statsample-timeseries 0.0.2
Sign up to get free protection for your applications and to get access to all the features.
- data/.document +5 -0
- data/.travis.yml +13 -0
- data/Gemfile +22 -0
- data/LICENSE.txt +22 -0
- data/README.rdoc +72 -0
- data/Rakefile +47 -0
- data/VERSION +1 -0
- data/bin/bio-statsample-timeseries +74 -0
- data/features/acf.feature +31 -0
- data/features/pacf.feature +42 -0
- data/features/step_definitions/bio-statsample-timeseries_steps.rb +0 -0
- data/features/step_definitions/step_definitions.rb +37 -0
- data/features/step_definitions/step_definitions_acf.rb +8 -0
- data/features/support/env.rb +15 -0
- data/lib/statsample-timeseries.rb +18 -0
- data/lib/statsample-timeseries/arima.rb +246 -0
- data/lib/statsample-timeseries/arima/kalman.rb +148 -0
- data/lib/statsample-timeseries/arima/likelihood.rb +101 -0
- data/lib/statsample-timeseries/timeseries.rb +291 -0
- data/lib/statsample-timeseries/timeseries/pacf.rb +164 -0
- data/lib/statsample-timeseries/utility.rb +154 -0
- data/test/fixtures/stock_data.csv +500 -0
- data/test/helper.rb +81 -0
- data/test/test_arima_ks.rb +106 -0
- data/test/test_arima_simulators.rb +186 -0
- data/test/test_matrix.rb +92 -0
- data/test/test_pacf.rb +52 -0
- data/test/test_tseries.rb +103 -0
- data/test/test_wald.rb +71 -0
- metadata +273 -0
@@ -0,0 +1,164 @@
|
|
1
|
+
module Statsample
|
2
|
+
module TimeSeries
|
3
|
+
module Pacf
|
4
|
+
class Pacf
|
5
|
+
|
6
|
+
def self.pacf_yw(timeseries, max_lags, method = 'yw')
|
7
|
+
#partial autocorrelation by yule walker equations.
|
8
|
+
#Inspiration: StatsModels
|
9
|
+
pacf = [1.0]
|
10
|
+
(1..max_lags).map do |i|
|
11
|
+
pacf << yule_walker(timeseries, i, method)[0][-1]
|
12
|
+
end
|
13
|
+
pacf
|
14
|
+
end
|
15
|
+
|
16
|
+
|
17
|
+
#=Levinson-Durbin Algorithm
|
18
|
+
#==Parameters
|
19
|
+
#* *series*: timeseries, or a series of autocovariances
|
20
|
+
#* *nlags*: integer(default: 10): largest lag to include in recursion or order of the AR process
|
21
|
+
#* *is_acovf*: boolean(default: false): series is timeseries if it is false, else contains autocavariances
|
22
|
+
#
|
23
|
+
#==Returns:
|
24
|
+
#* *sigma_v*: estimate of the error variance
|
25
|
+
#* *arcoefs*: AR coefficients
|
26
|
+
#* *pacf*: pacf function
|
27
|
+
#* *sigma*: some function
|
28
|
+
def self.levinson_durbin(series, nlags = 10, is_acovf = false)
|
29
|
+
|
30
|
+
if is_acovf
|
31
|
+
series = series.map(&:to_f)
|
32
|
+
else
|
33
|
+
#nlags = order(k) of AR in this case
|
34
|
+
series = series.acvf.map(&:to_f)[0..nlags]
|
35
|
+
end
|
36
|
+
#phi = Array.new((nlags+1), 0.0) { Array.new(nlags+1, 0.0) }
|
37
|
+
order = nlags
|
38
|
+
phi = Matrix.zero(nlags + 1)
|
39
|
+
sig = Array.new(nlags+1)
|
40
|
+
|
41
|
+
#setting initial point for recursion:
|
42
|
+
