statsample-timeseries 0.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.document +5 -0
- data/.travis.yml +13 -0
- data/Gemfile +22 -0
- data/LICENSE.txt +22 -0
- data/README.rdoc +72 -0
- data/Rakefile +47 -0
- data/VERSION +1 -0
- data/bin/bio-statsample-timeseries +74 -0
- data/features/acf.feature +31 -0
- data/features/pacf.feature +42 -0
- data/features/step_definitions/bio-statsample-timeseries_steps.rb +0 -0
- data/features/step_definitions/step_definitions.rb +37 -0
- data/features/step_definitions/step_definitions_acf.rb +8 -0
- data/features/support/env.rb +15 -0
- data/lib/statsample-timeseries.rb +18 -0
- data/lib/statsample-timeseries/arima.rb +246 -0
- data/lib/statsample-timeseries/arima/kalman.rb +148 -0
- data/lib/statsample-timeseries/arima/likelihood.rb +101 -0
- data/lib/statsample-timeseries/timeseries.rb +291 -0
- data/lib/statsample-timeseries/timeseries/pacf.rb +164 -0
- data/lib/statsample-timeseries/utility.rb +154 -0
- data/test/fixtures/stock_data.csv +500 -0
- data/test/helper.rb +81 -0
- data/test/test_arima_ks.rb +106 -0
- data/test/test_arima_simulators.rb +186 -0
- data/test/test_matrix.rb +92 -0
- data/test/test_pacf.rb +52 -0
- data/test/test_tseries.rb +103 -0
- data/test/test_wald.rb +71 -0
- metadata +273 -0
| @@ -0,0 +1,164 @@ | |
| 1 | 
            +
            module Statsample
         | 
| 2 | 
            +
              module TimeSeries
         | 
| 3 | 
            +
                module Pacf
         | 
| 4 | 
            +
                  class Pacf
         | 
| 5 | 
            +
             | 
| 6 | 
            +
                    def self.pacf_yw(timeseries, max_lags, method = 'yw')
         | 
| 7 | 
            +
                      #partial autocorrelation by yule walker equations.
         | 
| 8 | 
            +
                      #Inspiration: StatsModels
         | 
| 9 | 
            +
                      pacf = [1.0]
         | 
| 10 | 
            +
                      (1..max_lags).map do |i|
         | 
| 11 | 
            +
                        pacf << yule_walker(timeseries, i, method)[0][-1]
         | 
| 12 | 
            +
                      end
         | 
| 13 | 
            +
                      pacf
         | 
| 14 | 
            +
                    end
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
                    #=Levinson-Durbin Algorithm
         | 
| 18 | 
            +
                    #==Parameters
         | 
| 19 | 
            +
                    #* *series*: timeseries, or a series of autocovariances
         | 
| 20 | 
            +
                    #* *nlags*: integer(default: 10): largest lag to include in recursion or order of the AR process
         | 
| 21 | 
            +
                    #* *is_acovf*: boolean(default: false): series is timeseries if it is false, else contains autocavariances
         | 
| 22 | 
            +
                    #
         | 
| 23 | 
            +
                    #==Returns:
         | 
| 24 | 
            +
                    #* *sigma_v*: estimate of the error variance
         | 
| 25 | 
            +
                    #* *arcoefs*: AR coefficients
         | 
| 26 | 
            +
                    #* *pacf*: pacf function
         | 
| 27 | 
            +
                    #* *sigma*: some function
         | 
| 28 | 
            +
                    def self.levinson_durbin(series, nlags = 10, is_acovf = false)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                      if is_acovf
         | 
| 31 | 
            +
                        series = series.map(&:to_f)
         | 
| 32 | 
            +
                      else
         | 
| 33 | 
            +
                        #nlags = order(k) of AR in this case
         | 
| 34 | 
            +
                        series = series.acvf.map(&:to_f)[0..nlags]
         | 
| 35 | 
            +
                      end
         | 
| 36 | 
            +
                      #phi = Array.new((nlags+1), 0.0) { Array.new(nlags+1, 0.0) }
         | 
| 37 | 
            +
                      order = nlags
         | 
| 38 | 
            +
                      phi = Matrix.zero(nlags + 1)
         | 
| 39 | 
            +
                      sig = Array.new(nlags+1)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                      #setting initial point for recursion:
         | 
| 42 | 
            +
                      phi[1,1] = series[1]/series[0]
         | 
| 43 | 
            +
                      #phi[1][1] = series[1]/series[0]
         | 
| 44 | 
            +
                      sig[1] = series[0] - phi[1, 1] * series[1]
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                      2.upto(order).each do |k|
         | 
| 47 | 
            +
                        phi[k, k] = (series[k] - (Statsample::Vector.new(phi[1...k, k-1]) * series[1...k].reverse.to_ts).sum) / sig[k-1]
         | 
| 48 | 
            +
                        #some serious refinement needed in above for matrix manipulation. Will do today
         | 
| 49 | 
            +
                        1.upto(k-1).each do |j|
         | 
| 50 | 
            +
                          phi[j, k] = phi[j, k-1] - phi[k, k] * phi[k-j, k-1]
         | 
| 51 | 
            +
                        end
         | 
| 52 | 
            +
                        sig[k] = sig[k-1] * (1-phi[k, k] ** 2)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                      end
         | 
| 55 | 
            +
                      sigma_v = sig[-1]
         | 
| 56 | 
            +
                      arcoefs_delta = phi.column(phi.column_size - 1)
         | 
| 57 | 
            +
                      arcoefs = arcoefs_delta[1..arcoefs_delta.size]
         | 
| 58 | 
            +
                      pacf = diag(phi)
         | 
| 59 | 
            +
                      pacf[0] = 1.0
         | 
| 60 | 
            +
                      return [sigma_v, arcoefs, pacf, sig, phi]
         | 
| 61 | 
            +
                    end
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    #Returns diagonal elements of matrices
         | 
| 64 | 
            +
                    # Will later abstract it to utilities
         | 
| 65 | 
            +
                    def self.diag(mat)
         | 
| 66 | 
            +
                      return mat.each_with_index(:diagonal).map { |x, r, c| x }
         | 
| 67 | 
            +
                    end
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
                    #=Yule Walker Algorithm
         | 
| 71 | 
            +
                    #From the series, estimates AR(p)(autoregressive) parameter using Yule-Waler equation. See -
         | 
| 72 | 
            +
                    #http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
