
|
8
|
+
#
|
9
|
+
# Use subclasses Varimax, Equimax or Quartimax for desired type of rotation
|
8
10
|
# Use:
|
9
11
|
# a = Matrix[ [ 0.4320, 0.8129, 0.3872]
|
10
12
|
# , [ 0.7950, -0.5416, 0.2565]
|
@@ -18,6 +20,7 @@ module Factor
|
|
18
20
|
class Rotation
|
19
21
|
EPSILON=1e-15
|
20
22
|
MAX_ITERATIONS=25
|
23
|
+
include Summarizable
|
21
24
|
include DirtyMemoize
|
22
25
|
attr_reader :iterations, :rotated, :component_transformation_matrix, :h2
|
23
26
|
# Maximum number of iterations
|
@@ -29,6 +32,7 @@ module Factor
|
|
29
32
|
dirty_memoize :iterations, :rotated, :component_transformation_matrix, :h2
|
30
33
|
|
31
34
|
def initialize(matrix, opts=Hash.new)
|
35
|
+
@name=_("%s rotation") % rotation_name
|
32
36
|
@matrix=matrix
|
33
37
|
@n=@matrix.row_size # Variables, p on original
|
34
38
|
@m=@matrix.column_size # Factors, r on original
|
@@ -41,6 +45,12 @@ module Factor
|
|
41
45
|
self.send("#{k}=",v) if self.respond_to? k
|
42
46
|
}
|
43
47
|
end
|
48
|
+
def report_building(g)
|
49
|
+
g.section(:name=>@name) do |s|
|
50
|
+
s.parse_element(rotated)
|
51
|
+
s.parse_element(component_transformation_matrix)
|
52
|
+
end
|
53
|
+
end
|
44
54
|
alias_method :communalities, :h2
|
45
55
|
alias_method :rotated_component_matrix, :rotated
|
46
56
|
def compute
|
@@ -111,7 +121,33 @@ module Factor
|
|
111
121
|
end #i
|
112
122
|
end # while
|
113
123
|
@rotated=h*bh
|
124
|
+
@rotated.extend CovariateMatrix
|
125
|
+
@rotated.name=_("Rotated Component matrix")
|
126
|
+
|
127
|
+
if @matrix.respond_to? :fields_x
|
128
|
+
@rotated.fields_x = @matrix.fields_x
|
129
|
+
else
|
130
|
+
@rotated.fields_x = @n.times.map {|i| "var_#{i+1}"}
|
131
|
+
end
|
132
|
+
if @matrix.respond_to? :fields_y
|
133
|
+
@rotated.fields_y = @matrix.fields_y
|
134
|
+
else
|
135
|
+
@rotated.fields_y = @m.times.map {|i| "var_#{i+1}"}
|
136
|
+
end
|
137
|
+
|
138
|
+
|
139
|
+
|
114
140
|
@component_transformation_matrix=t
|
141
|
+
@component_transformation_matrix.extend CovariateMatrix
|
142
|
+
@component_transformation_matrix.name=_("Component transformation matrix")
|
143
|
+
|
144
|
+
if @matrix.respond_to? :fields_y
|
145
|
+
@component_transformation_matrix.fields = @matrix.fields_y
|
146
|
+
|
147
|
+
else
|
148
|
+
@component_transformation_matrix.fields = @m.times.map {|i| "var_#{i+1}"}
|
149
|
+
end
|
150
|
+
|
115
151
|
@rotated
|
116
152
|
end
|
117
153
|
|
@@ -123,6 +159,9 @@ module Factor
|
|
123
159
|
def y(a,b,c,d)
|
124
160
|
c-((a**2-b**2) / @n.to_f)
|
125
161
|
end
|
162
|
+
def rotation_name
|
163
|
+
"Varimax"
|
164
|
+
end
|
126
165
|
end
|
127
166
|
class Equimax < Rotation
|
128
167
|
def x(a,b,c,d)
|
@@ -131,6 +170,10 @@ module Factor
|
|
131
170
|
def y(a,b,c,d)
|
132
171
|
c-@m*((a**2-b**2) / (2*@n.to_f))
|
133
172
|
end
|
173
|
+
def rotation_name
|
174
|
+
"Equimax"
|
175
|
+
end
|
176
|