phi[1,1] = series[1]/series[0]
|
43
|
+
#phi[1][1] = series[1]/series[0]
|
44
|
+
sig[1] = series[0] - phi[1, 1] * series[1]
|
45
|
+
|
46
|
+
2.upto(order).each do |k|
|
47
|
+
phi[k, k] = (series[k] - (Statsample::Vector.new(phi[1...k, k-1]) * series[1...k].reverse.to_ts).sum) / sig[k-1]
|
48
|
+
#some serious refinement needed in above for matrix manipulation. Will do today
|
49
|
+
1.upto(k-1).each do |j|
|
50
|
+
phi[j, k] = phi[j, k-1] - phi[k, k] * phi[k-j, k-1]
|
51
|
+
end
|
52
|
+
sig[k] = sig[k-1] * (1-phi[k, k] ** 2)
|
53
|
+
|
54
|
+
end
|
55
|
+
sigma_v = sig[-1]
|
56
|
+
arcoefs_delta = phi.column(phi.column_size - 1)
|
57
|
+
arcoefs = arcoefs_delta[1..arcoefs_delta.size]
|
58
|
+
pacf = diag(phi)
|
59
|
+
pacf[0] = 1.0
|
60
|
+
return [sigma_v, arcoefs, pacf, sig, phi]
|
61
|
+
end
|
62
|
+
|
63
|
+
#Returns diagonal elements of matrices
|
64
|
+
# Will later abstract it to utilities
|
65
|
+
def self.diag(mat)
|
66
|
+
return mat.each_with_index(:diagonal).map { |x, r, c| x }
|
67
|
+
end
|
68
|
+
|
69
|
+
|
70
|
+
#=Yule Walker Algorithm
|
71
|
+
#From the series, estimates AR(p)(autoregressive) parameter using Yule-Waler equation. See -
|
72
|
+
#http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
|
73
|
+
#
|
74
|
+
#==Parameters
|
75
|
+
#* *ts*: timeseries
|
76
|
+
#* *k*: order, default = 1
|
77
|
+
#* *method*: can be 'yw' or 'mle'. If 'yw' then it is unbiased, denominator is (n - k)
|
78
|
+
#
|
79
|
+
#==Returns
|
80
|
+
#* *rho*: autoregressive coefficients
|
81
|
+
#* *sigma*: sigma parameter
|
82
|
+
def self.yule_walker(ts, k = 1, method='yw')
|
83
|
+
ts = ts - ts.mean
|
84
|
+
n = ts.size
|
85
|
+
if method.downcase.eql? 'yw'
|
86
|
+
#unbiased => denominator = (n - k)
|
87
|
+
denom =->(k) { n - k }
|
88
|
+
else
|
89
|
+
#mle
|
90
|
+
#denominator => (n)
|
91
|
+
denom =->(k) { n }
|
92
|
+
end
|
93
|
+
r = Array.new(k + 1) { 0.0 }
|
94
|
+
r[0] = ts.map { |x| x**2 }.inject(:+).to_f / denom.call(0).to_f
|
95
|
+
|
96
|
+
1.upto(k) do |l|
|
97
|
+
r[l] = (ts[0...-l].zip(ts[l...ts.size])).map do |x|
|
98
|
+
x.inject(:*)
|
99
|
+
end.inject(:+).to_f / denom.call(l).to_f
|
100
|
+
end
|
101
|
+
|
102
|
+
r_R = toeplitz(r[0...-1])
|
103
|
+
|
104
|
+
mat = Matrix.columns(r_R).inverse()
|
105
|
+
phi = solve_matrix(mat, r[1..r.size])
|
106
|
+
phi_vector = Statsample::Vector.new(phi, :scale)
|
107
|
+
r_vector = Statsample::Vector.new(r[1..r.size], :scale)
|
108
|
+
sigma = r[0] - (r_vector * phi_vector).sum
|
109
|
+
return [phi, sigma]
|
110
|
+
end
|
111
|
+
|
112
|
+
#=ToEplitz
|
113
|
+
# Generates teoeplitz matrix from an array
|
114
|
+
#http://en.wikipedia.org/wiki/Toeplitz_matrix
|
115
|
+
#Toeplitz matrix are equal when they are stored in row & column major
|
116
|
+
#==Parameters
|
117
|
+
#* *arr*: array of integers;
|
118
|
+