         | 
| 73 | 
            +
                    #
         | 
| 74 | 
            +
                    #==Parameters
         | 
| 75 | 
            +
                    #* *ts*: timeseries
         | 
| 76 | 
            +
                    #* *k*: order, default = 1
         | 
| 77 | 
            +
                    #* *method*: can be 'yw' or 'mle'. If 'yw' then it is unbiased, denominator is (n - k)
         | 
| 78 | 
            +
                    #
         | 
| 79 | 
            +
                    #==Returns
         | 
| 80 | 
            +
                    #* *rho*: autoregressive coefficients
         | 
| 81 | 
            +
                    #* *sigma*: sigma parameter
         | 
| 82 | 
            +
                    def self.yule_walker(ts, k = 1, method='yw')
         | 
| 83 | 
            +
                      ts = ts - ts.mean
         | 
| 84 | 
            +
                      n = ts.size
         | 
| 85 | 
            +
                      if method.downcase.eql? 'yw'
         | 
| 86 | 
            +
                        #unbiased => denominator = (n - k)
         | 
| 87 | 
            +
                        denom =->(k) { n - k }
         | 
| 88 | 
            +
                      else
         | 
| 89 | 
            +
                        #mle
         | 
| 90 | 
            +
                        #denominator => (n)
         | 
| 91 | 
            +
                        denom =->(k) { n }
         | 
| 92 | 
            +
                      end
         | 
| 93 | 
            +
                      r = Array.new(k + 1) { 0.0 }
         | 
| 94 | 
            +
                      r[0] = ts.map { |x| x**2 }.inject(:+).to_f / denom.call(0).to_f
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                      1.upto(k) do |l|
         | 
| 97 | 
            +
                        r[l] = (ts[0...-l].zip(ts[l...ts.size])).map do |x|
         | 
| 98 | 
            +
                          x.inject(:*)
         | 
| 99 | 
            +
                        end.inject(:+).to_f / denom.call(l).to_f
         | 
| 100 | 
            +
                      end
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                      r_R = toeplitz(r[0...-1])
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                      mat = Matrix.columns(r_R).inverse()
         | 
| 105 | 
            +
                      phi = solve_matrix(mat, r[1..r.size])
         | 
| 106 | 
            +
                      phi_vector = Statsample::Vector.new(phi, :scale)
         | 
| 107 | 
            +
                      r_vector = Statsample::Vector.new(r[1..r.size], :scale)
         | 
| 108 | 
            +
                      sigma = r[0] - (r_vector * phi_vector).sum
         | 
| 109 | 
            +
                      return [phi, sigma]
         | 
| 110 | 
            +
                    end
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    #=ToEplitz
         | 
| 113 | 
            +
                    # Generates teoeplitz matrix from an array
         | 
| 114 | 
            +
                    #http://en.wikipedia.org/wiki/Toeplitz_matrix
         | 
| 115 | 
            +
                    #Toeplitz matrix are equal when they are stored in row & column major
         | 
| 116 | 
            +
                    #==Parameters
         | 
| 117 | 
            +
                    #* *arr*: array of integers;
         | 
| 118 | 
            +
                    #==Usage
         | 
| 119 | 
            +
                    #  arr = [0,1,2,3]
         | 
| 120 | 
            +
                    #  Pacf.toeplitz(arr)
         | 
| 121 | 
            +
                    #==Returns
         | 
| 122 | 
            +
                    # [[0, 1, 2, 3],
         | 
| 123 | 
            +
                    #  [1, 0, 1, 2],
         | 
| 124 | 
            +
                    #  [2, 1, 0, 1],
         | 
| 125 | 
            +
                    #  [3, 2, 1, 0]]
         | 
| 126 | 
            +
                    def self.toeplitz(arr)
         | 
| 127 | 
            +
                      eplitz_matrix = Array.new(arr.size) { Array.new(arr.size) }
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                      0.upto(arr.size - 1) do |i|
         | 
| 130 | 
            +
                        j = 0
         | 
| 131 | 
            +
                        index = i
         | 
| 132 | 
            +
                        while i >= 0 do
         | 
| 133 | 
            +
                          eplitz_matrix[index][j] = arr[i]
         | 
| 134 | 
            +
                          j += 1
         | 
| 135 | 
            +
                          i -= 1
         | 
| 136 | 
            +
                        end
         | 
| 137 | 
            +
                        i = index + 1; k = 1
         | 
| 138 | 
            +
                        while i < arr.size do
         | 
| 139 | 
            +
                          eplitz_matrix[index][j] = arr[k]
         | 
| 140 | 
            +
                          i += 1; j += 1; k += 1
         | 
| 141 | 
            +
                        end
         | 
| 142 | 
            +
                      end
         | 
| 143 | 
            +
                      eplitz_matrix
         | 
| 144 | 
            +
                    end
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    #===Solves matrix equations
         | 
| 147 | 
            +
                    #Solves for X in AX = B
         | 
| 148 | 
            +
                    def self.solve_matrix(matrix, out_vector)
         | 
| 149 | 
            +
                      solution_vector = Array.new(out_vector.size, 0)
         | 
| 150 | 
            +
                      matrix = matrix.to_a
         | 
| 151 | 
            +
                      k = 0
         | 
| 152 | 
            +
                      matrix.each do |row|
         | 
| 153 | 
            +
                        row.each_with_index do |element, i|
         | 
| 154 | 
            +
                          solution_vector[k] += element * 1.0 * out_vector[i]
         | 
| 155 | 
            +
                        end
         | 
| 156 | 
            +
                        k += 1
         | 
| 157 | 
            +
                      end
         | 
| 158 | 
            +
                      solution_vector
         | 
| 159 | 
            +
                    end
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                  end
         | 
| 162 | 
            +
                end
         | 
| 163 | 
            +
              end
         | 
| 164 | 
            +
            end
         | 
| @@ -0,0 +1,154 @@ | |
| 1 | 
            +
            module Statsample
         | 