+
|
134
177
|
end
|
135
178
|
class Quartimax < Rotation
|
136
179
|
def x(a,b,c,d)
|
@@ -139,6 +182,10 @@ module Factor
|
|
139
182
|
def y(a,b,c,d)
|
140
183
|
c
|
141
184
|
end
|
185
|
+
def rotation_name
|
186
|
+
"Quartimax"
|
187
|
+
end
|
188
|
+
|
142
189
|
end
|
143
190
|
end
|
144
191
|
end
|
data/lib/statsample/matrix.rb
CHANGED
@@ -57,20 +57,20 @@ module Statsample
|
|
57
57
|
end
|
58
58
|
def correlation
|
59
59
|
if(type==:covariance)
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
60
|
+
matrix=Matrix.rows(row_size.times.collect { |i|
|
61
|
+
column_size.times.collect { |j|
|
62
|
+
if i==j
|
63
|
+
1.0
|
64
|
+
else
|
65
|
+
self[i,j].quo(Math::sqrt(self[i,i])*Math::sqrt(self[j,j]))
|
66
|
+
end
|
67
|
+
}
|
68
|
+
})
|
69
|
+
matrix.extend CovariateMatrix
|
70
|
+
matrix.fields_x=fields_x
|
71
|
+
matrix.fields_y=fields_y
|
72
|
+
matrix.type=:correlation
|
73
|
+
matrix
|
74
74
|
else
|
75
75
|
self
|
76
76
|
end
|
@@ -30,6 +30,7 @@ module Statsample
|
|
30
30
|
# Get Cronbach's alpha from a covariance matrix
|
31
31
|
def cronbach_alpha_from_covariance_matrix(cov)
|
32
32
|
n=cov.row_size
|
33
|
+
raise "covariance matrix should have at least 2 variables" if n < 2
|
33
34
|
s2=n.times.inject(0) {|ac,i| ac+cov[i,i]}
|
34
35
|
(n.quo(n-1))*(1-(s2.quo(cov.total_sum)))
|
35
36
|
end
|
@@ -32,10 +32,14 @@ module Statsample
|
|
32
32
|
attr_accessor :summary_pca
|
33
33
|
# Add Principal Axis to summary
|
34
34
|
attr_accessor :summary_principal_axis
|
35
|
+
# Add Parallel Analysis to summary
|
36
|
+
attr_accessor :summary_parallel_analysis
|
35
37
|
# Options for Factor::PCA object
|
36
38
|
attr_accessor :pca_options
|
37
39
|
# Options for Factor::PrincipalAxis
|
38
40
|
attr_accessor :principal_axis_options
|
41
|
+
# Options for Parallel Analysis
|
42
|
+
attr_accessor :parallel_analysis_options
|
39
43
|
# Generates a new MultiScaleAnalysis
|
40
44
|
# Opts could be any accessor of the class
|
41
45
|
# * :name,
|
@@ -50,12 +54,15 @@ module Statsample
|
|
50
54
|
#
|
51
55
|
def initialize(opts=Hash.new, &block)
|
52
56
|
@scales=Hash.new
|
57
|
+
@scales_keys=Array.new
|
53
58
|
opts_default={ :name=>_("Multiple Scale analysis"),
|
54
59
|
:summary_correlation_matrix=>false,
|
55
60
|
:summary_pca=>false,
|
56
61
|
:summary_principal_axis=>false,
|
62
|
+
:summary_parallel_analysis=>false,
|
57
63
|
:pca_options=>Hash.new,
|
58
|
-
:principal_axis_options=>Hash.new
|
64
|
+
:principal_axis_options=>Hash.new,
|
65
|
+
:parallel_analysis_options=>Hash.new
|
59
66
|
}
|
60
67
|
@opts=opts_default.merge(opts)
|
61
68
|
@opts.each{|k,v|
|
@@ -72,38 +79,49 @@ module Statsample
|
|
72
79
|
#
|
73
80
|
# If second parameters is empty, returns the ScaleAnalysis
|
74
81
|
# <tt>code</tt>.
|
75
|
-
def scale(code,ds=nil, opts=nil)
|
82
|
+
def scale(code, ds=nil, opts=nil)
|
76
83
|
if ds.nil?