#==Usage
|
119
|
+
# arr = [0,1,2,3]
|
120
|
+
# Pacf.toeplitz(arr)
|
121
|
+
#==Returns
|
122
|
+
# [[0, 1, 2, 3],
|
123
|
+
# [1, 0, 1, 2],
|
124
|
+
# [2, 1, 0, 1],
|
125
|
+
# [3, 2, 1, 0]]
|
126
|
+
def self.toeplitz(arr)
|
127
|
+
eplitz_matrix = Array.new(arr.size) { Array.new(arr.size) }
|
128
|
+
|
129
|
+
0.upto(arr.size - 1) do |i|
|
130
|
+
j = 0
|
131
|
+
index = i
|
132
|
+
while i >= 0 do
|
133
|
+
eplitz_matrix[index][j] = arr[i]
|
134
|
+
j += 1
|
135
|
+
i -= 1
|
136
|
+
end
|
137
|
+
i = index + 1; k = 1
|
138
|
+
while i < arr.size do
|
139
|
+
eplitz_matrix[index][j] = arr[k]
|
140
|
+
i += 1; j += 1; k += 1
|
141
|
+
end
|
142
|
+
end
|
143
|
+
eplitz_matrix
|
144
|
+
end
|
145
|
+
|
146
|
+
#===Solves matrix equations
|
147
|
+
#Solves for X in AX = B
|
148
|
+
def self.solve_matrix(matrix, out_vector)
|
149
|
+
solution_vector = Array.new(out_vector.size, 0)
|
150
|
+
matrix = matrix.to_a
|
151
|
+
k = 0
|
152
|
+
matrix.each do |row|
|
153
|
+
row.each_with_index do |element, i|
|
154
|
+
solution_vector[k] += element * 1.0 * out_vector[i]
|
155
|
+
end
|
156
|
+
k += 1
|
157
|
+
end
|
158
|
+
solution_vector
|
159
|
+
end
|
160
|
+
|
161
|
+
end
|
162
|
+
end
|
163
|
+
end
|
164
|
+
end
|
@@ -0,0 +1,154 @@
|
|
1
|
+
module Statsample
|
2
|
+
class Vector
|
3
|
+
include Enumerable
|
4
|
+
include Writable
|
5
|
+
include Summarizable
|
6
|
+
|
7
|
+
#=Squares of sum
|
8
|
+
#==Parameter
|
9
|
+
#* *demean*: boolean - optional. __default__: false
|
10
|
+
#==Returns
|
11
|
+
#Sums the timeseries and then returns the square
|
12
|
+
def squares_of_sum(demean = false)
|
13
|
+
if demean
|
14
|
+
m = self.mean
|
15
|
+
self.map { |x| (x-m) }.sum**2
|
16
|
+
else
|
17
|
+
return self.sum.to_f**2
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
|
23
|
+
class ::Matrix
|
24
|
+
#==Squares of sum
|
25
|
+
#Does squares of sum in column order.
|
26
|
+
#Necessary for computations in various processes
|
27
|
+
def squares_of_sum
|
28
|
+
(0...column_size).map do |j|
|
29
|
+
self.column(j).sum**2
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
#==Symmetric?
|
34
|
+
#`symmetric?` is present in Ruby Matrix 1.9.3+, but not in 1.8.*
|
35
|
+
#===Returns
|
36
|
+
# bool
|
37
|
+
def symmetric?
|
38
|
+
return false unless square?
|
39
|
+
|
40
|
+
(0...row_size).each do |i|
|
41
|
+
0.upto(i).each do |j|
|
42
|
+
return false if self[i, j] != self[j, i]
|
43
|
+
end
|
44
|
+
end
|
45
|
+
true
|
46
|
+
end
|
47
|
+
|
48
|
+
#==Cholesky decomposition
|
49
|
+
#Reference: http://en.wikipedia.org/wiki/Cholesky_decomposition
|
50
|
+
#===Description
|
51
|
+
#Cholesky decomposition is reprsented by `M = L X L*`, where
|
52
|
+
#M is the symmetric matrix and `L` is the lower half of cholesky matrix,
|
53
|
+
#and `L*` is the conjugate form of `L`.