| 2 | 
            +
              class Vector
         | 
| 3 | 
            +
                include Enumerable
         | 
| 4 | 
            +
                include Writable
         | 
| 5 | 
            +
                include Summarizable
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                #=Squares of sum
         | 
| 8 | 
            +
                #==Parameter
         | 
| 9 | 
            +
                #* *demean*: boolean - optional. __default__: false
         | 
| 10 | 
            +
                #==Returns
         | 
| 11 | 
            +
                #Sums the timeseries and then returns the square
         | 
| 12 | 
            +
                def squares_of_sum(demean = false)
         | 
| 13 | 
            +
                  if demean
         | 
| 14 | 
            +
                    m = self.mean
         | 
| 15 | 
            +
                    self.map { |x| (x-m) }.sum**2
         | 
| 16 | 
            +
                  else
         | 
| 17 | 
            +
                    return self.sum.to_f**2
         | 
| 18 | 
            +
                  end
         | 
| 19 | 
            +
                end
         | 
| 20 | 
            +
              end
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
              class ::Matrix
         | 
| 24 | 
            +
                #==Squares of sum
         | 
| 25 | 
            +
                #Does squares of sum in column order.
         | 
| 26 | 
            +
                #Necessary for computations in various processes
         | 
| 27 | 
            +
                def squares_of_sum
         | 
| 28 | 
            +
                  (0...column_size).map do |j|
         | 
| 29 | 
            +
                    self.column(j).sum**2
         | 
| 30 | 
            +
                  end
         | 
| 31 | 
            +
                end
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                #==Symmetric?
         | 
| 34 | 
            +
                #`symmetric?` is present in Ruby Matrix 1.9.3+, but not in 1.8.*
         | 
| 35 | 
            +
                #===Returns
         | 
| 36 | 
            +
                # bool
         | 
| 37 | 
            +
                def symmetric?
         | 
| 38 | 
            +
                  return false unless square?
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                  (0...row_size).each do |i|
         | 
| 41 | 
            +
                    0.upto(i).each do |j|
         | 
| 42 | 
            +
                      return false if self[i, j] != self[j, i]
         | 
| 43 | 
            +
                    end
         | 
| 44 | 
            +
                  end
         | 
| 45 | 
            +
                  true
         | 
| 46 | 
            +
                end
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                #==Cholesky decomposition
         | 
| 49 | 
            +
                #Reference: http://en.wikipedia.org/wiki/Cholesky_decomposition
         | 
| 50 | 
            +
                #===Description
         | 
| 51 | 
            +
                #Cholesky decomposition is reprsented by `M = L X L*`, where
         | 
| 52 | 
            +
                #M is the symmetric matrix and `L` is the lower half of cholesky matrix,
         | 
| 53 | 
            +
                #and `L*` is the conjugate form of `L`.
         | 
| 54 | 
            +
                #===Returns
         | 
| 55 | 
            +
                # Cholesky decomposition for a given matrix(if symmetric)
         | 
| 56 | 
            +
                #===Utility
         | 
| 57 | 
            +
                # Essential matrix function, requisite in kalman filter, least squares
         | 
| 58 | 
            +
                def cholesky
         | 
| 59 | 
            +
                  raise ArgumentError, "Given matrix should be symmetric" unless symmetric?
         | 
| 60 | 
            +
                  c = Matrix.zero(row_size)
         | 
| 61 | 
            +
                  0.upto(row_size - 1).each do |k|
         | 
| 62 | 
            +
                    0.upto(row_size - 1).each do |i|
         | 
| 63 | 
            +
                      if i == k
         | 
| 64 | 
            +
                        sum = (0..(k-1)).inject(0.0){ |sum, j| sum + c[k, j] ** 2 }
         | 
| 65 | 
            +
                        value = Math.sqrt(self[k,k] - sum)
         | 
| 66 | 
            +
                        c[k, k] = value
         | 
| 67 | 
            +
                      elsif i > k
         | 
| 68 | 
            +
                        sum = (0..(k-1)).inject(0.0){ |sum, j| sum + c[i, j] * c[k, j] }
         | 
| 69 | 
            +
                        value = (self[k,i] - sum) / c[k, k]
         | 
| 70 | 
            +
                        c[i, k] = value
         | 
| 71 | 
            +
                      end
         | 
| 72 | 
            +
                    end
         | 
| 73 | 
            +
                  end
         | 
| 74 | 
            +
                  c
         | 
| 75 | 
            +
                end
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                #==Chain Product
         | 
| 78 | 
            +
                #Class method
         | 
| 79 | 
            +
                #Returns the chain product of two matrices
         | 
| 80 | 
            +
                #===Usage:
         | 
| 81 | 
            +
                #Let `a` be 4 * 3 matrix,
         | 
| 82 | 
            +
                #Let `b` be 3 * 3 matrix,
         | 
| 83 | 
            +
                #Let `c` be 3 * 1 matrix,
         | 
| 84 | 
            +
                #then `Matrix.chain_dot(a, b, c)`
         | 
| 85 | 
            +
                #===NOTE:
         | 
| 86 | 
            +
                # Send the matrices in multiplicative order with proper dimensions
         | 
| 87 | 
            +
                def self.chain_dot(*args)
         | 
| 88 | 
            +
                  #inspired by Statsmodels
         | 
| 89 | 
            +
                  begin
         | 
| 90 | 
            +
                    args.reduce { |x, y| x * y } #perform matrix multiplication in order
         | 
| 91 | 
            +
                  rescue ExceptionForMatrix::ErrDimensionMismatch
         | 
| 92 | 
            +
                    puts "ExceptionForMatrix: Please provide matrices with proper multiplicative dimensions"
         | 
| 93 | 
            +
                  end
         | 
| 94 | 
            +
                end
         | 
| 95 | 
            +
             | 
| 96 | 
            +
             | 
| 97 | 
            +
                #==Adds a column of constants.