|
77
84
|
@scales[code]
|
78
85
|
else
|
79
86
|
opts={:name=>_("Scale %s") % code} if opts.nil?
|
87
|
+
@scales_keys.push(code)
|
80
88
|
@scales[code]=ScaleAnalysis.new(ds, opts)
|
81
89
|
end
|
82
90
|
end
|
83
91
|
# Delete ScaleAnalysis named <tt>code</tt>
|
84
92
|
def delete_scale(code)
|
93
|
+
@scales_keys.delete code
|
85
94
|
@scales.delete code
|
86
95
|
end
|
87
96
|
# Retrieves a Principal Component Analysis (Factor::PCA)
|
88
97
|
# using all scales, using <tt>opts</tt> a options.
|
89
98
|
def pca(opts=nil)
|
90
99
|
opts||=pca_options
|
91
|
-
Statsample::Factor::PCA.new(correlation_matrix,opts)
|
100
|
+
Statsample::Factor::PCA.new(correlation_matrix, opts)
|
92
101
|
end
|
93
102
|
# Retrieves a PrincipalAxis Analysis (Factor::PrincipalAxis)
|
94
103
|
# using all scales, using <tt>opts</tt> a options.
|
95
104
|
def principal_axis_analysis(opts=nil)
|
96
105
|
opts||=principal_axis_options
|
97
|
-
Statsample::Factor::PrincipalAxis.new(correlation_matrix,opts)
|
106
|
+
Statsample::Factor::PrincipalAxis.new(correlation_matrix, opts)
|
107
|
+
end
|
108
|
+
def dataset_from_scales
|
109
|
+
ds=Dataset.new(@scales_keys)
|
110
|
+
@scales.each_pair do |code,scale|
|
111
|
+
ds[code.to_s]=scale.ds.vector_sum
|
112
|
+
ds[code.to_s].name=scale.name
|
113
|
+
end
|
114
|
+
ds.update_valid_data
|
115
|
+
ds
|
116
|
+
end
|
117
|
+
def parallel_analysis(opts=nil)
|
118
|
+
opts||=parallel_analysis_options
|
119
|
+
Statsample::Factor::ParallelAnalysis.new(dataset_from_scales, opts)
|
98
120
|
end
|
99
121
|
# Retrieves a Correlation Matrix between scales.
|
100
122
|
#
|
101
123
|
def correlation_matrix
|
102
|
-
|
103
|
-
@scales.each_pair do |code,scale|
|
104
|
-
vectors[code.to_s]=scale.ds.vector_sum
|
105
|
-
end
|
106
|
-
Statsample::Bivariate.correlation_matrix(vectors.to_dataset)
|
124
|
+
Statsample::Bivariate.correlation_matrix(dataset_from_scales)
|
107
125
|
end
|
108
126
|
def report_building(b) # :nodoc:
|
109
127
|
b.section(:name=>name) do |s|
|
@@ -126,7 +144,14 @@ module Statsample
|
|
126
144
|
s.section(:name=>_("Principal Axis for %s") % name) do |s2|
|
127
145
|
s2.parse_element(principal_axis_analysis)
|
128
146
|
end
|
129
|
-
end
|
147
|
+
end
|
148
|
+
|
149
|
+
if summary_parallel_analysis
|
150
|
+
s.section(:name=>_("Parallel Analysis for %s") % name) do |s2|
|
151
|
+
s2.parse_element(parallel_analysis)
|
152
|
+
end
|
153
|
+
end
|
154
|
+
|
130
155
|
end
|
131
156
|
end
|
132
157
|
end
|