|
54
|
+
#===Returns
|
55
|
+
# Cholesky decomposition for a given matrix(if symmetric)
|
56
|
+
#===Utility
|
57
|
+
# Essential matrix function, requisite in kalman filter, least squares
|
58
|
+
def cholesky
|
59
|
+
raise ArgumentError, "Given matrix should be symmetric" unless symmetric?
|
60
|
+
c = Matrix.zero(row_size)
|
61
|
+
0.upto(row_size - 1).each do |k|
|
62
|
+
0.upto(row_size - 1).each do |i|
|
63
|
+
if i == k
|
64
|
+
sum = (0..(k-1)).inject(0.0){ |sum, j| sum + c[k, j] ** 2 }
|
65
|
+
value = Math.sqrt(self[k,k] - sum)
|
66
|
+
c[k, k] = value
|
67
|
+
elsif i > k
|
68
|
+
sum = (0..(k-1)).inject(0.0){ |sum, j| sum + c[i, j] * c[k, j] }
|
69
|
+
value = (self[k,i] - sum) / c[k, k]
|
70
|
+
c[i, k] = value
|
71
|
+
end
|
72
|
+
end
|
73
|
+
end
|
74
|
+
c
|
75
|
+
end
|
76
|
+
|
77
|
+
#==Chain Product
|
78
|
+
#Class method
|
79
|
+
#Returns the chain product of two matrices
|
80
|
+
#===Usage:
|
81
|
+
#Let `a` be 4 * 3 matrix,
|
82
|
+
#Let `b` be 3 * 3 matrix,
|
83
|
+
#Let `c` be 3 * 1 matrix,
|
84
|
+
#then `Matrix.chain_dot(a, b, c)`
|
85
|
+
#===NOTE:
|
86
|
+
# Send the matrices in multiplicative order with proper dimensions
|
87
|
+
def self.chain_dot(*args)
|
88
|
+
#inspired by Statsmodels
|
89
|
+
begin
|
90
|
+
args.reduce { |x, y| x * y } #perform matrix multiplication in order
|
91
|
+
rescue ExceptionForMatrix::ErrDimensionMismatch
|
92
|
+
puts "ExceptionForMatrix: Please provide matrices with proper multiplicative dimensions"
|
93
|
+
end
|
94
|
+
end
|
95
|
+
|
96
|
+
|
97
|
+
#==Adds a column of constants.
|
98
|
+
#Appends a column of ones to the matrix/array if first argument is false
|
99
|
+
#If an n-array, first checks if one column of ones is already present
|
100
|
+
#if present, then original(self) is returned, else, prepends with a vector of ones
|
101
|
+
def add_constant(prepend = true)
|
102
|
+
#for Matrix
|
103
|
+
(0...column_size).each do |i|
|
104
|
+
if self.column(i).map(&:to_f) == Object::Vector.elements(Array.new(row_size, 1.0))
|
105
|
+
return self
|
106
|
+
end
|
107
|
+
end
|
108
|
+
#append/prepend a column of one's
|
109
|
+
vectors = (0...row_size).map do |r|
|
110
|
+
if prepend
|
111
|
+
[1.0].concat(self.row(r).to_a)
|
112
|
+
else
|
113
|
+
self.row(r).to_a.push(1.0)