         | 
| 98 | 
            +
                #Appends a column of ones to the matrix/array if first argument is false
         | 
| 99 | 
            +
                #If an n-array, first checks if one column of ones is already present
         | 
| 100 | 
            +
                #if present, then original(self) is returned, else, prepends with a vector of ones
         | 
| 101 | 
            +
                def add_constant(prepend = true)
         | 
| 102 | 
            +
                  #for Matrix
         | 
| 103 | 
            +
                  (0...column_size).each do |i|
         | 
| 104 | 
            +
                    if self.column(i).map(&:to_f) == Object::Vector.elements(Array.new(row_size, 1.0))
         | 
| 105 | 
            +
                      return self
         | 
| 106 | 
            +
                    end
         | 
| 107 | 
            +
                  end
         | 
| 108 | 
            +
                  #append/prepend a column of one's
         | 
| 109 | 
            +
                  vectors = (0...row_size).map do |r|
         | 
| 110 | 
            +
                    if prepend
         | 
| 111 | 
            +
                      [1.0].concat(self.row(r).to_a)
         | 
| 112 | 
            +
                    else
         | 
| 113 | 
            +
                      self.row(r).to_a.push(1.0)
         | 
| 114 | 
            +
                    end
         | 
| 115 | 
            +
                  end
         | 
| 116 | 
            +
                  return Matrix.rows(vectors)
         | 
| 117 | 
            +
                end
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                #populates column i of given matrix with arr
         | 
| 120 | 
            +
                def set_column(i, arr)
         | 
| 121 | 
            +
                  columns = self.column_vectors
         | 
| 122 | 
            +
                  column = columns[i].to_a
         | 
| 123 | 
            +
                  column[0...arr.size] = arr
         | 
| 124 | 
            +
                  columns[i] = column
         | 
| 125 | 
            +
                  return Matrix.columns(columns)
         | 
| 126 | 
            +
                end
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                #populates row i of given matrix with arr
         | 
| 129 | 
            +
                def set_row(i, arr)
         | 
| 130 | 
            +
                  #similar implementation as set_column
         | 
| 131 | 
            +
                  #writing and commenting metaprogrammed version
         | 
| 132 | 
            +
                  #Please to give opinion :)
         | 
| 133 | 
            +
                  rows = self.row_vectors
         | 
| 134 | 
            +
                  row = rows[i].to_a
         | 
| 135 | 
            +
                  row[0...arr.size] = arr
         | 
| 136 | 
            +
                  rows[i] = row
         | 
| 137 | 
            +
                  return Matrix.rows(rows)
         | 
| 138 | 
            +
                end
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                #Metaprogrammed version of set_column, set_row
         | 
| 141 | 
            +
                # self.class_eval do
         | 
| 142 | 
            +
                #   ["row", "column"].each do |dimension|
         | 
| 143 | 
            +
                #     define_method("set_#{dimension}s") do |i, arr|
         | 
| 144 | 
            +
                #       dims = send("#{dimension}_vectors")
         | 
| 145 | 
            +
                #       dim = dims[i].to_a
         | 
| 146 | 
            +
                #       dim[0...arr.size] = arr
         | 
| 147 | 
            +
                #       dims[i] = dim
         | 
| 148 | 
            +
                #       return Matrix.send("#{dimension}s", dims)
         | 
| 149 | 
            +
                #     end
         | 
| 150 | 
            +
                #   end
         | 
| 151 | 
            +
                # end
         | 
| 152 | 
            +
              end
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            end
         | 
| @@ -0,0 +1,500 @@ | |
| 1 | 
            +
            17.66
         | 
| 2 | 
            +
            17.65
         | 
| 3 | 
            +
            17.68
         | 
| 4 | 
            +
            17.66
         | 
| 5 | 
            +
            17.68
         | 
| 6 | 
            +
            17.67
         | 
| 7 | 
            +
            17.68
         | 
| 8 | 
            +
            17.68
         | 
| 9 | 
            +
            17.67
         | 
| 10 | 
            +
            17.67
         | 
| 11 | 
            +
            17.68
         | 
| 12 | 
            +
            17.71
         | 
| 13 | 
            +
            17.74
         | 
| 14 | 
            +
            17.72
         | 
| 15 | 
            +
            17.73
         | 
| 16 | 
            +
            17.76
         | 
| 17 | 
            +
            17.74
         | 
| 18 | 
            +
            17.69
         | 
| 19 | 
            +
            17.69
         | 
| 20 | 
            +
            17.67
         | 
| 21 | 
            +
            17.66
         | 
| 22 | 
            +
            17.67
         | 
| 23 | 
            +
            17.69
         | 
| 24 | 
            +
            17.69
         | 
| 25 | 
            +
            17.68
         | 
| 26 | 
            +
            17.65
         | 
| 27 | 
            +
            17.65
         | 
| 28 | 
            +
            17.64
         | 
| 29 | 
            +
            17.63
         | 
| 30 | 
            +
            17.64
         | 
| 31 | 
            +
            17.67
         | 
| 32 | 
            +
            17.68
         | 
| 33 | 
            +
            17.7
         | 
| 34 | 
            +
            17.68
         | 
| 35 | 
            +
            17.69