|
114
|
+
end
|
115
|
+
end
|
116
|
+
return Matrix.rows(vectors)
|
117
|
+
end
|
118
|
+
|
119
|
+
#populates column i of given matrix with arr
|
120
|
+
def set_column(i, arr)
|
121
|
+
columns = self.column_vectors
|
122
|
+
column = columns[i].to_a
|
123
|
+
column[0...arr.size] = arr
|
124
|
+
columns[i] = column
|
125
|
+
return Matrix.columns(columns)
|
126
|
+
end
|
127
|
+
|
128
|
+
#populates row i of given matrix with arr
|
129
|
+
def set_row(i, arr)
|
130
|
+
#similar implementation as set_column
|
131
|
+
#writing and commenting metaprogrammed version
|
132
|
+
#Please to give opinion :)
|
133
|
+
rows = self.row_vectors
|
134
|
+
row = rows[i].to_a
|
135
|
+
row[0...arr.size] = arr
|
136
|
+
rows[i] = row
|
137
|
+
return Matrix.rows(rows)
|
138
|
+
end
|
139
|
+
|
140
|
+
#Metaprogrammed version of set_column, set_row
|
141
|
+
# self.class_eval do
|
142
|
+
# ["row", "column"].each do |dimension|
|
143
|
+
# define_method("set_#{dimension}s") do |i, arr|
|
144
|
+
# dims = send("#{dimension}_vectors")
|
145
|
+
# dim = dims[i].to_a
|
146
|
+
# dim[0...arr.size] = arr
|
147
|
+
# dims[i] = dim
|
148
|
+
# return Matrix.send("#{dimension}s", dims)
|
149
|
+
# end
|
150
|
+
# end
|
151
|
+
# end
|
152
|
+
end
|
153
|
+
|
154
|
+
end
|
@@ -0,0 +1,500 @@
|
|
1
|
+
17.66
|
2
|
+
17.65
|
3
|
+
17.68
|
4
|
+
17.66
|
5
|
+
17.68
|
6
|
+
17.67
|
7
|
+
17.68
|
8
|
+
17.68
|
9
|
+
17.67
|
10
|
+
17.67
|
11
|
+
17.68
|
12
|
+
17.71
|
13
|
+
17.74
|
14
|
+
17.72
|
15
|
+
17.73
|
16
|
+
17.76
|
17
|
+
17.74
|
18
|
+
17.69
|
19
|
+
17.69
|
20
|
+
17.67
|
21
|
+
17.66
|
22
|
+
17.67
|
23
|
+
17.69
|
24
|
+
17.69
|
25
|
+
17.68
|
26
|
+
17.65
|
27
|
+
17.65
|
28
|
+
17.64
|
29
|
+
17.63
|
30
|
+
17.64
|
31
|
+
17.67
|
32
|
+
17.68
|
33
|
+
17.7
|
34
|
+
17.68
|
35
|
+
17.69
|
36
|
+
17.69
|
37
|
+
17.72
|
38
|
+
17.71
|
39
|
+
17.71
|
40
|
+
17.71
|
41
|
+
17.69
|
42
|
+
17.69
|
43
|
+
17.71
|
44
|
+
17.72
|
45
|
+
17.71
|
46
|
+
17.68
|
47
|
+
17.68
|
48
|
+
17.68
|
49
|
+
17.69
|
50
|
+
17.68
|
51
|
+
17.68
|
52
|
+
17.69
|
53
|
+
17.67
|
54
|
+
17.69
|
55
|
+
17.71
|
56
|
+
17.7
|
57
|
+
17.7
|
58
|
+
17.71
|
59
|
+
17.73
|
60
|
+
17.74
|
61
|
+
17.74
|
62
|
+
17.74
|
63
|
+
17.76
|
64
|
+
17.77
|
65
|
+
17.55
|
66
|
+
17.55
|
67
|
+
17.5
|
68
|
+
17.46
|
69
|
+
17.49
|
70
|
+
17.54
|
71
|
+
17.51
|
72
|
+
17.54
|
73
|
+
17.57
|
74
|
+
17.54
|
75
|
+
17.52
|
76
|
+
17.53
|
77
|
+
17.56
|
78
|
+
17.55
|
79
|
+
17.55
|
80
|
+
17.54
|
81
|
+
17.55
|
82
|
+
17.55
|
83
|
+
17.55
|
84
|
+
17.54
|
85
|
+
17.52
|
86
|
+
17.53
|
87
|
+
17.51
|
88
|
+
17.52
|
89
|
+
17.5
|
90
|
+
17.5
|
91
|
+
17.5
|
92
|
+
17.49
|
93
|
+
17.46
|
94
|
+
17.47
|
95
|
+
17.48
|
96
|
+
17.45
|
97
|
+
17.41
|
98
|
+
17.39
|
99
|
+
17.38
|
100
|
+
17.43
|
101
|
+
17.44
|
102
|
+
17.43
|
103
|
+
17.43
|
104
|
+
17.46
|
105
|
+
17.46
|
106
|
+
17.47
|
107
|
+
17.47
|
108
|
+
17.45
|
109
|
+
17.48
|
110
|
+
17.49
|
111
|
+
17.5
|
112
|
+
17.49
|
113
|
+
17.48
|
114
|
+
17.49
|
115
|
+
17.47
|
116
|
+
17.47
|
117
|
+
17.44
|
118
|
+
17.44
|
119
|
+
17.43
|
120
|
+
17.45
|
121
|
+
17.42
|
122
|
+
17.43
|
123
|
+
17.43
|
124
|
+
17.44
|
125
|
+
17.44
|
126
|
+
17.43
|
127
|
+
17.41
|
128
|
+
17.41
|
129
|
+
17.38
|
130
|
+
17.38
|
131
|
+
17.37
|
132
|
+
17.37
|
133
|
+
17.37
|
134
|
+
17.3
|
135
|
+
17.28
|
136
|
+
17.27
|
137
|
+
17.19
|
138
|
+
16.41
|
139
|
+
16.44
|
140
|
+
16.48
|
141
|
+
16.53
|
142
|
+
16.51
|
143
|
+
16.57
|
144
|
+
16.54
|
145
|
+
16.59
|
146
|
+
16.64
|
147
|
+
16.6
|
148
|
+
16.65
|
149
|
+
16.69
|
150
|
+
16.69
|
151
|
+
16.68
|
152
|
+
16.64
|
153
|
+
16.65
|
154
|
+
16.66
|
155
|
+
16.64
|
156
|
+
16.61
|
157
|
+
16.65
|
158
|
+
16.67
|
159
|
+
16.66
|
160
|
+
16.65
|
161
|
+
16.61
|
162
|
+
16.59
|
163
|
+
16.57
|
164
|
+
16.55
|
165
|
+
16.55
|
166
|
+
16.57
|
167
|
+
16.54
|
168
|
+
16.6
|
169
|
+
16.62
|
170
|
+
16.6
|
171
|
+
16.59
|
172
|
+
16.61
|
173
|
+
16.66
|
174
|
+
16.69
|
175
|
+
16.67
|
176
|
+
16.65
|
177
|
+
16.66
|
178
|
+
16.65
|
179
|
+
16.65
|
180
|
+
16.68
|
181
|
+
16.68
|
182
|
+
16.67
|
183
|
+
16.64
|
184
|
+
16.73
|
185
|
+
16.76
|
186
|
+
16.75
|
187
|
+
16.79
|
188
|
+
16.8
|
189
|
+
16.77
|
190
|
+
16.74
|
191
|
+
16.76
|
192
|
+
16.83
|
193
|
+
16.84
|
194
|
+
16.82
|
195
|
+
16.89
|
196
|
+
16.93
|
197
|
+
16.94
|
198
|
+
16.9
|
199
|
+
16.92
|
200
|
+
16.88
|
201
|
+
16.85
|
202
|
+
16.87
|
203
|
+
16.8
|
204
|
+
16.79
|
205
|
+
16.85
|
206
|
+
16.85
|
207
|
+
16.8
|
208
|
+
16.82
|
209
|
+
16.85
|
210
|
+
16.9
|
211
|
+
16.86
|
212
|
+
16.79
|