         | 
| 36 | 
            +
            17.69
         | 
| 37 | 
            +
            17.72
         | 
| 38 | 
            +
            17.71
         | 
| 39 | 
            +
            17.71
         | 
| 40 | 
            +
            17.71
         | 
| 41 | 
            +
            17.69
         | 
| 42 | 
            +
            17.69
         | 
| 43 | 
            +
            17.71
         | 
| 44 | 
            +
            17.72
         | 
| 45 | 
            +
            17.71
         | 
| 46 | 
            +
            17.68
         | 
| 47 | 
            +
            17.68
         | 
| 48 | 
            +
            17.68
         | 
| 49 | 
            +
            17.69
         | 
| 50 | 
            +
            17.68
         | 
| 51 | 
            +
            17.68
         | 
| 52 | 
            +
            17.69
         | 
| 53 | 
            +
            17.67
         | 
| 54 | 
            +
            17.69
         | 
| 55 | 
            +
            17.71
         | 
| 56 | 
            +
            17.7
         | 
| 57 | 
            +
            17.7
         | 
| 58 | 
            +
            17.71
         | 
| 59 | 
            +
            17.73
         | 
| 60 | 
            +
            17.74
         | 
| 61 | 
            +
            17.74
         | 
| 62 | 
            +
            17.74
         | 
| 63 | 
            +
            17.76
         | 
| 64 | 
            +
            17.77
         | 
| 65 | 
            +
            17.55
         | 
| 66 | 
            +
            17.55
         | 
| 67 | 
            +
            17.5
         | 
| 68 | 
            +
            17.46
         | 
| 69 | 
            +
            17.49
         | 
| 70 | 
            +
            17.54
         | 
| 71 | 
            +
            17.51
         | 
| 72 | 
            +
            17.54
         | 
| 73 | 
            +
            17.57
         | 
| 74 | 
            +
            17.54
         | 
| 75 | 
            +
            17.52
         | 
| 76 | 
            +
            17.53
         | 
| 77 | 
            +
            17.56
         | 
| 78 | 
            +
            17.55
         | 
| 79 | 
            +
            17.55
         | 
| 80 | 
            +
            17.54
         | 
| 81 | 
            +
            17.55
         | 
| 82 | 
            +
            17.55
         | 
| 83 | 
            +
            17.55
         | 
| 84 | 
            +
            17.54
         | 
| 85 | 
            +
            17.52
         | 
| 86 | 
            +
            17.53
         | 
| 87 | 
            +
            17.51
         | 
| 88 | 
            +
            17.52
         | 
| 89 | 
            +
            17.5
         | 
| 90 | 
            +
            17.5
         | 
| 91 | 
            +
            17.5
         | 
| 92 | 
            +
            17.49
         | 
| 93 | 
            +
            17.46
         | 
| 94 | 
            +
            17.47
         | 
| 95 | 
            +
            17.48
         | 
| 96 | 
            +
            17.45
         | 
| 97 | 
            +
            17.41
         | 
| 98 | 
            +
            17.39
         | 
| 99 | 
            +
            17.38
         | 
| 100 | 
            +
            17.43
         | 
| 101 | 
            +
            17.44
         | 
| 102 | 
            +
            17.43
         | 
| 103 | 
            +
            17.43
         | 
| 104 | 
            +
            17.46
         | 
| 105 | 
            +
            17.46
         | 
| 106 | 
            +
            17.47
         | 
| 107 | 
            +
            17.47
         | 
| 108 | 
            +
            17.45
         | 
| 109 | 
            +
            17.48
         | 
| 110 | 
            +
            17.49
         | 
| 111 | 
            +
            17.5
         | 
| 112 | 
            +
            17.49
         | 
| 113 | 
            +
            17.48
         | 
| 114 | 
            +
            17.49
         | 
| 115 | 
            +
            17.47
         | 
| 116 | 
            +
            17.47
         | 
| 117 | 
            +
            17.44
         | 
| 118 | 
            +
            17.44
         | 
| 119 | 
            +
            17.43
         | 
| 120 | 
            +
            17.45
         | 
| 121 | 
            +
            17.42
         | 
| 122 | 
            +
            17.43
         | 
| 123 | 
            +
            17.43
         | 
| 124 | 
            +
            17.44
         | 
| 125 | 
            +
            17.44
         | 
| 126 | 
            +
            17.43
         | 
| 127 | 
            +
            17.41
         | 
| 128 | 
            +
            17.41
         | 
| 129 | 
            +
            17.38
         | 
| 130 | 
            +
            17.38
         | 
| 131 | 
            +
            17.37
         | 
| 132 | 
            +
            17.37
         | 
| 133 | 
            +
            17.37
         | 
| 134 | 
            +
            17.3
         | 
| 135 | 
            +
            17.28
         | 
| 136 | 
            +
            17.27
         | 
| 137 | 
            +
            17.19
         | 
| 138 | 
            +
            16.41
         | 
| 139 | 
            +
            16.44
         | 
| 140 | 
            +
            16.48
         | 
| 141 | 
            +
            16.53
         | 
| 142 | 
            +
            16.51
         | 
| 143 | 
            +
            16.57
         | 
| 144 | 
            +
            16.54
         | 
| 145 | 
            +
            16.59
         | 
| 146 | 
            +
            16.64
         | 
| 147 | 
            +
            16.6
         | 
| 148 | 
            +
            16.65
         | 
| 149 | 
            +
            16.69
         | 
| 150 | 
            +
            16.69
         | 
| 151 | 
            +
            16.68
         | 
| 152 | 
            +
            16.64
         | 
| 153 | 
            +
            16.65
         | 
| 154 | 
            +
            16.66
         | 
| 155 | 
            +
            16.64
         | 
| 156 | 
            +
            16.61
         | 
| 157 | 
            +
            16.65
         | 
| 158 | 
            +
            16.67
         | 
| 159 | 
            +
            16.66
         | 
| 160 | 
            +
            16.65
         | 
| 161 | 
            +
            16.61
         | 
| 162 | 
            +
            16.59
         | 
| 163 | 
            +
            16.57
         | 
| 164 | 
            +
            16.55
         | 
| 165 | 
            +
            16.55
         | 
| 166 | 
            +
            16.57
         | 
| 167 | 
            +
            16.54
         | 
| 168 | 
            +
            16.6
         | 
| 169 | 
            +
            16.62
         | 
| 170 | 
            +
            16.6
         | 
| 171 | 
            +
            16.59
         | 
| 172 | 
            +
            16.61
         | 
| 173 | 
            +
            16.66
         | 
| 174 | 
            +
            16.69
         | 
| 175 | 
            +
            16.67
         | 
| 176 | 
            +
            16.65
         | 
| 177 | 
            +
            16.66
         | 
| 178 | 
            +
            16.65
         | 
| 179 | 
            +
            16.65
         | 
| 180 | 
            +
            16.68
         | 
| 181 | 
            +
            16.68
         | 
| 182 | 
            +
            16.67
         | 
| 183 | 
            +
            16.64
         | 
| 184 | 
            +
            16.73
         | 
| 185 | 
            +
            16.76
         | 
| 186 | 
            +
            16.75
         | 
| 187 | 
            +
            16.79
         | 
| 188 | 
            +
            16.8
         | 
| 189 | 
            +
            16.77
         | 
| 190 | 
            +
            16.74
         | 
| 191 | 
            +
            16.76
         | 
| 192 | 
            +
            16.83
         | 
| 193 | 
            +
            16.84
         | 
| 194 | 
            +
            16.82
         | 
| 195 | 
            +
            16.89
         | 
| 196 | 
            +
            16.93
         | 
| 197 | 
            +
            16.94
         | 
| 198 | 
            +
            16.9
         | 
| 199 | 
            +
            16.92
         | 
| 200 | 
            +
            16.88
         | 
| 201 | 
            +
            16.85
         | 
| 202 | 
            +
            16.87
         | 
| 203 | 
            +
            16.8
         | 
| 204 | 
            +
            16.79
         | 
| 205 | 
            +
            16.85
         | 
| 206 | 
            +
            16.85
         | 
| 207 | 
            +
            16.8
         | 
| 208 | 
            +
            16.82
         | 
| 209 | 
            +
            16.85
         | 
| 210 | 
            +
            16.9
         | 
| 211 | 
            +
            16.86
         | 
| 212 | 
            +
            16.79
         | 
| 213 | 
            +
            16.75
         | 
| 214 | 
            +
            16.78
         | 
| 215 | 
            +
            17.06
         | 
| 216 | 
            +
            17.05
         | 
| 217 | 
            +
            17.04
         | 
| 218 | 
            +
            17.02
         | 
| 219 | 
            +
            17.01
         | 
| 220 | 
            +
            17.02
         | 
| 221 | 
            +
            17.05
         | 
| 222 | 
            +
            17.07
         | 
| 223 | 
            +
            17.08
         | 
| 224 | 
            +
            17.09
         | 
| 225 | 
            +
            17.1
         | 
| 226 | 
            +
            17.11
         | 
| 227 | 
            +
            17.09
         | 
| 228 | 
            +
            17.1
         | 
| 229 | 
            +
            17.1
         | 
| 230 | 
            +
            17.12
         | 
| 231 | 
            +
            17.17
         | 
| 232 | 
            +
            17.16
         | 
| 233 | 
            +
            17.17
         | 
| 234 | 
            +
            17.18
         | 
| 235 | 
            +
            17.18
         | 
| 236 | 
            +
            17.18
         | 
| 237 | 
            +
            17.17
         | 
| 238 | 
            +
            17.15
         | 
| 239 | 
            +
            17.14
         | 
| 240 | 
            +
            17.13
         | 
| 241 | 
            +
            17.14
         | 
| 242 | 
            +
            17.13
         | 
| 243 | 
            +
            17.12
         | 
| 244 | 
            +
            17.12
         | 
| 245 | 
            +
            17.09
         | 
| 246 | 
            +
            17.09
         | 
| 247 | 
            +
            17.11
         | 
| 248 | 
            +
            17.06
         | 
| 249 | 
            +
            17.07
         | 
| 250 | 
            +
            17.06
         | 
| 251 | 
            +
            17.07
         | 
| 252 | 
            +
            17.06
         | 
| 253 | 
            +
            17.09
         | 
| 254 | 
            +
            17.05
         | 
| 255 | 
            +
            17.04
         | 
| 256 | 
            +
            17.04
         | 
| 257 | 
            +
            16.99
         | 
| 258 | 
            +
            17
         | 
| 259 | 
            +
            17.03
         | 
| 260 | 
            +
            17
         | 
| 261 | 
            +
            16.97
         | 
| 262 | 
            +
            16.96
         | 
| 263 | 
            +
            16.98
         | 
| 264 | 
            +
            16.98
         | 
| 265 | 
            +
            16.98
         | 
| 266 | 
            +
            17.03
         | 
| 267 | 
            +
            17
         | 
| 268 | 
            +
            17
         | 