213
|
+
16.75
|
214
|
+
16.78
|
215
|
+
17.06
|
216
|
+
17.05
|
217
|
+
17.04
|
218
|
+
17.02
|
219
|
+
17.01
|
220
|
+
17.02
|
221
|
+
17.05
|
222
|
+
17.07
|
223
|
+
17.08
|
224
|
+
17.09
|
225
|
+
17.1
|
226
|
+
17.11
|
227
|
+
17.09
|
228
|
+
17.1
|
229
|
+
17.1
|
230
|
+
17.12
|
231
|
+
17.17
|
232
|
+
17.16
|
233
|
+
17.17
|
234
|
+
17.18
|
235
|
+
17.18
|
236
|
+
17.18
|
237
|
+
17.17
|
238
|
+
17.15
|
239
|
+
17.14
|
240
|
+
17.13
|
241
|
+
17.14
|
242
|
+
17.13
|
243
|
+
17.12
|
244
|
+
17.12
|
245
|
+
17.09
|
246
|
+
17.09
|
247
|
+
17.11
|
248
|
+
17.06
|
249
|
+
17.07
|
250
|
+
17.06
|
251
|
+
17.07
|
252
|
+
17.06
|
253
|
+
17.09
|
254
|
+
17.05
|
255
|
+
17.04
|
256
|
+
17.04
|
257
|
+
16.99
|
258
|
+
17
|
259
|
+
17.03
|
260
|
+
17
|
261
|
+
16.97
|
262
|
+
16.96
|
263
|
+
16.98
|
264
|
+
16.98
|
265
|
+
16.98
|
266
|
+
17.03
|
267
|
+
17
|
268
|
+
17
|
269
|
+
17
|
270
|
+
17.02
|
271
|
+
17
|
272
|
+
17.02
|
273
|
+
17.01
|
274
|
+
17.02
|
275
|
+
17.03
|
276
|
+
17.03
|
277
|
+
17.01
|
278
|
+
17.03
|
279
|
+
17.03
|
280
|
+
17.03
|
281
|
+
17.01
|
282
|
+
17.03
|
283
|
+
17.05
|
284
|
+
17.05
|
285
|
+
17.08
|
286
|
+
17.04
|
287
|
+
17.01
|
288
|
+
17.03
|
289
|
+
17.02
|
290
|
+
17.03
|
291
|
+
17.04
|
292
|
+
17.05
|
293
|
+
17.37
|
294
|
+
17.35
|
295
|
+
17.34
|
296
|
+
17.32
|
297
|
+
17.29
|
298
|
+
17.29
|
299
|
+
17.22
|
300
|
+
17.26
|
301
|
+
17.3
|
302
|
+
17.34
|
303
|
+
17.33
|
304
|
+
17.39
|
305
|
+
17.4
|
306
|
+
17.39
|
307
|
+
17.48
|
308
|
+
17.5
|
309
|
+
17.47
|
310
|
+
17.43
|
311
|
+
17.4
|
312
|
+
17.42
|
313
|
+
17.46
|
314
|
+
17.48
|
315
|
+
17.48
|
316
|
+
17.46
|
317
|
+
17.46
|
318
|
+
17.45
|
319
|
+
17.43
|
320
|
+
17.44
|
321
|
+
17.48
|
322
|
+
17.43
|
323
|
+
17.45
|
324
|
+
17.47
|
325
|
+
17.46
|
326
|
+
17.46
|
327
|
+
17.48
|
328
|
+
17.48
|
329
|
+
17.48
|
330
|
+
17.46
|
331
|
+
17.5
|
332
|
+
17.55
|
333
|
+
17.58
|
334
|
+
17.57
|
335
|
+
17.56
|
336
|
+
17.59
|
337
|
+
17.61
|
338
|
+
17.62
|
339
|
+
17.63
|
340
|
+
17.62
|
341
|
+
17.61
|
342
|
+
17.61
|
343
|
+
17.62
|
344
|
+
17.64
|
345
|
+
17.65
|
346
|
+
17.61
|
347
|
+
17.62
|
348
|
+
17.66
|
349
|
+
17.65
|
350
|
+
17.64
|
351
|
+
17.63
|
352
|
+
17.64
|
353
|
+
17.64
|
354
|
+
17.64
|
355
|
+
17.63
|
356
|
+
17.61
|