| 269 | 
            +
            17
         | 
| 270 | 
            +
            17.02
         | 
| 271 | 
            +
            17
         | 
| 272 | 
            +
            17.02
         | 
| 273 | 
            +
            17.01
         | 
| 274 | 
            +
            17.02
         | 
| 275 | 
            +
            17.03
         | 
| 276 | 
            +
            17.03
         | 
| 277 | 
            +
            17.01
         | 
| 278 | 
            +
            17.03
         | 
| 279 | 
            +
            17.03
         | 
| 280 | 
            +
            17.03
         | 
| 281 | 
            +
            17.01
         | 
| 282 | 
            +
            17.03
         | 
| 283 | 
            +
            17.05
         | 
| 284 | 
            +
            17.05
         | 
| 285 | 
            +
            17.08
         | 
| 286 | 
            +
            17.04
         | 
| 287 | 
            +
            17.01
         | 
| 288 | 
            +
            17.03
         | 
| 289 | 
            +
            17.02
         | 
| 290 | 
            +
            17.03
         | 
| 291 | 
            +
            17.04
         | 
| 292 | 
            +
            17.05
         | 
| 293 | 
            +
            17.37
         | 
| 294 | 
            +
            17.35
         | 
| 295 | 
            +
            17.34
         | 
| 296 | 
            +
            17.32
         | 
| 297 | 
            +
            17.29
         | 
| 298 | 
            +
            17.29
         | 
| 299 | 
            +
            17.22
         | 
| 300 | 
            +
            17.26
         | 
| 301 | 
            +
            17.3
         | 
| 302 | 
            +
            17.34
         | 
| 303 | 
            +
            17.33
         | 
| 304 | 
            +
            17.39
         | 
| 305 | 
            +
            17.4
         | 
| 306 | 
            +
            17.39
         | 
| 307 | 
            +
            17.48
         | 
| 308 | 
            +
            17.5
         | 
| 309 | 
            +
            17.47
         | 
| 310 | 
            +
            17.43
         | 
| 311 | 
            +
            17.4
         | 
| 312 | 
            +
            17.42
         | 
| 313 | 
            +
            17.46
         | 
| 314 | 
            +
            17.48
         | 
| 315 | 
            +
            17.48
         | 
| 316 | 
            +
            17.46
         | 
| 317 | 
            +
            17.46
         | 
| 318 | 
            +
            17.45
         | 
| 319 | 
            +
            17.43
         | 
| 320 | 
            +
            17.44
         | 
| 321 | 
            +
            17.48
         | 
| 322 | 
            +
            17.43
         | 
| 323 | 
            +
            17.45
         | 
| 324 | 
            +
            17.47
         | 
| 325 | 
            +
            17.46
         | 
| 326 | 
            +
            17.46
         | 
| 327 | 
            +
            17.48
         | 
| 328 | 
            +
            17.48
         | 
| 329 | 
            +
            17.48
         | 
| 330 | 
            +
            17.46
         | 
| 331 | 
            +
            17.5
         | 
| 332 | 
            +
            17.55
         | 
| 333 | 
            +
            17.58
         | 
| 334 | 
            +
            17.57
         | 
| 335 | 
            +
            17.56
         | 
| 336 | 
            +
            17.59
         | 
| 337 | 
            +
            17.61
         | 
| 338 | 
            +
            17.62
         | 
| 339 | 
            +
            17.63
         | 
| 340 | 
            +
            17.62
         | 
| 341 | 
            +
            17.61
         | 
| 342 | 
            +
            17.61
         | 
| 343 | 
            +
            17.62
         | 
| 344 | 
            +
            17.64
         | 
| 345 | 
            +
            17.65
         | 
| 346 | 
            +
            17.61
         | 
| 347 | 
            +
            17.62
         | 
| 348 | 
            +
            17.66
         | 
| 349 | 
            +
            17.65
         | 
| 350 | 
            +
            17.64
         | 
| 351 | 
            +
            17.63
         | 
| 352 | 
            +
            17.64
         | 
| 353 | 
            +
            17.64
         | 
| 354 | 
            +
            17.64
         | 
| 355 | 
            +
            17.63
         | 
| 356 | 
            +
            17.61
         | 
| 357 | 
            +
            17.61
         | 
| 358 | 
            +
            17.62
         | 
| 359 | 
            +
            17.63
         | 
| 360 | 
            +
            17.64
         | 
| 361 | 
            +
            17.65
         | 
| 362 | 
            +
            17.66
         | 
| 363 | 
            +
            17.68
         | 
| 364 | 
            +
            17.69
         | 
| 365 | 
            +
            17.69
         | 
| 366 | 
            +
            17.69
         | 
| 367 | 
            +
            17.66
         | 
| 368 | 
            +
            17.69
         | 
| 369 | 
            +
            17.69
         | 
| 370 | 
            +
            17.62
         | 
| 371 | 
            +
            17.68
         | 
| 372 | 
            +
            17.64
         | 
| 373 | 
            +
            17.65
         | 
| 374 | 
            +
            17.61
         | 
| 375 | 
            +
            17.52
         | 
| 376 | 
            +
            17.56
         | 
| 377 | 
            +
            17.55
         | 
| 378 | 
            +
            17.55
         | 
| 379 | 
            +
            17.48
         | 
| 380 | 
            +
            17.45
         | 
| 381 | 
            +
            17.46
         | 
| 382 | 
            +
            17.46
         | 
| 383 | 
            +
            17.44
         | 
| 384 | 
            +
            17.47