357
|
+
17.61
|
358
|
+
17.62
|
359
|
+
17.63
|
360
|
+
17.64
|
361
|
+
17.65
|
362
|
+
17.66
|
363
|
+
17.68
|
364
|
+
17.69
|
365
|
+
17.69
|
366
|
+
17.69
|
367
|
+
17.66
|
368
|
+
17.69
|
369
|
+
17.69
|
370
|
+
17.62
|
371
|
+
17.68
|
372
|
+
17.64
|
373
|
+
17.65
|
374
|
+
17.61
|
375
|
+
17.52
|
376
|
+
17.56
|
377
|
+
17.55
|
378
|
+
17.55
|
379
|
+
17.48
|
380
|
+
17.45
|
381
|
+
17.46
|
382
|
+
17.46
|
383
|
+
17.44
|
384
|
+
17.47
|
385
|
+
17.5
|
386
|
+
17.49
|
387
|
+
17.5
|
388
|
+
17.53
|
389
|
+
17.53
|
390
|
+
17.54
|
391
|
+
17.51
|
392
|
+
17.51
|
393
|
+
17.53
|
394
|
+
17.53
|
395
|
+
17.53
|
396
|
+
17.55
|
397
|
+
17.55
|
398
|
+
17.54
|
399
|
+
17.56
|
400
|
+
17.59
|
401
|
+
17.57
|
402
|
+
17.58
|
403
|
+
17.58
|
404
|
+
17.57
|
405
|
+
17.59
|
406
|
+
17.57
|
407
|
+
17.55
|
408
|
+
17.51
|
409
|
+
17.51
|
410
|
+
17.52
|
411
|
+
17.52
|
412
|
+
17.53
|
413
|
+
17.55
|
414
|
+
17.59
|
415
|
+
17.61
|
416
|
+
17.61
|
417
|
+
17.6
|
418
|
+
17.6
|
419
|
+
17.62
|
420
|
+
17.65
|
421
|
+
17.62
|
422
|
+
17.6
|
423
|
+
17.6
|
424
|
+
17.62
|
425
|
+
17.61
|
426
|
+
17.62
|
427
|
+
17.63
|
428
|
+
17.64
|
429
|
+
17.65
|
430
|
+
17.61
|
431
|
+
17.62
|
432
|
+
17.64
|
433
|
+
17.63
|
434
|
+
17.62
|
435
|
+
17.6
|
436
|
+
17.57
|
437
|
+
17.57
|
438
|
+
17.6
|
439
|
+
17.59
|
440
|
+
17.6
|
441
|
+
17.61
|
442
|
+
17.61
|
443
|
+
17.63
|
444
|
+
17.63
|
445
|
+
17.59
|
446
|
+
17.58
|
447
|
+
17.76
|
448
|
+
17.79
|
449
|
+
17.76
|
450
|
+
17.73
|
451
|
+
17.74
|
452
|
+
17.73
|
453
|
+
17.67
|
454
|
+
17.66
|
455
|
+
17.66
|
456
|
+
17.64
|
457
|
+
17.63
|
458
|
+
17.62
|
459
|
+
17.61
|
460
|
+
17.6
|
461
|
+
17.61
|
462
|
+
17.61
|
463
|
+
17.6
|
464
|
+
17.6
|
465
|
+
17.64
|
466
|
+
17.65
|
467
|
+
17.65
|
468
|
+
17.63
|
469
|
+
17.61
|
470
|
+
17.6
|
471
|
+
17.63
|
472
|
+
17.63
|
473
|
+
17.62
|
474
|
+
17.63
|
475
|
+
17.64
|
476
|
+
17.62
|
477
|
+
17.63
|
478
|
+
17.65
|
479
|
+
17.64
|
480
|
+
17.6
|
481
|
+
17.59
|
482
|
+
17.59
|
483
|
+
17.58
|
484
|
+
17.58
|
485
|
+
17.6
|
486
|
+
17.6
|
487
|
+
17.6
|
488
|
+
17.6
|
489
|
+
17.6
|
490
|
+
17.58
|
491
|
+
17.59
|
492
|
+
17.6
|
493
|
+
17.6
|
494
|
+
17.6
|
495
|
+
17.59
|
496
|
+
17.59
|
497
|
+
17.58
|
498
|
+
17.58
|
499
|
+
17.65
|
500
|
+
17.65
|