         | 
| 385 | 
            +
            17.5
         | 
| 386 | 
            +
            17.49
         | 
| 387 | 
            +
            17.5
         | 
| 388 | 
            +
            17.53
         | 
| 389 | 
            +
            17.53
         | 
| 390 | 
            +
            17.54
         | 
| 391 | 
            +
            17.51
         | 
| 392 | 
            +
            17.51
         | 
| 393 | 
            +
            17.53
         | 
| 394 | 
            +
            17.53
         | 
| 395 | 
            +
            17.53
         | 
| 396 | 
            +
            17.55
         | 
| 397 | 
            +
            17.55
         | 
| 398 | 
            +
            17.54
         | 
| 399 | 
            +
            17.56
         | 
| 400 | 
            +
            17.59
         | 
| 401 | 
            +
            17.57
         | 
| 402 | 
            +
            17.58
         | 
| 403 | 
            +
            17.58
         | 
| 404 | 
            +
            17.57
         | 
| 405 | 
            +
            17.59
         | 
| 406 | 
            +
            17.57
         | 
| 407 | 
            +
            17.55
         | 
| 408 | 
            +
            17.51
         | 
| 409 | 
            +
            17.51
         | 
| 410 | 
            +
            17.52
         | 
| 411 | 
            +
            17.52
         | 
| 412 | 
            +
            17.53
         | 
| 413 | 
            +
            17.55
         | 
| 414 | 
            +
            17.59
         | 
| 415 | 
            +
            17.61
         | 
| 416 | 
            +
            17.61
         | 
| 417 | 
            +
            17.6
         | 
| 418 | 
            +
            17.6
         | 
| 419 | 
            +
            17.62
         | 
| 420 | 
            +
            17.65
         | 
| 421 | 
            +
            17.62
         | 
| 422 | 
            +
            17.6
         | 
| 423 | 
            +
            17.6
         | 
| 424 | 
            +
            17.62
         | 
| 425 | 
            +
            17.61
         | 
| 426 | 
            +
            17.62
         | 
| 427 | 
            +
            17.63
         | 
| 428 | 
            +
            17.64
         | 
| 429 | 
            +
            17.65
         | 
| 430 | 
            +
            17.61
         | 
| 431 | 
            +
            17.62
         | 
| 432 | 
            +
            17.64
         | 
| 433 | 
            +
            17.63
         | 
| 434 | 
            +
            17.62
         | 
| 435 | 
            +
            17.6
         | 
| 436 | 
            +
            17.57
         | 
| 437 | 
            +
            17.57
         | 
| 438 | 
            +
            17.6
         | 
| 439 | 
            +
            17.59
         | 
| 440 | 
            +
            17.6
         | 
| 441 | 
            +
            17.61
         | 
| 442 | 
            +
            17.61
         | 
| 443 | 
            +
            17.63
         | 
| 444 | 
            +
            17.63
         | 
| 445 | 
            +
            17.59
         | 
| 446 | 
            +
            17.58
         | 
| 447 | 
            +
            17.76
         | 
| 448 | 
            +
            17.79
         | 
| 449 | 
            +
            17.76
         | 
| 450 | 
            +
            17.73
         | 
| 451 | 
            +
            17.74
         | 
| 452 | 
            +
            17.73
         | 
| 453 | 
            +
            17.67
         | 
| 454 | 
            +
            17.66
         | 
| 455 | 
            +
            17.66
         | 
| 456 | 
            +
            17.64
         | 
| 457 | 
            +
            17.63
         | 
| 458 | 
            +
            17.62
         | 
| 459 | 
            +
            17.61
         | 
| 460 | 
            +
            17.6
         | 
| 461 | 
            +
            17.61
         | 
| 462 | 
            +
            17.61
         | 
| 463 | 
            +
            17.6
         | 
| 464 | 
            +
            17.6
         | 
| 465 | 
            +
            17.64
         | 
| 466 | 
            +
            17.65
         | 
| 467 | 
            +
            17.65
         | 
| 468 | 
            +
            17.63
         | 
| 469 | 
            +
            17.61
         | 
| 470 | 
            +
            17.6
         | 
| 471 | 
            +
            17.63
         | 
| 472 | 
            +
            17.63
         | 
| 473 | 
            +
            17.62
         | 
| 474 | 
            +
            17.63
         | 
| 475 | 
            +
            17.64
         | 
| 476 | 
            +
            17.62
         | 
| 477 | 
            +
            17.63
         | 
| 478 | 
            +
            17.65
         | 
| 479 | 
            +
            17.64
         | 
| 480 | 
            +
            17.6
         | 
| 481 | 
            +
            17.59
         | 
| 482 | 
            +
            17.59
         | 
| 483 | 
            +
            17.58
         | 
| 484 | 
            +
            17.58
         | 
| 485 | 
            +
            17.6
         | 
| 486 | 
            +
            17.6
         | 
| 487 | 
            +
            17.6
         | 
| 488 | 
            +
            17.6
         | 
| 489 | 
            +
            17.6
         | 
| 490 | 
            +
            17.58
         | 
| 491 | 
            +
            17.59
         | 
| 492 | 
            +
            17.6
         | 
| 493 | 
            +
            17.6
         | 
| 494 | 
            +
            17.6
         | 
| 495 | 
            +
            17.59
         | 
| 496 | 
            +
            17.59
         | 
| 497 | 
            +
            17.58
         | 
| 498 | 
            +
            17.58
         | 
| 499 | 
            +
            17.65
         | 
| 500 | 
            +
            17.65
         |